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ABSTRACT

Lying on the heart of intelligent decision-making systems, how policy is represented
and optimized is a fundamental problem. The root challenge in this problem is
the large scale and the high complexity of policy space, which exacerbates the
difficulty of policy learning especially in real-world scenarios. Towards a desirable
surrogate policy space, recently policy representation in a low-dimensional latent
space has shown its potential in improving both the evaluation and optimization of
policy. The key question involved in these studies is by what criterion we should
abstract the policy space for desired compression and generalization. However,
both the theory on policy abstraction and the methodology on policy representation
learning are less studied in the literature. In this work, we make very first efforts to
fill up the vacancy. First, we propose a unified policy abstraction theory, containing
three types of policy abstraction associated to policy features at different levels.
Then, we generalize them to three policy metrics that quantify the distance (i.e.,
similarity) of policies, for more convenient use in learning policy representation.
Further, we propose a policy representation learning approach based on deep metric
learning. For the empirical study, we investigate the efficacy of the proposed policy
metrics and representations, in characterizing policy difference and conveying
policy generalization respectively. Our experiments are conducted in both policy
optimization and evaluation problems, containing trust-region policy optimization
(TRPO), diversity-guided evolution strategy (DGES) and off-policy evaluation
(OPE). Somewhat naturally, the experimental results indicate that there is no a
universally optimal abstraction for all downstream learning problems; while the
influence-irrelevance policy abstraction can be a generally preferred choice.

1 INTRODUCTION

How to obtain the optimal policy is the ultimate problem in many decision-making systems, such as
Game Playing (Mnih et al., 2015), Robotics Manipulation (Smith et al., 2019), Medicine Discovery
(Schreck et al., 2019). Policy, the central notion in the aforementioned problem, defines the agent’s
behavior under specific circumstances. Towards solving the problem, a lot of works carry out studies
on policy with different focal points, e.g., how policy can be well represented (Ma et al., 2020; Urain
et al., 2020), how to optimize policy (Schulman et al., 2017a; Ho & Ermon, 2016) and how to analyze
and understand agents’ behaviors (Zheng et al., 2018; Hansen & Ostermeier, 2001).

The root challenge to the studies on policy is the large scale and the high complexity of policy
space, especially in real-world scenarios. As a consequence, the difficulty of policy learning is
escalated severely. Intuitively and naturally, such issues can be significantly alleviated if we have
an ideal surrogate policy space, which are compact in scale while keep the key features of policy
space. Related to this direction, low-dimensional latent representation of policy plays an important
role in Reinforcement Learning (RL) (Tang et al., 2020), Opponent Modeling (Grover et al., 2018),
Fast Adaptation (Raileanu et al., 2020; Sang et al., 2022), Behavioral Characterization (Kanervisto
et al., 2020) and etc. In these domains, a few preliminary attempts have been made in devising
different policy representations. Most policy representations introduced in prior works resort to
encapsulating the information of policy distribution under interest states (Harb et al., 2020; Pacchiano
et al., 2020), e.g., learning policy embedding by encoding policy’s state-action pairs (or trajectories)
and optimizing a policy recovery objective (Grover et al., 2018; Raileanu et al., 2020). Rather
than policy distribution, some other works resort to the information of policy’s influence on the
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environment, e.g., state(-action) visitation distribution induced by the policy (Kanervisto et al., 2020;
Mutti et al., 2021). Recently, Tang et al. (2020) offers several methods to learn policy representation
through policy contrast or recovery from both policy network parameters and interaction experiences.
Put shortly, the key question of policy representation learning is by what criterion we should abstract
the policy space for desired compression and generalization. Unfortunately, both a unified theory on
policy abstraction and a systematic methodology on policy representation are currently missing.

In this paper, we make first efforts to fill up the plank in both the theory and methodology. In-
spired by the state abstraction theory (Li et al., 2006), first we introduce a unified theory of policy
abstraction. We start from proposing three types of policy abstraction: distribution-irrelevance,
influence-irrelevance, and value-irrelevance. They follow different abstraction criteria, each of which
concerns distinct features of policy. Concretely, we utilize the exact equivalence relations between
policies and derive the corresponding policy abstractions. Further, we generalize the exact equivalence
relations to policy metrics, allowing quantitatively measure the distance (i.e., similarity) between
policies. Such policy metrics are more informative than the binary outcomes of policy equivalence
and thus provide more usefulness in policy representation learning. Moreover, towards applying
practical policy representation in downstream learning problems, we introduce a policy representation
learning approach based on deep metric learning (Kaya & Bilge, 2019). We propose an alignment loss
for a unified objective function of learning with different policy metrics. The policy representation is
learned to render the abstraction criterion through minimizing the difference between the distance of
policy embeddings and the quantity measure by the policy metrics. In particular, we use Maximum
Mean Discrepancy (Gretton et al., 2012; Nguyen-Tang et al., 2021) for efficient empirical estimation
of the policy metrics; and we adopt Layer-wise Permutation-invariant Encoder (Tang et al., 2020) for
structure-aware encoding of the parameters of policy network.

In addition to the theoretical understanding of policy abstraction, we further investigate the empirical
efficacy of different policy metrics and representations in characterizing policy difference and convey-
ing policy generalization respectively. We conduct experiments in both policy optimization and policy
evaluation problems. For policy optimization, we adopt Trust-Region Policy Optimization (TRPO)
and Diversity-Guided Evolution Strategy (DGES) as the problem settings from (Kanervisto et al.,
2020), covering both gradient-based and gradient-free policy optimization. For policy evaluation, we
consider Off-policy Evaluation (OPE). In particular, we establish a series of OPE settings with differ-
ent configurations of training data and generalization tasks. These settings reflect the circumstances
often encountered in RL. Our experimental results indicate that, somewhat naturally, there is no a
universally optimal abstraction for all downstream learning problems. Additionally, it turns out that
the influence-irrelevance abstraction can be a preferred choice in general cases.

Our main contributions are summarized as follows: 1) We focus on the general policy abstraction
problem and to our knowledge, we propose a unified theory of policy abstraction along with several
policy metrics for the first time. 2) We propose a unified policy representation learning approach
based on deep metric learning. 3) We empirically evaluate the efficacy of our proposed policy
representations in multiple fundamental problems (i.e., TRPO, DGES and OPE).

2 BACKGROUND

Reinforcement Learning We consider a Markov Decision Process (MDP) (Puterman, 2014)
typically defined by a five-tuple ⟨S,A, P,R, γ⟩, with the state space S, the action space A, the
transition probability P : S×A→ ∆(S), the reward functionR : S×A→ R and the discount factor
γ ∈ [0, 1). ∆(X) denotes the probability distribution over X . A stationary policy π : S → ∆(A)
is a mapping from states to action distributions, which defines how to behave under specific states.
An agent interacts with the MDP at discrete timesteps by its policy π, generating trajectories with
s0 ∼ ρ0(·), at ∼ π(·|st), st+1 ∼ P (· | st, at) and rt = R (st, at), where ρ0 is the initial state
distribution. We use Pπ(s′|s) = Ea∼π(·|s)P (s′|s, a) to denote the distribution of next state s′ when
performing policy π at state s. For a policy π, the return Gt =

∑∞
t=0 γ

trt is the random variable for
the sum of discounted rewards while following π, whose distribution is denoted by Zπ. The value
function of policy π defines the expected return for state s, i.e., V π(s) = Eπ[Gt | s0 = s]. The goal
of an RL agent is to learn an optimal policy π∗ that maximizes J(π) = Es0∼ρ0(·)[V π(s0)].
Metric Learning Here we recall the standard definition of metrics which is central to our work.
Definition 1 (Metrics (Royden, 1968)). Let X be a non-empty set of data elements and a metric is a
real-valued function d: X ×X → [0,∞) such that for all x, y, z ∈ X: 1) d(x, y) = 0 ⇐⇒ x = y;
2) d(x, y) = d(y, x); 3) d(x, y) ≤ d(x, z) + d(z, y). A pseudo-metric d is a metric with the first
condition replaced by x = y =⇒ d(x, y) = 0. The combination ⟨X, d⟩ is called a metric space.

2



Under review as a conference paper at ICLR 2023

A metric d is often used to quantify the distance between two data elements in a general sense. In
this paper, we will also use metric to stand for pseudo-metric for brevity. Typically metric learning
aims to reduce the distance between similar data and increase the distance between dissimilar data.
With nonlinear transformation offered by deep neural networks, Deep Metric Learning allows us to
find such optimal metrics by optimizing a latent representation space of raw data.

3 POLICY ABSTRACTION THEORY

Inspired by the state abstraction theory (Li et al., 2006), in this section, we make the first effort in
proposing a unified policy abstraction theory. First, we propose the formal definition of three types
for policy abstraction; then, we generalize the abstractions to three types of policy metrics. Finally,
we analyze the properties of policy abstraction and compare them in several Gridworld MDPs.

3.1 POLICY ABSTRACTION

First of all, following the classic definition of an abstraction (Giunchiglia & Walsh, 1992), we propose
a general definition of policy abstraction as follows:
Definition 2 (Policy Abstraction). A policy abstraction f : Π→ X , is a mapping from ground policy
space Π to an abstract space X . f(π) ∈ X is the abstract policy representation corresponding to
ground policy π ∈ Π, and the inverse image f−1(χ) with χ ∈ X , is the set of ground policies that
correspond to χ under abstraction function f .

It is apparent that there are many such abstractions since we may have many possible ways to partition
the policy space. However, we are only interested in some useful ones among them that follow
specific abstraction criteria to preserve the important features related to decision making. In this
paper, we present three types of policy abstraction which are defined below:
Definition 3. Given an MDP and a ground policy space Π, for any two policies πi, πj ∈ Π, we
define three types of policy abstraction as follows:

1. A distribution-irrelevance abstraction (fπ) is such that for all s ∈ S, a ∈ A, fπ(πi) =
fπ(πj) implies that πi(a | s) = πj(a | s).

2. An influence-irrelevance abstraction (fPπ ) is such that for all s, s′ ∈ S, fPπ (πi) = fPπ (πj)
implies that Pπi(s′|s) = Pπj (s′|s).

3. A value-irrelevance abstraction (fV π ) is such that for all s ∈ S, fV π (πi) = fV π (πj) implies
that V πi(s) = V πj (s).

These abstractions aggregate policies based on the corresponding equivalence relations with respective
concerns on different features of policy. Intuitively, the distribution-irrelevance abstraction (fπ)
preserves the action distribution of the policy; the influence-irrelevance abstraction (fPπ ) preserves
the state transition distribution induced by the policy, i.e., the influence caused by the policy on the
environment; and value-irrelevance abstraction (fV π ) preserves the value function of the policy. In
addition to the policy abstractions introduced in Definition 3, we provide some other ones in Appendix
A.2. Moreover, we revisit the policy abstractions adopted in prior related works and summarize them
from the angle of our policy abstraction theory in Table 4 of Appendix B.

3.2 POLICY METRICS

The policy abstractions allow us to aggregate policies according to equivalence relation. However,
exact equivalence is rarely encountered in continuous policy space (e.g., the usual case with neural
policies), thus useful abstraction can be seldom obtained. Moreover, the equivalence relation offers
only qualitative (i.e., binary) outcomes and is incapable of measuring the similarity between policies,
which is significant to policy representation learning. To this end, we generalize the policy abstractions
to policy metrics which quantitatively measures the distance between two policies.

Corresponding to the three types of policy abstraction, we define the following three policy metrics:
Definition 4. Given an MDP, a ground policy space Π, a state distribution p(s) and a distribution
(pseudo-)metric D(·, ·), for any two policies πi, πj ∈ Π, we define three policy metrics as follows:

1. A distribution-irrelevance metric: dπ (πi, πj) = Es∼p(s) [D (πi(a | s), πj(a | s))].
2. An influence-irrelevance metric: dPπ (πi, πj) = Es∼p(s) [D (Pπi(s′ | s), Pπj (s′ | s))].
3. A value-irrelevance metric: dV π (πi, πj) = Es∼p(s) [D (Zπi(s), Zπj (s))].
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Table 1: Properties of different policy abstraction.
Abstraction Abstraction Criterion (for π1, π2,∀s, s′, a ∈ S2 ×A) Fineness Task Relevance

fΘ Policy Parameter Equivalence (θ1 = θ2) Highest None
fπ Action Distribution Equivalence (πi(a | s) = πj(a | s)) High Low
fPπ Dynamics Influence Equivalence (Pπi(s′|s) = Pπj (s′|s)) Middle Middle
fV π Value Function Equivalence (V πi(s) = V πj (s)) Low High
f0 Triviality (taking all policies as the same) Lowest None

These metrics follow the same abstraction criteria as in Definition 3, i.e., the irrelevance regarding
action distribution, influence and value, measuring the similarity of policies by the distance at
respective levels. Compared to the binary outcomes offered by the equivalence relations, the metrics
defined here are continuous, thus are more informative in comparing and representing policies
in finer views. Specially, one may see that the equivalence relations used in Definition 3 induce
corresponding discrete pseudo-metrics, e.g., dEq

π (πi, πj) = 0 if fπ(πi) = fπ(πj), and 1 otherwise.
Notice the metrics proposed above depends on the distribution metric D and state distribution p(s).
For D, typical choices can be Jeffreys Divergence (Jeffreys, 1946) and Maximum Mean Discrepancy
(MMD) (Nguyen-Tang et al., 2021). For p(s), intuitively, it should be the distribution of states
we are interested in when comparing two policies. We defer the concrete choices for practical
implementation of these metrics in Section 4.

3.3 PROPERTIES OF THE ABSTRACTIONS

Superficially, the three abstractions proposed preserve features that are progressively more relevant
to decision making in the learning task, but essentially, what is the relationship between the three
abstractions? To investigate the problem, we define the fineness of policy abstractions similar to the
one for state abstractions used in (Li et al., 2006), to prove how the three abstractions are related.
Definition 5 (Abstraction Fineness). Let FΠ denotes the set of abstractions on ground policy space
Π. Suppose f1, f2 ∈ FΠ. We say f1 is finer than f2, denoted f1 ⪰ f2, iff ∀ π1, π2 ∈ Π,
f1(π1) = f1(π2) implies f2(π1) = f2(π2). If , f1 ̸= f2, then f1 is strictly finer than f2, denoted
f1 ≻ f2. In contrast, we may also say f2 is (strictly) coarser than f1, denoted f2 ⪯ f1 (f2 ≺ f1).

It is easy to see the relation ⪰ satisfies self-reflexivity, antisymmetry and transitivity, thus it is a
partial ordering. Consider the set of possible policy abstractions, while the coarsest abstraction (f0)
is the trivial representation where all policies are treated as the same; while the finest abstraction is
the identity representation, e.g., fΘ(πθ) = θ for a policy neural network parameterized with θ ∈ Θ.
With the partial ordering ⪰, we further derive the following theory.
Theorem 3.1. Under the Definition 3 and 5, if the reward function R depends only on state s ∈ S,
we have (fΘ ⪰)fπ ⪰ fPπ ⪰ fV π (⪰ f0).

The proof is provided in Appendix A.1 along with more discussion on other cases of the reward
function. The theorem declares how the three policy abstractions are related to each other in the sense
of abstraction fineness with the two extreme cases (fΘ, f0) for reference. The coarser the abstraction
is, the more the original policy space is abstracted.

In Table 1, we summarize the properties of different policy abstractions, regarding abstraction criteria,
abstraction fineness and task relevance. The major conclusion is that there is an inverse relation
between abstraction fineness and task relevance. Except for the two extreme cases (fΘ, f0) that
are totally task-independent, the policy abstraction becomes more task-relevant as the abstraction
criterion concerns more policy features related to the learning task. The distribution-irrelevance
abstraction fπ concerns the policy behavior in the learning task, defined by action distribution at
interested states; meanwhile fπ is coarser than fΘ since the same policy behavior can be realized by
non-unique policy parameter. Taking one step closer to the task, the influence-irrelevance abstraction
fPπ cares about the state transition dynamics induced by policy behavior. Obviously, fPπ is coarser
than fπ as different behaviors may induce the same transition distribution. The value-irrelevance
abstraction fV π further involves the rewards of long-term dynamics, thus is the most task-relevant
and coarsest among the three types of policy abstraction.

Empirical Comparison of Policy Metrics in Gridworld MDPs To compare these policy ab-
stractions in a quantitative view, we demonstrate how the distances of two policies measured by the
corresponding policy metrics differ in several Gridworld MDPs. We use Distinct Policies, Doorway
from (Kanervisto et al., 2020) and design a new task, Key Action for simple prototypes of tasks with
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Figure 1: Policy comparison with different policy metrics in Gridworld. Top Panel: The illustration
of three Gridworld MDPs and two deterministic policies (blue and green). Bottom Panel: The
distance curves of the two policies measured by dπ, dPπ , dV π (y-axi), against the stochasticity of the
environment (x-axi). dPπ is able to distinguish the two policies across all the settings.

different features; moreover, we increase the stochasticity of the environment for a better evaluation.
In particular, Es∼p(s)D(·, ·) is calculated by average the absolute differences over all states. The
illustrations and results are shown in Fig. 1 while more results can be found in Appendix C.

We observe that the distribution-irrelevance metric dπ may fail to show the difference in dynamics
and outcome between the two policies, e.g., in Doorway. This is because dπ measures the difference
in the action distribution itself, i.e., independent of the dynamics as well as the increasing stochasticity
of the environment. This issue may be resolved by using a designated distribution that concentrates
over key states. Conversely, the value-irrelevance dV π measures the difference in the outcomes of the
two policies regardless their differences in action distribution and dynamics, e.g., in Distinct Policies.
Another discovery is that dV π quickly degenerates and turns to be not informative as the increase
of stochasticity, showing its poor robustness. By contrast, the influence-irrelevance metric dPπ is a
sweet intermediate point, consistently keeping the ability of distinguishing the two policies across all
the environments and stochasticity configurations. In a summary, different policy abstractions and
metrics may yield different outcomes for the same two policies and the optimality depends on the
specific downstream learning problem concerned. Later, we evaluate these options in representative
downstream RL problems in Section 5 and 6 for useful insights.

4 POLICY REPRESENTATION LEARNING APPROACH

The next question concerned in practice is: how can we learn the representation of RL policies
(usually modeled by NNs) in a general way? Based on the policy metrics introduced above, we
propose a policy representation learning approach by following the principle of Deep Metric Learning.

4.1 LEARNING POLICY REPRESENTATION BY EMBEDDING ALIGNMENT

The policy metrics proposed in previous section measure the quantitative relationship between policies
from different perspectives of the policy abstraction criteria. For a unified objective function of
learning from different policy metrics, we use the alignment loss, with which the difference between
the distances of two policies in the representation space and in the policy metric space is minimized.
Concretely, consider a policy representation function fψ , and the alignment loss can be formalized as,

LAL(ψ) = Eπ,π′∈Π

[(
∥fψ(π)− fψ(π′)∥2 − ηd∗ (π, π

′)
)2]

, (1)
where we consider d∗ ∈ {dπ, dPπ , dV π} and η is the weight for scaling. Similar forms of the
alignment loss are also adopted in the studies on state representation learning (Zhang et al., 2020).

As we can see, LAL(ψ) consists of two metrics, i.e., the L2 distance function (∥·∥2) of two inputs
and the policy metric (d∗(·, ·)). Intuitively, minimizing the alignment loss is to align the two metrics
by optimizing the policy representation function fψ. By this means, we are able to learn different
policy representation functions, which maps the ground policy π ∈ Π to the latent embedding
χπ = fψ(π) ∈ X . The embedding preserves the policy features corresponding to the abstraction
criteria reflected by the specific policy metric considered. For a practical implementation, the
following problems are the estimation of policy metrics d∗ and the realization of the training for
policy representation function fψ , which are detailed in the next two subsections respectively.
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In the literature of learning policy representation, representative methods follow the principle of
behavior recovering (Grover et al., 2018) and policy contrast (Tang et al., 2020). To our knowledge,
none of prior works take a systematic view of policy abstraction. In Table 4, we show that prior
methods are specific instances of one of our proposed policy abstractions that differ in realization.

4.2 ESTIMATING POLICY METRICS VIA MAXIMUM MEAN DISCREPANCY

Given a tractable metric D and a state distribution p, the policy metrics (i.e., dπ, dPπ , dV π ) can be
calculated exactly if the probability distributions (i.e., π, Pπ, Zπ) are available. However, this is
usually infeasible in practice; instead, in more regular cases, only finite samples of policy interaction
are available. Although the empirical distributions can be estimated in simple MDPs where the
state-action space is finite (as in Appendix D), unfortunately, approximating the distributions and
computing the metrics are non-trivial, especially with high-dimensional continuous state-action space.

Therefore, we estimate the policy metrics directly from the samples, bypassing estimating the
empirical distributions (i.e., π̃, P̃π , Z̃π). In particular, we adopt MMD (Gretton et al., 2012; Nguyen-
Tang et al., 2021) as the distribution metric, i.e., let D be DMMD. MMD measures the maximum
value of the mean discrepancy of two distributions regarding all possible functions in a predefined
family. Conventionally, let the class of functions h : X → R be a unit ball in a Reproducing Kernel
Hilbert Space (RKHS)H associated with a continuous kernel k(·, ·) on X , p, q be two distribution
defined on X , x, x′ and y, y′ be i.i.d. samples from p and q respectively, the MMD is defined as:

DMMD (p, q;H) = sup
h∈H:∥h∥H≤1

(Ex∼p [h (x)]− Ey∼q [h (y)]) = ∥µp − µq∥H

=
(
Ex,x′ [k(x, x′)] + Ey,y′ [k(y, y′)]− 2Ex,y [k(x, y)]

) 1
2 ,

(2)

where µp =
∫
X
k(x, ·)p(dx) is the mean embedding of p into H(Smola et al., 2007). Thus, MMD

can be empirically estimated with samples {xi}Ni=1 ∼ p and {yi}Mi=1 ∼ q:

D̃2
MMD({xi}, {yi}; k) =

1

N2

∑
i,j

k(xi, xj) +
1

M2

∑
i,j

k(yi, yj)−
2

NM

∑
i,j

k(xi, yj). (3)

According to Eq. 3, we can estimate the policy metrics dπ, dPπ , dV π empirically from the samples
{ai}, {s′i}, {Gi} of different policies respectively, under the sampled states {si} for the expectation
Ep(s). However, it is often impractical to obtain multiple samples under the same state. Thus, we
resort to estimating the surrogates, e.g., d̂Pπ (πi, πj) = D (Pπi(s, s′), Pπj (s, s′)) for dPπ , where
the joint distributions rather than the state-conditioned distributions are measured. We use Gaussian
kernel by default, i.e., k (x, x′) = exp

(
− ||x−x′ ||22

2σ2

)
. Consequently, the empirical estimates of the

policy metrics serve as the self-supervision in Eq. 1.

4.3 REALIZING THE TRAINING OF POLICY REPRESENTATION FUNCTION

With the empirical policy metrics provided in previous section, the training of policy representation
is straightforward with a differentiable function fψ by optimizing the alignment loss (Eq. 1). The
realization of policy representation function concerns two aspects: 1) the choice of policy data (or
original representation) and 2) the construction of fψ (i.e., how policy data is encoded).

For the first aspect, we focus on parameterized policy πθ (typically by a neural network) and use
policy parameter θ as the policy data. One may recall that θ itself can be viewed as the finest
representation obtained by policy abstraction fΘ in Table 1. Such an original representation (i.e., θ)
is high-dimensional and highly nonlinear, offering no help in the compression and generalization of
policy space. In addition, we are aware that in some cases the policy parameters may be not available,
and thus the interaction experiences generated by the policy can be alternative policy data, as used in
(Grover et al., 2018; Tang et al., 2020). Our policy representation learning approach is compatible
with such alternatives with the need of possible slight modifications. For the second aspect, we adopt
Layer-wise Permutation-invariant Encoder (LPE) (Tang et al., 2020) as the implementation choice of
fψ (see Fig. 5), which has demonstrated the effectiveness in encoding conventional policy networks.
To be specific, for the parameter θ = {Wi, bi}ki=0 of policy π, i.e., the weights and biases of k-layer
MLP,1 the weight Wi ∈ Rli×li+1 and bias bi ∈ R1×li+1 (li is the unit number of the i-layer; l0 and

1The activation function is not considered since the structure is fixed for policies in convention RL setting. In
principle, LPE can be generalized to tailor other advanced network structure.
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lk are for the input and output layers) are concatenated (⊕) and transposed, followed by a MLP
(fψ,i) and a mean-reduce operation (MR), resulting in a layer embedding zi; Thereafter, the policy
embedding is obtained by concatenating the embedding of each layer. Formally,

zi = MR
(
fψ,i([Wi ⊕ bi]⊤)

)
=

1

li + 1

li+1∑
j=1

fψ,i
(
([Wi ⊕ bi]⊤)j,·

)
, χπθ

= fψ(θ) =

k⊕
i=0

zi (4)

Each row of [Wi ⊕ bi]⊤, indexing by the subscript j, ·, describes a transformation of the i-layer
into the next layer. All the rows are fed into fψ,i separately and are then averaged into zi. In a
consequence, the policy embedding serves as the compact representation of the policy network by
summarizing the transformations made by the each layer of it. The significant difference between
LPE and a straightforward MLP encoder is that, LPE provides structure-aware representation, i.e.,
both the intra-layer and inter-layer structures are explicitly considered. Intuitively, this alleviates the
difficulty of learning representation from the policy network parameters. Other advanced encoder
structures are beyond the scope of this work and we leave them as future work.

Till now, we can update the parameters of LPE ψ = {ψi}ki=0 by optimizing Eq. 1 with the policy
samples from some given set of policies and the empirical policy metrics estimated accordingly.
Depending on the specific choice of policy metric, the policy representation is learned to render the
policy abstraction in Table 1, starting from fΘ and going downwards to the corresponding level.

5 APPLYING POLICY ABSTRACTION TO POLICY OPTIMIZATION

Despite the theoretical understanding of the policy abstraction, we have no idea about how the derived
policy metrics behave in different downstream learning problems. To shed some light on this, we
evaluate the efficacy of the policy metrics proposed in Sec. 3.2 in policy optimization, including
Trust-Region Policy Optimization (TRPO) and Diversity-Guided Evolutionary Strategy (DGES).

Trust-Region Policy Optimization We adopt TRPO problem as the first test stone for our pol-
icy abstractions. Specifically, the objective of TRPO problem is to maximize the policy return
while constraining the difference between old and new policies: JTRPO(θ) = Eτ∼Pπθ

[R(τ)],
s.t., d∗(πθ, πθold) ≤ σ, where σ is a threshold. For our experiments, we consider the policy
metrics d∗ ∈ {dπ, dPπ , dV π}. In another word, the learning agent checks if the difference measured
by the policy metrics are larger than σ for each policy update. In this experiment, the original
TRPO (Schulman et al., 2015) is generalized to incorporate different alternative metrics for the
trust-region constraint. Thus, we can evaluate the efficacy of the different trust regions provided by
our proposed policy metrics, shedding some light on what policy features we care the most in TRPO.
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Figure 2: Performance of different policy abstractions in: (a) Trust-
Region Policy Optimization (TRPO) for a Gridworld environment;
and (b) Diversity-Guided Evolution Strategy (DGES) for a Point
environment. Results are the mean and half a standard deviation
(shaded) over 10 and 5 trials for TRPO and DGES respectively.

We adopt a Gridworld envi-
ronment where the agent can
move to one ofN directions at
each grid and only one direc-
tion yields high reward (Kan-
ervisto et al., 2020). The re-
sults are shown in Fig. 2(a).
We observe that all our TRPO
variants (i.e., TRPO-f∗ ) out-
perform Vanilla-PO (i.e., no
trust-region constraint used),
demonstrating the effective-
ness of our policy abstractions.
Moreover, TRPO-fπ outper-
forms the others. This is be-
cause fπ follows the abstraction criterion regarding action distribution, thus pertains to the essence
of TRPO. By contrast, fPπ and fV π utilize coarser abstraction which does not hold the features
of action distribution. In addition, we demonstrate the superiority of our policy abstractions when
compared with existing related methods in Appendix E.1.

Diversity-Guided Evolution Strategy Next, we adopt DGES problem as the second test stone for
our policy abstractions. Formally, the objective of DGES problem is to maximize the policy return
of the current policy πθ and maximize its policy difference to the ancestor policy π̄: JDGES(θ) =

Eτ∼Pπθ
[R(τ)] + β

∑N
p=1 d∗(πθ, π̄), where β ≥ 0 is the weight. Similarly, we consider the policy

7
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metrics d∗ ∈ {dπ, dPπ , dV π}. Here, the choices of policy metrics realize the population diversity
in different ways. We aim at exploring the diversity concerning which policy feature is the most
effective in DGES.

To explore this, we leverage the Point environment with deceptive rewards (Pacchiano et al., 2020).
The results are reported in Fig. 2(b). In comparison to Vanilla-ES (i.e., β = 0), optimizing policy
diversity (i.e., β > 0) based on our policy metrics (i.e., DGES-f∗ ) does help exploration and
thus leads to better performance. In particular, DGES-fPπ performs the best. Since ES optimizes
policy in a gradient-free fashion, the evolution process concerns only policy return. Therefore, the
distribution-irrelevance abstraction fπ (i.e., the winner in the TRPO experiment) can be redundant
since multiple action distributions may have the same outcome (i.e., influence and value). For the
value-irrelevance abstraction fV π , it turns to be too fine to contain the features of policy behavior
(i.e., action distribution and influence). Therefore, the influence-irrelevance abstraction fPπ serves as
a sweet point. Furthermore, we provide additional comparative evaluation in Appendix E.2.

6 APPLYING POLICY ABSTRACTION TO OFF-POLICY EVALUATION

After the investigation in policy optimization, now we move to policy evaluation. Typical OPE (Fu
et al., 2021; Harb et al., 2020) focuses on using offline data to evaluate unseen policies. Likewise,
we are interested in studying the value generalization performance on unseen policies of the rep-
resentations learned regarding different policy abstractions. The appealing characteristic of policy
representation in value generalization has been studied in (Tang et al., 2020), where a Policy-extended
Value Function Approximator (PeVFA,V(χπ)) takes as input the policy representation χπ approx-
imates the values of multiple policies and offers implicit value generalization among the policy
representation space.

For policy data collection, we run PPO (Schulman et al., 2017b) in OpenAI Gym continuous control
tasks: InvertedDoublePendulum-v2 (IDP-v2) and LunarLanderContinuous-v2 (LLC-v2) (Brockman
et al., 2016). By collecting the policies at intervals during the learning process, we build an offline
policy set, based on which we train our policy representations and a PeVFA V(χπ). For concrete
problem settings, we establish both weak and strong generalization OPE scenarios which differs
at the difficulty of evaluating the unseen policies. For the weak generalization scenario (easy), we
sample training data uniformly from the whole band of the policy set. For the strong generalization
scenario (hard), we separate the policy set and use the low-performance policies for the training data,
with the rest taken as the unseen policies to evaluate. For both the settings, the ratio of sampling
and separation is set to be 20%, 40%, or 80%. We report the results of the ratio 20% in Table 2 and
leave the results of other ratios in Appendix G. For evaluation protocols, we report the evaluation
(testing) error of unseen policies (T-error) and the generalization gap (G-gap), i.e., the difference
between training and testing error. We denote different policy representations by their underlying
policy abstraction (e.g., fπ) correspondingly. Complete details can be found in Appendix F.

Weak Generalization Scenario in OPE First, we study the empirical comparison in the weak gen-
eralization scenario. Table 2 reports the results of value generalization for the policy representations
learned based on corresponding policy abstractions. To be specific, the fΘ denotes directly using
policy parameters θ as policy representations (i.e., no representation training). For our proposed pol-
icy abstractions fπ, fPπ , fV π , we learn the representations for them according to Eq. 1 based on the
LPE and MMD estimation (Sec. 4.3). To further complete the comparison, we include two additional
representations fRE and fEL: fRE uses a randomly initialized LPE with no further training while
fEL uses the LPE trained by the end-to-end OPE loss (see Appendix F.2) respectively. Note that fEL
can be viewed as a variant of fV π since it also learns from values but does not optimize the alignment
loss. Besides, we also include the representation (fCL) learned by unsupervised contrastive learning
based on InfoNCE loss (van den Oord et al., 2018), as proposed in (Tang et al., 2020).

From the Table 2 (Weak Generalization), we can observe that fπ, fPπ , fV π outperforms fΘ, fRE ,
and fEL in both IDP-v2 and LLC-v2. This demonstrates the effectiveness and superiority of our
proposed representations in value function approximation and generalization. fEL is significantly
better than the fΘ and fRE , indicating the advantages of LPE structure and training. We can observe
that contrastive policy representation fCL performs poorly. We postulate that with less training data
available at the 20% sampling ratio, the fCL with emphasis on policy instance-level comparison
suffers from higher evaluation error and generalization gap. The superiority of fV π compared to fEL
from the Table 2 demonstrates the effectiveness of alignment loss. This is because although both
fV π , fEL learn policy representation from the information of policy value, naive end-to-end training
is less effective than alignment optimization which establishes the representation space based on the
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Table 2: Performance of different policy abstractions in Off-policy Evaluation (OPE). The minimum
value for each task is highlighted. Results are the mean ± a standard deviation over 10 and 5 trials
(for weak and strong respectively). The fV π has lower T-error and G-gap on both the generalization
tasks.

Env Abstraction Weak Generalization Strong Generalization
T-error G-gap T-error G-gap

IDP-v2

fΘ 0.0059 ± 0.0008 0.0039 ± 0.0006 0.1592 ± 0.0107 0.0778 ± 0.0437
fRE 0.0056 ± 0.0009 0.0038 ± 0.0010 0.1676 ± 0.0086 0.1674 ± 0.0087
fEL 0.0048 ± 0.0003 0.0027 ± 0.0008 0.1783 ± 0.0060 0.1712 ± 0.0145
fCL 0.0067 ± 0.0010 0.0046 ± 0.0008 0.1567 ± 0.0081 0.1491 ± 0.0107
fπ 0.0044 ± 0.0003 0.0025 ± 0.0006 0.1812 ± 0.0013 0.1803 ± 0.0011
fPπ 0.0044 ± 0.0003 0.0024 ± 0.0006 0.1789 ± 0.0045 0.1778 ± 0.0049
fV π 0.0046 ± 0.0003 0.0022 ± 0.0005 0.1320 ± 0.0093 0.1295 ± 0.0114

LLC-v2

fΘ 0.0018 ± 0.0005 0.0016 ± 0.0003 0.1898 ± 0.0237 0.0926 ± 0.1592
fRE 0.0028 ± 0.0007 0.0025 ± 0.0007 0.0729 ± 0.0197 0.0718 ± 0.0196
fEL 0.0017 ± 0.0004 0.0016 ± 0.0004 0.0656 ± 0.0088 0.0646 ± 0.0092
fCL 0.0035 ± 0.0005 0.0032 ± 0.0004 0.0589 ± 0.0176 0.0572 ± 0.0188
fπ 0.0015 ± 0.0005 0.0013 ± 0.0005 0.1365 ± 0.0367 0.1318 ± 0.0332
fPπ 0.0015 ± 0.0004 0.0013 ± 0.0004 0.0905 ± 0.0402 0.0900 ± 0.0404
fV π 0.0014 ± 0.0003 0.0011 ± 0.0003 0.0473 ± 0.0043 0.0470 ± 0.0042

policy metrics. In general, the value generalization results among our abstractions fπ, fPπ , fV π do
not differ much. This is mainly because in the weak generalization setting, the unseen policies obey
the same distribution as the training policies, thus posing less difficulty of value generalization.

Strong Generalization Scenario in OPE Now we move to the study in the strong generalization
scenario and similarly the results are reported in Table 2 (Strong Generalization). Compared to the
weak generalization scenario, the overall T-error and G-gap are significantly higher in the strong
generalization scenario. This is reasonable because there is a larger performance difference between
the training and unseen policies. In other words, the unseen policies belong to out-of-distribution
data. The fV π obtains the lowest evaluation error on the two environments, which indicates the value-
irrelevance abstraction with higher task relevance may be best suited for the strong generalization
setting. For the explanation, since the objective of OPE lies at the value function approximation and
generalization, we consider that the value-irrelevance principle of fV π is consistent to the objective
and thus fits naturally.

With only low-performance policies for the training data at the 20% sampling ratio (hardest), the
results of other abstractions including our proposed fπ and fPπ on the task are poor. The main
reason may be that under the strong generalization setting, there is a large data-shift between the
training and unseen policies. fπ and fPπ fails to learn a policy abstraction with generalization
ability in the absence of diversity policies. Nevertheless, from the Table9, 10, as the sampling ratio
increase and training policies become more diverse, the advantage of fπ and fPπ over other policy
abstractions gradually emerge. Moreover, in the hardest case, fPπ is better than fπ , which shows that
the influence-irrelevance policy abstraction may be a general policy abstraction option.

For the other baselines, fΘ still shows few competition. For fRE , fEL, fCL, they falls behind
fV π while slightly outperforms fPπ and fπ in Table 2. Such slight advantages no long holds in
the settings of higher sampling ratios (i.e., 40% in Table 9 and 80% in Table 10). Unlike weak
generalization scenario, fCL is not so bad in strong generalization scenario. The main reason is
that encountering hard policy evaluation tasks (Strong Generalization), other methods suffer from
performance degradation and are no longer superior to contrastive learning. In contrast, contrastive
learning based on policy instance-level comparison maintains a relatively good result.

Other Experiments In addition to Table 2, we provide more results under different settings of data
amount in Appendix G.1, for both the weak and strong generalization scenarios. Other comprehensive
studies (e.g., extrapolation behaviors, visualization) can be found in Appendix G.2,G.3.

7 CONCLUSION & LIMITATIONS

In this work, we introduce a unified policy abstraction theory, including three major types of policy
abstraction, and corresponding policy metrics derived from the abstraction, as well as the analysis
of their properties. We further propose a policy representation learning approach based on deep
metric learning. We empirically evaluate the efficacy of different policy abstraction in both policy
optimization (i.e., TRPO, DGES) and off-policy evaluation (OPE). For limitations and future work,
we only provide the theory on the fineness of policy abstraction, while provide no theory on the
optimality, although the optimality ought to depend on the downstream problem considered. For
policy representation learning, the alignment loss and MMD metric are not the only choices; besides,
other representation learning principles (Bardes et al., 2021) are potential.
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A MORE CONTENT ON POLICY ABSTRACTION THEORY

A.1 PROOF OF THEOREM 3.1

Proof. We prove the partial ordering (⪰) of the Theorem 3.1 one by one in the following.

❶ fπ ⪰ fPπ . Given an MDP M , two policies πi, πj ∈ Π. We define P as the transition probability
and use Pπ(s′|s) = Ea∼π(·|s)P (s′|s, a) to denote the distribution of next state s′ when performing
policy π at state s, respectively. Then, we have

Pπi(s′|s) = Ea∼πi(·|s)P (s
′|s, a),

Pπj (s′|s) = Ea∼πj(·|s)P (s
′|s, a).

(5)

If fπ(πi) = fπ(πj), with the Definition 3, we have ∀s ∈ S, ∀a ∈ A, πi(a|s) = πj(a|s). Combined
with Eq. 5, we derive,

∀s, s′ ∈ S, Pπi(s′|s) = Pπj (s′|s). (6)
Recall the definition of fPπ , we can obtain fπ ⪰ fPπ .

❷ fPπ ⪰ fV π . Given an MDP M , two policies πi, πj ∈ Π, a reward function R. Start with the
definition of the value function V π(·), we consider the two cases:
Case 1. The reward function R depends only on state s ∈ S, we derive the value function:

∀s ∈ S, V π (s) = R (s) +
∑
s′

Pπ (s′ | s)V π (s′). (7)

If fPπ (πi) = fPπ (πj), with the Definition 3, we have ∀s, s′ ∈ S, Pπi(s′|s) = Pπj (s′|s). When the
Eq. 7 holds, we have:

∀s ∈ S, V πi(s) = V πj (s). (8)
Recall the definition of fV π , we can obtain fPπ ⪰ fV π .

Case 2. The reward function R depends on both state s ∈ S and action a ∈ A, we derive the value
function:

V π (s) =
∑
a

π (a | s)

(
R (s, a) +

∑
s′

P
(
s′ | s, a

)
V π (s′)). (9)

If fPπ (πi) = fPπ (πj), with the Definition 3, we have ∀s, s′ ∈ S, Pπi(s′ | s) = Pπj (s′ | s). Unlike
the Eq.7, πi may not be equivalent to πj regarding the abstraction criterion of value irrelevance.
Therefore, the partial ordering (fPπ ⪰ fV π ) is not obtained under Case 2. Nevertheless, Case 1 is
fairly standard across a broad set of real world RL problems.

Remark A.1 (More discussions on R(s, a) and R(s)). For Case 2 discussed above, i.e., the reward
function R depends on both state s ∈ S and action a ∈ A, we can further separate it into two
categories according to our knowledge on real-world decision-making problems:

• In our first category, the dependence of R on state and action is due to the consequence
of s, a in leading the decision system into the specific new state s′, i.e., R(s, a) =∑
s′ P (s

′|s, a)U(s′) where U(s′) is the utility of s′ (we adopt the expectation form for the
convenience of discussion). In the cases that fall into this category, it can be easy to re-define
the reward function by the utility function, i.e., R(s, a) = U(s) for any a ∈ A. With such a
conversion, we can also obtain fPπ ⪰ fV π in these cases.

• Our second category covers the exclusive cases of the first category. For example, consider
an environment, where two actions a1, a2 lead to the same new state s′ from state s but gain
different rewards. In such cases, the reward is independent on the dynamics caused by s, a.
We consider that such cases are minority in the ones of interest.

A.2 OTHER POLICY ABSTRACTIONS

In this paper, we also propose three other policy abstractions in Definition 6. Before introducing
the definitions of additional policy abstraction, we make some necessary notations. We use dπ,k(·)
to denote the distribution of state when policy π performs k steps from initial states regarding the
initial state distribution ρ0. The discounted state visitation distribution from initial states regarding
ρ0 is defined as dπ(s′) = (1 − γ)

∑∞
t=0 γ

tdπ,t(s′) for any s′ ∈ S. Additionally, we use dπ,ks (·) to
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denote the distribution of state when policy π performs k steps from any states s. The discounted
state visitation distribution from any state s is defined as dπs (s

′) = (1− γ)
∑∞
t=0 γ

tdπ,ts (s′) for any
s′ ∈ S.
Definition 6. Given an MDP ⟨S,A, P,R, γ⟩ and a ground policy space Π, for any two policies
πi, πj ∈ Π, we define four more policy abstractions as follows:

1. An influence-irrelevance abstraction (fdπs ) is such that for all s, s′ ∈ S, fdπs (πi) = fdπs (πj)

implies that dπi
s (s′) = d

πj
s (s′).

2. An influence-irrelevance abstraction (fdπ ) is such that for all s ∈ S, fdπ (πi) = fdπ (πj)
implies that dπi(s) = dπj (s).

3. A value-irrelevance abstraction (fJπ ) is such that fJπ (πi) = fJπ (πj) implies that
Es0∼ρ0 [V πi (s0)] = Es0∼ρ0 [V πj (s0)].

4. A value-irrelevance abstraction (fZπ ) is such that for all s ∈ S, fZπ (πi) = fZπ (πj) implies
that Zπi(s) = Zπj (s).

Similarly, we prove how the newly proposed policy abstractions are related to other abstractions we
introduce in the main body of the paper.
Theorem A.2 (Partial Ordering (⪰)). Under the Definition 3, 5 and 6, we have ❶ fπ ⪰ fPπ ⪰
fdπs ⪰ fdπ ⪰ fJπ ; ❷ fπ ⪰ fPπ ⪰ fdπs ⪰ fV π ⪰ fJπ . An illustration is provided below:

𝑓π ⪰ 𝑓𝑃π ⪰ 𝑓𝑑𝑠π ⪰ 𝑓𝑑π

𝑓𝑉π ⪰ 𝑓𝐽π

⪰ ⪰

Proof. The partial ordering (⪰) satisfies transitivity, thus, let us prove the TheoremA.2 one by one in
the following.
❶fPπ ⪰ fdπs . Given an MDP M , two policies πi, πj ∈ Π. If fPπ (πi) = fPπ (πj), with the
Definition 3, we have ∀s, s′ ∈ S, Pπi(s′ | s) = Pπj (s′ | s). Since the initial state distribution are
the same, and πi, πj follow two identical Markov chains, we derive fPπ ⪰ fdπs .
❷fdπs ⪰ fdπ . Given an MDP, two policies πi, πj ∈ Π. If fdπs (πi) = fdπs (πj), with the Definition 6,
we have ∀s, s′ ∈ S, dπi

s (s′) = d
πj
s (s′). Furthermore, we derive,

∀s0 ∈ ρ0, s′ ∈ S, dπi
s0 (s

′) = dπj
s0 (s

′). (10)
Thus, fdπs ⪰ fdπ .
❸fdπ ⪰ fJπ . Given an MDP, two policies πi, πj ∈ Π. If fdπ (πi) = fdπ (πj), with the Definition 6,
we have ∀s ∈ S, dπi(s) = dπj (s). When the reward function R depends only on state s ∈ S, we
have,

J(πi) = (1− γ)−1Es∈dπi [R(s)],

J(πj) = (1− γ)−1Es∈dπj [R(s)].
(11)

Thus, fdπ ⪰ fJπ .
❹fdπs ⪰ fV π . Given an MDP, two policies πi, πj ∈ Π. If fdπs (πi) = fdπs (πj), with the Definition 6,
we have ∀s, s′ ∈ S, dπi

s (s′) = d
πj
s (s′). When the reward function R depends only on state s′ ∈ S,

we have,
∀s ∈ S, V πi(s) = (1− γ)−1Es′∈dπi

s
[R(s′)],

V πj (s) = (1− γ)−1E
s′∈d

πj
s
[R(s′)].

(12)

Thus, fdπs ⪰ fV π .
❺ fV π ⪰ fJπ . Given an MDP, two policies πi, πj ∈ Π. If fV π (πi) = fV π (πj), with the Definition 3,
we have ∀s ∈ S, V πi(s) = V πj (s). Furthermore, we derive,

∀s0 ∈ ρ0, V πi(s0) = V πj (s0),

Es0∼ρ0 [V πi (s0)] = Es0∼ρ0 [V πj (s0)] .
(13)

Thus, fV π ⪰ fJπ .
In particular, when the reward function R depends on both state s ∈ S and action a ∈ A, πi may
not be equivalent to πj . The fdπ ⪰ fJπ and fdπs ⪰ fV π are not hold. Connecting Definition 3,6 and
Theorem A.2, we summarize the properties of different policy abstraction in Table 3.
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Table 3: Properties of different policy abstraction, including the additional ones introduced in A.2.
We use (+) and (−) to denote the higher or lower degree in the same level.
Abstraction Abstraction Criterion (for π1, π2,∀s, s′, a ∈ S2 ×A) Fineness Task Relevance

fΘ Policy Parameter Equivalence (θ1 = θ2) Highest None
fπ Action Distribution Equivalence (πi(a | s) = πj(a | s)) High Low
fPπ Dynamics Influence Equivalence (Pπi(s′|s) = Pπj (s′|s)) Middle (+) Middle (−)
fdπs Dynamics Influence Equivalence (dπi

s (s′) = d
πj
s (s′)) Middle Middle

fdπ Dynamics Influence Equivalence (dπi(s) = dπj (s)) Middle (−) Middle (+)
fV π Value Function Equivalence (V πi(s) = V πj (s)) Low High
fJπ Value Function Equivalence (Es0∼ρ0 [V πi (s0)] = Es0∼ρ0 [V πj (s0)]) Low (−) High (+)
f0 Triviality (taking all policies as the same) Lowest None

Table 4: A taxonomy of prior policy abstractions under our policy abstraction theory.
Prior Policy Representation Abstraction Criterion Related Policy Abstraction

Vectorized Network Parameters(Faccio et al., 2020) Policy Parameter Equivalence fΘ
Contrastive OPR/SPR(Tang et al., 2020) Policy Instance Contrast fCL

Policy Recovery OPR/SPR(Tang et al., 2020) Action Distribution Prediction fπ (Def. 3)
End-to-End OPR/SPR(Tang et al., 2020) Value Function Prediction fV π (Def. 3)
Network Fingerprint(Harb et al., 2020) Action Distribution Similarity fπ (Def. 3)

Behavior Embedding (State)(Pacchiano et al., 2020) Final State Similarity fdπ (Def. 6)
Behavior Embedding (Action)(Pacchiano et al., 2020) Action Distribution Similarity fπ (Def. 3)
Behavior Embedding (Reward)(Pacchiano et al., 2020) Return Similarity fJπ (Def. 6)

Generative Representation(Grover et al., 2018) Action Distribution Prediction fπ (Def. 3)
Discriminative Representation(Grover et al., 2018) Policy Instance Contrast fCL

α-compression (Mutti et al., 2021) Action Distribution & Dynamics Influence Similarity fπ (Def. 3) & fdπ (Def. 6)
Policy Supervector(Kanervisto et al., 2020) Dynamics Influence Similarity fdπ (Def. 6)

B TAXONOMY OF PRIOR POLICY ABSTRACTIONS UNDER OUR THEORY

Closely related to our work, (Harb et al., 2020) adopts policy fingerprints as differentiable policy
representation obtained by concatenating the distribution of actions of policy in a set of key states.
Obviously, it’s more concerned with policy distribution information. (Kanervisto et al., 2020)
make use of Gaussian mixture models to learn policy supervectors (policy representation), which
characterizes agents’ behaviour by the distribution of states they visit. Pacchiano et al. (2020) define
a Behavioral Embedding Map (BEM) with different implementation options and propose using
Wasserstain distance in the latent space induced by BEM to measure the similarity among policies.
Like us, (Tang et al., 2020) also employs neural network-based policy parameters as policy data, but it
utilize policy distribution reconstruction and contrast learning principles to learn policy representation.
The principle of contrastive learning itself is a general learning principle irrelevant to the learning
task. Therefore, the contrast of instantiation makes its abstraction level low. Compared with these two
works, (Faccio et al., 2020) is a simpler and more direct way of constructing policy representation,
because it directly compress the policy parameters based on neural network into vectors and regards
it as a form of policy representation. In fact, the policy space may be redundant due to the existence
of some policies that induce similar behaviors. It provides feasibility for policy abstraction and
policy space compression (Mutti et al., 2021). For instance, Mutti et al. (2021) study policy space
compression by formulating a Set Covering problem with Rényi Divergence of discounted state-action
distribution of policies as a metric. In addition, in a multi-agent system, (Grover et al., 2018) also
converts opponent modeling into an opponent policy representation learning problem and attempts to
distinguish opponents by their policy representations. In Table 4, we categorize these works under
our abstractions.

C CASE ILLUSTRATION OF POLICY ABSTRACTION

To compare these policy abstractions in a quantitative view, we demonstrate how the distances of two
policies (blue and greed in Fig. 3) measured by the corresponding policy metrics differ in several
Gridworld MDPs. We borrow Distinct Policies, Doorway from (Kanervisto et al., 2020) and design a
new environment, Key Action for simple prototypes of environments with different features. All three
environments are 5×5 Gridworld, with the starting state and goal in the lower left and upper right grid,
respectively. The discrete action space is {up, down, left, right}. We obtain the estimated value v(·)
of each state by estimating 1 - [expected number of step to goal when starting
from a given state]. About the Key Action, the agent obtain a positive reward only if it
chooses right at the key state (i.e., marked by the red box in Fig. 3). Every agent rollouts 10k episodes
for comparing different policy metrics.
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Figure 3: Policy comparison with different policy metrics in Gridworld. Top Panel: The illustration of
three Gridworld MDPs and two deterministic policies (blue and green). Bottom Panel: The distance
curves of the two policies measured by dπ, dPπ , dV π , ddπ , dJπ (y-axi), against the stochasticity of
the environment (x-axi).

To be specific, a policy is represented by tensor π ∈ R5×5×4 and the distribution-irrelevance metric
is defined as dπ(π, π̂) = Eπi,j,k∈π,π̂i,j,k∈π̂ [|πi,j,k − π̂i,j,k|]. Similarly, the state transition dynamics
induced by policy is represented by tensor Pπ ∈ R5×5×5 and the influence-irrelevance metric is
defined as dPπ (π, π̂) = EPπ

i,j,k∈Pπ,P π̂
i,j,k∈P π̂

[∣∣∣Pπi,j,k − P π̂i,j,k∣∣∣]. Different from the dPπ sampling-

based estimation, we leverage the dynamic programming to learn the value function V π ∈ R5×5.
Thus, the value-irrelevance metric is defined as dV π (π, π̂) = EV π

i,j∈V π,V π̂
i,j∈V π̂

[∣∣V πi,j − V π̂i,j∣∣]. In
addition, we also compare the two other policy abstractions proposed in Appendix A.2. Among
them, we estimate the discounted state visitation distribution dπ(s) via dividing visits to a state s
by a total number of interactions (i.e., ddπ (π, π̂) = Edπi,j∈dπ,dπ̂i,j∈dπ̂

[∣∣dπi,j − dπ̂i,j∣∣]). Simply and
naturally, based on the definition of fJπ in Definition 6, we have dJπ (π, π̂) = |Es0∼ρ0 [V π (s0)]−
Es0∼ρ0

[
V π̂ (s0)

]
|. Fig. 3 shows the illustrations and the results of the five policy metrics. The ddπ

and dJπ are newly added results compared to the original paper. We observe that the ddπ cannot
indicate the difference in dynamics between the two policies in Key Action. Like the dV π , the dJπ

measures the difference in the outcomes of the two policies but shows the poor robustness as the
increase of stochasticity.

D ADDITIONAL DISCUSSIONS

D.1 ESTIMATING POLICY METRICS VIA JEFFREYS DIVERGENCE

In simple MDPs where the state-action space is finite, we calculate the frequency distribution (i.e.,
π̃, P̃π, Z̃π) using sufficient samples as an estimate of the exact probability distribution (i.e., π, Pπ,
Zπ). Then we use the Jeffreys Divergence (Jeffreys, 1946) between empirical distributions as policy
metrics (i.e., dπ(·, ·), dPπ (·, ·), and dV π (·, ·)),

dπ (πi, πj) ≈ DKL (π̃i∥π̃j) +DKL (π̃j∥π̃i) ,
dPπ (πi, πj) ≈ DKL

(
P̃πi∥P̃πj

)
+DKL

(
P̃πj∥P̃πi

)
,

dV π (πi, πj) ≈ DKL

(
Z̃πi∥Z̃πj

)
+DKL

(
Z̃πj∥Z̃πi

)
.

(14)

E DETAILS ON APPLYING POLICY ABSTRACTIONS TO POLICY OPTIMIZATION

The policy optimization experiments are run on a single NVIDIA GeForce GTX 2080Ti GPU. Our
codes are implemented with Python 3.7.13 and Torch 1.11.0.
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Table 5: Trust-region constraint value choices of different Methods. We use ‘–’ to denote the ‘not
applicable’ situation.

Methods Trust-region threshold (σ)
Vanilla-PO –

Max TV {0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5}
Gaussian {0.5, 1.0, 2.0, 3.0, 5.0, 10.0, 15.0, 20.0}

Supervector {0.01, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5}
TRPO-fπ {0.05, 0.1, 0.2, 0.3, 0.4, 0.5}

TRPO-fPπ {0.05, 0.1, 0.2, 0.3, 0.4, 0.5}
TRPO-fV π {0.05, 0.1, 0.5, 1.0, 2.0, 5.0}

E.1 TRUST-REGION POLICY OPTIMIZATION

In this experiment, we adopt a N -dimensional Gridworld MDP provided by (Kanervisto et al., 2020),
where the position coordinates of the agent form the state space. At each state, the agent choose one
of N actions corresponding N directions. In the experiments, we set N=5 and only one action of N
action move the agent forward. The agent is rewarded with +1 reward for taking the correct action
and the maximum length of each episode is 25. The agent uses a two-layer network with 16 units and
tanh-activations each.

For the policy optimization, we rewrite the implementation of the policy metrics in the code of
(Kanervisto et al., 2020). The learning agent checks if the difference between old and new policies
measured by the policy metrics are larger than trust-region threshold σ. If the threshold is exceeded,
we stop updating the policy with current samples and move on to collect new samples for the next
policy update. The sample size is 4096 and the policy is updated for 100 mini-batches of 64 items
over the collected samples, or until constraint prevents updates.

We compare with existing related methods, i.e.,Vanilla-PO, Total Variation Divergence(Max TV),
Gaussian and Supervector, and follow hyperparameters in (Kanervisto et al., 2020). Among them,
Vanilla-PO means updating policy 100 mini-batches with no trust-region constraint; the Total Variation
Divergence measures the maximum amount of how much probability of taking any single action
(in any state) can change and is defined as d (πi, πj) = maxs

1
2

∑
a |πi(a | s) − πj(a | s)|; the

Gaussian refers to fitting a multivariate, diagonal Gaussian on collected states from 5 trajectories for
old and new policy, respectively and measures Jeffreys Divergence between old and new policy; the
Supervector calculates the upper bound of KL-divergence between old and new policy supervectors,
which are obtained via fitting a four-component UBM on collected states from 5 trajectories for
corresponding policy. To ensure a fair comparison, we estimate the proposed policy metrics dπ , dPπ ,
dV π on collected 5 trajectories from old and new policy. All approaches repeat ten times for same
environment and the search space of trust-region threshold for them are shown in Table 5.

Fig. 4(a) reports the empirical results for different methods using the corresponding optimal thresholds
which are selected based on the largest AUC (i.e., Area Under The Curve). Overall, the TRPO-fπ
and Max TV are better than others, mainly because they concern the action distribution at interested
states. The Gaussian and Supervector are concerned with the state visitation distribution induced by
the policy, which are specific instances of our proposed dynamics influence abstraction. Thus, as with
fPπ and fV π , they ignore the differences of policies in action distribution.

E.2 DIVERSITY-GUIDED EVOLUTION STRATEGY

In the experiments, we adopt the Point environment with deceptive rewards using MuJoCo simulator.
The deception comes from a barrier, which misleads the agent to move directly forward leading
to a suboptimal policy. For the Point environment, the state and action are represented by a 6
dimensional vector and 2 dimensional vector, respectively. At each timestep, the agent is penalized
for its distance from a given goal, and we limit episode length to 50 steps. To reduce the number of
policy parameters and thus the time cost, we use a Toeplitz policy (Choromanski et al., 2018) often
used for ES algorithms. For DGES, we set the population size to 50 (i.e., N = 50), and estimate
the proposed policy metrics dπ , dPπ , dV π on one episode from the currently policy and the ancestor
policy.
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Figure 4: Performance of different methods in: (a) Trust-Region Policy Optimization (TRPO); and
(b) Diversity-Guided Evolution Strategy (DGES). Results are the mean and half a standard deviation
(shaded) over 10 and 5 trials for TRPO and DGES respectively.

We compare with state-of-the art method on the Point environment for exploration: BGES (Pacchiano
et al., 2020), which uses the terminal state as a policy representation and compare two policies by
Wasserstein distances. The hyperparameters associated with the BGES remain consistent with the
original paper. From the Fig. 4(b), we observe our approach DGES-fPπ is comparable to the BGES
(Pacchiano et al., 2020) and performs better than the DGES-fπ and DGES-fV π . It illustrates the
influence-irrelevance metric dPπ is a sweet intermediate point, keeping the ability of distinguishing
the two policies.

F DETAILS ON APPLYING POLICY ABSTRACTIONS TO OFF-POLICY
EVALUATION

The off-policy evaluation experiments are run on a single NVIDIA GeForce GTX 2080Ti GPU. Our
codes are implemented with Python 3.6.13 and tensorflow 2.2.0.

F.1 COLLECT POLICY DATA FOR OFF-POLICY EVALUATION

Benchmark Environments. We conduct our experiments on OpenAI Gym continuous control tasks
and detailed description is below.

• InvertedDoublePendulum-v2 (IDP-v2): Balance a pole on a pole on a cart. The agent gets a reward
for every timestep that the pendulum has not fallen off the cart.

• LunarLanderContinuous-v2 (LLC-v2): Navigate a lander to its landing pad. Landing pad is
always at coordinates (0,0). Reward for moving from the top of the screen to landing pad and
zero speed is about 100..140 points. If lander moves away from landing pad it loses reward back.
Episode finishes if the lander crashes or comes to rest, receiving additional -100 or +100 points.
Each leg ground contact is +10. Firing main engine is -0.3 points each frame. Solved is 200 points.

Policy Data Collection. We collect policies in two stages. The first stage, we train the PPO (Schulman
et al., 2017a) agent for 1M steps and store a checkpoint each 10 updates of the policy. Then, we
evaluate each checkpoint by 10 rollouts. To be specific, for the ppo agent, the update frequency of
critic is 5 per epoch on two environments, and the update frequency of actor is 2,5,10 per epoch on
IDP-v2 and 5,10,20 per epoch on LLC-v2, respectively. The ppo agent with each update frequency
is trained using 20 random seeds. The second stage, we divide 50 intervals Iτ (τ = 1, · · · , 50)
depending on the performance range of collected policy set I. Naturally, each interval contains
a certain number of policies. Then, we randomly select K(K = 40) policies from each interval.
Finally, we collect B(B = 200) trajectories of data per selected policy. Further, for each policy,
we calculate the average return Ḡ0 over the 200 trajectories, and randomly sample state-action
pairs {(sj , aj)}j=mj=1 , state-next state pairs {(sj , s′j)}

j=m
j=1 , state-value pairs {(sj , Gj)}j=mj=1 . The

pseudo-code for policy data collection is presented in Algorithm1.

In the experiment, we construct a policy dataset for IDP-v2 and LLC-v2, respectively, and each policy
dataset contains 2000 policies. Fig. 6 shows the histograms of the two policy datasets, where the
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Algorithm 1 Collect Policy Data for Off-policy Evaluation
Input: Policy set I = {I1, I2, · · · , Iτ} collected based on PPO algorithm; the number τ of policy
performance intervals; the number K of policies selected per interval; the rollouts B and policy
dataset D← ∅

1: for τ = 1,2,· · · do
2: Randomly select K policies in Iτ
3: for k = 1 to K do
4: R← ∅, T ← ∅
5: for rollout b = 1 to B do
6: Sample Monte-Carlo return G0 using policy πk
7: Collect data with πk in real environments: {(s, a, r, s′)}b
8: R← R ∪ {G0}, T ← T ∪ {(s, a, r, s′)}b
9: end for

10: D← D ∪ {θπk
, R, T}, θπk

represents the parameters of policy πk
11: end for
12: end for
Output: D

Algorithm 2 Off-policy Evaluation
Input: Training policy dataset Dtrain; the data of the policy π consisting of policy parameters
θπ, state-action pairs {(sj , aj)}j=mj=1 , state-next state pairs {(sj , s′j)}

j=m
j=1 and state-value pairs

{(sj , Gj)}j=mj=1 ; the expected return Ḡ0

Initialize: The policy evaluation function Vβ with parameters β
Initialize: The policy representation function fψ with parameters ψ

1: Calculate dπ , dPπ , and dV π for all (πi, πj) ∈ Dtrain ▷ see Section 4.2
2: for iteration t = 0,1,2,· · · do
3: Sample a mini-batch N of policy data B from Dtrain
4: Calculate the alignment loss LAL
5: LAL(ψ) = Eπi,πj∈B

[
(∥fψ(θπi

)− fψ(θπj
)∥2 − η · d∗(πi, πj))2

]
, d∗ ∈ {dπ, dPπ , dV π}

6: Calculate the evaluation loss LEL
7: LEL(β, ψ) = Eπi∈B

[
(Vβ(fψ(θπi))− Ḡ0)

2
]

8: Update parameters ψ, β to minimize LAL and LEL
9: end for

Output: Parameters ψ of the policy representation function fψ; parameters β the policy evaluation
function Vβ

x-axis is the average return of policies and the y-axis is the number of policies. As shown in the
Fig. 6, the two policy datasets basically satisfy the diversity and balance of policies, which allows us
to design a series of Off-Policy Evaluation (OPE) scenarios.

F.2 OFF-POLICY EVALUATION

With regard to off-policy evaluation tasks, in this work, we adopt a policy evaluation function (Harb
et al., 2020) representing the expected return of a policy. Naturally, the policy evaluation function
can be trained based on sampled training policies and then generalize to unseen policies. The policy
evaluation loss LEL can be formalized as,

LEL(β, ψ) = Eπ∈Dtrain

[
(Vβ(fψ(θπ))− Ḡ0)

2
]
, (15)

where Vβ(·) parameterized by β denotes the policy evaluation function. fψ(·) parameterized by ψ
is the policy representation function which takes the policy parameters θπ as input. Dtrain denotes
the training policy dataset sampled from the collected policy dataset D. Below, we provide the
implementation details and pseudo-code (Algorithm 2) for off-policy evaluation.

Network Structure. The Fig. 5 illustrates the policy encoder (LPE) we used. The Table 6 shows
the structure of the policy network and the policy evaluation network. As shown in Table 6, we use
a two-layer feed-forward neural network of 32 and 32 hidden units with ReLU activation (except
for the output layer) for the policy network. In this paper, we learn a policy representation (pr) for a
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Figure 5: An illustration for Layer-wise Permutation-invariant Encoder (LPE). li denotes the numbers
of hidden units for the hidden layers. The main idea is to perform permutation-invariant transformation
for inner-layer weights and biases for each layer first and then concatenate encoding of layers.

Table 6: Structure of policy network and policy evaluation network.
Layer Policy Network (π(a|s)) Policy Evaluation Network (V(·))

Fully Connected (state dim, 32) (pr dim, 128)
Activation ReLU ReLU

Fully Connected (32, 32) (128, 128)
Activation ReLU ReLU

Fully Connected (32, action dim) (128, 1)
Activation tanh None

RL policy from its network parameters. Like the policy network, the policy evaluation network also
uses a two-layer feed-forward neural network, where the input to the policy evaluation network is the
policy representation and the output is the predicted value of the expected return for the policy.

Hyperparameter. In the Table 7, we discuss the policy representation dimension, the number of
hidden units of the policy evaluation network, and the batch size for training policy evaluation network.
For a fair comparison, we perform a 10-fold cross-validation weak generalization experiment with
20% sampling ratio based on the fRE and IDP-v2 to search for best hyperparameters. For all methods
and environments, the batch size, the number of hidden units and the policy representation dimension
are 256, 128 and 256, respectively. Additionally, we report the common hyperparamters of off-policy
evaluation experiments in Table 8.

G OTHER EXPERIMENTAL RESULTS

G.1 COMPLETE EXPERIMENTAL RESULTS OF DIFFERENT GENERALIZATION SCENARIOS

In the paper, we design two OPE generalization settings, namely weak generalization and strong
generalization. For each of the generalization settings, we further construct generalization scenarios
with different sampling ratios. As with the Table 2, the results of the generalization experiments on
the 40% and 80% sampling ratio are presented in the Table 9 and the Table 10, respectively. Not
surprisingly, the performance of all methods improves as the amount of training data increases. In
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Table 7: Experimental results of fRE for IDP-v2 with different hyperparameters. The minimum
value is highlighted. Results(×1e-2) are the mean ± a standard deviation over 10 trials (for weak
generalization with 20% sampling ratio).

batch size hidden units
representation dimension

64 128 256
T-error G-gap T-error G-gap T-error G-gap

64 64 0.64±0.11 0.42±0.10 0.59±0.05 0.39±0.06 0.55±0.05 0.34±0.05
64 128 0.59±0.07 0.40±0.08 0.56±0.06 0.36±0.09 0.59±0.07 0.39±0.09
64 256 0.61±0.09 0.42±0.10 0.57±0.06 0.37±0.07 0.59±0.09 0.37±0.09
128 64 0.62±0.06 0.40±0.07 0.58±0.09 0.37±0.09 0.57±0.06 0.37±0.07
128 128 0.64±0.06 0.43±0.07 0.55±0.06 0.36±0.09 0.57±0.06 0.39±0.08
128 256 0.58±0.07 0.38±0.07 0.56±0.06 0.37±0.08 0.55±0.05 0.37±0.08
256 64 0.69±0.10 0.38±0.10 0.64±0.09 0.38±0.09 0.60±0.06 0.36±0.08
256 128 0.65±0.09 0.38±0.07 0.64±0.07 0.41±0.10 0.54±0.05 0.34±0.05
256 256 0.65±0.09 0.41±0.10 0.59±0.07 0.38±0.09 0.55±0.07 0.35±0.10

Table 8: A comparison of common hyperparameter choices of algorithms. We use ‘-’ to denote the
‘not applicable’ situation.

Hyperparameter fΘ fRE fEL fCL fπ, fPπ , fV π

Evaluation Model Learning Rate 1·10−3 1·10−3 1·10−3 1·10−3 1·10−3

Representation Model Learning Rate 1·10−3 1·10−3 1·10−3 1·10−3 1·10−3

Optimizer Adam Adam Adam Adam Adam
Batch Size 256 256 256 256 256

Policy Representation dim - 256 256 256 256
Evaluation Model Update Epoch (20%) 10k 10k 10k 10k 10k
Evaluation Model Update Epoch (40%) 50k 50k 50k 50k 50k
Evaluation Model Update Epoch (80%) 100k 100k 100k 100k 100k

Kernel mu - - - - 2.0
Kernel number - - - - 5
Sample Size m - - - - 1000

the weak generalization experimental scenarios, our methods are better than or comparable to other
methods. In the strong generalization experimental scenarios, the proposed method, especially fV π ,
is significantly more robust than the other methods.

G.2 HOW DIFFERENT POLICY ABSTRACTIONS INTRAPOLATE AND EXTRAPOLATE IN OPE?

To present the results of weak and strong generalization more intuitively, we attach scatter plots of
policy evaluation results for two generalization settings with 20% sampling ratio in Fig. 7,8,9,10. To
be specific, the horizontal axis of scatter plots represents the true value and the vertical axis is the
predicted value. The evaluation results of the training policies (red dots) and target policies (blue
dots) are unified in a scatter plot for each method. Experimental results are the best of 10 and 5
trials (for weak and strong respectively). Obviously, the results of the weak generalization setting
basically remained near the diagonal, while the strong generalization experiments show an overall
underestimation. This is due to the fact that in the strong generalization setting we only sample
low-performance policies as training data and the rest (i.e., high-performance policies) are used as
test policies.

G.3 VISUALIZATION OF LEARNED POLICY REPRESENTATIONS

In this work, we further analyze different policy abstractions (i.e., fΘ, fRE , fEL, fπ, fPπ , fV π )
by visualizing policy representations. Among them, the fΘ denotes directly compressing policy
parameters as policy representations. The fRE and fEL refer to learning policy representations
by random initial abstraction function and optimized abstraction function by the evaluation loss,
respectively. The unsupervised contrastive learning approach (fCL) learns policy representations
based on the InforNCE (Tang et al., 2020). fπ , fPπ , fV π correspond to the three policy abstractions
we propose, and the policy representations are learned via the alignment loss.
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(a) InvertedDoublePendulum-v2 (b) LunarLanderContinuous-v2

Figure 6: Histograms of policy dataset collected from the (a) InvertedDoublePendulum-v2 and (b)
LunarLanderContinuous-v2 environments, where the x-axis is the average return of policies and the
y-axis is the number of policies.

Visualization Details. We perform experiments under two generalization settings with 20% sampling
ratio. For a fair comparison, different methods use the same training dataset to optimize the policy
representation function. The hyperparameters about training phrase can be found in Table8. We store
the last policy representation model for all methods, and compute the representations of training
policies and target(unseen) policies. Finally, we plot 2D embedding of each policy representation by
the T-SNE (V. d. Maaten & Hinton, 2008). In the visualisation results, each colored point represents
a policy and the label of the color bar for all results is the expected return of the policy.

Visualization Results. Overall, the policy representations in Fig. 11 are more clearly distinguishable
and all of our proposed methods show some degree of discriminability. In contrast, in the strong
generalization experiments, the better performing policies are less discriminative as only 20% of
the poor performing policies are used as training data. Nevertheless, our proposed value-irrelevance
policy abstraction still learns a more compact and discriminative representation. The same results
can also be found in the LLC-v2 environment (Fig. 13, 14). Differently, fRE has already obtained a
better discriminability on that environment. We consider two possible reasons for this result, one
being due to the variability of the different environments, and the other possibly being the superiority
of the policy encoder network (LPE) we adopt. To verify the latter, we show the visualization of
the unabstracted policy in fig. 15. From the results, it is clear that our policy encoder network is
indeed able to perform an effective compression of the policy information and obtain a compact
policy representation space.
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Table 9: Performance of different policy abstractions in Off-policy Evaluation (OPE). The minimum
value for each task is highlighted. Results are the mean ± a standard deviation over 10 and 5 trials
(for weak and strong with 40% sampling ratio respectively).

Env Abstraction Weak Generalization Strong Generalization
T-error G-gap T-error G-gap

IDP-v2

fΘ 0.0041 ± 0.0002 0.0018 ± 0.0005 0.0684 ± 0.0056 0.0679 ± 0.0057
fRE 0.0042 ± 0.0004 0.0021 ± 0.0005 0.0752 ± 0.0123 0.0728 ± 0.0124
fEL 0.0039 ± 0.0002 0.0015 ± 0.0005 0.0725 ± 0.0106 0.0717 ± 0.0098
fCL 0.0046 ± 0.0002 0.0025 ± 0.0004 0.0762 ± 0.0059 0.0676 ± 0.0091
fπ 0.0037 ± 0.0002 0.0014 ± 0.0005 0.0843 ± 0.0091 0.0816 ± 0.0087
fPπ 0.0037 ± 0.0002 0.0014 ± 0.0005 0.0874 ± 0.0063 0.0845 ± 0.0077
fV π 0.0037 ± 0.0003 0.0011 ± 0.0005 0.0584 ± 0.0072 0.0548 ± 0.0087

LLC-v2

fΘ 0.0008 ± 0.0001 0.0007 ± 0.0001 0.1061 ± 0.0137 0.1046 ± 0.0138
fRE 0.0013 ± 0.0003 0.0011 ± 0.0003 0.0339 ± 0.0142 0.0295 ± 0.0124
fEL 0.0008 ± 0.0001 0.0007 ± 0.0001 0.0322 ± 0.0035 0.0320 ± 0.0036
fCL 0.0015 ± 0.0002 0.0013 ± 0.0002 0.0434 ± 0.0019 0.0365 ± 0.0040
fπ 0.0008 ± 0.0001 0.0006 ± 0.0001 0.0193 ± 0.0022 0.0163 ± 0.0023
fPπ 0.0008 ± 0.0001 0.0006 ± 0.0000 0.0215 ± 0.0041 0.0169 ± 0.0055
fV π 0.0008 ± 0.0001 0.0006 ± 0.0001 0.0301 ± 0.0024 0.0278 ± 0.0043

Table 10: Performance of different policy abstractions in Off-policy Evaluation (OPE). The minimum
value for each task is highlighted. Results are the mean ± a standard deviation over 10 and 5 trials
(for weak and strong with 80% sampling ratio respectively).

Env Abstraction Weak Generalization Strong Generalization
T-error G-gap T-error G-gap

IDP-v2

fΘ 0.0029 ± 0.0002 0.0004 ± 0.0004 0.0181 ± 0.0000 0.0140 ± 0.0005
fRE 0.0029 ± 0.0002 0.0005 ± 0.0004 0.0117 ± 0.0002 0.0063 ± 0.0011
fEL 0.0028 ± 0.0002 0.0004 ± 0.0004 0.0135 ± 0.0017 0.0067 ± 0.0026
fCL 0.0028 ± 0.0003 0.0011 ± 0.0005 0.0100 ± 0.0009 -0.0072 ± 0.0004
fπ 0.0028 ± 0.0001 0.0003 ± 0.0003 0.0127 ± 0.0006 -0.0063 ± 0.0065
fPπ 0.0027 ± 0.0002 0.0003 ± 0.0004 0.0158 ± 0.0010 0.0004 ± 0.0019
fV π 0.0027 ± 0.0002 0.0004 ± 0.0005 0.0082 ± 0.0027 -0.0020 ± 0.0069

LLC-v2

fΘ 0.0005 ± 0.0001 0.0004 ± 0.0001 0.0102 ± 0.0012 0.0078 ± 0.0003
fRE 0.0007 ± 0.0001 0.0005 ± 0.0001 0.0127 ± 0.0036 0.0122 ± 0.0039
fEL 0.0005 ± 0.0000 0.0004 ± 0.0001 0.0029 ± 0.0005 0.0026 ± 0.0005
fCL 0.0007 ± 0.0001 0.0006 ± 0.0001 0.0061 ± 0.0022 0.0037 ± 0.0046
fπ 0.0005 ± 0.0000 0.0003 ± 0.0000 0.0035 ± 0.0001 0.0022 ± 0.0002
fPπ 0.0005 ± 0.0000 0.0004 ± 0.0000 0.0043 ± 0.0003 0.0037 ± 0.0003
fV π 0.0005 ± 0.0001 0.0004 ± 0.0001 0.0032 ± 0.0012 0.0028 ± 0.0013
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(a) fΘ (b) fRE (c) fEL (d) fCL

(e) fπ (f) fPπ (g) fV π

Figure 7: Results of policy evaluation with 20% sampling ratio (Weak Generalization, IDP-v2). The
results show the true and predicted values of the train policies (red dots) and target policies (blue
dots) at the minimum testing error for policy abstraction methods.

(a) fΘ (b) fRE (c) fEL (d) fCL

(e) fπ (f) fPπ (g) fV π

Figure 8: Results of policy evaluation with 20% sampling ratio (Strong Generalization, IDP-v2). The
results show the true and predicted values of the train policies (red dots) and target policies (blue
dots) at the minimum testing error for policy abstraction methods.
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(a) fΘ (b) fRE (c) fEL (d) fCL

(e) fπ (f) fPπ (g) fV π

Figure 9: Results of policy evaluation with 20% sampling ratio (Weak Generalization, LLC-v2). The
results show the true and predicted values of the train policies (red dots) and target policies (blue
dots) at the minimum testing error for policy abstraction methods.

(a) fΘ (b) fRE (c) fEL (d) fCL

(e) fπ (f) fPπ (g) fV π

Figure 10: Results of policy evaluation with 20% sampling ratio (Strong Generalization, LLC-v2).
The results show the true and predicted values of the train policies (red dots) and target policies (blue
dots) at the minimum testing error for policy abstraction methods.
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(a) fRE (b) fCL (c) fEL

(d) fπ (e) fPπ (f) fV π

Figure 11: T-SNE visualization results of policy representation (Weak Generalization with 20%
sampling ratio, IDP-v2). Each colored point represents a policy and the label of the color bar for all
results is the expected return of the policy.

(a) fRE (b) fCL (c) fEL

(d) fπ (e) fPπ (f) fV π

Figure 12: T-SNE visualization results of policy representation (Strong Generalization with 20%
sampling ratio, IDP-v2). Each colored point represents a policy and the label of the color bar for all
results is the expected return of the policy.
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(a) fRE (b) fCL (c) fEL

(d) fπ (e) fPπ (f) fV π

Figure 13: T-SNE visualization results of policy representation (Weak Generalization with 20%
sampling ratio, LLC-v2). Each colored point represents a policy and the label of the color bar for all
results is the expected return of the policy.

(a) fRE (b) fCL (c) fEL

(d) fπ (e) fPπ (f) fV π

Figure 14: T-SNE visualization results of policy representation (Strong Generalization with 20%
sampling ratio, LLC-v2). Each colored point represents a policy and the label of the color bar for all
results is the expected return of the policy.
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(a) fΘ (b) fRE

Figure 15: T-SNE visualization results of policy representation (Weak Generalization with 20%
sampling ratio, LLC-v2). Each colored point represents a policy and the label of the color bar for all
results is the expected return of the policy.
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