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Abstract

Large Language Models (LLMs) have grown001
increasingly expensive to deploy, driving the002
need for effective model compression tech-003
niques. While block pruning offers a straight-004
forward approach to reducing model size,005
existing methods often struggle to maintain006
performance or require substantial computa-007
tional resources for recovery. We present It-008
eRABRe, a simple yet effective iterative prun-009
ing method that achieves superior compres-010
sion results while requiring minimal compu-011
tational resources. Using only 2.5M tokens012
for recovery, our method outperforms baseline013
approaches by 3% on average when compress-014
ing the Llama3.1-8B and Qwen2.5-7B models.015
IteRABRe demonstrates particular strength in016
the preservation of linguistic capabilities, show-017
ing an improvement 5% over the baselines in018
language-related tasks. Our analysis reveals019
distinct pruning characteristics between these020
models, while also demonstrating preservation021
of multilingual capabilities.022

1 Introduction023

We are in the era of the burgeoning of producing024

Large Language Models (LLMs), which has led025

to the necessity of making them smaller due to de-026

ployment costs. Several approaches focus on model027

reduction, such as model sparsification, reducing028

LLM hidden sizes, or removing presumably unim-029

portant blocks. However, preserving performance030

while compressing models remains challenging.031

Block pruning is a straightforward compression032

approach for reducing LLM size, motivated by the033

layer redundancy found in LLM architectures (Men034

et al., 2024; Dumitru et al., 2024; Chen et al.,035

2025). While detecting redundant or unimpor-036

tant blocks can minimize performance degradation037

from pruning, some loss is inevitable. Although038

post-finetuning can help recover performance, si-039

multaneous pruning of multiple blocks may still040

cause unrecoverable damage.041

Figure 1: Overall methodology of IteRABRe. It consists
of pruning and recovery phase that are done iteratively
until the desired compression rate or minimum number
of layer achieved.

One possible solution is to take an iterative ap- 042

proach. Muralidharan et al., 2024 proposes itera- 043

tive pruning with knowledge distillation to recover 044

from performance loss. This work successfully 045

compresses a 15B LLM into smaller 8B and 4B 046

versions, achieving competitive results compared 047

to other LLMs of similar size. However, this ap- 048

proach may be impractical for those with limited 049

computational resources, as it employs a compute- 050

dependent method in the pruning process and re- 051

quires 8T tokens for the recovery process. 052

This leads us to ask: Can we develop an exhus- 053

tive, efficient and effective iterative block pruning 054

method for model compression? We investigate 055

this question by introducing IteRABRe, a straight- 056

forward iterative pruning approach. We choose 057

layer pruning for its simplicity and enhanced in- 058

terpretability in preservation. To test efficiency, 059

we perform recovery using only 2.5M tokens of 060

data. Our method outperforms other baselines by 061

approximately 3% on average for Llama3.1-8B and 062

Qwen2.5-7B models. Furthermore, our approach 063

shows particular strength in preserving linguistic 064

tasks, demonstrating 5% better performance than 065
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baselines. Additionally, this approach also exhibits066

zero-shot cross-lingual capabilities, such as retain-067

ing the German language using solely English data068

recovery. Our key contributions are:069

1. We introduce IteRABRe, a simple and effi-070

cient iterative pruning approach with recov-071

ery.072

2. We provide detailed analysis of performance073

degradation, including recovery phase impact074

and patterns in layer index drop sequences,075

probing different behavior exhibited in each076

model family.077

3. We present granular analysis of IteRABRe’s078

impact on knowledge, linguistic, and multilin-079

gual zero-shot capabilities.080

2 Background: Structured Prunning081

The increasing scale of Large Language Models082

(LLMs) has driven efforts to reduce their compu-083

tational and memory footprint for deployment. A084

prominent approach is structured pruning (Wang085

et al., 2020), where some components (e.g., layers,086

attention heads) are removed from a large model087

ML to derive a smaller model MS . However, prun-088

ing often causes performance degradation, making089

a careful selection of components and recovery090

strategies after pruning necessary (Sun et al., 2024;091

Yin et al., 2024; Ma et al., 2023). The following092

are the explanations of these phases:093

Pruning Phase Formally, let ML consist of N094

transformer component blocks {B1, B2, ..., BN}.095

Pruning involves ranking blocks by importance and096

retaining the top-k blocks (k < N ) to form MS .097

The importance of a block Bi is determined by a098

scoring function f(Bi), which can be defined as:099

f(Bi) = Importance(Bi;Deval)100

Here, Deval is a validation dataset (calibration101

dataset) used to compute metrics to determine the102

blocks’ importance. Blocks are then sorted by103

f(Bi), and the least important N − k are pruned104

or dropped:105

MS = Prune(ML, k)106

Recovery Phase To alleviate performance degra-107

dation due to pruning, this phase fine-tunes MS108

on a recovery dataset Dr on the respective tasks,109

such as Causal Language Modeling. The recovery110

process is useful to adapt to its new structure and 111

reallocate its internal knowledge to its remaining 112

capacity. 113

The recovery process optimizes: 114

θ∗S = argmin
θS

L(MS(θS ;Dr), y) 115

where θS , y denotes the parameters of MS and 116

ground truth, respectively.1 117

3 Proposed Method: IteRABRe 118

We introduce IteRABRe, an iterative compression 119

framework for large language models that alter- 120

nates between pruning and recovery phases until a 121

target model size, which is the number of layers, is 122

reached. This process continues until the desired 123

number of layers in Ms. Although iterative com- 124

pression has been explored previously (Muralid- 125

haran et al., 2024), our approach makes two key 126

distinctions: (1) a direct layerwise pruning strategy 127

and (2) an efficient recovery process that achieves 128

competitive performance with significantly reduced 129

data requirements. The method introduced in Mu- 130

ralidharan et al., 2024 may achieve better results 131

through extensive compute and data resources, 132

however our approach demonstrates competitive 133

performance to other baselines with substantially 134

lower resource requirements. Our approach is illus- 135

trated in Figure 1. 136

The following subsections elaborate on the re- 137

spective phases in IteRABRe defined in §2. 138

3.1 IteRABRe’s Pruning Phase 139

We define Bi as transformer blocks, where each 140

block consists of self-attention and feed-forward 141

components. To minimize performance degrada- 142

tion during pruning, we evaluate the importance of 143

each layer Bi by measuring its contribution to the 144

model’s output quality. 145

Specifically, we compute the cosine similarity 146

between the last hidden state of the original model 147

ML and the last hidden state of the candidate 148

pruned models M
(i)
cs , where M

(i)
cs is obtained by 149

removing one layer of self-attention from ML. The 150

importance score f(Bi) for a block Bi is defined 151

as: 152

f(Bi) =
1

|Deval|

|Deval|∑
d=1

sim
(
h(ML)d, h(M

(i)
cs )d

)
153

1These variables declared in this section will be used
throughout this paper.
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where h(ML)d is the last hidden state of the orig-154

inal model ML with N layers for the d-th input155

sequence in Deval, h(M
(i)
cs )d is the last hidden state156

of the pruned model M (i)
cs with N−1 layers for the157

same input sequence. sim(·, ·) denotes the cosine158

similarity function. After computing f(Bi) for all159

blocks, we sort the blocks by their similarity scores.160

The lowest similarity block will be selected for re-161

moval, as it indicates the least impact on model162

performance. This process yields our final pruned163

model Mcs with the selected blocks removed. Mcs,164

then will be processed in the Recovery Phase.165

For better clarity in the following sections, we166

also denote M
[j]
cs as the final pruned model chosen167

in iteration j.168

3.2 IteRABRe’s Recovery Phase169

To further preserve the degradation quality of the
model, we employ knowledge distillation, where
we put the original model, ML as the teacher T
and the pruned model from the previous phase in
the same iteration j as its student M [j]

cs , which we
denote here as S. We follow the TinyBERT de-
sign (Jiao et al., 2020), where we compute the mean
square error (MSE) between all hidden states, at-
tention, and output logits. We use MSE for the
output logits as it shows better performance than
KL Divergence (Kim et al., 2021). Formally, it is
defined as follows:

LKD =

L∑
l=1

(
MSE(Hmap(l)

T ,Hl
S)+

MSE(Amap(l)
T ,Al

S)
)
+

MSE(zT , zS)

Here, Hmap(l)
T and Hl

S represent the hidden states170

in layers l and map(l) for the teacher and student171

models, respectively, while A
map(l)
T and Al

S de-172

note their corresponding attention matrices. The173

output logits of the teacher and student models are174

represented by zT and zS , respectively. map(l)175

is defined as the mapping of a student’s layer to176

the teacher’s layer which aligns the student’s layer177

index l with the corresponding original index in the178

teacher model 2.179

After this phase, we produce a recovered pruned180

model M [j]
cs−rec as the final chosen in iteration j.181

M
[j]
cs−rec is then processed to the next iteration j+1182

2See Appendix E for more explanation

4 Experimental Setup 183

To test our proposed algorithm and analyze it, we 184

use the following setups: 185

Evaluation To have a better assessment of our 186

approach, we categorize the benchmark dataset into 187

three categories, reasoning, language comprehen- 188

sion, and knowledge. For reasoning, we leverage 189

arc-challenge and arc-easy dataset (Clark 190

et al., 2018), hellaswag (Zellers et al., 2019), 191

COPA (Roemmele et al., 2011), PIQA (Bisk et al., 192

2020). For language comprehension, we test our 193

data on BLiMP (Warstadt et al., 2020), RACE (Lai 194

et al., 2017), and Winogrande (Sakaguchi et al., 195

2021). As for the knowledge category, we use 196

BoolQ (Clark et al., 2019) and MMLU (Hendrycks 197

et al., 2021). To evaluate our model, we use off- 198

the-shelf lm-eval-harness (Gao et al., 2024) li- 199

brary. We use the context length of 1024 and 200

employ the zero-shot setting to obtain the score. 201

To measure the performance, we use test set of 202

wikitext-2-raw-v1 to measure perplexity and 203

use accuracy for the rest. 204

Models We used two widely used LLM 205

families, Qwen2.5 (Yang et al., 2024a) and 206

Llama3 (Grattafiori et al., 2024). To observe the 207

impact of model size, we use 8B, 3B, and 1B from 208

Llama3 and 7B and 0.5B for Qwen2.5. 209

Pruning Phase For the pruning phase, we use 10 210

instances as the calibration dataset, sampled from 211

the wikitext-2-raw-v1 dataset on Hugging Face, 212

following Yang et al. (2024). The sampled Wiki- 213

text data is provided in Appendix A. As demon- 214

strated by Yang et al. (2024b), using different sam- 215

ples does not significantly affect the results. 216

Recovery Phase We employ Knowledge Distil- 217

lation (Hinton et al., 2015) following the Tiny- 218

BERT approach (Jiao et al., 2020). To accommo- 219

date our computational constraints, we implement 220

LoRA (Hu et al., 2021) with a rank of 32. Our 221

training configuration includes a batch size of 4 222

with gradient accumulation of 8 (effective batch 223

size of 32), learning rate of 1 × 10−4, and max- 224

imum sequence length of 512. For efficient re- 225

covery training, we conduct a single epoch on the 226

Wikitext-2-raw-v1 dataset, comprising approxi- 227

mately 2.5M tokens. The training was performed 228

on 2 × A100 GPUs. 229

Baseline To evaluate IteRABRe, we compare 230

it with two baseline layer pruning methods: 231

3



Model Approach #L Wiki↓ Reasoning Language Comprehension Knowledge

ARC-C ARC-E HellaSwag COPA PIQA BLiMP RACE Winogrande BoolQ MMLU

Llama3.1 8B

Not Pruned 32 8.65 51.28 81.48 60.03 87.0 80.14 81.93 39.14 73.56 82.08 63.59
LaCO 24 23.55 30.29 63.01 43.22 81.0 71.76 79.34 30.91 55.72 61.99 23.96
ShortGPT 24 6636.72 27.47 42.68 28.28 63.0 60.55 66.84 25.07 53.91 37.58 32.21
IteRABRe 24 16.89 33.02 67.85 47.49 80.0 74.27 84.10 35.69 60.93 62.26 23.80

Llama3.2 3B

Not Pruned 28 11.06 42.24 74.54 55.27 86.0 76.61 82.15 40.19 69.77 73.24 54.38
LaCO 24* 25.55 26.96 56.65 42.54 80.0 71.76 80.15 32.63 55.72 60.03 24.47
ShortGPT 21 235.23 30.89 49.71 37.34 71.0 64.15 72.53 30.53 61.88 45.02 34.38
IteRABRe 21 26.92 30.12 58.84 41.53 76.0 70.08 80.60 32.44 58.33 62.17 26.15

Llama3.2 1B

Not Pruned 16 13.91 31.31 65.40 47.78 77.0 74.48 82.44 37.89 60.77 63.98 37.54
LaCO 12 80.16 19.28 40.15 29.77 56.0 61.10 72.93 26.03 51.38 37.83 23.05
ShortGPT 12 846.24 25.51 34.89 31.51 70.0 59.03 74.20 24.88 54.14 55.96 22.70
IteRABRe 12 31.85 23.89 51.14 33.39 66.0 65.61 82.71 28.04 51.22 62.14 23.00

Qwen2.5-7B

Not Pruned 28 10.35 47.78 80.39 60.03 91.0 78.67 82.24 41.63 72.93 84.65 71.91
LaCO 22* 48.38 29.52 50.80 39.32 71.0 67.14 75.60 27.18 55.88 47.19 31.83
ShortGPT 21 18.57 33.79 70.88 44.32 76.0 74.27 81.93 33.01 53.51 45.84 26.52
IteRABRe 21 16.40 35.58 71.13 45.59 77.0 74.32 83.48 36.08 57.70 53.73 30.94

Qwen2.5-0.5B

Not Pruned 24 21.68 29.52 64.56 40.64 74.0 70.29 81.73 35.02 56.35 62.42 47.73
LaCO 18 230.05 24.06 45.79 30.95 60.0 62.51 71.20 26.41 51.22 54.13 25.54
ShortGPT 18 45.86 21.42 52.15 32.39 62.0 65.18 77.94 28.80 49.33 58.96 25.17
IteRABRe 18 38.17 23.89 54.71 32.41 68.0 65.40 78.61 27.27 50.75 47.16 23.32

Table 1: Performance comparison across model scales and tasks, showing perplexity (Wiki↓, where lower is
better) and accuracy scores (%). Bold indicates the best performance among other approaches (LaCO, ShortGPT,
IteRABRe) for each metric. *: Due to the dependency on hyperparameter in LaCO, some of its results may have
incomparable compression with others. #L denotes number of layers.

LaCO (Yang et al., 2024b) and ShortGPT (Men232

et al., 2024). While our approach adopts LaCO’s233

layer importance assessment methodology, Short-234

GPT employs Block Influence (BI). Our method235

extends these approaches by incorporating recovery236

and iterative pruning. We target a compression rate237

of approximately 25%, following previous works.238

For ShortGPT, we implemented the method our-239

selves to obtain results, while for LaCO, we uti-240

lized their publicly available code. Since LaCO’s241

compression rate varies with hyperparameters, we242

conducted a grid search and selected the model243

with the closest compression rate and highest per-244

plexity score on wikitext-v2-raw-v1.245

5 Results246

IteRABRe Outperforms Other Baselines Over-247

all Table 1 presents the experimental results. It-248

eRABRe outperforms other methods (LaCO and249

ShortGPT) across all model scales. Specifically,250

IteRABRe maintains a lower perplexity on Wiki-251

text compared to the baselines, avoiding the sharp252

increases observed with ShortGPT on Llama3.1-253

8B (6636.72) and LaCO on Qwen2.5-7B (48.38).254

IteRABRe also achieves the highest performance255

in the reasoning domain for the 7B and 8B models.256

However, for smaller models (0.5B, 1B, and 3B),257

IteRABRe exhibits a small performance gap com- 258

pared to the baselines on arc-challenge, likely 259

because this task’s reliance on multi-hop reasoning 260

demands greater model capacity. 261

In the language category, IteRABRe maintains 262

performance better than the other methods, partic- 263

ularly on BLIMP, where the large models (7B and 264

8B) even outperform their non-pruned counterparts. 265

We attribute this to the recovery phase, where train- 266

ing on wikitext helps preserve linguistic capabil- 267

ities. On the other hand, RACE and Winogrande 268

show moderate performance gaps (2-5%) across all 269

model sizes. These results suggest that our method 270

offers particular advantages for language compre- 271

hension in large models. 272

In the knowledge domain, IteRABRe achieves 273

strong BoolQ performance, with the exception of 274

Qwen2.5-0.5B. The improved accuracy for this 275

model is likely due to the use of wikitext as a 276

recovery training dataset. However, MMLU results 277

lag behind the other methods, by approximately 9% 278

compared to the highest performer on Llama3.1-8B 279

and Llama3.2-3B, and by 1-2% on the other mod- 280

els. This difference may be due to the fact that our 281

approach does not preserve or recover information 282

crucial for maintaining MMLU performance. 283
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Figure 2: IteRABRe’s performance on six different subtasks. dotted line denoted implementing IteRABRe without
recovery phase while solid line denoted layer prunning and recovery phase are done in IteRABRe

IteRABRe’s recovery phase boosts performance,284

notably for larger models on reasoning and lan-285

guage tasks. We investigated the impact of each286

phase of IteRABRe. The results are shown in Fig-287

ure 2. In summary, the iterative recovery phase288

helps preserve performance on reasoning and lan-289

guage tasks, particularly in later iterations. For290

example, with Llama3.1-8B, the performance dif-291

ference between the first and third iterations is ap-292

proximately 1-3%, while it widens to 5-10% be-293

tween the fourth and sixth iterations. This pattern294

is also observed on Winogrande. For BLIMP, the295

performance gap similarly increases in later itera-296

tions (6th-10th). QWEN exhibits the same trend,297

albeit with smaller gaps.298

For knowledge tasks, MMLU shows a clear per-299

formance difference in both the 7B and 8B mod-300

els. However, BoolQ exhibits an irregular trend301

with Qwen2.5-7B, with fluctuating performance302

(sometimes higher, sometimes lower) and ~1% dif-303

ferences in the Llama3 model. This behavior is304

also observed in smaller models (0.5B and 3B) for305

both tasks. Overall, the recovery phase provides306

a considerable performance improvement, except307

in the knowledge domain, especially for smaller308

models.309

Iterative pruning generally outperforms direct 310

pruning on most tasks, but its effectiveness 311

varies on some tasks on each model. To eval- 312

uate the effectiveness of the iterative process, we 313

compared iterative pruning with direct pruning with 314

recovery. Direct pruning involves consecutively 315

pruning all layers until the desired compression 316

level is reached before the recovery phase, rather 317

than iteratively pruning and recovering. 318

Table 2 shows that iterative pruning generally 319

preserves performance better than direct prun- 320

ing on most language and reasoning tasks, such 321

as arc-easy and blimp, while also maintaining 322

wikitext perplexity even with increased layer 323

dropping. However, winogrande and mmlu do not 324

benefit from iterative pruning, showing comparable 325

or slightly reduced performance. arc-challenge 326

and race show comparable performance between 327

the two methods. We hypothesize that our exper- 328

imental setup, specifically training on wikitext, 329

may lead to fitting on narrow knowledge, which is 330

less suitable for these particular tasks. Furthermore, 331

boolq exhibits different behavior between Llama 332

and Qwen, likely due to their distinct pre-training 333

configurations. This suggests that the effectiveness 334

of IteRABRe varies across tasks. 335
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Approach #Dropped Layers Wiki BOOLQ ARC-E COPA BLiMP H-SWAG PIQA ARC-C RACE WG MMLU Approach Avg Diff

Llama 3.1-8B

Direct+R 4 12.22 65.05 76.60 87.00 82.98 54.69 77.04 44.54 39.23 71.03 43.31
0.15Iterative+R 4 12.12 63.33 78.28 85.00 82.30 55.18 77.15 45.56 39.14 70.48 46.53

Diff 0.10 -1.72 1.68 -2.00 -0.68 0.49 0.11 1.02 -0.09 -0.55 3.22

Direct+R 8 20.64 51.52 66.37 79.00 81.85 46.49 72.31 33.53 35.79 66.30 37.52
-0.10Iterative+R 8 16.89 62.26 67.85 80.00 84.10 47.49 74.27 33.02 35.69 60.93 23.80

Diff 3.75 11.01 1.48 1.00 2.25 1.00 1.96 -0.51 -0.10 -5.37 -13.72

Direct+R 12 35.74 38.13 55.43 70.00 81.32 39.32 67.79 27.73 32.92 57.06 24.67
2.61Iterative+R 12 31.63 62.17 58.04 75.00 82.29 38.56 67.36 27.22 32.06 54.78 22.96

Diff 4.11 24.04 2.61 5.00 0.97 -0.76 -0.44 -0.51 -0.86 -2.29 -1.71

QWEN2.5-7B

Direct+R 4 12.99 54.95 76.01 83.00 83.61 51.82 77.58 41.72 36.27 64.88 53.14
0.77Iterative+R 4 13.23 62.14 76.18 86.00 83.07 52.43 77.80 42.41 36.84 64.09 49.79

Diff -0.24 7.19 0.17 3.00 -0.54 0.61 0.22 0.68 0.57 -0.79 -3.35

Direct+R 8 18.96 48.20 67.89 78.00 83.34 42.43 72.47 32.08 32.73 54.70 26.17
1.12Iterative+R 8 18.79 60.00 68.14 75.00 83.16 42.43 73.23 30.29 33.88 55.88 27.15

Diff 0.17 11.80 0.25 -3.00 -0.18 0.00 0.76 -1.79 1.15 1.18 0.98

Direct+R 12 46.15 57.09 53.75 63.00 78.97 33.38 66.05 22.95 29.00 52.88 24.38
-0.20Iterative+R 12 35.22 42.69 57.15 66.00 81.47 35.50 66.05 24.66 28.71 53.04 24.18

Diff 10.93 -14.40 3.41 3.00 2.50 2.12 0.00 1.71 -0.29 0.16 -0.20

Tasks Avg Diff - 3.13 6.32 1.60 1.17 0.72 0.57 0.44 0.10 0.06 -1.28 -2.46 -

Table 2: The comparison between direct and iterative approach. Diff denote the difference between direct with
respect to iterative approach.

6 IteRABRe Preservation Analysis336

IteRABRe effectively preserves language and337

reasoning abilities across iterations, though338

knowledge retention presents a challenge. Fig-339

ure 3 shows the average performance trend across340

iterations for each task category. While Qwen2.5-341

7B exhibits a slight, steady decrease (averaging342

~1% per iteration) in reasoning and language task343

performance, Llama3.1-8B plateaus in language344

but shows a steady decline in reasoning. Both mod-345

els experience sharp performance drops in specific346

iterations (e.g., M [2]
cs for Llama and M [3]

cs for Qwen).347

This affirms IteRABRe’s effectiveness in preserv-348

ing language and reasoning abilities, though it sug-349

gests challenges in maintaining knowledge-based350

performance across iterations.351

The recovery phase generally improves perfor-352

mance, though its impact is task and model de-353

pendent. The recovery phase generally improves354

performance by approximately 1% for both models355

(Figure 3). However, its impact varies; for example,356

M
[5]
cs−rec on Llama3.1-8B shows a slight decrease357

in reasoning performance after recovery, while lan-358

guage task performance increases. This indicates359

that the recovery process’s effectiveness depends360

on the model family and the specific task.361

IteRABRe Preserves and May Improves Lin-362

guistic Capabilites We evaluated the preserva-363

tion of linguistic capacity across iterations using 364

BLIMP, a benchmark consisting of 67 fine-grained 365

linguistic problems. We tested on Llama-3.1-8B 366

and Qwen2.5-7B, categorizing the BLIMP subtasks 367

into 13 groups for clearer visualization (see Ap- 368

pendix B for the groupings). 369

Overall, both models maintain or even improve 370

scores across most categories in later iterations, 371

surpassing the performance of the non-compressed 372

models. Furthermore, IteRABRe with recovery 373

consistently outperforms the pruned model without 374

recovery, with the exception of the "binding the- 375

ory" category. In this category, we observe a slight 376

performance decay (~2%) starting from the seventh 377

iteration for Llama3.1-8B and the eighth iteration 378

for Qwen2.5-7B. The "coordinate structure" and 379

"wh-that" categories exhibit differing trends be- 380

tween these family models. Llama3.1-8B shows an 381

opposing trend at iteration 7 and beyond, with one 382

subcategory plateauing while the other increases in 383

performance. 384

MMLU performance is sensitive to pruning, 385

with recovery offering moderate gains across 386

MMLU task categories Figure 5 provides the 387

MMLU performance across MMLU groupings. 3 388

It shows that the pruning phase induces signifi- 389

cant performance drops in some cases, notably in 390

the early layer dropping of Llama3.1-8B (around 391

3using groupings defined in lm-eval-harness
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Figure 3: The average performance across pruning and recovery phase for 10 iterations on Llama 3.1-8B and
Qwen2.5-7B on an average aggregation of reasoning, language, and knowledge tasks.

10%) and from the third layer onward in Qwen2.5-392

7B. This suggests greater sensitivity of knowledge-393

based tasks to pruning. The subsequent recovery394

phase provides moderate improvements (about 2-395

3%) for both models. Interestingly, Llama3.1-8B396

at M2
cs−rec shows a moderate performance gain,397

sustained across the next four iterations. This sus-398

tained improvement is not exhibited in Qwen2.5-399

7B, which instead exhibits a steady performance400

decline. Performance trends across iterations are401

similar across MMLU categories within the same402

model, yet differ between models. These differ-403

ences highlight model-specific variations in knowl-404

edge retention, potentially due to the distinct pre-405

training strategies of Llama3.1-8B and Qwen2.5-406

7B.407

IteRABRe recovery improves multilingual per-408

formance, but the effect of improvement varies409

significantly across languages and tasks. Given410

that our recovery phase uses English data, and both411

models possess multilingual capabilities, we in-412

vestigated how much multilingual capacity is re-413

tained and whether IteRABRe induces zero-shot414

cross-lingual generalization during recovery. We415

evaluated our approach on three multilingual bench-416

marks: XWinograd, XStoryCloze, and XNLI.417

Table 3 compares the baseline models with It-418

eRABRe (without recovery). The results demon-419

strate that our recovery method improves perfor-420

mance by 5-6% on XWinograd across both mod-421

els, with 2-5% improvements on XStoryCloze and422

XNLI. These findings suggest effective generaliza-423

tion to multilingual data from English-based recov-424

ery.425

Figure 7 presents performance per language426

within each dataset. Both Llama3.1-8B and427

Qwen2.5-7B show similar patterns, though428

Model Approach L xW xSc xNLI

Llama3.1-8B Non-pruned 32 81.43 63.61 45.65

LaCO 24 67.39 52.05 37.78
S-GPT 24 56.37 48.80 34.25
Ours P 24 66.40 51.65 37.45
Ours P+R 24 71.68 55.53 39.77

Qwen2.5-7B Non-pruned 28 81.48 62.04 43.37

LaCO 22 64.71 51.66 36.49
S-GPT 21 66.33 55.28 37.32
Ours-P 21 65.54 53.48 36.99
Ours-P+R 21 72.26 55.76 39.46

Table 3: Performance Comparison in Multilingual Data.
XW denotes XWinograd and XSc denotes XStoryCloze.
Ours denotes IteRABRe, with R and P denotes running
it with recovery and pruning phases, respectively.

Llama3.1-8B exhibits larger performance gaps. For 429

Llama3.1-8B, English shows the strongest per- 430

formance preservation, with approximately 8% 431

improvements on XWinograd, XStoryCloze, and 432

XNLI compared to the non-recovery baseline. Other 433

languages show more modest gains, averaging 434

around 2% post-recovery. Notably, some languages 435

in Llama 3.1-8B’s XStoryCloze, particularly es 436

and id, show improvements comparable to en (6- 437

8%). In xnli, de and en, performances approach 438

those of the unpruned models. These findings align 439

with Choenni et al. (2023), suggesting varying 440

cross-lingual influence. Some languages, such as 441

hi and ur, show minimal preservation (less than 442

1% improvement). zh notably performs worse with 443

recovery compared to layer pruning alone. These 444

results indicate that while English-based recovery 445

can facilitate zero-shot cross-lingual generaliza- 446

tion, its effectiveness varies considerably across 447

languages and tasks. 448

More analysis can be seen in Appendix F 449
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Figure 4: Line charts showing BLIMP performance across 13 groupings for Llama-3.1-8B and Qwen-2.5-7B over
10 iterations. "+" markers indicate the recovery phase; all other markers represent the pruning phase.
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Figure 5: Line charts depicts MMLU groupings performance on Llama-3.1-8B and Qwen2.5-7B in 10 iterations.
"+" markers indicate the recovery phase; all other markers represent the pruning phase.

7 Related Works450

Model pruning has gained significant attention re-451

cently due to the emergence of Large Language452

Models (LLMs). One of the approaches is to453

do unit size reduction, where several approaches454

leverage dimensionality reduction techniques (Lin455

et al., 2024; Ashkboos et al., 2024) to compress456

weight matrices, thereby reducing hidden unit di-457

mensions. Various metrics have been explored to458

identify prunable weights, including Hessian in-459

formation (Frantar and Alistarh, 2023; Ling et al.,460

2024), Kronecker-factored curvature (van der Oud-461

eraa et al., 2024), and magnitude information (Sun462

et al., 2024; Guo et al., 2024). On the other hand,463

block pruning is done by employing some metrics,464

such as Hessian information (Ma et al., 2023), out-465

put similarity (Yang et al., 2024b; Men et al., 2024),466

and learnable parameters to determine block sig-467

nificance (Liu et al., 2024; Xia et al., 2024). Some468

approaches opt to merge blocks instead of remov-469

ing them (Yang et al., 2024b; Chen et al., 2024).470

Muralidharan et al., 2024 combines iterative prun-471

ing with Neural Architecture Search (Elsken et al.,472

2019), utilizing multiple metrics for model com-473

pression. Many of these techniques incorporate 474

recovery phase (Ling et al., 2024; Sun et al., 2024; 475

Yin et al., 2024; Ma et al., 2023; Muralidharan et al., 476

2024). In our work, we adopt an iterative approach 477

based on output similarity, followed by a recov- 478

ery process, prioritizing simplicity and minimal 479

computational requirements. 480

8 Conclusion 481

This work introduced IteRABRe, a simple yet ef- 482

fective iterative block pruning method designed for 483

simple and efficient LLM compression. IteRABRe 484

outperforms other baselines requiring only 2.5M 485

tokens. Furthermore, our analysis reveals distinct 486

pruning patterns on the observed tasks across dif- 487

ferent model architectures and also preserves the 488

multilingual capabilities, even with English-only 489

recovery data. 490

Limitations 491

We only observe the Qwen2.5 and Llama3 family 492

models. Additionally, we only observe Wikitext, to 493

perform the pruning phase (following Yang et al., 494

2024b) and recovery phase. We leave the possibil- 495

8



ity of using a variety of dataset sizes or sampling496

techniques for this technique for future work.497

Ethics Statement498

This work has no ethical issues, as we propose to499

perform a compression technique. The data used do500

not contain personally identifiable information or501

offensive content. The artifacts we utilize are con-502

sistent with intended use and adhere to the license503

usage (research purpose). We use AI Assistants504

(LLMs, Grammarly, and Writefull) to assist our505

writing in correcting grammatical errors.506
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A Calibration Dataset855

Here is the calibration dataset sampled from Wiki-856

text used to run the pruning phase. These are sam-857

pled uniformly.858

1. " = There ’s Got to Be a Way = "859

2. " Cullen is the namesake of the John Cullen860

Award , previously given to key IHL players."861

3. "Ancient Egyptian deities are the gods and862

goddesses worshipped in ancient Egypt"863

4. "Nationally important deities gave rise to local864

manifestations"865

5. "The first aerodrome in the UK was estab-866

lished by the Aero Club at Muswell Manor on867

the Isle of Sheppey"868

6. "Competitive gliding in the UK takes place869

between May and September"870

7. "Most aerodromes used for public transport871

operations are required to be licensed by the872

CAA"873

8. "Within this framework certain sectors of GA874

are governed on a devolved basis"875

9. "James Pollock , in his final report as Mint876

Director in 1873"877

10. "Stability of the ylide with higher stability878

similarly leading to greater reversibility."879

B Performance Trend for Each Iteration880

The fine-grained performance trend can be seen in881

Figure 6.882

C Blimp Categories 883

Blimp categories that we define can be seen in 884

Table 4,5,6,7. 885

D Granular Multilingual Results 886

The Granular multilingual across xwinograd, 887

xstorycloze, xnli analysis can be viewed in Fig- 888

ure 7 889

E Layer Mapping in Recovery Phase 890

To define the mapping function map(l) in itera- 891

tion j, we aim to align the student’s layer index l 892

with the corresponding original index in the teacher 893

model. However, if any layers in the teacher model 894

with indices lower than l were dropped before itera- 895

tion j, the mapping must account for these dropped 896

layers. Specifically, map(l) is adjusted by increas- 897

ing it by the number of dropped layers with indices 898

less than map(l). For example, if the dropped layer 899

indices are [3, 4] and l = 10, then map(10) = 12, 900

as the two dropped layers shift the mapping while 901

map(1) = 1. Formally, let D be the set of dropped 902

layer indices in the teacher model before iteration 903

j, sorted in ascending order. The function map(l) 904

maps the student’s layer index l to the teacher’s 905

original index m, where m is the unique solution 906

to the equation m = l + |{d ∈ D | d < m}|. 907

F More Analysis 908

IteRABRe exhibits task-specific layer sensitivi- 909

ties that vary between models. We investigated 910

which layer drops correlate with significant per- 911

formance declines, indicating layer importance. 912

Figure 8 shows performance differences across 913

tasks and categories for Qwen2.5-7B and Llama- 914

3.1-8B, revealing distinct drop patterns for each 915

model. Llama3.1-8B’s performance drops tend to 916

occur in the lower half of its layers, while Qwen’s 917

are concentrated in the upper half. Specifically, 918

Llama3.1-8B shows significant drops on arc-easy 919

and arc-challenge in iteration 1, 6, and 7, and 920

on winogrande in iteration 1, 6, and 8. MMLU 921

on Llama3.1-8B shows steep declines in iteration 922

10 and 11 during early iterations, followed by im- 923

provement and stagnation. Qwen2.5-7B exhibits 924

different trends, with notable (>5%) decreases on 925

MMLU in iteration 3, 4, 6, and 7. 926
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Group Tests
blimp_agreement

• blimp_regular_plural_subject_verb_agreement_1
• blimp_regular_plural_subject_verb_agreement_2
• blimp_irregular_plural_subject_verb_agreement_1
• blimp_irregular_plural_subject_verb_agreement_2
• blimp_determiner_noun_agreement_1
• blimp_determiner_noun_agreement_2
• blimp_determiner_noun_agreement_irregular_1
• blimp_determiner_noun_agreement_irregular_2
• blimp_determiner_noun_agreement_with_adj_2
• blimp_determiner_noun_agreement_with_adj_irregular_1
• blimp_determiner_noun_agreement_with_adj_irregular_2
• blimp_determiner_noun_agreement_with_adjective_1
• blimp_anaphor_gender_agreement
• blimp_anaphor_number_agreement

blimp_distractor_agreement

• blimp_distractor_agreement_relational_noun
• blimp_distractor_agreement_relative_clause

Table 4: BLiMP Agreement Tests

Group Tests
blimp_island_constraints

• blimp_wh_island
• blimp_complex_NP_island
• blimp_adjunct_island
• blimp_sentential_subject_island
• blimp_left_branch_island_echo_question
• blimp_left_branch_island_simple_question

blimp_movement_extraction

• blimp_wh_questions_object_gap
• blimp_wh_questions_subject_gap
• blimp_wh_questions_subject_gap_long_distance
• blimp_coordinate_structure_constraint_object_extraction
• blimp_existential_there_subject_raising
• blimp_existential_there_object_raising
• blimp_expletive_it_object_raising

blimp_wh_that

• blimp_wh_vs_that_no_gap
• blimp_wh_vs_that_no_gap_long_distance
• blimp_wh_vs_that_with_gap
• blimp_wh_vs_that_with_gap_long_distance

Table 5: BLiMP Syntax and Movement Tests
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Group Tests
blimp_passive_causative

• blimp_passive_1
• blimp_passive_2
• blimp_animate_subject_passive
• blimp_causative

blimp_transitivity

• blimp_transitive
• blimp_intransitive
• blimp_inchoative
• blimp_animate_subject_trans

blimp_irregular_forms

• blimp_irregular_past_participle_adjectives
• blimp_irregular_past_participle_verbs

Table 6: BLiMP Argument Structure and Form Tests

Group Tests
blimp_negation_npi

• blimp_npi_present_1
• blimp_npi_present_2
• blimp_only_npi_licensor_present
• blimp_only_npi_scope
• blimp_sentential_negation_npi_licensor_present
• blimp_sentential_negation_npi_scope
• blimp_matrix_question_npi_licensor_present

blimp_quantifiers

• blimp_superlative_quantifiers_1
• blimp_superlative_quantifiers_2
• blimp_existential_there_quantifiers_1
• blimp_existential_there_quantifiers_2

blimp_binding_theory

• blimp_principle_A_c_command
• blimp_principle_A_case_1
• blimp_principle_A_case_2
• blimp_principle_A_domain_1
• blimp_principle_A_domain_2
• blimp_principle_A_domain_3
• blimp_principle_A_reconstruction

blimp_ellipsis_argument

• blimp_ellipsis_n_bar_1
• blimp_ellipsis_n_bar_2
• blimp_drop_argument

blimp_coordinate_structures

• blimp_coordinate_structure_constraint_complex_left_branch

Table 7: BLiMP Specialized Construction Tests
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Figure 6: The performance across pruning and recovery phase for 10 iterations in Qwen2.5-7B and Llama3.1-8B.
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Figure 7: Granular multilingual performance (Accuracy) across XWinograd, XStoryCloze and XNLI on Qwen2.5-
7B. , , and denotes result of non-pruned model, IteRABRe with recovery phase, and IteRABRe without recovery
phase, respectively.
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Figure 8: The performance differences between before and after two phases done for each iteration (iter) in
IteRABRe on LLAMA 3-1-8B and Qwen 2.5-7B. idx denoted the index of the dropped layer (starts from 0).
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