
Medical Imaging with Deep Learning – nnn 2025 Short Paper – MIDL 2025

Physics-Informed Neural Network for Quantifying
Time-Encoded Arterial Spin Labeling: A Simulation Study

Alessandro Giupponi∗1 alessandro.giupponi@phd.unipd.it

Chiara Da Villa∗1 chiara.davilla@studenti.unipd.it

Mattia Veronese1,2 mattia.veronese@unipd.it

Marco Castellaro1 marco.castellaro@unipd.it

1 Department of Information Engineering, University of Padova, Padova, Italy
2 Neuroimaging Department, IoPPN, King’s College London, London, UK

Editors: Accepted for publication at MIDL 2025

Abstract

Arterial Spin Labeling (ASL) MRI enables non-invasive quantification of cerebral perfu-
sion. Hadamard time-encoding improves acquisition efficiency and allows the simultaneous
estimation of cerebral blood flow (CBF) and arterial transit time (ATT) via the Bux-
ton model. Physics-informed neural networks (PINNs) integrate physical laws into neural
networks, improving parameter estimation under noisy and sparse data conditions. We
propose a two-stage PINN framework trained on synthetic ASL data from the Boston ASL
Template and Simulator. Leveraging coupled neural networks and differential equation
constraints, our method produces smoother and more robust CBF and ATT maps com-
pared to regularized nonlinear least squares (NLLS), demonstrating its potential for clinical
ASL quantification. While this work focuses on simulation data, it represents a first step
toward extending such models to in vivo applications using a similar architecture.
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1. Introduction

Arterial Spin Labeling is a non-invasive MRI technique that quantifies cerebral perfusion
by magnetically labeling arterial blood water. Time-encoded pseudo-continuous ASL (te-
pCASL) through Hadamard-encoded sub-boluses increases signal efficiency and enables si-
multaneous estimation of cerebral blood flow and arterial transit time (Woods et al., 2024).
The Buxton model describes ASL signal dynamics and enables the extraction of physiolog-
ical parameters such as CBF and ATT (Buxton et al., 1998). Conventional methods like
nonlinear least squares are sensitive to noise and initialization, often producing unstable or
noisy parameter maps. Physics-informed neural networks have emerged as a more robust al-
ternative by embedding physical laws into deep learning, enabling both differential equation
solving and parameters estimation (Karniadakis et al., 2021). PINNs improve predictive
accuracy, particularly in scenarios with limited or noisy data, and increase generalization
and interpretability in scientific computing tasks. Medical applications span cardiovascular
modeling (Raissi et al., 2019), perfusion CT (de Vries et al., 2023), and ASL in infants
(Galazis et al., 2025). Here, we extend the PINN framework proposed by de Vries et al.
(2023) to te-pCASL using synthetic data from a Buxton-based simulator.
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2. Materials and Methods

Data Simulation. Synthetic te-pCASL signals were generated using the Boston ASL
Template and Simulator (Taso et al., 2022), which provides spatially varying ground-truth
maps for CBF, ATT, and equilibrium magnetization (M0). These maps were resampled
to match the in-plane resolution of real ASL datasets (3×3 mm2). To mimic real-world
conditions, Gaussian noise was added following established methodologies (Bladt et al.,
2020), using two plausible values of temporal signal-to-noise ratio (tSNR): 1.5 and 0.5.

PINN Architecture. Our model consists of two coupled Multi-Layer Perceptrons with
sinusoidal activation (SIREN), which were trained on a central slice of the simulated volume:

• A data-fitting network ftissue(t, x, y;ϕ) (7 layers, 256 units) receiving time and
spatial coordinates (x, y) to fit the ASL signal.

• A physics-based network fode(x, y; ξ) (4 layers, 128 units) predicting CBF and
ATT from spatial coordinates.

Training minimizes a hybrid loss combining the mean square error (MSE) between observed
and predicted signals and the MSE between the time derivatives of ftissue(t, x, y;ϕ) (via
automatic differentiation) and the Buxton model derivatives given the estimates of CBF
and ATT. To reflect the dependence of bolus duration on acquisition time in the absence
of an analytic expression, a fifth-order spline was used, and its derivative was incorporated
into the Buxton model derivative to better capture time-encoding dynamics. To ensure
training stability, convergence, and optimal performance, we selected loss weights of 1 and
0.5 respectively through a grid search. Optimization used Adam (learning rate: 10−4) over
30,000 epochs with batch size of 150. Only fode(x, y; ξ) is retained at inference to generate
CBF and ATT maps.

Baseline. To evaluate the proposed PINN, we compared it against a regularized NLLS
approach based on the Buxton model. This method estimates CBF and ATT voxel-wise
by minimizing the residuals between the observed ASL signal and the model, with a small
penalty on ATT deviations from its initial guess. Optimization was performed with soft-L1
loss and physiologically plausible bounds, using the Powell’s hybrid method. This serves
as a conventional yet robust benchmark to assess the accuracy and spatial consistency of
PINN predictions.

Evaluation. Performance was measured using the Structural Similarity Index (SSIM),
Pearson Correlation Coefficient (PCC), and Percentage Relative Error (PRE) maps to assess
spatial accuracy, correlation with ground truth, and estimation bias, respectively.

3. Results

PINN and NLLS achieved comparable accuracy in CBF estimation at higher tSNR (1.5),
while PINN substantially outperformed NLLS in ATT estimation (Table 1). As the noise
level increased (tSNR = 0.5), the performance gap widened in favor of PINN for both CBF
and ATT, with notably higher SSIM and PCC values.

As shown in Figure 1, PINN produced smoother and more physiologically plausible maps.
While it systematically overestimated ATT, it better preserved the clinically relevant spatial

2



Quantifying Time-Encoded ASL with PINNs

tSNR
SSIM PCC

PINN NLLS PINN NLLS

1.5
CBF 0.825 0.786 0.969 0.944
ATT 0.951 0.467 0.995 0.761

0.5
CBF 0.643 0.533 0.907 0.841
ATT 0.842 0.212 0.980 0.482

Table 1: SSIM and PCC obtained in CBF and ATT estimation by the two different ap-
proaches, with tSNR of 1.5 and 0.5.

patterns and demostrated increased robustness to noise. In contrast, NLLS yielded noiser
estimates with higher spatial variability, especially for ATT.

Figure 1: Comparison of CBF and ATT estimations using PINN and NLLS. The first
row shows the estimated maps, while the second row presents the corresponding Percent
Relative Error maps.

4. Discussion and Conclusion

We propose a PINN framework that effectively integrates prior knowledge from the Buxton
model for ASL-based perfusion quantification. By coupling a signal-fitting network with
physics-based network under hybrid loss, our model achieves robust estimation of CBF and
ATT across two different noise conditions. Compared to NLLS, PINNs demonstrated supe-
rior stability in ATT estimation and comparable performance in CBF recovery, especially
under low tSNR. The improved robustness stems from the model’s ability to regularize
solutions with physical constraints. Limitations include the use of simulated data and re-
striction to a single 2D slice. Future work will extend validation to in vivo data and explore
3D spatial modeling. With further refinement, PINN-based models could become valuable
tools for robust, data-efficient quantification in clinical ASL imaging.
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