
A software popularity recommendation method based on evaluation model

Yan Wang,Pei-xiang Bai,De-yu Yang,
Jian-tao Zhou*

Inner Mongolia Engineering Lab of Cloud Computing
and Service Software, College of Computer Science

Inner Mongolia University
Hohhot, China

cswy,pxb,deyu@imu.edu.cn,cszhoujiantao@qq.com

Xiaoyu Song
Department of ECE

Portland State University Portland
OR, USA

song@ece.pdx.edu

Abstract—The software sharing platform in the Internet
provides great convenience for the promotion, application and
communication of software (especially source software). But
there inevitably exists the problem of software quality on the
open Internet platform. How the users choose software to
download and use becomes a new challenge for software
sharing platforms. Aimed at the above problems and
challenges, the internal relations between the data collected on
platform and experience of user are analyzed. And then a
software popularity recommendation method based on
evaluation model is presented. The method constructs two
evaluation indexes based on the collected data on the platform,
including attention-degree and satisfaction-degree; solves the
problem of small sample data’s influence on the accuracy of
evaluation model by using the Wilson interval model and
makes a tradeoff between the recommendation results of old
and new software by using Newton cooling law. The
experimental results show that the software popularity
recommendation method based on evaluation model helps
users to screen for software, which can effectively improve the
service performance of software sharing platform.

Keywords-software sharing platform; evaluation model; software
popularity; recommendation

I. INTRODUCTION
In recent years, software as a carrier of information service

in the information age has drawn much attention from users.
According to statistics, up to the end of 2016, the number of
newly published software exceeded ten million. With the
rapid development of Internet technology, a large number of
platforms or websites providing software downloading
services are also emerging on the Internet. Explosive growth
of software has provided great conveniences for users to use
the software on the platform. Due to the openness of such
platforms, people can not only download the software they
need as a user but also upload the software sharing with
other users developed by themselves as a publisher. It has a
positively effect in the application and development of
software to a large extent. Especially some open source
code-sharing platforms for software developers and IT
practitioners provide a tool for programmers to learn and
communicate with each other, so that they can acquire and

share knowledge or information in career development and
establish career development circles, also can through
software development to meet the rigid demand about
technology commercialization.

However, due to the different quality of users in the
platform, some users may upload resources and software
with spam or malicious code, which makes such open
platforms getting a hardest hit because of the proliferation
and expansion of spam and virus Trojan. At the same, it
seriously disrupts the normal network order, not only
wasting platform resources, but also seriously affecting the
user's participation experience. As a result, a huge loss for
platform operators has brought. Therefore, how to select,
install and operate the software in the downloading platform
has become an important issue for users [1]. Meanwhile, the
dramatic increase about the number of software has aroused
people's concern about software evaluation and
recommendation.

The traditional software sharing platform relies mainly on
the manual analysis and comparison of the platform
administrator to check the quality of the software. These
software recommendation and rankings method are based on
single data, such as software download or user feedback after
software usage, not only without fully utilizing the
collectable data which can influence the user experience in
the platform, but also without considering the impact of these
data on the user experience synthetically. So it is difficult to
adapt to the automated evaluation and recommendation of
software in the platform. For this reason, it have a great
researching and practical significance to make full use of the
data freely accessible in the software sharing platform which
could affect the user experience of software to study the
software evaluation model and the recommendation method.
To resolve the problems and challenges mentioned above,
this paper analyzes the inherent relationship between open
source data and user experience in the platform, proposes a
popularity recommendation method based on software
evaluation in Internet platform. This method fully assesses
the user's acceptance of the software according to the use of
software, the evaluation of software and time factor in the
platform.

The remainder of this paper is structured as follows.
Section II introduces some mainstream algorithms for

* Corresponding author

454

2018 42nd IEEE International Conference on Computer Software & Applications

978-1-5386-2666-5/18/$31.00 ©2018 IEEE
DOI 10.1109/COMPSAC.2018.00070

recommendation systems and points out a series of problems
existing in these works. Section III elaborates our evaluation
model based on degree of attention and degree of
satisfaction. Section IV verifies the inherent relationship
among various factors in the proposed model through
experimental analysis based on simulation data. Section VI
concludes this paper.

II. BACKGROUND AND RELATED WORKS
The recommendation system is the most relevant field to

the issue studied in this paper. Its aim is to recommend the
product or service which is most likely to be satisfied to a
user based on the user’s preference. It can be regarded as an
intelligent decision supporting platform based on massive
data analysis, and has been successfully used to deal with
the problem of information overloading. A good
recommendation method can effectively improve the user’s
satisfaction with the recommended item from the platform.

The vast majority of recommendation algorithms are
based on two dimensions: user and item, which can be
achieved through the explicit user feedbacks on the items,
such as user ratings. Classical algorithms include content-
based recommendation algorithms and collaborative
filtering-based recommendation algorithms. The former
recognizes the common characteristics of the items that
have gotten the user's praise, then recommends other items
to the user that have these common characteristics [2]. The
latter is mainly based on the basic cognitive assumption that
a user's evaluation of an item may be similar to that of other
users on this item. So the target user's rating of this item is
estimated by other users' ratings. This kind of algorithm
overcomes the disadvantages of the content-based
recommendation algorithm, and can recommend some items
with different characteristics for users [3-4].

However, in many actual scenarios, users rarely express
their explicit behavior, instead of implicit behavior, such as
click and browse. At the same time, the recommendation
algorithms based on explicit feedback mostly ignore the
effect of the recommended context. Therefore, the research
on recommendation algorithms based on implicit feedback
has become a new hot topic in recent years. In [5], the
authors mainly focus on the effect of context information
and propose a context-dependent pre-filtering technique
based on implicit user feedback. This technique associates
user feedback with specific environment variables, cutting
the recommendation system according to each specific
context environment. In [6], a multi-layer context graph
from implicit feedback data is abstracted and a context-
dependent sorting algorithm is designed. In [7], the depth
features of item contents are firstly extracted from the
collected implicit feedback data, then the depth features are
introduced into the Bayesian framework of pairwise queuing
model, finally a deep collaborative filtering based on depth
ordering technology is proposed.

Through the analysis of the above literatures, we can see
that the main factors that affect the effectiveness of the

recommendation system are not only the user ratings of the
item, but also the users' concern about the item and
contextual environment information (such as time and
place). For the software sharing platform, the standard of
what software should be recommended is the users' interest
and recognition of the software, that is, how many users
have accepted the software, which can help us to know how
the users views the software. According to the relevant
theories of social psychology research, a user’s interest is
easily influenced by the external environment and group
behavior. The herd mentality is one kind of widespread
psychology phenomena in society. Therefore, another area
related to this study is the analysis and application of item
popularity.

In the recommendation system, the popularity of an item
refers to the amount of feedback that the item has received.
The bigger the amount of feedback is, the higher popularity
of item is [9]. Many popularity-based recommendation
algorithms are very simple, such as major news and Weibo
ranking list. These algorithms recommend some items to
users only based on the page views (PV), the unique visitors
(UV), average daily PV or share rate, etc. For example, in
[10], the authors measure item popularity according to user
feedbacks, and propose a simple algorithm for selecting
truly popular items for users. Good performance is the
biggest advantage of this algorithm. The investigation and
study in [11] show that item popularity contains the rule of
long-tailed distribution, so that the unpopular item
recommendation from the long tail effect of item popularity
distribution is very practical. In [12], the authors argue that
a good recommender system should take the advantage of
the Internet to recommend to users something that may be
of interest but not easily discoverable, and to increase
recommended coverage and novelty, not just to improve
accuracy. In order to improve the ability of recommendation
system to mine unpopular projects that user may interest,
the authors introduce item popularity into the traditional
collaborative filtering algorithm and improve the influence
of unpopular items in the process of recommendation. The
paper [13] also focuses on how to improve the
recommendation of items with low popularity in sparse data
environments and proposes an item-based collaborative
filtering algorithm that considers the user activity and item
popularity. When measuring the relativity of two items, the
activity of the rated users and the popularity of the evaluated
items are used to do a relevant punishment so as to improve
the recommend probability of the items with low popularity.

In fact, the accuracy and the novelty are two conflicting
goals in the recommendation algorithms. To solve this
problem, in [14-15], the authors respectively balance the
conflicting target through popularity prediction and
normalized popularization to improve the accuracy and
diversity of their algorithms. In addition, in [16-17], the
authors considers the influence of time factor on the
evaluation of item popularity, extracts the popularity feature
and time continuity feature of the data to be evaluated, and

455

then proposes a temporal matching method to evaluate the
popularity of interest points. Further, the studied that how to
predict item popularity without user feedback or less user
feedback in [18]. The authors use a resampling strategy to
bias users towards these rare cases of highly popular items.
The results of the above literatures show that the key to the
research on item popularity is to analyze the data that may
be relevant to the popularity in the item platform.

The main difference between the issues studied in this
paper and the above literatures is that we are not
recommending individual users with specific preferences,
but rather recommending software for the general public.
Unlike general products or services, software
recommendation is a very special task as people use
software for different reasons [19]. Therefore, the classical
recommendation algorithm is not suitable for software
recommendation on the Internet platform. On the one hand,
due to the particularity of the software itself, it is very
difficult to analyze the characteristics of the software and
the content that can be analyzed is also very limited. On the
other hand, a user's needs for software are often varied, so
classic recommendation methods often fail to recommend
items of different characteristics to the user. At present,
there are few researches on software recommendation
system, which is also the reason of this work. We will
analyze the data in software-sharing Internet platform that
affecting the software popularity, and then establish a
recommendation method based on software evaluation
model.

III. EVALUATION MODEL BASED ON DEGREE OF
ATTENTION AND DEGREE OF SATISFACTION

A. Related concepts in the model
In order to facilitate the description of the problem, the

relevant concepts involved in the evaluation model are
given below.

Def.1 Software Views L The number of times a software
have been viewed by users in the sharing platform since the
software has been released.

Def.2 Software Downloads D The number of times a

software have been downloaded by users in the sharing
platform since the software has been released.

Def.3 Software Release Days T The number of days the

software has been released.

Def.4 Software Evaluations P The number of times a

software have been evaluated by users since the software
has been released.

Def.5 High Ratings H The number of high ratings in P.

Def.6 Low Ratings C The number of low ratings in P.

The relationship between P, H and C satisfied:

P=H+C.

Def.7 High Rating Rate HP The ratio of favorable
comments H to software evaluations P, namely H/P.

B. Influencing factors in the model
1) The degree of attention

In the Internet software sharing platform, the two key
indicators that affect the popularity of software are L and D,
which represents the user's attention to the software. The
higher L and D are, the more popular the software is.
However, software update is fast. If only L and D are
recommended standards, some commonly used software
will always be recommended. Therefore, the date of
software release is also an important index to consider
software recommendation. If user ratings are used as a
recommended indicator, the newly released software should
get a better rating. Therefore, L and D is proportional to the
degree of attention, and inversely proportional to T. Based
on the above analysis, we propose a formula for the degree
of attention denoted by SA,, is as follows:

(1)A K

L DS
T

β+=
+

 , 1

where β is for the equivalent factor (β >1), K is for the
control parameter. For users, the download behavior means
greater interest in the software than the browsing behavior.
As a result, the downloading behavior has more influence
on the degree of attention than the browsing behavior.

2) The degree of satisfaction

L and D just represents users’ interest in the software, and
cannot represent the quality of software. Therefore, the
recommendation method also need to consider the user
feedback after using the software. However, the software as
a special item, rating-based user feedback lacks a uniform
standard, so rating is often too subjective. In the actual
software sharing platform, only two evaluation criteria are
generally set, such as " upvote" and "downvote", "like" or
"dislike", and so on. Assuming a satisfactory feedback score
is 1 and an unsatisfied feedback score is -1, the degree of
satisfaction can be expressed as the difference between H
and C. But for a software with H=1 and C=0 and another
software with H=100 and C=1, this simple calculation
would make the former more satisfied than the latter, which
is obviously unfair. Therefore, it is very necessary to add P
to the degree of satisfaction. The use of logarithm to
calculate the degree of satisfaction can ensure that the
software can also get a more fair evaluation in the early
release. Based on the above considerations, we propose a
formula for the degree of satisfaction, denoted by SM,, is as
follows:
 /10logM n

S H C P= − + , 2

456

where n is for the control parameter. The smaller n is, the
greater the influence of H on SM is.

3) Wilson interval correction on HP

In most cases, P is not big enough, which leads to the
evaluation of the software is not objective enough.
Therefore, an algorithm is needed to correct the accuracy
problem caused by the sufficient number of samples.
Because if P is large, HP will be extremely objective for
software. The problem is that it will go wrong P is very
small. It is assumed that the software named as A has 3 high
ratings and 0 low rating, while the software named as B has
100 high ratings and 2 low ratings. In this case, HP of A is
higher than that of B. Obviously, the evaluation method is
not reasonable and accurate. In the scenario studied in this
paper, user feedback on software has only two kinds of
values, so user feedback is statistically obeying the binomial
distribution. The higher HP of the software means the more
popularity it is. However, the credibility of HP depends on
the number of users who have given high rating to the
software. If the number of users is too small, the credibility
HP is lower. We will calculate the HP's confidence interval
to correct the impact of the small sample size on the
evaluation on software popularity. Based on Wilson
interval, we propose a new formula of HP is given [21]:

2

12 2
21 1

2 2

2

1
2

1 (1)HP+ -
2P P 4

HP =
11
P

z
HP HPz z

n

z

α

α α

α

−

− −

−

− +

+

’ 3

where HP’ is for the revised HP, 2

1
2

z α−
 is for the z-statistic

for the corresponding 95% confidence level.

4) Newton cooling correction on SM

In the software sharing platform, new software always
emerges. However, the degree of satisfaction of existing
software does not automatically decrease over time, which
makes the newly released software difficult to be effectively
recommended. But in fact, a new software may have better
performance, more worthy of being recommended. In this
paper, we construct a decay function to simulate the natural
cooling process of software popularity. That is, with the
increase of T, in P and other parameters unchanged
circumstances, SM of the software will gradually declined.
In this paper, we use Newton's law of cooling to establish
the relationship between SM and T. Newton's law of cooling
states the law that is followed by an object that is hotter than
the surrounding environment to transmit heat to the
surrounding medium. The law notes that the speed at which
the object cools is directly proportional to the difference in
the temperatures between itself and its surroundings [20].
Assuming that the final SM of all software approaches 0, the
decline rate of SM is directly proportional to the current

value of SM. We propose a specific cooling formula is as
follows:

0 eTT T
M MS S α− Δ= 4

where 0T
MS is for SM on day T0, T

MS is for SM on day T,

0=T-TTΔ is the cooling coefficient.

C. Overall evaluation model
The technical framework of the overall evaluation model

based on software popularity is shown in Figure 1. The
model contains two evaluation indicators and two correction
formulas. First, we modify HP through the Wilson interval
to make up for the impact of HP on the evaluation of
software popularity due to the less P. Then, SM is revised by
Newton's cooling law, which helps us to overcome the
problem that a new software which cannot be unfairly
recommended. Finally, we calculate SA and SM,
respectively, to generate software popularity that can be
regarded as a basis for the recommended software.

Fig.1 The technical framework of overall evaluation model

D. Software popularity recommendation algorithm

Input: L , D, T, P, H, C;
Output: Software popularity;
Step1. Calculate SA according to formula (1) ;
Step2. Calculate SM according to formula (2) ;
Step3. Wilson interval correction on HP according to formula (3);
Step4. Newton cooling correction on SM according to formula (4);
Step5. Calculate software popularity, the formula is as follows:

0
1 2

' eT T
A M

HP
S S S

HP
αε ε − Δ= +

 5
where 1ε and 2ε is the weight coefficient.

IV. EXPERIMENTS AND ANALYSIS
In order to illustrate the implementation process of the

software popularity recommendation method based on
evaluation model, analyze and verify it, we set up the

457

simulation data to verify the inherent relationship among
various factors in the proposed model, including:

(1) The relationship between the degree of attention and
its influential factors;

(2) The relationship between the degree of satisfaction
and its influential factors;

(3) The impact of correction formulas on the evaluation
of software popularity.

In addition, we collect the actual data from the real
platform to compare the proposed method with the
recommendation results from other list of software.

The value range of the simulation data are shown in Table
I. In addition, we also grabbed 9 days of data from the pea
pod platform (https:// www.wandoujia.com/) as the basis of
comparative experiments.

TABLE I.

name Ranges
L 1000 10000
D L*0.1 L*0.2
T 1 100
P D*0.1 D*0.3
H 0 P
C P-H
β 10

1ε 1

2ε 1

A. The relationship between the degree of attention and its
influential factors

We simulate the process that users browse or download
the software after it’s released. The experimental results
through the evaluation method based on the degree of
attention are shown in Figure 2.

As can be seen from Figure 2, at the beginning of the
software release, with growth of L and D, SA shows a trend
of slowly increasing and then rapidly increasing. That is, if
L and D achieve fast growth in a short time, SA will be
significantly improved. However, as T increases, the
inflection point of SA increases gradually. As the number of
downloads and views of the software does not increase as
the release time increases, the attention of the software will
inevitably decrease.

In the following experiments, we analyze the control
parameter K’s impact on SA by adjusting the value of K if D
and L don’t change. Set K to 1.2, 1.5 and 2.5, respectively.
The experimental results are shown in Figure 3. As can be
seen from figure 3, the larger the value of K, the faster the
degree of attention declines, that is, the value of K
determines the update speed of recommendation software. If
you hope that a software whose D and L have just a smaller
changes in a certain period of time is quickly eliminated,
you should set a larger value for K, and vice versa.

(a) The Changes of SA (T = 5)

(b) The Changes of SA (T = 100)

Figure 2 The relationship between L,T,D and SA

Figure 3 The influence of K on SA

B. The Relationship between the degree of satisfaction and
its influential factors

In this experiment, number the software’s IDs from 1 to
10, and then random generate respective H and C. The
experimental results from the evaluation method of SM are
shown in Table . As can be seen from Table , when C
is obviously greater than H, SM is negative; when C is
approximately equal to H, the bigger the value of P, the
greater the degree of software satisfaction, such as
software 1 and software 9; when the values of H of two

458

software are approximately equal, their difference of C has
less influence on SM than the difference itself, such as
software 2 and software 10. It means that as long as a
software has enough high ratings, in theory, the software is
worth recommending, but if a software’s low ratings are
far more than its high rating, the software would not be
recommended.

TABLE II.

ID H C P SM

1 165 129 294 6.03

2 563 200 763 8.78

3 779 198 977 9.41

4 472 259 731 8.16

5 349 169 518 7.86

6 605 127 732 9.11

7 658 329 987 8.74

8 6 31 37 -2.76

9 45 35 80 4.17

10 560 100 660 9.04

C. The Impact of Correction Formulas on Software
Popularity Evaluation

In this experiment, we use formulas (3) and (4)
respectively to correct HP and SM for software in Table .
The results are shown in Table .

TABLE III.

ID T Amended HP SM Amended SM

1 12 0.50 6.03 3.31

2 24 0.71 8.78 2.64

3 9 0.77 9.41 6.00

4 10 0.61 8.16 4.95

5 21 0.63 7.86 2.75

6 3 0.80 9.11 7.84

7 17 0.63 8.74 3.74

8 21 0.08 -2.76 -0.96

9 1 0.45 4.17 3.97

10 22 0.82 9.04 3.01

Compare to Table , Wilson interval correction generally

leads to a decrease of the original value of H. However, for
the different P, the rate of decline is different. The less the
P, the more obvious the decline. For example, after
correction, the HP of software 1 dropped from 0.56 to 0.50,

while the HP of software 9 dropped from 0.56 to 0.45.
Obviously, the HP of software 1 is more convincing than
that of software 9. For Newton cooling correction, we can
see through comparing the results of Table and Table
that the software with short release time are less correct than
the software with long release time, especially for the latter
without obvious change of T and L, the degree of
satisfaction will be significantly reduced, such as software 2
and software 10.

D. Comparison of different methods of software popularity
evaluation

Because most of the platform has no public statistics for
the evaluation indexes proposed in this paper, such as L. In
this experiment, we assume that D is in proportion to L. In
this case, the impact of D on software popularity is equal to
L+ D. We compare a public ranking list of the software
with the method proposed in this paper to analyze the
reasonable about the final recommendation ranking. The
actual data of the evaluated software platform in the
experiment is shown in Table , and the experimental result
is shown in Figure 4.

TABLE IV.

ID L&D H/P P

1 27930000 52% 17108

2 11760000 77% 15597

3 5750000 64% 6831

4 4870000 91% 5167

5 4080000 71% 6608

Figure 4 Comparison of the software popularity evaluation methods

From the ranking results in Figure 4, we can see that our

result is different from that of the popularity evaluation
method in the website. The main difference is the ranking of
software 3, software 4, and software 5. It can be seen that
the original ranking in the website mainly depends on the
value of D. And for our method, software 1 and software 2
gained high ratings due to their huge downloads. Although
the D&L of software 4 is smaller than that of the software 3,
the H of software 4 is far greater than that of the software 3.
In this case, the impact of user experience on software

459

popularity is obviously greater than simple download
behavior. Similarly, although the D&L is greater than that
software 3, after comprehensively considering SA and SM,
software 5 gains higher order than software 3 due to its
more high ratings.

In summary, the software popularity recommendation
method mentioned in this paper is more fully considered the
factors that affect the recommendation effect, which can get
more reasonable recommendation results.

V. CONCLUSION
Aiming at the problem of software recommendation in

the Internet platform, this paper proposes a software
popularity recommendation method based on evaluation
model. The main contributions include three aspects: 1) The
various factors which can affect the recommendation effect
of software sharing platform are analyze. And then the
internal relations between these factors are established. 2)
The problem of the impact of the small sample data on the
accuracy of recommendation, to a certain extent, is solved
by setting the confidence interval; 3) The problem of cold
start of newly released software, to a certain extent, has
been solved by means of automatic decay of popularity.
Finally, the validity of the software popularity
recommendation method is verified by using the example
analysis method. In the future work, we will further analyze
the emotional factors in the user evaluations to construct the
user preference label, and then propose a personalized
software recommendation model based on the user
preference label.

ACKNOWLEDGMENT
The authors wish to thank Natural Science Foundation of

China under Grant No.61662054, 61622082 and 61462066,
Natural Science Foundation of Inner Mongolia under Grand
No. 2015MS0608, Inner Mongolia Science and Technology
Innovation Team of Cloud Computing and Software
Engineering, Inner Mongolia Application Technology
Research and Development Funding Project “Mutual
Creation Service Platform Research and Development Based
on Service Optimizing and Operation Integrating” and
CERNET Network Next Generation Internet Technology
Innovation Project under Grand No. NGII20160511.

REFERENCES

[1] Yan Z, Zhang P, Deng R H. TruBeRepec: a trust-behavior-based
reputation and recommender system for mobile applications[J].
Personal and Ubiquitous Computing, 2012, 16(5):485-506.

[2] Pessemier T D, Vanhecke K, Dooms S, et al. Content-based
Recommendation Algorithms on the Hadoop MapReduce
Framework[C]// Webist 2011, Proceedings of the, International

Conference on Web Information Systems and Technologies,
Noordwijkerhout, the Netherlands, 6-9 May. DBLP, 2011:237-240.

[3] Desrosiers C, Karypis G. A Comprehensive Survey of Neighborhood-
based Recommendation Methods[M]// Recommender Systems
Handbook. Springer US, 2011:107-144.

[4] Deshpande, M., Karypis, G.: Item-based top-N recommendation
algorithms. ACM Transaction on Information Systems22(1), 143–177
(2004)

[5] Baltrunas L, Amatriain X. Towards time-dependant recommendation
based on implicit feedback[J]. In Workshop on context-aware
recommender systems CARSâ ´ Z09, 2009.

[6] Yao W, He J, Huang G, et al. A Graph-based model for context-
aware recommendation using implicit feedback data[J]. World Wide
Web, 2015, 18(5):1351-1371.

[7] Ying H, Chen L, Xiong Y, et al. Collaborative Deep Ranking: A
Hybrid Pair-Wise Recommendation Algorithm with Implicit
Feedback[C]// Pacific-Asia Conference on Knowledge Discovery and
Data Mining. Springer International Publishing, 2016:555-567.

[8] Luo Z.M., Consumer psychology [M]. Tsinghua University Press Co.,
Ltd., 2002.

[9] Steck H. Item popularity and recommendation accuracy[C]// ACM
Conference on Recommender Systems, Recsys 2011, Chicago, Il,
Usa, October. DBLP, 2011:125-132.

[10] Vojnovi M, Cruise J, Gunawardena D, et al. Ranking and Suggesting
Popular Items[J]. IEEE Transactions on Knowledge & Data
Engineering, 2009, 21(8):1133-1146.

[11] Yin G.S., Zhang Y.N., Dong H.B., et al.A recommendation method
constrained by long tail distribution [J] .Journal of Computer
Research and Development, 2013, 50 (9): 1814-1824.

[12] Hao L.Y., Wang J..Cooperative TopN Recommendation Algorithm
Based on Item Popularity [J]. Computer Engineering and Design,
2013,34 (10): 3497-3501.

[13] Wang J.K., Jiang Y.C., Sun Q.S., et al.Research on collaborative
filtering based on nearest neighbor of project considering user activity
and project popularity [J] .Computer Science, 2016, 43 (12): 158-162.

[14] Javari A, Jalili M. Accurate and Novel Recommendations: An
Algorithm Based on Popularity Forecasting [M]. ACM, 2015. ACM
, 2015 , 5 (4) :1-20

[15] Zhao X, Chen W, Yang F, et al. Improving Diversity of User-Based
Two-Step Recommendation Algorithm with Popularity
Normalization[M]// Database Systems for Advanced Applications.
Springer International Publishing, 2016.

[16] SI Y.L., L. F., Song Y.W..Recent interest point recommendation
algorithm based on epidemic features and kernel density estimation
[J] .Microcontroller Systems, 2016,37 (11): 2416-2420..

[17] Yao Z, Fu Y, Liu B, et al. POI Recommendation: A Temporal
Matching between POI Popularity and User Regularity[C]// IEEE,
International Conference on Data Mining. IEEE, 2017.

[18] Moniz N, Torgo L, Eirinaki M, et al. A Framework for
Recommendation of Highly Popular News Lacking Social
Feedback[J]. New Generation Computing, 2017:1-34.

[19] Liu Y, Du F, Jiang Y, et al. A Novel APPs Recommendation
Algorithm Based on APPs Popularity and User Behaviors[C]// IEEE
First International Conference on Data Science in Cyberspace. IEEE
Computer Society, 2016:584-589.

[20] Evan M. Rank H.. With Newton's Law of Cooling [online],
http://www.evanmiller. org/ rank-hotness-with-newtons-law-of-
cooling.html, 2009.

[21] Evan M.. How Not To Sort By Average Rating [online].

460

