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Abstract—The software sharing platform in the Internet 
provides great convenience for the promotion, application and 
communication of software (especially source software). But 
there inevitably exists the problem of software quality on the 
open Internet platform. How the users choose software to 
download and use becomes a new challenge for software 
sharing platforms. Aimed at the above problems and 
challenges, the internal relations between the data collected on 
platform and experience of user are analyzed. And then a 
software popularity recommendation method based on 
evaluation model is presented. The method constructs two 
evaluation indexes based on the collected data on the platform, 
including attention-degree and satisfaction-degree; solves the 
problem of small sample data’s influence on the accuracy of 
evaluation model by using the Wilson interval model and 
makes a tradeoff between the recommendation results of old 
and new software by using Newton cooling law. The 
experimental results show that the software popularity 
recommendation method based on evaluation model helps 
users to screen for software, which can effectively improve the 
service performance of software sharing platform. 

Keywords-software sharing platform; evaluation model; software 
popularity; recommendation 

I. INTRODUCTION  
In recent years, software as a carrier of information service 

in the information age has drawn much attention from users. 
According to statistics, up to the end of 2016, the number of 
newly published software exceeded ten million. With the 
rapid development of Internet technology, a large number of 
platforms or websites providing software downloading 
services are also emerging on the Internet. Explosive growth 
of software has provided great conveniences for users to use 
the software on the platform. Due to the openness of such 
platforms, people can not only download the software they 
need as a user but also upload the software sharing with 
other users developed by themselves as a publisher. It has a 
positively effect in the application and development of 
software to a large extent. Especially some open source 
code-sharing platforms for software developers and IT 
practitioners provide a tool for programmers to learn and 
communicate with each other, so that they can acquire and 

share knowledge or information in career development and 
establish career development circles, also can through 
software development to meet the rigid demand about 
technology commercialization. 

However, due to the different quality of users in the 
platform, some users may upload resources and software 
with spam or malicious code, which makes such open 
platforms getting a hardest hit because of the proliferation 
and expansion of spam and virus Trojan. At the same, it 
seriously disrupts the normal network order, not only 
wasting platform resources, but also seriously affecting the 
user's participation experience. As a result, a huge loss for 
platform operators has brought. Therefore, how to select, 
install and operate the software in the downloading platform 
has become an important issue for users [1]. Meanwhile, the 
dramatic increase about the number of software has aroused 
people's concern about software evaluation and 
recommendation. 

The traditional software sharing platform relies mainly on 
the manual analysis and comparison of the platform 
administrator to check the quality of the software. These 
software recommendation and rankings method are based on 
single data, such as software download or user feedback after 
software usage, not only without fully utilizing the 
collectable data which can influence the user experience in 
the platform, but also without considering the impact of these 
data on the user experience synthetically. So it is difficult to 
adapt to the automated evaluation and recommendation of 
software in the platform. For this reason, it have a great 
researching and practical significance to make full use of the 
data freely accessible in the software sharing platform which 
could affect the user experience of software to study the 
software evaluation model and the recommendation method. 
To resolve the problems and challenges mentioned above, 
this paper analyzes the inherent relationship between open 
source data and user experience in the platform, proposes a 
popularity recommendation method based on software 
evaluation in Internet platform. This method fully assesses 
the user's acceptance of the software according to the use of 
software, the evaluation of software and time factor in the 
platform. 

The remainder of this paper is structured as follows. 
Section II introduces some mainstream algorithms for 
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recommendation systems and points out a series of problems 
existing in these works. Section III elaborates our evaluation 
model based on degree of attention and degree of 
satisfaction. Section IV verifies the inherent relationship 
among various factors in the proposed model through 
experimental analysis based on simulation data. Section VI 
concludes this paper. 

II. BACKGROUND AND RELATED WORKS 
The recommendation system is the most relevant field to 

the issue studied in this paper. Its aim is to recommend the 
product or service which is most likely to be satisfied to a 
user based on the user’s preference. It can be regarded as an 
intelligent decision supporting platform based on massive 
data analysis, and has been successfully used to deal with 
the problem of information overloading. A good 
recommendation method can effectively improve the user’s 
satisfaction with the recommended item from the platform. 

The vast majority of recommendation algorithms are 
based on two dimensions: user and item, which can be 
achieved through the explicit user feedbacks on the items, 
such as user ratings. Classical algorithms include content-
based recommendation algorithms and collaborative 
filtering-based recommendation algorithms. The former 
recognizes the common characteristics of the items that 
have gotten the user's praise, then recommends other items 
to the user that have these common characteristics [2]. The 
latter is mainly based on the basic cognitive assumption that 
a user's evaluation of an item may be similar to that of other 
users on this item. So the target user's rating of this item is 
estimated by other users' ratings. This kind of algorithm 
overcomes the disadvantages of the content-based 
recommendation algorithm, and can recommend some items 
with different characteristics for users [3-4].  

However, in many actual scenarios, users rarely express 
their explicit behavior, instead of implicit behavior, such as 
click and browse. At the same time, the recommendation 
algorithms based on explicit feedback mostly ignore the 
effect of the recommended context. Therefore, the research 
on recommendation algorithms based on implicit feedback 
has become a new hot topic in recent years. In [5], the 
authors mainly focus on the effect of context information 
and propose a context-dependent pre-filtering technique 
based on implicit user feedback. This technique associates 
user feedback with specific environment variables, cutting 
the recommendation system according to each specific 
context environment. In [6], a multi-layer context graph 
from implicit feedback data is abstracted and a context-
dependent sorting algorithm is designed. In [7], the depth 
features of item contents are firstly extracted from the 
collected implicit feedback data, then the depth features are 
introduced into the Bayesian framework of pairwise queuing 
model, finally a deep collaborative filtering based on depth 
ordering technology is proposed. 

Through the analysis of the above literatures, we can see 
that the main factors that affect the effectiveness of the 

recommendation system are not only the user ratings of the 
item, but also the users' concern about the item and 
contextual environment information (such as time and 
place). For the software sharing platform, the standard of 
what software should be recommended is the users' interest 
and recognition of the software, that is, how many users 
have accepted the software, which can help us to know how 
the users views the software. According to the relevant 
theories of social psychology research, a user’s interest is 
easily influenced by the external environment and group 
behavior. The herd mentality is one kind of widespread 
psychology phenomena in society. Therefore, another area 
related to this study is the analysis and application of item 
popularity. 

In the recommendation system, the popularity of an item 
refers to the amount of feedback that the item has received. 
The bigger the amount of feedback is, the higher popularity 
of item is [9]. Many popularity-based recommendation 
algorithms are very simple, such as major news and Weibo 
ranking list. These algorithms recommend some items to 
users only based on the page views (PV), the unique visitors 
(UV), average daily PV or share rate, etc. For example, in 
[10], the authors measure item popularity according to user 
feedbacks, and propose a simple algorithm for selecting 
truly popular items for users. Good performance is the 
biggest advantage of this algorithm. The investigation and 
study in [11] show that item popularity contains the rule of 
long-tailed distribution, so that the unpopular item 
recommendation from the long tail effect of item popularity 
distribution is very practical. In [12], the authors argue that 
a good recommender system should take the advantage of 
the Internet to recommend to users something that may be 
of interest but not easily discoverable, and to increase 
recommended coverage and novelty, not just to improve 
accuracy. In order to improve the ability of recommendation 
system to mine unpopular projects that user may interest, 
the authors introduce item popularity into the traditional 
collaborative filtering algorithm and improve the influence 
of unpopular items in the process of recommendation. The 
paper [13] also focuses on how to improve the 
recommendation of items with low popularity in sparse data 
environments and proposes an item-based collaborative 
filtering algorithm that considers the user activity and item 
popularity. When measuring the relativity of two items, the 
activity of the rated users and the popularity of the evaluated 
items are used to do a relevant punishment so as to improve 
the recommend probability of the items with low popularity.  

In fact, the accuracy and the novelty are two conflicting 
goals in the recommendation algorithms. To solve this 
problem, in [14-15], the authors respectively balance the 
conflicting target through popularity prediction and 
normalized popularization to improve the accuracy and 
diversity of their algorithms. In addition, in [16-17], the 
authors considers the influence of time factor on the 
evaluation of item popularity, extracts the popularity feature 
and time continuity feature of the data to be evaluated, and 
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then proposes a temporal matching method to evaluate the 
popularity of interest points. Further, the studied that how to 
predict item popularity without user feedback or less user 
feedback in [18]. The authors use a resampling strategy to 
bias users towards these rare cases of highly popular items. 
The results of the above literatures show that the key to the 
research on item popularity is to analyze the data that may 
be relevant to the popularity in the item platform. 

The main difference between the issues studied in this 
paper and the above literatures is that we are not 
recommending individual users with specific preferences, 
but rather recommending software for the general public. 
Unlike general products or services, software 
recommendation is a very special task as people use 
software for different reasons [19]. Therefore, the classical 
recommendation algorithm is not suitable for software 
recommendation on the Internet platform. On the one hand, 
due to the particularity of the software itself, it is very 
difficult to analyze the characteristics of the software and 
the content that can be analyzed is also very limited. On the 
other hand, a user's needs for software are often varied, so 
classic recommendation methods often fail to recommend 
items of different characteristics to the user. At present, 
there are few researches on software recommendation 
system, which is also the reason of this work. We will 
analyze the data in software-sharing Internet platform that 
affecting the software popularity, and then establish a 
recommendation method based on software evaluation 
model. 

III. EVALUATION MODEL BASED ON DEGREE OF 
ATTENTION AND DEGREE OF SATISFACTION  

A. Related concepts in the model  
In order to facilitate the description of the problem, the 

relevant concepts involved in the evaluation model are 
given below. 

Def.1 Software Views L The number of times a software 
have been viewed by users in the sharing platform since the 
software has been released. 

 
Def.2 Software Downloads D The number of times a 

software have been downloaded by users in the sharing 
platform since the software has been released. 

 
Def.3 Software Release Days T The number of days the 

software has been released. 
 
Def.4 Software Evaluations P The number of times a 

software have been evaluated by users since the software 
has been released. 

 
Def.5 High Ratings H The number of high ratings in P. 
 
Def.6 Low Ratings C The number of low ratings in P. 
 

The relationship between P, H and C satisfied:  

P=H+C. 

Def.7 High Rating Rate HP The ratio of favorable 
comments H to software evaluations P, namely H/P. 

B. Influencing factors in the model 
1) The degree of attention  

In the Internet software sharing platform, the two key 
indicators that affect the popularity of software are L and D, 
which represents the user's attention to the software. The 
higher L and D are, the more popular the software is. 
However, software update is fast. If only L and D are 
recommended standards, some commonly used software 
will always be recommended. Therefore, the date of 
software release is also an important index to consider 
software recommendation. If user ratings are used as a 
recommended indicator, the newly released software should 
get a better rating. Therefore, L and D is proportional to the 
degree of attention, and inversely proportional to T. Based 
on the above analysis, we propose a formula for the degree 
of attention denoted by SA,, is as follows: 

                        
( 1)A K

L DS
T

β+=
+

 ,                                 1  

where β  is for the equivalent factor ( β >1), K is for the 
control parameter. For users, the download behavior means 
greater interest in the software than the browsing behavior. 
As a result, the downloading behavior has more influence 
on the degree of attention than the browsing behavior. 

2) The degree of satisfaction 

L and D just represents users’ interest in the software, and 
cannot represent the quality of software. Therefore, the 
recommendation method also need to consider the user 
feedback after using the software. However, the software as 
a special item, rating-based user feedback lacks a uniform 
standard, so rating is often too subjective. In the actual 
software sharing platform, only two evaluation criteria are 
generally set, such as " upvote" and "downvote", "like" or 
"dislike", and so on. Assuming a satisfactory feedback score 
is 1 and an unsatisfied feedback score is -1, the degree of 
satisfaction can be expressed as the difference between H 
and C. But for a software with H=1 and C=0 and another 
software with H=100 and C=1, this simple calculation 
would make the former more satisfied than the latter, which 
is obviously unfair. Therefore, it is very necessary to add P 
to the degree of satisfaction. The use of logarithm to 
calculate the degree of satisfaction can ensure that the 
software can also get a more fair evaluation in the early 
release. Based on the above considerations, we propose a 
formula for the degree of satisfaction, denoted by SM,, is as 
follows: 
               /10logM n

S H C P= − +  ,                         2  
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where n is for the control parameter. The smaller n is, the 
greater the influence of H on SM is. 

3) Wilson interval correction on HP 

In most cases, P is not big enough, which leads to the 
evaluation of the software is not objective enough. 
Therefore, an algorithm is needed to correct the accuracy 
problem caused by the sufficient number of samples. 
Because if P is large, HP will be extremely objective for 
software. The problem is that it will go wrong P is very 
small. It is assumed that the software named as A has 3 high 
ratings and 0 low rating, while the software named as B has 
100 high ratings and 2 low ratings. In this case, HP of A is 
higher than that of B. Obviously, the evaluation method is 
not reasonable and accurate. In the scenario studied in this 
paper, user feedback on software has only two kinds of 
values, so user feedback is statistically obeying the binomial 
distribution. The higher HP of the software means the more 
popularity it is. However, the credibility of HP depends on 
the number of users who have given high rating to the 
software. If the number of users is too small, the credibility 
HP is lower. We will calculate the HP's confidence interval 
to correct the impact of the small sample size on the 
evaluation on software popularity. Based on Wilson 
interval, we propose a new formula of HP is given [21]: 

2

12 2
21 1

2 2

2

1
2

1 (1 )HP+ -
2P P 4

HP =
11
P

z
HP HPz z

n

z

α

α α

α

−

− −

−

− +

+

’          3  

where HP’ is for the revised HP, 2

1
2

z α−
 is for the z-statistic 

for the corresponding 95% confidence level. 

4) Newton cooling correction on SM 

In the software sharing platform, new software always 
emerges. However, the degree of satisfaction of existing 
software does not automatically decrease over time, which 
makes the newly released software difficult to be effectively 
recommended. But in fact, a new software may have better 
performance, more worthy of being recommended. In this 
paper, we construct a decay function to simulate the natural 
cooling process of software popularity. That is, with the 
increase of T, in P and other parameters unchanged 
circumstances, SM of the software will gradually declined. 
In this paper, we use Newton's law of cooling to establish 
the relationship between SM and T. Newton's law of cooling 
states the law that is followed by an object that is hotter than 
the surrounding environment to transmit heat to the 
surrounding medium. The law notes that the speed at which 
the object cools is directly proportional to the difference in 
the temperatures between itself and its surroundings [20]. 
Assuming that the final SM of all software approaches 0, the 
decline rate of SM is directly proportional to the current 

value of SM. We propose a specific cooling formula is as 
follows: 

0 eTT T
M MS S α− Δ=                                     4  

where 0T
MS  is for SM on day T0, T

MS is for SM on day T, 

0=T-TTΔ  is the cooling coefficient. 

C. Overall evaluation model 
The technical framework of the overall evaluation model 

based on software popularity is shown in Figure 1. The 
model contains two evaluation indicators and two correction 
formulas. First, we modify HP through the Wilson interval 
to make up for the impact of HP on the evaluation of 
software popularity due to the less P. Then, SM is revised by 
Newton's cooling law, which helps us to overcome the 
problem that a new software which cannot be unfairly 
recommended. Finally, we calculate SA and SM, 
respectively, to generate software popularity that can be 
regarded as a basis for the recommended software.  

  
 

Fig.1 The technical framework of overall evaluation model 

D. Software popularity recommendation algorithm 

 

 

Input: L , D, T, P,  H, C; 
Output:  Software popularity; 
Step1. Calculate SA according to formula (1) ; 
Step2. Calculate SM according to formula (2) ; 
Step3. Wilson interval correction on HP according to formula (3); 
Step4. Newton cooling correction on SM according to formula (4); 
Step5. Calculate software popularity, the formula is as follows: 

0
1 2

' eT T
A M

HP
S S S

HP
αε ε − Δ= +

                       5   
where 1ε  and 2ε  is the weight coefficient. 
 

IV. EXPERIMENTS AND ANALYSIS 
In order to illustrate the implementation process of the 

software popularity recommendation method based on 
evaluation model, analyze and verify it, we set up the 
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simulation data to verify the inherent relationship among 
various factors  in the proposed model, including:  

(1) The relationship between the degree of attention and 
its influential factors;  

(2) The relationship between the degree of satisfaction 
and its influential factors;  

(3) The impact of correction formulas on the evaluation 
of software popularity.  

In addition, we collect the actual data from the real 
platform to compare the proposed method with the 
recommendation results from other list of software. 

The value range of the simulation data are shown in Table 
I. In addition, we also grabbed 9 days of data from the pea 
pod platform (https:// www.wandoujia.com/) as the basis of 
comparative experiments. 

TABLE I.  

name Ranges 
L 1000 10000 
D L*0.1 L*0.2 
T 1 100 
P D*0.1 D*0.3 
H 0 P 
C P-H 
β  10 

1ε  1 

2ε  1 

 

A. The relationship between the degree of attention and its 
influential factors 

We simulate the process that users browse or download 
the software after it’s released. The experimental results 
through the evaluation method based on the degree of 
attention are shown in Figure 2. 

As can be seen from Figure 2, at the beginning of the 
software release, with growth of L and D, SA shows a trend 
of slowly increasing and then rapidly increasing. That is, if 
L and D achieve fast growth in a short time, SA will be 
significantly improved. However, as T increases, the 
inflection point of SA increases gradually. As the number of 
downloads and views of the software does not increase as 
the release time increases, the attention of the software will 
inevitably decrease. 

In the following experiments, we analyze the control 
parameter K’s impact on SA by adjusting the value of K if D 
and L don’t change. Set K to 1.2, 1.5 and 2.5, respectively. 
The experimental results are shown in Figure 3. As can be 
seen from figure 3, the larger the value of K, the faster the 
degree of attention declines, that is, the value of K 
determines the update speed of recommendation software. If 
you hope that a software whose D and L have just a smaller 
changes in a certain period of time is quickly eliminated, 
you should set a larger value for K, and vice versa. 

 

 
 

(a) The Changes of SA (T = 5) 
 

 
  

(b) The Changes of SA (T = 100) 
 

Figure 2 The relationship between L,T,D and SA 
 

 
 

Figure 3 The influence of K on SA 

B. The Relationship between the degree of satisfaction and 
its influential factors 

In this experiment, number the software’s IDs from 1 to 
10, and then random generate respective H and C. The 
experimental results from the evaluation method of SM are 
shown in Table . As can be seen from Table , when C 
is obviously greater than H, SM is negative; when C is 
approximately equal to H, the bigger the value of P, the 
greater the degree of software satisfaction, such as 
software 1 and software 9; when the values of H of two 
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software are approximately equal, their difference of C has 
less influence on SM than the difference itself, such as 
software 2 and software 10. It means that as long as a 
software has enough high ratings, in theory, the software is 
worth recommending, but if a software’s low ratings are 
far more than its high rating, the software would not be 
recommended. 

TABLE II.  

ID  H C P SM 

1 165 129 294 6.03  

2 563 200 763 8.78  

3 779 198 977 9.41  

4 472 259 731 8.16  

5 349 169 518 7.86  

6 605 127 732 9.11  

7 658 329 987 8.74  

8 6 31 37 -2.76  

9 45 35 80 4.17 

10 560 100 660 9.04 

C. The Impact of Correction Formulas on Software 
Popularity Evaluation 

In this experiment, we use formulas (3) and (4) 
respectively to correct HP and SM for software in Table . 
The results are shown in Table . 

TABLE III.  

ID T Amended HP SM Amended SM 

1 12 0.50 6.03 3.31 

2 24 0.71 8.78 2.64 

3 9 0.77 9.41 6.00 

4 10 0.61 8.16 4.95 

5 21 0.63 7.86 2.75 

6 3 0.80 9.11 7.84 

7 17 0.63 8.74 3.74 

8 21 0.08 -2.76 -0.96 

9 1 0.45 4.17 3.97 

10 22 0.82 9.04 3.01 

 
Compare to Table , Wilson interval correction generally 

leads to a decrease of the original value of H. However, for 
the different P, the rate of decline is different. The less the 
P, the more obvious the decline. For example, after 
correction, the HP of software 1 dropped from 0.56 to 0.50, 

while the HP of software 9 dropped from 0.56 to 0.45. 
Obviously, the HP of software 1 is more convincing than 
that of software 9. For Newton cooling correction, we can 
see through comparing the results of Table  and Table  
that the software with short release time are less correct than 
the software with long release time, especially for the latter 
without obvious change of  T and L, the degree of 
satisfaction will be significantly reduced, such as software 2 
and software 10. 

D. Comparison of different methods of software popularity 
evaluation 

Because most of the platform has no public statistics for 
the evaluation indexes proposed in this paper, such as L. In 
this experiment, we assume that D is in proportion to L. In 
this case, the impact of D on software popularity is equal to 
L+ D. We compare a public ranking list of the software 
with the method proposed in this paper to analyze the 
reasonable about the final recommendation ranking. The 
actual data of the evaluated software platform in the 
experiment is shown in Table , and the experimental result 
is shown in Figure 4. 

TABLE IV.   

ID L&D H/P P 

1 27930000 52% 17108 

2 11760000 77% 15597 

3 5750000 64% 6831 

4 4870000 91% 5167 

5 4080000 71% 6608 

 

 
Figure 4 Comparison of the software popularity evaluation methods 

 
From the ranking results in Figure 4, we can see that our 

result is different from that of the popularity evaluation 
method in the website. The main difference is the ranking of 
software 3, software 4, and software 5. It can be seen that 
the original ranking in the website mainly depends on the 
value of D. And for our method, software 1 and software 2 
gained high ratings due to their huge downloads. Although 
the D&L of software 4 is smaller than that of the software 3, 
the H of software 4 is far greater than that of the software 3. 
In this case, the impact of user experience on software 
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popularity is obviously greater than simple download 
behavior. Similarly, although the D&L is greater than that 
software 3, after comprehensively considering SA and SM, 
software 5 gains higher order than software 3 due to its 
more high ratings. 

In summary, the software popularity recommendation 
method mentioned in this paper is more fully considered the 
factors that affect the recommendation effect, which can get 
more reasonable recommendation results. 

V. CONCLUSION 
Aiming at the problem of software recommendation in 

the Internet platform, this paper proposes a software 
popularity recommendation method based on evaluation 
model. The main contributions include three aspects: 1) The 
various factors which can affect the recommendation effect 
of software sharing platform are analyze. And then the 
internal relations between these factors are established. 2) 
The problem of the impact of the small sample data on the 
accuracy of recommendation, to a certain extent, is solved 
by setting the confidence interval; 3) The problem of cold 
start of newly released software, to a certain extent, has 
been solved by means of automatic decay of popularity. 
Finally, the validity of the software popularity 
recommendation method is verified by using the example 
analysis method. In the future work, we will further analyze 
the emotional factors in the user evaluations to construct the 
user preference label, and then propose a personalized 
software recommendation model based on the user 
preference label. 
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