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ABSTRACT

Simulations that produce three-dimensional data are ubiquitous in science, rang-
ing from fluid flows to plasma physics. We propose a similarity model based on
entropy, which allows for the creation of physically meaningful ground truth dis-
tances for the similarity assessment of scalar and vectorial data, produced from
transport and motion-based simulations. Utilizing two data acquisition methods
derived from this model, we create collections of fields from numerical PDE
solvers and existing simulation data repositories, and highlight the importance
of an appropriate data distribution for an effective training process. Further-
more, a multiscale CNN architecture that computes a volumetric similarity met-
ric (VolSiM) is proposed. To the best of our knowledge this is the first learning
method inherently designed to address the challenges arising for the similarity as-
sessment of high-dimensional simulation data. Additionally, the tradeoff between
a large batch size and an accurate correlation computation for correlation-based
loss functions is investigated, and the metric’s invariance with respect to rotation
and scale operations is analyzed. Finally, the robustness and generalization of
VolSiM is evaluated on a large range of test data, as well as a particularly chal-
lenging turbulence case study, that is close to potential real-world applications.

1 INTRODUCTION

Making comparisons is a fundamental operation that is essential for any kind of computation. This
is especially true for the simulation of physical phenomena, as we are often interested in comparing
simulations against other types of models or measurements from the physical system. Mathemati-
cally, such comparisons require metric functions that determine scalar distance values as a similarity
assessment. A fundamental problem is that traditional comparisons are typically based on simple,
element-wise metrics like the L1 or L2 distances, due to their computational simplicity and a lack
of alternatives. Such metrics can work reliably for systems with few elements of interest, e.g. if we
want to analyze the position of a moving object at different points in time, matching our intuitive un-
derstanding of distances. However, more complex physical problems often exhibit large numbers of
degrees of freedom, and strong dependencies between elements in their solutions. Those coherences
should be considered when comparing physical data, but element-wise operations by definition ig-
nore such interactions between elements. With the curse of dimensionality this situation becomes
significantly worse for systems that are modeled with dense grid data, as the number of interac-
tions grows exponentially with a linearly increasing number elements. Such data representations
are widely used, e.g. for medical blood flow simulations (Olufsen et al., 2000), over climate and
weather predictions (Stocker et al., 2014), to the famous unsolved problem of turbulence (Holmes
et al., 2012). Another downside of element-wise metrics is that each element is weighted equally,
which is typically suboptimal: E.g. in the context of fluids, smoke plumes behave differently along
the vertical dimension due to gravity or buoyancy, and small key features like vortices are more
indicative of the fluid’s general behavior than large areas of near constant flow (Pope, 2000).

In the domain of natural images, neural networks have been successfully employed for similarity
models that can consider larger structures, typically via learning from the semantic meaning of the
images through class labels or data that encodes our human perception. Similarly, physical systems
exhibit spatial and temporal coherence due to the underlying laws of physics, from which we can
derive a similarity model. To robustly learn similarity assessments of scalar and vectorial volumetric
data from such a model, our work makes the following contributions:
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• We propose a novel similarity model based on the entropy of physical systems. It is em-
ployed to synthesize sequences of volumetric physical fields suitable for metric learning.

• We show that our Siamese, multiscale feature network results in a stable metric that suc-
cessfully generalizes to new physical phenomena. To the best of our knowledge this is the
first learned metric inherently designed for the similarity assessment of volumetric fields.

• The metric is employed to analyze turbulence in a case study, and its invariance to rota-
tion and scale are evaluated. In addition, we analyze correlation-based loss functions with
respect to their tradeoff between batch size and accuracy of correlation computation.

The central application of the proposed VolSiM metric is the similarity assessment of new physical
simulation methods, numerical or learning-based, against a known ground truth. This ground truth
can take the form of measurements, higher resolution simulations, or existing models. Furthermore,
the trained metric can be used as a differentiable similarity loss for physical learning problems,
similar to perceptual losses for computer vision tasks.

2 RELATED WORK

Apart from simple Ln distances, the two metrics PSNR and SSIM (Wang et al., 2004) are commonly
used across disciplines for the similarity assessment of data. Similar to the underlying L2 distance,
PSNR shares the issues of element-wise metrics (Huynh-Thu & Ghanbari, 2008; 2012). SSIM com-
putes a more intricate function, but it was shown to be closely related to PSNR (Horé & Ziou, 2010)
and thus has similar problems (Nilsson & Akenine-Möller, 2020). Furthermore, statistical tools
like the Pearson correlation coefficient PCC (Pearson, 1920) and Spearman’s rank correlation co-
efficient SRCC (Spearman, 1904) can be employed as a simple similarity measurement. There are
several learning-based metrics specialized for different domains such as rendered (Andersson et al.,
2020) and natural images (Bosse et al., 2016), interior object design (Bell & Bala, 2015), audio (Av-
goustinakis et al., 2020), and haptic signals (Kumari et al., 2019). Especially for images, similarity
measurements have been studied in multiple settings, mainly by combining deep embeddings as per-
ceptually more accurate metrics (Prashnani et al., 2018; Talebi & Milanfar, 2018). Similarly, such
metrics can be employed for various image related tasks like super-resolution (Johnson et al., 2016)
or image generation (Dosovitskiy & Brox, 2016). We additionally study the behavior of invari-
ance and equivariance to transformations, which was targeted previously for rotational symmetries
(Weiler et al., 2018; Chidester et al., 2019) and improved generalization (Wang et al., 2021).

Traditional metric learning for natural image domains typically works in one of two ways: Either,
the training is directly supervised by learning from manually created labels, e.g. via two-alternative
forced choice where humans pick the most similar option to a reference (Zhang et al., 2018). Or,
the training is indirectly semi-supervised through images with class labels and a contrastive loss
(Chopra et al., 2005; Hadsell et al., 2006). In that case, triplets of reference, same class image,
and other class images are sampled, and the corresponding latent space representations are pulled
together or pushed apart. We refer to Roth et al. (2020) for an overview of different image metric
training strategies. Similarity metrics for simulation data have not been studied extensively yet. For
smoke flow synthesis, Siamese networks for finding similar fluid descriptors have been applied (Chu
& Thuerey, 2017). Um et al. (2017; 2021) used crowd-sourced user studies for the similarity assess-
ment of liquid simulations. Simulation data was compared via a learned metric (Kohl et al., 2020)
using a feature extractor with a structure similar to a classification CNN, however only considering
scalar 2D data and a simple, linear distance model.

Deep learning techniques also receive attention for improving simulations, e.g. for predicting states
over time (Morton et al., 2018; Kim et al., 2019), for learning via physical laws (Watters et al., 2017;
Greydanus et al., 2019), and for the dynamics of complex materials (Ummenhofer et al., 2020;
Sanchez-Gonzalez et al., 2020). While these approaches have potential to be combined with our
metric, we focus on traditional numerical methods to acquire data in the following.

3 MODELING SIMILARITY OF SIMULATIONS

To formulate our methodology for learning similarity metrics that target dissipative physical sys-
tems, we turn to the fundamental quantity of entropy. The second law of thermodynamics states
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that the entropy S of a physical system never decreases, thus ∆S ≥ 0. In the following, we
make the reasonable assumption that the behavior of the system is continuous and non-oscillating,

S = kB log(W ) (1)

S̃(s) = k log(cws) (2)

D(s) = k log(cws + 1) (3)

D(s) =
log(cws + 1)

log(c+ 1)
(4)

and that ∆S > 0. On the right, Eq. 1 is the Boltzmann equation
from statistical mechanics (Boltzmann, 1866), that describes S in
terms of the Boltzmann constant kb and the number of microstates
W of a system (here an ideal gas).1 Since entropy only depends
on a single system state, it can be reformulated to take the relative
change between two states into account: given a sequence of states
s0, s1, . . . , sn, the relative entropy S̃(s) is defined in Eq. 2, where
ws is the monotonically increasing, relative number of microstates
defined as 0 for s0 and as 1 for sn. c > 0 is a system-dependent factor that determines how
quickly the number of microstates increases. Next, we shift Eq. 2 such that the lower bound is
0 to derive a first similarity model D. This offset is necessary, since the properties of similarity
metrics dictate that distances are always non-negative and only zero for identical states. Finally,
we choose the system-dependent constant k appropriately, as relative similarities do not change
through linear transformations, and thus k does not influence the general behavior of D. Choosing
k = 1/(log c+ 1) leads to the full similarity model D(s) in Eq. 4, that is bound to the range [0, 1],
and directly predicts the level of similarity between the reference s0 and any state s from a sequence.
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Figure 1: Idealized model of the behav-
ior of entropy and similarity for a phys-
ical system for different changes ∆.

Fig. 1 illustrates this connection between the logarithmic
increase of entropy within a system and the proposed sim-
ilarity model. In addition, trajectories for different ∆
through this space are shown. This ∆ between states
corresponds to c in the similarity model in Eq. 4, and
is directly proportional to it: For large changes ∆inf to
the system, the entropy quickly increases and the states
s1, . . . , sn contain little information, hence are quickly
very dissimilar to s0 (red dotted curve). For the small-
est possible changes ∆ε, entropy slowly increases while
similarity linearly decreases, due to the continuous nature
of the system (green dashed line). Ideally, a sequence of
states employed for learning tasks should evenly exhibit
both regimes as well as intermediate ones, as indicated by the black curve. For practicality, this
should not rely on an extremely large number of states, as would be necessary for ∆ε. In the fol-
lowing, we will refer to this property of a sequence being informative with respect to a similarity
analysis as difficulty of a sequence with a fixed length n. The red area in Fig. 1 generally corresponds
to sequences that are too difficult, i.e. that do not bare any similarity to s0 very quickly, while the
green area generally corresponds to sequences that are too easy, i.e. that barely change.

Algorithm 1 Computation of dis-
tance prediction d of metric m and
ground truth distances g on an or-
dered sequence s0, s1, . . . , sn.

for i = 1 to n do
q.append (1− PCC(s0, si))

q ← normalize q to [0, 1]

c← fit log(10cq+1)
log(10c+1) for c

for i = 0 to n− 1 do
for j = i+ 1 to n do

d.append(m(si, sj))
ws.append((j − i)/n)

g ← log(10cws+1)
log(10c+1)

The resulting formulation for D represents an idealized sim-
ilarity model and does not directly work as a metric due to
two reasons: 1) a metric only takes two states as an input,
so estimating c would be difficult, and 2) both inputs do not
necessarily have to come from the same system, for example
when comparing a velocity observation to a simulated ground
truth. To overcome this, we formulate a semi-supervised learn-
ing problem by creating sequences s0, s1, . . . , sn of different
physical systems, and training a neural network m to predict
the distance d given the reference distances g as computed via
D. This technique incorporates the underlying physical be-
havior, compared to adding variations in a post-process (as it
is often done in the domain of images, e.g. by Ponomarenko
et al. (2015)). Alg. 1 shows how d and g are computed: First,
we estimate c by evaluating Pearson’s distance that indicates
how quickly the states become uncorrelated, normalizing it to
[0, 1], and optimizing Eq. 4 for c via a standard least-squares

1We do not have any a priori information about the distribution of the likelihood of each microstate in a
general physical system. Thus, more generic entropy models such as Gibb’s entropy or Shannon’s entropy,
both of which assume a non-uniform distribution of microstates, are not immediately applicable.
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optimization. Then, g directly follows from Eq. 4 through the fit of c and the linearly increasing
number of microstates ws, while d is computed by a pairwise evaluation of m.

4 SEQUENCE CREATION

To create sequences s0, s1, . . . , sn within a controlled environment, we make use of the knowledge
about the underlying physical processes: We either employ direct changes, based on spatial or tem-
poral coherences to s0, or use changes to the initial conditions of the process that lead to s0. The
central challenge now becomes how to find suitable sequences via the magnitude of ∆, without
knowing a priori which degree of non-linearity in the similarity model provides the most informa-
tion for each setup. However, given a value of ∆ and a corresponding sequence, we can compute
how strongly it differs from a sequence with ∆ε, as depicted in Fig. 1. This is achieved by a proxy
similarity function, via computing the PCC between this proxy and a simple linearly decreasing sim-
ilarity as predicted by ∆ε. If the resulting correlation is high, the sequence is close to a similarity
behavior as predicted by ∆ε, while lower correlations indicate stronger deviations. Finally, we sam-
ple sequences based on simple correlation thresholds to acquire a suitable difficulty level. By using
the mean squared error (MSE) as a proxy, we empirically determined that correlations between 0.65
and 0.85 work well for all cases we considered. Hence, we propose two semi-automatic iterative
methods (see Fig. 2) to create data, depending on the method to introduce variations to a given state.
Both methods iteratively sample a small set of sequences to calibrate ∆ to a suitable magnitude and
use that for the full data set. Compared to a stricter sampling of every single sequence, this method
avoids potential biases in the data and is computationally more efficient as less sampling is needed.
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Figure 2: Iteration schemes to create data sequences of decreasing similarity. Variation from the
reference state can be introduced via the initial conditions of a numerical PDE simulation (method
[A], left), or via spatio-temporal data changes on data from a repository (method [B], right).

[A] Variations based on Initial Conditions of Simulations Given a numerical PDE solver and
a set of initial conditions or parameters p, the solver computes a solution to the PDE over the time
steps t0, t1, . . . , tt. To create a larger number of different sequences, we make the systems non-
deterministic by adding noise to a simulation field and randomly generating the initial conditions
from a given range. Adjusting one of the parameters pi in steps with a small perturbation ∆i,
allows for the creation of a sequence s0, s1, . . . , sn with decreasing similarity to the unperturbed
simulation s0. This is repeated for every suitable parameter in p, and the corresponding ∆ is updated
individually until the targeted MSE correlation range is reached. The global noise strength factor
also influences the difficulty to some degree and can be updated.

[B] Variations based on Spatio-temporal Coherences For a source D of volumetric spatial-
temporal data without access to a solver, we rely on a larger spatial and/or temporal dimension than
the one required for a sequence. We start at a random spatio-temporal position p to extract a cubical
spatial area s0 around it. p can be repeatedly translated in space and/or time by ∆t,x,y,z to create a
sequence s0, s1, . . . , sn of decreasing similarity. Using a different position leads to new sequences,
as long as the repository features enough diverse data. It is possible to add a global amount of
random perturbations q with a chosen strength to the positions, to further increase the difficulty.

Data Sets To create training data with method [A], we utilize solvers for a basic Advection-
Diffusion model (Adv), Burger’s equation (Bur) with an additional viscosity term, and the full
Navier-Stokes equations via a Eulerian smoke simulation (Smo) and a hybrid Eulerian-Lagrangian
liquid simulation (Liq). The corresponding validation sets are generated with a separate set of
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random seeds. Furthermore, we use adjusted versions of the noise integration for two test sets, by
adding noise to the density instead of the velocity field in the Advection-Diffusion model (AdvD),
and overlayed noise to the background area of the liquid simulation (LiqN).

Figure 3: Example sequences from training sets
(top, column-wise: Adv, 3×Smo, Bur, 3×Liq)
and test sets (bottom, column-wise: 2×Iso,
Cha, Mhd, Tra, AdvD, LiqN, SF, Sha, Wav).3

We create seven test sets via method [B].
Four come from the Johns Hopkins Turbulence
Database JHTDB (Perlman et al., 2007) that con-
tains a large amount of direct numerical simula-
tion (DNS) data, where each is based on a sub-
set of the JHTDB and features different char-
acteristics: isotropic turbulence (Iso), a chan-
nel flow (Cha), magneto-hydrodynamic turbu-
lence (Mhd), and a transitional boundary layer
(Tra). Since turbulence contains structures of
interest across all length scales, we additionally
randomly stride or interpolate the query points
for scale factors in [0.25, 4] to create sequences
of different physical size. One additional test
set (SF) via temporal translations is based on
ScalarFlow (Eckert et al., 2019), consisting of
3D reconstructions of real smoke plumes. Fur-
thermore, method [B] is slightly modified for
two synthetic test sets: Instead of using a data
repository, we procedurally synthesize spatial fields. For that, we employ linearly moving random-
ized shapes (Sha), and randomized damped waves (Wav) of the general form f(x) = cos(x) ∗ e−x.
All data was gathered in sequences with n = 10 at resolution 1283, and downsampled to 643 for
computational efficiency during training and evaluations. Fig. 3 shows parts of multiple example
sequences via a mean projection to 2D, and App. B and C contain further details on each data set.

Data Distribution There are many independent factors that influence the difficulty of the created
data sequences, and measuring the similarity in the generation process with a proxy function in-
troduces additional uncertainties. In addition, our iteration schemes only calibrate ∆ to a suitable
magnitude, instead of enforcing stricter bounds on every single sequence. As a result, the computed
PCC values from the MSE (see Fig. 2) on the full data sets exhibit a more natural, smooth distri-
bution with controllable difficulty, instead of introducing an artificial distribution with hard cutoffs.
Due to the central limit theorem, we expect a normal distribution of the PCC values that indicate
the sequence difficulty. However, correlations have a fixed upper bound of 1, meaning a truncated
normal distribution is a more accurate prediction. Intuitively, this corresponds to trajectories with
different curvature in the similarity model in Fig. 1. In fact, we empirically determined that only
training data distributions which reasonably closely follow this prediction, result in a successful
training of our model. We assume, that significantly different distributions indicate unwanted biases
in the data, which prevented effective learning in our experiments. Fig. 4 shows the correlation his-
tograms of our training and validation data sets, all of which roughly follow this desired truncated
normal distribution.
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Figure 4: MSE correlation histograms of training data (orange) and validation data (blue) with a bin
size of 0.05. Each histogram roughly follows a truncated normal distribution.

5 LEARNING A DISTANCE FUNCTION

For our method, we generally follow the established Siamese structure, that was originally proposed
for 2D domains (Zhang et al., 2018; Kohl et al., 2020): First, two inputs are embedded in a latent

3Here the predominant x-component in Cha and is separately normalized for a more clear visualization.
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space using a CNN as feature extractor. The Siamese network structure means that the weights are
shared, which ensures the mathematical requirements for a pseudo-metric. Next, the features are
normalized and compared with an element-wise comparison like an absolute or squared difference.
Finally, the feature difference is aggregated with sum, mean, and learned weighted average func-
tions. To compute the proposed VolSiM metric, that operates on inherently more complex 3D data,
the following changes to this framework are proposed.
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Figure 5: Standard Conv+ReLU blocks (left) are interwoven with input and resolution connections
(blue dotted and red dashed), to form the combined network architecture (right) with about 350k
weights. The output of each scale block is concatenated with the downsampled input for lower
scales, leading to features that are spread across multiple resolutions for a stable metric computation.

Multiscale Network Scale is important for a reliable similarity assessment, since physical systems
often exhibit self-similar behavior that does not significantly change across scales, as indicated by
the large number of dimensionless quantities in physics. Generally, scaling a data pair should not
alter its similarity, and networks can learn such an invariance to scale most effectively by processing
data at different scales. One example where this is crucial is the energy cascade in turbulence (Pope,
2000), which is also analyzed in our case study below. For learned image metrics, this invariance is
also useful (but less crucial), and often introduced with large strides and kernels in the convolutions,
e.g. via a feature extractor based on AlexNet (Zhang et al., 2018). In fact, our experiments with
similar architectures showed, that models with large strides and kernels generally perform better
than models that modify the scale over the course of the network to a lesser extent. However,
we propose to directly encode this scale structure in a multiscale architecture for a more accurate
similarity assessment, and a network with a smaller resource footprint. Fig. 5 shows the proposed
fully convolutional network: Four scale blocks individually process the input on increasingly smaller
scales, where each block follows the same layer structure, but deeper blocks effectively cover a
significantly larger volume due to the reduced input resolutions. Furthermore, deeper architectures
can model complex functions more easily, so we additionally include resolution connections from
each scale block to the next resolution level via concatenation. Effectively, the network learns a
mixture of connected deep features and similar representations across scales as a result.

Training and Evaluation To increase the model’s robustness during training, we used the follow-
ing data augmentations for each sequence: the data is normalized to [−1, 1], and together randomly
flipped and rotated in increments of 90° around a random axis. The velocity channels are randomly
swapped to prevent directional biases from some simulations, while scalar data is extended to the
three input channels via repetition. For inference, only the normalization operation and the repeti-
tion of scalar data is performed. The final metric model was trained with the Adam optimizer with
a learning rate of 10−4 for 30 epochs via early stopping, further details can be found in App. A. To
train the metric end-to-end, Alg. 1 is employed to compute the predicted distances d and the ground
truth g according to the similarity model. Both are passed to the correlation loss function below, that
compares them and provides gradients. To determine the accuracy of a metric during inference, we
compute the SRCC between d and ws, where a value closer to 1 indicates a better reconstruction.4

Loss Function Given predicted distances d and a ground truth g of size n, we train our metric
networks with the loss in Eq. 5. It consists of a weighted combination of an MSE and an inverted
correlation term r, where d̄ and ḡ denote the mean. While the formulation follows existing work
(Kohl et al., 2020), it is important to note that g is computed by our similarity model from Sec. 3,
and below we introduce a slicing technique to apply this loss formulation to high-dimensional data
sets. For the training process via stochastic gradient descent, Eq. 5 requires a trade-off: A large batch
size b is useful to improve training stability via less random gradients for optimization. Similarly, a

4This is equivalent to SRCC(d, g), since the SRCC measures monotonic relationships and is not affect by
monotonic transformations. SRCC(d,ws) is just computationally more efficient and has numerical benefits.
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sufficiently large value of n is required to keep the correlation values accurate and stable.

L(d, g) = λ1(d− g)2 + λ2

1−
∑n
i=1(di − d̄) (gi − ḡ)√∑n

i=1(di − d̄)2

√∑n
i=1(gi − ḡ)2

 (5)

However, with finite amounts of memory, choosing large values for n and b is not possible in prac-
tice. Especially so for 3D cases, where a single sample can already be memory intensive. In general,
n is implicitly determined by the length of the created sequences, via the number of possible pairs
within a sequence. Thus, we provide an analysis how the correlation can be approximated in multi-
ple steps for a fixed n, to allow for increasing b in return. In the following, the batch dimension is
not explicitly shown, but all expressions can be extended with a vectorized first dimension.
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Figure 6: Combined validation and test
performance for different batch sizes b
and slicing values v (markers), and the
usage of a running sample meanRM and
correlation aggregation AG (colors).

The full distance vectors d and g are split in slices with
v elements, where v should be a proper divisor of n. For
any slice k, we can compute a partial correlation rk with

rk =

∑k+v
i=k (di − d̄) (gi − ḡ)√∑k+v

i=k (di − d̄)2

√∑k+v
i=k (gi − ḡ)2

. (6)

Note that this is only an approximation, and choosing
larger values of v for a given b is always beneficial, if suf-
ficient memory is available. For all slices, the gradients
are accumulated during backpropagation since other ag-
gregations would required a computational graph of the
original, impractical size. Eq. 6 still requires the com-
putation of the means d̄ and ḡ as a pre-process over all
samples. Both can be approximated with the running
means d̃ and g̃ for efficiency (RM ). For small values of v, the slicing results in very coarse, unsta-
ble correlation results. To alleviate that, it is possible to use a running mean over all previous values
r̃k = (1/k)(rk +

∑k−1
l=1 rl). This aggregation (AG) can stabilize the gradients of individual rk as

they converge to the true correlation value during training, as App. D shows in more detail.

Fig. 6 displays the resulting performance on our data, when training with different combinations of
b, v, RM , and AG. All models exhibit similar levels of memory consumption and were trained with
the same random training seed. When comparing models with and without RM (blue vs red and
purple vs orange) both are on par in most cases, even though computation times for a running mean
are about 20% lower. The results of models with and without AG (blue vs purple and red vs orange)
confirm the expected stabilization effect, where reduced fluctuations in the training translate to better
generalizing metrics. Overall, this experiment demonstrates that choosing larger v consistently leads
to better results (marker shape), so more accurate correlations are beneficial over a large batch size
b in memory limited scenarios. Thus, we use b = 1 and v = 55 for the final model.

6 RESULTS

We compare the proposed VolSiM metric to a variety of existing methods in the upper section of
Tab. 1. All metrics were evaluated on the volumetric data from Sec. 4, which contain a wide range
of test sets that differ strongly from the training data. VolSiM consistently reconstructs the ground
truth distances from the entropy-based similarity model more reliably than other approaches on most
data sets. As expected, this effect is most apparent on the validation sets since their distribution is
closest to the training data. But even on the majority of test sets with a very different distribution,
VolSiM is the best performing or close to the best performing metric. Metrics without deep learning
often fall short, indicating that they were initially designed for different use cases, like SSIM (Wang
et al., 2004) for images, or variation of information VI (Meilă, 2007) for clustering. The strictly
element-wise metrics MSE and PSNR exhibit almost identical performance, and both work poorly
on a variety of data sets. The learning-based methods LPIPS (Zhang et al., 2018) for images, and
LSiM (Kohl et al., 2020) are only available for two-dimensional data. Hence, they can not correlate
structures along all dimensions. To evaluate them in our setting, the 3D data was sliced along all
three dimensions to avoid biases against one direction, and the resulting distances are averaged over
all slices. As shown in Tab. 1, this results in a reasonable performance overall.
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Table 1: Top: performance comparison of different metrics for 3D data via the SRCC, where values
closer to 1 indicate a better reconstruction of the ground truth distances. Bold+underlined values
show the best method for each data set, bold values are within a 0.01 margin of the best performing.
Bottom: ablation study of the proposed method. Gray models make use of a different training setup.

Validation data sets Test data sets

Simulated Simulated Generated JHTDB a SF b c

Metric Adv Bur Liq Smo AdvD LiqN Sha Wav Iso Cha Mhd Tra SF All

MSE 0.61 0.70 0.51 0.68 0.77 0.76 0.75 0.65 0.76 0.86 0.80 0.79 0.79 0.70
PSNR 0.61 0.68 0.52 0.68 0.78 0.76 0.75 0.65 0.78 0.86 0.81 0.83 0.79 0.73
SSIM 0.75 0.68 0.49 0.64 0.81 0.80 0.76 0.88 0.49 0.55 0.62 0.60 0.44 0.61
VI 0.57 0.69 0.43 0.60 0.69 0.82 0.67 0.87 0.59 0.76 0.68 0.67 0.41 0.62
LPIPS (2D) 0.63 0.62 0.35 0.56 0.76 0.62 0.87 0.92 0.71 0.83 0.79 0.76 0.87 0.76
LSiM (2D) 0.57 0.55 0.48 0.71 0.79 0.75 0.93 0.97 0.69 0.86 0.79 0.81 0.98 0.81
VolSiM (ours) 0.75 0.73 0.66 0.77 0.84 0.88 0.95 0.96 0.77 0.86 0.81 0.88 0.95 0.85

CNNtrained 0.60 0.71 0.63 0.76 0.81 0.77 0.92 0.93 0.75 0.86 0.78 0.85 0.95 0.82
MSrand 0.57 0.66 0.45 0.69 0.76 0.75 0.80 0.78 0.74 0.86 0.80 0.82 0.84 0.74
CNNrand 0.52 0.66 0.49 0.69 0.77 0.70 0.93 0.96 0.74 0.85 0.79 0.83 0.95 0.81
MSno skip 0.80 0.70 0.78 0.75 0.86 0.88 0.80 0.95 0.76 0.86 0.78 0.86 0.91 0.82
MS3 scales 0.70 0.69 0.70 0.73 0.83 0.82 0.95 0.94 0.76 0.87 0.80 0.88 0.93 0.83
MS5 scales 0.78 0.72 0.78 0.78 0.81 0.90 0.94 0.93 0.75 0.85 0.77 0.88 0.93 0.82
MSadded Iso 0.73 0.72 0.77 0.79 0.84 0.84 0.92 0.97 0.79 0.87 0.80 0.86 0.97 0.84
MSonly Iso 0.58 0.62 0.32 0.63 0.78 0.65 0.72 0.92 0.82 0.77 0.86 0.79 0.65 0.75
a Johns Hopkins Turbulence Database (Perlman et al., 2007) b ScalarFlow data set (Eckert et al., 2019) c Combined test data sets

The bottom half of Tab. 1 contains an ablation study of the proposed architecture MS, and a simple
CNN model. This model is similar to an extension of the convolution layers of AlexNet (Krizhevsky
et al., 2017) to three dimension, and does not utilize a multiscale structure. Even though VolSiM
has more than 80% fewer weights compared to CNNtrained, it can fit the training data more easily
and works better or equally well on every single dataset in Tab. 1, indicating the strengths of the
proposed multiscale architecture. The performance of untrained models CNNrand and MSrand confirm
the findings from Zhang et al. (2018), who also report a surprisingly strong performance of random
networks. Using no resolution skip connections for MSno skip (see Fig. 5) slightly lowers the metrics
generalization across most data sets. Removing the last resolution scale block for MS3 scales overly
reduces the capacity of the model, while adding another block for MS5 scales only leads to minor
differences. In addition, we also investigate two slightly different training setups: for MSadded Iso we
integrate extra sequences created like the Iso data in the training, while MSonly Iso is exclusively
trained on such sequences. MSadded Iso only slightly improves upon the baseline, and even the
turbulence-specific MSonly Iso model does not consistently improve the results on the JHTDB data
sets. Both cases indicate a high level of generalization for VolSiM, as it was not trained on any
turbulence data. App. E contains more details for each model and App. F features further ablations.

Transformation Invariance Physical systems are often characterized by Galilean invariance (Mc-
Comb, 1999), i.e. identical laws of motion across inertial frames. Likewise, a metric should be
invariant to transformations of the input, meaning a constant distance output when translating, scal-
ing, or rotating both inputs. Element-wise metrics fulfill these properties by construction, but our
Siamese network structure requires an equivariant feature representation that changes along with
input transformations to achieve them. As CNN features are translation equivariant by design, we
only empirically examine rotation and scale invariance for our multiscale metric and a standard
Conv+ReLU model on a fixed set of 8 random data pairs from each data set. For the rotation exper-
iment, we rotate the pairs in steps of 5° around a random coordinate axis. The empty volume inside
the original frame is filled with a value of 0, and data outside the frame is cut to prevent any scaling.

Figure 7: Distance deviation from the mean prediction over different rotation angles (left) and scal-
ing factors of the inputs (right) for a simple CNN and the proposed multiscale model.
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For scaling, the data is bilinearly up- or downsampled according to the scale factor, and processed
fully convolutionally by each network. In Fig. 7, the resulting distance deviation from the mean of
the predicted distances is plotted for rotation and scaling operations. The optimal result would be
a perfectly equal distance with zero deviation across all transformations. Compared to the model
CNNtrained, it can be observed that VolSiM produces less deviations overall, and leads to significantly
smoother distance curves. Note that we observe scale equivariance rather than invariance for VolSiM,
i.e. a mostly linear scaling of the distances according to the input size. This is not as problematic
as the unstable behavior of CNNtrained, as the general order is preserved and data is typically not
compared across resolutions without resampling. The main reason is that the fully convolutional
features are larger and thus lead to scale equivariant distances when compared. With a normalization
for the physical size of the system, this effect could be further reduced in future work.

Case Study: Turbulence Analysis As a particularly challenging test for generalization, we further
perform a detailed case study on forced isotropic turbulence. This study resembles a potential real-
world scenario for our metric. For this purpose, fully resolved raw data over a long temporal interval
from the isotropic turbulence data set from JHTDB is utilized (see bottom of Fig. 8). The 10243

domain is filtered and reduced to a size of 1283 with strides of 8, meaning VolSiM is applied in
a fully convolutional manner, and has to generalize beyond the training resolution of 643. Three
different time spans of the simulation are investigated, where the long span also uses a temporal
stride of 20. Traditionally, turbulence research makes use of two-point correlations to study such
cases (Pope, 2000). Since we are interested in a comprehensive spatial analysis instead of two
single points, we can make use of Pearson’s distance on the full fields to obtain reference values for
an evaluation. App. G contains further details on the implementation of this case study.
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Figure 8: Top: Analysis of forced isotropic turbulence across three time spans. The high SRCC
values indicate strong agreement between Pearson’s distance and the similarity model (SRCCa), and
between the similarity model and VolSiM (SRCCb). Bottom: Examples from the overall sequence,
visualized via a mean projection along the x-axis and color-coded channels.

At the top of Fig. 8, we find that our similarity model from Sec. 3 (gray dotted) closely follows this
correlation-based trajectory (red dashed) over time, as also indicated by the value SRCCa between
both cases. Even though there are smaller fluctuations, the proposed VolSiM metric (blue) results
in a very similar distance trajectory to the similarity model (see SRCCb) across all time spans. Our
similarity metric faithfully recovers the correlation-based reference, despite not having seen any
turbulence data at training time. Hence, this experiment indicates the accuracy of the similarity
model, and the capabilities for generalization of the multiscale metric network to new cases.

7 CONCLUSION

We presented the multiscale CNN architecture VolSiM, and demonstrated its capabilities as a simi-
larity metric for volumetric simulation data. A similarity model based on the behavior of entropy in
physical systems was proposed and utilized to learn a robust, physical similarity assessment. Dif-
ferent methods to compute correlations inside a loss function were analyzed, and the invariance to
scale and rotation transformations investigated. The proposed metric potentially has an impact on
a broad range of disciplines where volumetric simulation data arises. An interesting area for future
work is designing a metric specifically for turbulence simulations, first steps towards which were
taken with our case study. Additionally, investigating learning-based methods with features that are
by construction equivariant to rotation and scaling may lead to further improvements in the future.
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ETHICS STATEMENT

Since we target the fundamental problem of the similarity assessment of numerical simulations, we
do not see any direct negative ethical implications of our work. However, there could be indirect
negative effects since this work can act as a tool for more accurate and/or robust numerical simula-
tion methods in the future, for which a military relevance exists. A further indirect issue could be
explainability, e.g. when simulations in an engineering process yield unexpected inaccuracies.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we took the following steps: An extensive appendix
with details and hyperparameters regarding the implementation, data sets, and sequence creation is
provided below. Furthermore, the trained VolSiM model and source code to evaluate it are provided
alongside this submission.

The complete data and implementation of this work will be published upon acceptance. This in-
cludes the source code to create the data sets as well as the full data sets themselves, the source code
to recreate all figures, and the source code train the metric end-to-end and evaluate it.
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APPENDIX

In the following, additional details for the proposed VolSiM metric are provided: App. A contains
implementation details regarding the training and the metric model setup, and App. B features gen-
eration details for all our data sets. Next, additional examples of the created data sequences are
displayed in App. C, and the training stability for the loss experiment is investigated in App. D.
Details for the experimental setup of the ablation study models are given in App. E, and App. F con-
tains additional ablation studies. Finally, details regarding the turbulence case study can be found in
App. G.

A IMPLEMENTATION DETAILS

The training and evaluation process of the metric was implemented in PyTorch, while the data was
simulated and collected with specialized solvers and data interfaces as described in App B. The
data acquisition, training, and metric evaluation was performed on a server with an Intel i7-6850
(3.60Ghz) CPU and an NVIDIA GeForce GTX 1080 Ti GPU. It took about 38 hours of training to
fully optimize the final VolSiM model for the data sequences with a spatial resolution of 643.

In addition to the multiscale feature extractor network, the following operations were used for the
Siamese architecture of the metric: Each feature map is normalized via a mean and standard de-
viation normalization to a standard normal distribution. The mean and standard deviation of each
feature map is computed in a pre-processing step for the initialization of the network over all data
samples. Both values are fixed for training the metric afterwards. To compare both sets of fea-
ture maps in the latent space, a simple element-wise, squared difference is employed. To keep the
mathematical metric properties, this also requires a square root operation before the final distance
output. The spatial squared feature map differences are then aggregated along all dimensions into a
scalar distance output. Here, we used a single learned weight with dropout for every feature map,
to combine them to a weighted average per network layer. The activations of the average feature
maps are spatially combined with a simple mean, and summed over all network layers afterwards.
This process of normalizing, comparing, and aggregating the feature maps computed by the feature
extractor follows previous work (Kohl et al., 2020; Zhang et al., 2018).

The weights to adjust the influence of each feature map are initialized to 0.1, all other weights of the
multiscale feature extractor are initialized with the default PyTorch initialization. For the final loss,
the MSE term was weighted with λ1 = 1.0, while the correlation term was weighted with λ2 = 0.7.

B DATA SET DETAILS

In the following sections, the details underlying each data set are described. Tab. 3 contains a
summary of simulator, simulation setup, varied parameters, noise integration, and used fields for
the simulated and generated data sets. Tab. 4 features a summary of the collected data sets, with
repository details, jitter and cutout settings, and spatial and temporal ∆ values. Both tables also
contain the number of sequences created for training, validation, and testing for every data source.
These values only apply for the general metric setup, and changes for the ablation study models can
be found in App. E below.

B.1 ADVECTION-DIFFUSION AND BURGER’S EQUATION

In its simplest form, the transport of matter in a flow can be described by the two phenomena of
advection and diffusion. Advection describes the movement of a passive quantity inside a velocity
field over time, and diffusion describes the process of dissipation of this quantity due to the second
law of thermodynamics.

∂d

∂t
= ν∇2d− u · ∇d (7)

Eq. 7 is the simplified Advection-Diffusion equation with constant diffusivity and no sources or
sinks, where u denotes the velocity, d is a scalar passive quantity that is transported, and ν is the
diffusion coefficient or kinematic viscosity.
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Burger’s Equation in Eq. 8 is similar to the Advection-Diffusion equation, but it describes how the
velocity field itself changes over time with advection and diffusion. The diffusion term can also be
interpreted as a viscosity, that models the resistance of the material to deformations. Furthermore,
this variation can develop discontinuities (also called shock waves). Here, u also denotes the velocity
and ν the kinematic viscosity or diffusion coefficient.

∂u

∂t
= ν∇2u− u · ∇u (8)

To solve both PDEs, the differentiable fluid framework PhiFlow (Holl et al., 2020) was used. The
solver utilizes a Semi-Lagrangian advection scheme, and we chose periodic domain boundary condi-
tions to allow for the usage of a Fourier space diffusion solver. We introduced additional continuous
forcing to the simulations by adding a force term f to the velocity after every simulation step. Thus,
f depends on the time steps t, that is normalized by division of the simulation domain size be-
forehand. For Adv, Bur, and AdvD, we initialized the fields for velocity, density, and force with
multiple layered parameterized sine functions. This leads to a large range of patterns across multiple
scales and frequencies when varying the sine parameters.

ux(p) = sum
(
fx1 +

4∑
i=1

fxi+1 ∗ sin(2iπp + ci o
x
(i+1mod 2)+1)

)
where c = (1, 1, 0.4, 0.3)

(9)

fx(p, t) = sum
(
fx6 ∗ (1 + fx6 ∗ 20) ∗

4∑
i=1

fxi+1 ∗ sin(2iπp̃ + ci o
x
(imod 2)+1)

)
where p̃ = p + fx7 ∗ 0.5 + fx7 ∗ sin(3t) and c = (0, 1, 1, 0.7)

(10)

d(p) = sum
( {x,y,z}∑

i

sin(f id ∗ 24πpi + oid)
)

(11)

Eq. 9, 10, and 11 show the layered sine functions in ux(p), fx(p), and d(p) for a spatial grid position
p ∈ R3. The sum operation denotes a sum of all vector elements here, and all binary operations
on vectors and scalars use broadcasting of the scalar value to match the dimensions. Eq. 12 shows
the definition of the function parameters used above, all of which are randomly sampled based
on the simulation seed for more diverse simulations. Note that ν was multiplied by 0.1 for Bur.
The remaining velocity and force components uy(p), uz(p), fy(p), and fz(p) and corresponding
parameters are omitted for brevity here, since they follow the same initialization pattern as ux(p) and
fx(p). Tab. 3 shows the function parameters that were varied, by using the random initializations
and adjusting one of them in linear steps to create a sequence.

fx1 ∼ U(−0.2, 0.2)3

fx3 ∼ U(−0.15, 0.15)3

fx5 ∼ U(−0.1, 0.1)3

fx7 ∼ U(−0.1, 0.1)3

ox1 ∼ U(0, 100)3

fx,y,zd ∼ {1, 1

2
,

1

3
,

1

4
,

1

5
,

1

6
}3

fx2 ∼ U(−0.2, 0.2)3

fx4 ∼ U(−0.15, 0.15)3

fx6 ∼ U(0.0, 0.1)3

ν ∼ U(0.0002, 0.1002)

ox2 ∼ U(0, 100)3

ox,y,zd ∼ U(0, 100)3

(12)

The main difference between the Advection-Diffusion training data and the test set is the method of
noise integration: For Adv it is integrated into the simulation velocity, while for AdvD it is added
to the density field instead. The amount of noise added to the velocity for Bur and Adv and to the
density for AdvD was varied in isolation as well.
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B.2 NAVIER-STOKES EQUATIONS

The Navier-Stokes Equations fully describe the behavior of fluids like gases and liquids, via mod-
elling advection, viscosity, and pressure effects, as well as mass conservation. Pressure can be
interpreted as the force exerted by surrounding fluid mass at a given point, and the conservation of
mass means that the fluid resists compression.

∂u

∂t
+ (u · ∇)u = −∇P

ρ
+ ν∇2u+ g (13)

∇ · u = 0. (14)
Eq. 13 describes the conservation of momentum, and Eq. 14 describes mass conservation. Again,
u denotes the velocity, P is the pressure, ρ is the fluids density, ν is the kinematic viscosity, and g
denotes external forces like gravity.

Smoke To create the smoke data set Smo, the fluid framework MantaFlow that provides a grid-
based Eulerian smoke solver for the Navier-Stokes Equations was used. It is based on a Semi-
Lagrangian advection scheme and on the conjugate gradient method as a pressure solver. The sim-
ulation setup consists of a cylindrical smoke source at the bottom of the domain with a fixed noise
pattern initialization to create more diverse smoke plumes. Furthermore, a constant spherical force
field ff is positioned over the source. This setup allows for a variation of multiple simulation param-
eters, like the smoke buoyancy, the source position and different force field settings. They include
position, rotation, radius and strength. In addition, the amount of added noise to the velocity can
also be varied in isolation.

Liquid Both liquid data sets, Liq and LiqN, were created with a liquid solver in MantaFlow.
It utilizes the hybrid Eulerian-Lagrangian fluid implicit particle method (Zhu & Bridson, 2005),
that combines the advantages of particle and grid-based liquid simulations for reduced numerical
dissipation. The simulation setup consists of two liquid cuboids of different shapes, similar to the
common breaking dam setup. After 25 simulation time steps a liquid drop is added near the top of
the simulation domain, and it falls down on the water surface that is still moving. Here, the external
gravity force as well as the drops position and radius are varied to create similarity sequences. As
for the smoke data, a modification of the amount of noise added to the velocity was also employed
as a varied parameter. The main difference between the liquid training data and the test set is the
method of noise integration: For Liq it is integrated into the simulation velocity, while for LiqN it
is overlayed on the simulation background.

B.3 GENERATED DATA

To create the shape data set Sha and the wave data set Wav, a random number of straight paths are
created by randomly generating a start and end point inside the domain. It is ensured that both are
not too close to the boundaries and that the path has a sufficient length. The intermediary positions
for the sequence are a result of linearly interpolating on these paths. The positions on the path
determine the center for the generated objects that are added to a occupancy marker grid. For both
data sets, overlapping shapes and waves are combined additively, and variations with and without
overlayed noise to the marker grid were created.

Shapes For Sha, random shapes (box or sphere) are added to the positions, where the shape’s
size is a random fraction of the path length, with a minimum and maximum constraint. The created
shapes are then applied to the marker grid either with or without smoothed borders.

Waves For Wav, randomized volumetric damped cosine waves are added around the positions
instead. The marker grid value m at point p for a single wave around a center c is defined as

m(p) = cos(w ∗ p̃) ∗ e−(3.7p̃/r) where p̃ = ‖p− c‖2 . (15)

Here, r is the radius given by the randomized size that is computed as for Sha, and w ∼ U(0.1, 0.3)
is a randomized waviness value, that determines the frequency of the damped wave.

B.4 COLLECTED DATA

The collected data sets Iso, Cha, Mhd, and Tra are based on different subsets from the Johns
Hopkins Turbulence Database JHTDB (Perlman et al., 2007), that contain different types of data
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from direct numerical simulations (DNS). In these simulations, all spatial scales of turbulence up to
the dissipative regime are resolved. The data set SF is based on the ScalarFlow data (Eckert et al.,
2019), that contains dense 3D velocity fields of real buoyant smoke plumes, created via multi-view
reconstruction technique.

ScalarFlow Since 100 reconstructions of different smoke plumes are provided in ScalarFlow,
there is no need to add additional randomization to create multiple test sequences. Instead, we
directly use each reconstruction sequence to create one similarity sequence in equal temporal steps.
The only necessary pre-processing step is cutting off the bottom part of domain that contains the
smoke inflow, since it is frequently not fully reconstructed. Afterwards, the data is interpolated to
the full spatial size of 1283 to match the other data sets.

JHTDB The JHTDB subsets typically contain a single simulation with a very high spatial and
temporal resolution and a variety of fields. We focus on the velocity fields, since turbulent flow
data is especially complex and potentially benefits most from a better similarity assessment. We
can mainly rely on using temporal sequences, and only need to add spatial jitters in some cases to
increase the difficulty. As turbulence generally features structures of interest across all length scales,
we create sequences of different spatial scales for each subset. To achieve this, we randomly pick
a cutout scale factor s. If s = 1, we directly use the native spatial discretization provided by the
database. For s > 1 we stride the spatial query points of the normal cubical cutout by s after filtering
the data. For s < 1 the size of the cubical cutout is reduced by a factor of s in each dimension, and
the cutout is interpolated to the full spatial size of 1283 afterwards. Among other details, Tab. 4
shows the cutout scale factors, as well as the corresponding random weights.

C ADDITIONAL EXAMPLE SEQUENCES

Fig. 10, 11, and 12 show multiple full example sequences from all our data sets. In every sequence,
the leftmost image is the baseline field. Moving further to the right, the change of one initial param-
eter increases for simulated data sets, and the spatio-temporal position offset increases for generated
and collected data. To plot the sequences, the 3D data is projected along the z-axis to 2D via a simple
mean operation. This means, noise that was added to the data or the simulation is typically signifi-
cantly less obvious due to statistical averaging in the projection. Velocity data is directly mapped to
RGB color channels, and scalar data is shown via different shades of gray. Unless note otherwise,
the data is jointly normalized to [0, 1] for all channels at the same time, via the overall minimum and
maximum of the data field.

D TRAINING STABILITY FOR LOSS EXPERIMENT
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Figure 9: Loss curves from the loss function analysis in Fig. 6 for different models. Shown are the
raw losses per batch over all training iterations (lighter line), and an exponential weighted moving
average with α = 0.05 (darker line) for better visual clarity.

To further analyze the resulting stability of different variants of the loss investigated in Sec. 5, Fig. 9
shows training trajectories of multiple models. Displayed are the direct training loss over the training
iterations, i.e. one loss value per batch, and a smoothed version via an exponential weighted moving
average computed with α = 0.05, corresponding to a window size of 40. The models are color-
coded according to Fig. 6, and were trained with different batch sizes b, slicing values v, usage of
the running sample mean RM , and usage of the correlation aggregation AG. Note that the models
were generally trained with the same training seed, meaning the order of samples is should be very
similar across all runs (only with potential deviations due to race conditions and GPU processing). It
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can be observed that models trained with lower batch sizes generally achieve lower training losses,
leading to the better generalization on test and validation sets in Fig. 6. Using no AG makes the
training procedure less stable and occasionally large loss spikes occur, leading worse generalization
as a result.

E ABLATION STUDY DETAILS

In the following, details for the ablation study models in Sec. 6 are provided. The proposed VolSiM
metric uses the multiscale architecture MS described in Sec. 5 as a feature extractor. For all models,
the general training setup mentioned in App. A stays identical, apart from: 1) changes to the feature
extractor, 2) a different feature extractor, 3) the training amount, or 4) the training data.

Changes to MS Architecture For MSno skip the resolution skip connections (red dashed arrows in
Fig. 5) are entirely removed. This means each resolution is isolated, and sharing information across
features of different levels more difficult. For MS3 scales the last scale block is removed, meaning the
architecture from Fig. 5 ends with the 1/4 resolution level, while the 1/8 resolution level is omitted.
For the MS5 scales model, one additional scale block is added. In Fig. 5, this corresponds to a 1/16
resolution level with a 16× 16× 16 AvgPool and a scale block with 64 channels.

Simple CNN Feature Extractor The CNNtrained model employs an entirely different feature ex-
tractor network, similar to the classical AlexNet architecture (Krizhevsky et al., 2017). It consists of
5 layers, each with a 3D convolution followed by a ReLU activation. The kernel sizes (12 - 5 - 3 -
3 - 3) decrease along with the strides (4 - 1 - 1 - 1 - 1), while the number of features first increase,
then decreases again (32 - 96 - 192 - 128 - 128). To create some spatial reductions, two 4 × 4 × 4
MaxPools with stride 2 are included before the second and third convolution. The normalization
and aggregation of the resulting feature maps is performed as described in App. A, in the same way
as for the proposed feature extractor network. As a result, CNNtrained can also be applied in a fully
convolutional manner for the scaling invariance experiment in Fig. 7.

Random Models For the random models CNNrand and MSrand, the corresponding feature extractor
along with the aggregation weights are only initialized and not trained. However, to normalize every
feature to a standard normal distribution, the training data is processed once to determine the feature
mean and standard deviation before evaluating the models, as detailed in App. A.

Different Training Data For the MSadded Iso model, we created 400 additional sequences from
the JHTDB according to the Iso column in Tab. 4, that are added to the other training data. Note
that they utilize different random seeds than the 60 test sequences, so the Iso data set becomes an
additional validation set in Tab. 1. Similarly for the MSonly Iso model, 1000 sequences according
to the Iso column in Tab. 4 were collected. They replace all other training data from the original
model, meaning the Iso data set becomes a validation set, and Adv, Bur, Liq, and Smo become
further test sets in Tab. 1. For consistency, the All column in Tab. 1 still reports the combined
values of the original test sets for both cases.

F ADDITIONAL ABLATIONS

To further investigate our method, we perform three additional ablations in the following. The
first ablation focuses on the benefits of our entropy-based similarity model, by replacing it with a
simplified identity transformation. The other two replace the multiscale aspect in different ways, to
demonstrate the robustness and memory efficiency of the proposed architecture. Tab. 2 shows the
resulting SRCC values for these models and the corresponding baselines on our data sets, which are
computed as for Tab. 1.

Simplified Similarity Model We compare the VolSiM model as proposed in the main paper with
MSidentity that does not make use of the similarity model based on entropy during training. For that,
the logarithmic transformation of ws is replaced with an identity transformation, corresponding to
linear ground truth distances, i.e. g ← ws in Alg. 1. The results in the first block in Tab. 2 indicate
the benefits of the entropy-based ground truth, with improvements across most data sets. Note that
the simplified network version is slightly more efficient as the computation of the parameter c in
Alg. 1 can be omitted. However, pre-computing these values for all sequences is computationally
very light compared to training the full metric network.

18



Under review as a conference paper at ICLR 2022

Singlescale Model To investigate the multiscale aspect of our architecture, we removed all scale
blocks at lower resolutions, such that only the component at the native input resolution remains (see
Fig. 5). To compensate for the lower number of network parameters, we scale the number channels
in each layer by a factor of 11, leading to the rather shallow but wide network MS1 scale with around
360k weights. The original network structure MS4 scales with the four scale blocks reconstructs the
ground truth more accurate for almost all data sets as displayed in the middle block of Tab. 2.
Furthermore, the proposed structure requires about five times less memory during training.

No Pooling Layers A different approach to analyze the multiscale aspect, is to eliminate all Avg-
Pool layers and set all convolution strides to 1 (also see Fig.5). Here, no further adjustments to the
network are required as neither pooling layers nor strides alter the number of network weights. The
resulting MSno pool model is only slightly worse compared to the baseline, as indicated by bottom
block in Tab. 2. However, the MSwith pool model needs about ten times less memory compared to the
adjust variant during training due to the significantly smaller feature sizes.

Note that for both ablations on the multiscale structure, the training and test data resolution was
reduced to 323. Furthermore, the number of channels in each layer for the MSwith pool and MSno pool
models was reduced by a factor of 0.5. Both choices are motivated by memory limitations and are
the reason for the slightly different results across the three baseline models in Tab. 2.

Table 2: Performance comparison of further ablation study models via the SRCC. Shown are a
model trained with ground truth distances where the proposed logarithmic similarity model was re-
placed with an identity transformation (top block), and two models without a multiscale architecture
(middle and bottom block). The upper row in each block is the corresponding baseline.

Validation data sets Test data sets

Metric Adv Bur Liq Smo AdvD LiqN Sha Wav Iso Cha Mhd Tra SF All

VolSiM 0.75 0.73 0.66 0.77 0.84 0.88 0.95 0.96 0.77 0.86 0.81 0.88 0.95 0.85
MSidentity 0.75 0.71 0.68 0.73 0.83 0.85 0.87 0.96 0.74 0.87 0.77 0.87 0.94 0.82

MS4 scales 0.74 0.74 0.86 0.77 0.82 0.83 0.93 0.97 0.77 0.88 0.82 0.89 0.95 0.84
MS1 scale 0.73 0.71 0.78 0.75 0.83 0.76 0.91 0.96 0.73 0.87 0.78 0.88 0.94 0.82

MSwith pool 0.70 0.70 0.76 0.72 0.82 0.79 0.94 0.96 0.76 0.83 0.79 0.88 0.97 0.83
MSno pool 0.73 0.70 0.72 0.71 0.83 0.77 0.94 0.95 0.76 0.87 0.78 0.86 0.90 0.82

G TURBULENCE CASE STUDY DETAILS

For the case study in Sec. 6, the velocity field from the isotropic1024coarse data set from the JHTDB
(Perlman et al., 2007) is utilized. Instead of creating adjusted sequences according to the similarity
model, the data is directly converted to three sequences of different time spans without any random-
ization in this case. A spatial stride of 8 is employed is employed for all cases, and to reduce memory
consumption an additional temporal stride of 20 is used for the long time span only. The resulting
sequences exhibit a spatial resolution of 1283, with 40 frames for the short span, 400 frames for
medium span, and 200 frames for the long span. Before further processing, each frame is individu-
ally normalized to [−1, 1]. To create the results in Fig. 8, the first simulation frame t1 is compared
to all following simulation frames ti via Pearson’s distance 1−PCC(t1, ti) (red dashed trajectory)
and VolSiM(t1, ti) (blue solid trajectory). Note that VolSiM is applied fully convolutionally here, as
it was trained on 643 data. For both cases, the resulting distances are normalized to [0, 1] to visually
compare them more easily. The gray dotted curve, is the direct application of the proposed similar-
ity model via Alg. 1 by fitting c for each time span, as described in Sec. 3. The examples from the
sequences are visualized as described in App. C, while a projecting along the x-axis here.
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Table 3: Data set detail summary for the simulated and generated data sets.
Adv Bur Liq Smo AdvD LiqN Sha Wav

Sequences
train–val–test 398–57–0 408–51–0 405–45–0 432–48–0 0–0–57 0–0–30 0–0–60 0–0–60

Equation Eq. 7 Eq. 8 Eq. 13, 14 Eq. 13, 14 Eq. 7 Eq. 13, 14 — —

Simulator PhiFlow d PhiFlow d MantaFl. e MantaFl. e PhiFlow d MantaFl. e MantaFl. e MantaFl. e

Simulation
setup

layered
sines

layered
sines

breaking
dam +
drop

rising
plume

with force
field

layered
sines

breaking
dam +
drop

random
shapes

random
damped
waves

Time steps 120 120 80 120 120 80 — —

Varied aspects

f1, f2,
f3, f4,
f5, f7,
o1, o2,
od,
noise

f1, f2,
f3, f4,
f5, f7,
o1, o2,
noise

dropx
dropy
dropz
droprad

gravx
gravy
gravz
noise

buoyx
buoyy
ffrot x

ffrot z

ffstr x

ffstr z

ffpos x

ffpos y

ffrad

sourcex
sourcey
noise

f1, f2,
f3, f4,
f5, f7,
o1, o2,
od,
noise

dropx
dropy
dropz
droprad

gravx
gravy
gravz
noise

shape
position

wave
position

Noise
integration

added to
velocity

added to
velocity

added to
velocity

added to
velocity

added to
density

overlay on
non-liquid

overlay on
marker

overlay on
marker

Used fields density velocity
velocity

flags
levelset

density
pressure
velocity

density velocity marker marker

d PhiFlow from Holl et al. (2020) e MantaFlow: http://mantaflow.com/

Table 4: Data set detail summary for collected data sets.
Iso Cha Mhd Tra SF

Sequences
train–val–test 0–0–60 0–0–60 0–0–60 0–0–60 0–0–100

Repository
JHTDB –
isotropic

1024coarse f

JHTDB –
channel f

JHTDB –
mhd1024 f

JHTDB –
transition bl f ScalarFlow g

Repository size h

s× t× x× y× z

1× 5028×
1024×

1024× 1024

1× 4000×
2048×

512× 1536

1× 1024×
1024×

1024× 1024

1× 4701×
10240×

1536× 2048

100× 150×
100× 178×

100 i

Temporal offset ∆t 180 37 95 25 13

Spatial offset
∆x,y,z

0 0 0 0 0

Spatial jitter 0 0 25 0 0

Cutout scales
0.25, 0.5,
0.75, 1,
2, 3, 4

0.25, 0.5,
0.75, 1,
2, 3, 4

0.25, 0.5,
0.75, 1,
2, 3, 4

0.25, 0.5,
0.75, 1, 2

1

Cutout scale
random weights

0.14, 0.14,
0.14, 0.16,
0.14, 0.14,

0.14

0.14, 0.14,
0.14, 0.16,
0.14, 0.14,

0.14

0.14, 0.14,
0.14, 0.16,
0.14, 0.14,

0.14

0.14, 0.14,
0.14, 0.30,

0.28
1

Used fields velocity velocity velocity velocity velocity

f JHTDB from Perlman et al. (2007) g ScalarFlow from Eckert et al. (2019)
h simulations s× time steps t× spatial dimensions x, y, z i cut to 100× 150× 100× 160× 100 (removing
18 bottom values from y), since the smoke inflow at the bottom is not fully reconstructed
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Adv: Advection-Diffusion (2×density)

Bur: Burger’s Equation (2×velocity)

Smo: Smoke (velocity, density, and pressure)

Liq: Liquid (velocity, leveset, and flags)

Figure 10: Example sequences of simulated training data, where each row features a full sequence
from a different random seed.
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AdvD: Advection-Diffusion with density noise (2×density)

LiqN: Liquid with background noise (2×velocity)

SF: ScalarFlow (2×velocity)

Sha: Shapes (2×marker, without and with noise)

Wav: Waves (2×marker, without and with noise)

Figure 11: Example sequences of simulated (top two data sets), collected (middle data set), and
generated (bottom two data sets) test data. Each row contains a full sequence from a different
random seed.
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Iso: Isotropic turbulence (3×velocity)

Cha: Channel flow (3×velocity)

Mhd: Magneto-hydrodynamic turbulence (3×velocity)

Tra: Transitional boundary layer (3×velocity)

Figure 12: Example sequences of collected test data from JHTDB, where each row shows a full
sequence from a different random seed. Notice the smaller cutout scale factor s for the middle
example in each case. The predominant x-component in Cha and is separately normalized for a
more clear visualization.
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