
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FTP: EFFICIENT PREFILLING FOR LONG-CONTEXT
LLM INFERENCE VIA FFN TOKEN PRUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have demonstrated remarkable performance
across various NLP tasks, and have extended their capability to long-context sce-
narios. However, the increasing context length leads to longer inference time in
both the prefilling and decoding stages. Existing token pruning methods primarily
evict tokens to compress the KV cache, and only accelerate the decoding stage.
Recent studies have extended token pruning to both stages, but they either yield
subtle speedup during the prefilling stage or defer a portion of computations to the
decoding phase. Critically, these approaches prioritize the attention module, over-
looking the significant computations in the Feed-Forward Network (FFN) module.
In this work, we focus on the prefilling stage and propose a novel token pruning
method named FTP for long-context LLM inference. Our approach is based on
the observation that the FFN module accounts for over 60% of the inference time.
FTP reduces this by pruning non-critical tokens before the inference of FFN. The
importance of each token, along with the quantity to be pruned, are dynamically
determined by the attention scores in each layer. Unlike previous token pruning
methods, FTP preserves a substantial amount of information of the pruned tokens
through the residual connection, thereby achieving a notable speedup with only
a negligible decrease in performance. Specifically, the Qwen2-7B-Instruct model
with FTP achieves a speedup of 1.24× in the prefilling stage with only a 1.30%
performance drop compared to the baseline model. The speedup is further boosted
to 1.39× on a Qwen1.5-32B-Chat model. Extensive experiments on long-context
datasets across various tasks demonstrate the potential and effectiveness of FTP.

1 INTRODUCTION

Large language models (LLMs) have shown remarkable performance in a wide range of natural
language processing applications, including summarization, question-and-answer, dialogue systems,
and contextual learning (Thoppilan et al., 2022; Yuan et al., 2022; Wei et al., 2022; Zhang et al.,
2023a). Recently, long-context models have emerged as an important trend in the development of
LLMs, and several of them have already been launched to process complex and long prompts. For
example, GPT4 (Achiam et al., 2023) and Qwen2 (Yang et al., 2024a) are both capable of 128k
context length, and Claude-3 (Anthropic, 2024) can even process up to 200k tokens.

Given the advantages of long-context models, they nevertheless pose enormous challenges at in-
ference time. As depicted in Figure 1, the inference of transformer-based LLMs with a KV cache
typically consists of two stages: 1) the prefilling stage, which applies the self-attention, normaliza-
tion, and the Feed-Forward Network (FFN) modules to all input token parallelly, records the key and
value in the KV cache, and finally produces the first generated token. 2) the decoding stage, which
takes the last generated token as input and iteratively predicts the next token with the input and the
KV cache. We refer to the time spent in the prefilling stage as time to first token (TTFT).

While there have been various methods trying to reduce the inference time of long-context LLMs
by pruning the input prompt (Jiang et al., 2023b;a; Pan et al., 2024), compressing the KV cache (Li
et al., 2024; Zandieh et al., 2024), improving the efficiency of decoding (Leviathan et al., 2022; Sun
et al., 2023; Chen et al., 2023), and optimizing the attention kernel with sparse computation (Jiang
et al., 2024), few works (Yang et al., 2024b; Fu et al., 2024) place attention to the reduction of TTFT.
However, the computationally intensive nature of the prefilling stage implies that the TTFT for long-
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Figure 1: An illustration of the typical inference process of a transformer-based LLM with a KV
cache. The first stage is called prefilling, which processes all input tokens in parallel and yields the
first output token. The second stage is called decoding, which iteratively takes the latest generated
token as input and generates the subsequent token until the termination condition is satisfied.
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Figure 2: Prefilling proportion during inference.
The average prompt lengths are 18409, 11214,
8209, and 4206 respectively. The average gen-
erating lengths are 12.08, 16.91, 17.10, and
61.10 respectively.

FFN

62.4%

LayerNorm

4.7%

Attention

32.9%

(a) Llama3-8B-Instruct

FFN

61.3%

LayerNorm

3.4%

Attention

35.3%

(b) Qwen2-7B-Instruct

Figure 3: Walltime proportion of the main mod-
ules in each decoder layer during prefilling. The
time proportion is averaged across all test sam-
ples in the TriviaQA dataset.

context inputs is nontrivial. We profile the prefilling and decoding time with the Qwen2-7B-Instruct
model on the NarrativeQA (Kočiský et al., 2018), MuSiQue (Trivedi et al., 2022), TriviaQA (Joshi
et al., 2017), and the RepoBench-P (Liu et al., 2023) datasets in LongBench (Bai et al., 2023b).
For example, in Figure 2, the TTFT accounts for up to 80% of inference time on the NarrativeQA
dataset, representing an obstacle to the application of LLMs in long-context scenarios.

To tackle this problem, we focus on the TTFT optimization of long-context LLM inference and
propose a novel token pruning method named FFN Token Pruning (FTP) to alleviate computational
demands in the prefilling stage. We first investigate the time proportion of the main modules (i.e.,
the self-attention, normalization, and FFN module) in each layer by conducting experiments on the
TriviaQA (Joshi et al., 2017) dataset and profiling the walltime spent on each module. As shown
in Figure 3, the FFN module consistently takes a large proportion of inference time on both the
Llama3 (AI@Meta, 2024) model and the Qwen2 (Yang et al., 2024a) model, suggesting a large
potential for TTFT acceleration by reducing the tokens involving the FFN computation.

Unlike previous token pruning methods (Xiao et al., 2024; Li et al., 2024; Zhang et al., 2023b; Yang
et al., 2024b) where tokens are directly pruned from the whole layer, FTP dynamically selects a
certain proportion of tokens with an attention-based strategy and prunes them before the inference
of FFN. For the pruned tokens, their FFN outputs are logically set to zeros vectors and they remain
identical before and after the FFN due to the residual connection. Since the attention scores typically
concentrate on a small proportion of tokens, a substantial amount of the FFN calculation can be cir-
cumvented, thereby reducing the TTFT. Furthermore, since the attention mechanism of each layer
is fully preserved, the underlying context information associated with the tokens is substantially re-
tained, leading to negligible accuracy loss. Extensive experiments on LongBench (Bai et al., 2023b)
have demonstrated that our method has a balanced performance both in speedup and accuracy.
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2 RELATED WORK

LLM inference optimization for long-context inputs has emerged as a significant area of NLP re-
search. Several prior works (Dao et al., 2022; Kwon et al., 2023; Jiang et al., 2024) directly optimize
the computing and memory footprint underlying the common operations in LLMs. In addition to
these approaches, a substantial body of work concentrate on the logical inference of the model and
optimize the inference process through two kinds of strategies: token pruning and layer skipping.

2.1 TOKEN PRUNING

Token pruning for sequence models has become a popular resesarch field before the era of LLM.
Ren et al. (2023) proposes a model architecture named SeqBoat to skip non-activated sub-modules.
Kim et al. (2022) and Guan et al. (2022) learn certain thresholds or parameterized modules to facil-
itate token pruning. For LLMs, many existing works (Liu et al., 2024; Adnan et al., 2024; Nawrot
et al., 2024; Feng et al., 2024; Dong et al., 2024) accerlate inference by dropping irrelevant tokens,
based on the observation that the attention scores are sparse in most layers. StreamingLLM (Xiao
et al., 2024) only preserves the attention sink (i.e., initial tokens) as well as the recent tokens to en-
able efficient infinite prompt requests. H2O (Zhang et al., 2023b) introduces the concept of “heavy
hitter” and evicts tokens according to the cumulative attention score. SnapKV (Li et al., 2024) votes
important previous tokens with the attention scores obtained by the “observation window”, and
prunes the unimportant ones to reduce the KV cache used in decoding. While these studies effec-
tively compress the computation and memory footprint, they mainly accelerate the decoding phase
without reducing the TTFT. On the other hand, PyramidInfer (Yang et al., 2024b) prunes tokens in
both the prefilling and decoding phase, only reserving the “pivotal context” tokens in the KV cache.
LazyLLM (Fu et al., 2024) also drops tokens from the prefilling stage and proposes an aux cache to
avoid redundant computing, enabling the model to pick any subset of the input tokens at each layer,
even if some tokens are already pruned. However, these methods either yield subtle speedup during
prefilling or defer some computation to the decoding stage. More importantly, they prioritize the
attention module and overlook the significant computation demands in the FFN module in practice,
where flash attention (Dao et al., 2022) is a prevalent choice for efficient attention computation. Our
work accelerates prefilling by pruning non-critical tokens prior to the FFN inference.

2.2 LAYER SKIPPING

Layer skipping accelerates the LLM inference by skipping the computation of some decoder layers.
LayerSkip (Elhoushi et al., 2024) proposes a layer dropout strategy and an early exit loss during
training, enabling layer skipping during inference, without a significant accuracy drop. MoD (Ra-
poso et al., 2024) learns a router to determine for a token whether to skip both the self-attention and
MLP blocks in a layer. Tyukin et al. (2024) investigates three types of layer skipping: 1) skipping
MLP layers, 2) skipping attention layers, and 3) skipping transformer blocks on the 7B and 13B
Llama2 Touvron et al. (2023) models, and observes that dropping the attention modules leads to
much lower decrease in performance than dropping the FFN modules. Although our work focuses
on reducing the computation in the FFN modules, the modules are not entirely bypassed, which
results in slight degradation in performance.

3 FTP

3.1 LLM INFERENCE PERFORMANCE ANALYSIS

The inference of common LLMs comprises two phases: prefilling and decoding. The prefilling
phase processes all prompt tokens in parallel, involving numerous GEMM operations, while the
decoding phase iteratively takes the last generated token as input and predicts the next token until
the stop condition is met.

As most existing LLMs utilize the transformer architecture, their inference process usually involves
the forward of the stack of decoder layers, each of which mainly consists of three modules: nor-
malization, self-attention and feed-forward network (FFN). As shown in Figure 3, the FFN module
takes up over 60% of walltime of each decoder layer, highlighting a clear opportunity for accel-
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Figure 4: Overview of FTP in a layer. FTP starts from the end of the self-attention module. First,
FTP obtains the attention scores from the last N queries to all keys, and sums them in the head and
query dimension (note that the head dimension is omitted in the figure) to derive the importance
score S for each token. Next, the indices R of the tokens to prune are determined via Equation 2.
Then token selection is performed based on R, and only the chosen tokens are processed through
the FFN. Finally, the FFN results (i.e., residual) are utilized to update the corresponding token as
specified by R, while the unimportant tokens are not updated during the FFN inference in this layer.

eration. Taking two commonly encountered models, Llama3 (AI@Meta, 2024) and Qwen2 (Yang
et al., 2024a), as examples, the FFN module takes the features of a sequence of L tokens T ∈ RL×C

as input, and processes them token-wisely according to the function below:

FFN(T ) = (T ′WU ⊙A(T ′WG))WD, (1)

where T ′ = Norm(T ) are the normalized features, A(·) refers to the activation fucntion (e.g.,
SiLU (Elfwing et al., 2018) in Llama3), and WD ∈ RI×C , WU ∈ RC×I , WG ∈ RC×I refers to the
Down Projection, Up Projection and Gate Projection matrices respectively. The formula indicates
that most operations of FFN take place in the large and dense matrix multiplication with the three
weight matrices, and the total FLOPs of these three matrix multiplication sum up to 6LCI (i.e.,
2LCI for one matrix multiplication). Note that other LLMs probably have slightly different FFN
architectures, but the most computationally expensive part of theirs are still the matrix multiplication,
which matches our analysis. Since both the hidden size of tokens (i.e., C) and the size of weight
matrices (i.e., C and I) are fixed in an off-the-shelf model, reducing the sequence length L emerges
as a viable strategy for FFN acceleration.

3.2 TOKEN PRUNING FOR FFN

Based on the analysis above, in this work, we propose to reduce the number of tokens before feeding
them into FFN to accelerate the prefilling stage. Let us denote the “important” and “unimportant”
sets of tokens as TI ∈ RLI×C and TU ∈ RLU×C , where LI and LU are the number of “important”
and “unimportant” tokens. As shown in Figure 4, only the “important” tokens are involved in the
FFN calculation as formulated in Equation 1, and the FFN results for the “unimportant” tokens are
logically set to zero vectors (i.e., FFN(TU ) = 0). Thanks to the residual connection surrounding
the FFN module, setting the FFN results to be zeros vectors is equivalent to bypassing the updates
in the FFN. Consequently, the FLOPs required for the FFN are reduced to 6LICI from 6LCI .

To this end, two critical questions arise: 1) how to divide the input tokens into “important” and
“unimportant” ones, and 2) how many tokens could be pruned, without causing obvious harm to the
model performance? We analyse and discuss them in the following Section 3.2.1 and Section 3.2.2.
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Figure 5: Visualization of the normalized attention weight for each layer. The experiment is con-
ducted on a Llama3-8B-Instruct model on the Qasper dataset. Since the input length is too long to
visualize, we divide the tokens into several groups with a group size of 32. Each column in the graph
represents the average attention weight of a group of tokens across all layers. More visualization of
the samples is in Appendix 6.2.

3.2.1 TOKEN PRUNING WITH ATTENTION SCORE

Token pruning is a common method to compress the input to LLM modules. Many existing
works (Li et al., 2024; Fu et al., 2024; Yang et al., 2024b) propose to evaluate the importance of
tokens with either the exact attention score matrix (i.e., softmax(QKT

√
dk

)) or an estimated one.
Inspired by these studies and the computational order of self-attention and the FFN module, we
propose to evaluate the importance of the tokens with the attention score from the current layer.

To investigate whether the attention score is suitable for token pruning for FFN, we visualize the
attention score of layers from different depths in the Llama3-8B-Instruct (AI@Meta, 2024) model.
As shown in Figure 5, we discover that 1) the attention scores in each layer are typically concentrated
on a small number of tokens; 2) tokens with high attention scores in one layer may not necessarily
be prioritized in the same manner across other layers; 3) the number of tokens with high attention
scores varies among different layers.

Based on these observations, we propose an attention-based approach to evaluate the importance
of the tokens in each layer. Let us denote the attention score matrices for all attention heads as
M = {Mh ∈ RL×L}Hh=1 = {softmax(

QhK
T
h√

dk
)}Hh=1, where H is the number of attention heads.

Since prior work (Li et al., 2024) has empirically revealed that the attention pattern obtained by the
queries at the end of the prompts is nearly consistent with that obtained by all queries, we only retain
the attention scores M′ from the last N queries to reduce overhead (i.e., M′ = {M ′

h ∈ RN×L}Hh=1).
The attention scores M′ are summed over all heads and queries to form the importance score S for
each token. Inspired by Xiao et al. (2024), we statically reserve the initial P and the last N tokens
in the prompts to maintain accuracy. These tokens are excluded from S, resulting in the length of S
being L− P −N . After that, the reserved token indices R can be calculated as

R = {i|i ∈ Z ∧ 1 <= i <= P}
∪ {i+ P |i ∈ Γ(S, k)}
∪ {i|i ∈ Z ∧ L−N < i <= L}, (2)

k = min
Σi∈Γ(S,n)Si>=ηΣiSi

n, (3)

where Γ(A, a) returns the set of indices corresponding to the top a elements in vector A. In this way,
we reserve the top k tokens such that their proportions of importance scores sums up to the reserve
ratio η, as well as the initial P and last N tokens. The pseudo-code for FTP is in Algorithm 1.

Given that the attention scores tend to concentrate on a small number of tokens, a substantial number
of tokens can be pruned in each layer even when η approaches to 1.0. More importantly, the impor-
tance score S is computed with little overhead at each layer, which alleviates the problem reflected
by the second observation. Since we use a reserved ratio η rather than a static number to determine
the number of tokens to retain, our approach is capable of handling various distributions of attention
scores in different layers, as revealed in the third observation.
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(a) Result on Qasper
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(b) Result on HotpotQA

Figure 6: The cumulative percentage of attention scores w.r.t. the normalized token length. The
experiments are conducted on the Qasper (Dasigi et al., 2021) and HotpotQA (Yang et al., 2018)
dataset with a Llama3-8B model. The results are averaged among all decoder layers and all samples.

3.2.2 TOKEN PRUNING PROPORTION

Since the number of pruned tokens is determined by the reserved ratio η in each layer, we quan-
titatively investigate the relationship between η and the number of reserved tokens by conducting
an experiment on the Qasper (Dasigi et al., 2021) and HotpotQA (Yang et al., 2018) dataset with a
Llama3-8B (AI@Meta, 2024) model. Concretely, we first derive the attention score matrices at each
layer, average the scores along the head and query dimension, and obtain the averaged attention
score for each token at each layer. Next, for each layer, we sort the tokens descendingly by their
averaged attention score. Then we uniformly divide the input length into 100 steps, and record the
cumulative percentage of attention score at each step. Finally, we average the cumulative percentage
over all layers and all samples in the dataset, and the result is depicted in Figure 6. As shown in the
result, a large proportion of attention score (i.e., 95%) is occupied by only 60% of tokens, which is
consistent with the first observation in Section 3.2.1, and suggests an opportunity for token pruning.

On the other hand, we empirically discover that shallow layers are more sensitive to our FTP (see
Section 4.6), which is consistent with the conclusions of previous works (Fu et al., 2024; Yang et al.,
2024b). However, we propose to preserve the whole layer (i.e., η = 1.0) for the first F layers, and
apply token pruning to the following layers. Thanks to the high pruning efficiency of FTP, the model
maintains a considerable overall pruning rate.

Algorithm 1 PyTorch Pseudo Code for FTP

Input: current layer index c, hidden state X , number of attention heads H , η, F , L, P and N
1: O, M = self-attention(X)
2: if c > F then
3: S = M.sum(0).sum(0)[P :−N ] # Assume M has a size of (H , L, L)
4: score, idx = sort(S, descending=True)
5: cumSum = cumsum(score)
6: threshold = cumSum[−1] ∗η
7: n = where(cumSum > threshold)[0] +1 # The first index that meets the condition
8: idx = idx[:n] + P # Select the top n indices and shift them by P
9: R = cat(arange(P), idx, arange(L−N , L))

10: residual = FFN(O[R, :])
11: O[R, :] += residual
12: else
13: residual = FFN(O)
14: O += residual
15: end if
Output: Output hidden state O

6
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Tasks Method Llama3-8B-Instruct Qwen2-7B-Instruct

Score TTFT Speedup (×) Score TTFT Speedup (×)

Single-Document QA

Baseline 37.20 1.00 39.00 1.00
LLMLingua2 29.29 0.71 30.24 0.98
PyramidInfer* 31.33 0.56 / /
PyramidInfer 32.05 1.02 29.19 1.21

Ours 36.06 1.20 38.75 1.22

Multi-Document QA

Baseline 36.85 1.00 37.48 1.00
LLMLingua2 30.43 0.72 31.38 1.10
PyramidInfer* 33.92 0.53 / /
PyramidInfer 33.43 0.97 32.86 1.19

Ours 34.85 1.21 35.21 1.26

Summarization

Baseline 26.80 1.00 26.70 1.00
LLMLingua2 23.83 0.73 23.54 1.01
PyramidInfer* 24.20 0.62 / /
PyramidInfer 24.21 1.06 22.65 1.20

Ours 24.41 1.19 25.01 1.23

Few-shot Learning

Baseline 69.33 1.00 70.17 1.00
LLMLingua2 38.73 0.82 42.88 1.08
PyramidInfer* 66.69 0.53 / /
PyramidInfer 66.37 0.97 66.10 1.24

Ours 67.55 1.21 69.11 1.25

Synthetic

Baseline 37.00 1.00 37.50 1.00
LLMLingua2 12.75 0.66 7.75 1.10
PyramidInfer* 36.00 0.50 / /
PyramidInfer 35.50 0.94 35.50 1.16

Ours 36.00 1.25 36.75 1.30

Code Completion

Baseline 55.17 1.00 58.43 1.00
LLMLingua2 31.47 0.69 37.69 0.88
PyramidInfer* 55.29 0.66 / /
PyramidInfer 55.24 1.10 56.52 1.24

Ours 35.91 1.19 56.74 1.22

Table 1: TTFT speedup and accuracy score across various long-context tasks on LongBench. The
result for each task is computed by averaging the results of datasets belonging to the task. Note that
the attention modules of all methods except for PyramidInfer* are implemented with flash attention,
which is lossless in accuracy and efficient in time and memory, while PyramidInfer* is the official
implementation with PyTorch-implemented attention. Additionally, PyramidInfer* encounters out-
of-memory issues when applied to the Qwen2 model, which has a max context length of 32k.

4 EXPERIMENTS

Datasets. We conduct experiments on the LongBench (Bai et al., 2023b) benchmark, containing
16 long-context datasets for 6 types of tasks (i.e., single-document QA, multi-document QA, sum-
marization, few-shot learning, synthetic tasks, and code completion), which provides a comprehen-
sive assessment on the long-context understanding capability of LLMs. The average context length
across the datasets ranges from 5, 000 to 15, 000, with the number of test samples in each dataset
typically being 200, except for the datasets of code completion, which contain 500 samples. We
follow the official pipeline of LongBench to pre-process the data and evaluate the models.

Metrics. We utilize two kinds of metrics to assess the quality and efficiency of the generating pro-
cess of the LLMs with our proposed FTP. The quality metric is the accuracy score from LongBench.
Since the datasets in LongBench adopt various metrics for the accuracy evaluation, the accuracy
score for each dataset is one of the following metrics: 1) F1 Score, 2) Rouge-L, 3) Accuracy, and
4) Edit Similarity. All of these metrics have a range from 0.0 to 1.0, hence we average them to
represent the accuracy score of a task. The efficiency metric is the TTFT speedup (i.e.TTFTbaseline

TTFTFTP
)

w.r.t. the baseline model (i.e., inferencing the pre-trained model with the standard process).

7
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4.1 IMPLEMENTATION DETAILS

Basic Configuration. We implement FTP on the Llama3-8B-Instruct (AI@Meta, 2024), Qwen2-
7B-Instruct (Yang et al., 2024a) and two larger models (see Section 4.5). The max context length for
Qwen2 and Llama3 are 32k and 8k respectively, and the data samples that exceed the max context
length of the models are truncated during the data pre-processing pipeline of LongBench. We set
P = 100 and N = 50 for both models. For the Llama3-8B model, we set F = 10 to preserve the
first 10 layers and η = 0.90 for the following layers. When it comes to the Qwen2-7B model, F and
η are set as 10 and 0.95 respectively. Note that FTP is free of further training and shares the same
weights with the original model. All experiments are conducted on NVIDIA A100 GPUs without
model quantization.

Attention Implementation. Our method is implemented with the transformers library (Wolf et al.,
2020) and flash attention, which is a prevalent choice in practical inference of LLMs. Given that
flash attention inherently does not return attention weights, we recalculate the necessary attention
weights to assess token importance, introducing only a negligible cost (refer to Section 4.6.1).

4.2 RESULTS ON LONGBENCH

We conduct experiments on LongBench (Bai et al., 2023b), including six long-context tasks, to
evaluate the accuracy score and TTFT speedup of our method. In addition to the baseline model, we
incorporate a state-of-the-art prompt compression method (Pan et al., 2024) for comparison, which
formulates prompt compression as a token classification problem and utilizes a transformer encoder
with a linear classification head to prune the prompt before feeding them into the LLM.

The performance for each task is calculated by averaging the results of datasets associated with
that specific task. As shown in Table 1, FTP generally presents considerable speedup across all six
long-context tasks with a negligible drop in accuracy score. Thanks to the longer context support
(i.e., 32k) of Qwen2-7B-Instruct, FTP achieves even greater speed improvements, despite applying
a higher reserved ratio η. Furthermore, LLMLingua2 (Pan et al., 2024) on both models can hardly
accelerate the pre-filling stage even with a compression ratio of 0.2.

4.3 COMPARISON WITH STATE-OF-THE-ART METHOD

We conduct a comparative analysis between FTP and PyramidInfer (Yang et al., 2024b), a state-of-
the-art method of prefilling acceleration. PyramidInfer accelerates both the prefilling and decoding
stages by compressing the KV cache with different compression rates for each layer.

We conduct experiments on the Llama3-8B-Instruct and Qwen2-7B-Instruct models, and the results
are in Table 1. We present two versions of PyramidInfer for comparison. The official implementa-
tion of PyramidInfer (denoted as PyramidInfer* in Table 1) utilizes PyTorch-implemented attention
module and fails to accelerate the prefilling stage. Furthermore, it encounters out-of-memory issues
when applied to the Qwen2 model, which has a max context length of 32k. On the other hand, we
re-implement PyramidInfer (denoted as PyramidInfer in Table 1)with flash attention and re-calculate
the necessary attention weights (i.e., 20% attention weights following the official setting) for it. At
this time, PyramidInfer gets rid of out-of-memory issues on Qwen2 model but is still slower with
more accuracy degradation than FTP in most tasks.

4.4 ACCURACY VS. TTFT SPEEDUP

The TTFT speedup of FTP can be modulated from two aspects: 1) the number of layers to which
FTP is applied, and 2) the reserved ratio η at each decoder layer. We further examine the variation of
accuracy score w.r.t. TTFT speedup by evaluating the accuracy score at various levels of inference
efficiency. We incorporate LLMLinuga-2 for comparison and adjust the prompt compression rate
to achieve different speedups. As shown in Figure 7, FTP achieves notable TTFT speedup with
negligible performance drop across various tasks, presenting an effective balance between speedup
and accuracy. Moreover, the accuracy score of FTP even surpasses that of the baseline in certain
tasks (e.g., Single-Document QA and Synthetic Task). Conversely, LLMLingua2 experiences an
evident decline in accuracy to accelerate the prefilling stage.
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Figure 7: TTFT speedup vs. accuracy comparison for Qwen2-7B-Instruct across different tasks.

4.5 FTP ON LARGER MODELS

In this section, we further investigate the effectiveness of FTP on larger LLMs and evaluate our
method on Qwen1.5-32B-Chat (Bai et al., 2023a) and Qwen2-72B-Instruct (Yang et al., 2024a),
both of which support a max context length of 32k. For the Qwen1.5-32B-Chat model, we preserve
the first F = 10 layers and set η = 0.90 for the subsequent 54 layers. For the Qwen2-72B-Instruct
model, we preserve the first F = 10 and set η = 0.93 for the following 70 layers. As shown in
Table 2, FTP facilitates a significant speedup across all tasks with a subtle impact on the accuracy
score, which indicates the potential of practical application of FTP.

We attribute this enhanced acceleration on the larger models to two primary factors. Firstly, larger
models have deeper architectures. Therefore, compared to the smaller models, more tokens can be
pruned even though the first F layers are fully preserved. Secondly, these models have up to 4× and
even 10× of weights, and they exhibit robustness on accuracy even when a substantial number of
tokens are pruned.

Tasks Method Qwen1.5-32B-Chat Qwen2-72B-Instruct

Score TTFT Speedup (×) Score TTFT Speedup (×)

Single-Document QA Baseline 40.68 1.00 43.78 1.00
Ours 37.16 1.37 41.36 1.31

Multi-Document QA Baseline 44.98 1.00 62.70 1.00
Ours 42.06 1.39 60.92 1.33

Summarization Baseline 25.91 1.00 28.32 1.00
Ours 23.78 1.37 26.80 1.32

Few-shot Learning Baseline 66.99 1.00 69.87 1.00
Ours 67.74 1.40 67.15 1.33

Synthetic Baseline 52.67 1.00 54.50 1.00
Ours 46.25 1.45 51.00 1.34

Code Completion Baseline 46.97 1.00 69.05 1.00
Ours 46.63 1.39 68.35 1.36

Table 2: TTFT speedup and accuracy on various tasks on Qwen1.5-32B and Qwen2-72B models.
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4.6 ABLATION STUDY

We conduct an ablation study of FTP on the approaches and hyper-parameters we proposed in Sec-
tion 3.2. The experiment for our token pruning strategy is in Section 4.6.1, and more analysis can
be found in Appendix 6.1.

4.6.1 TOKEN PRUNING STRATEGY

To evaluate the token pruning strategy proposed in Section 3.2.1, we replace our attention-based
strategy with a random selecting strategy and evaluate the model performance with Llama3-8B-
Instruct and Qwen2-7B-Instruct. Concretely, we first record the number of pruned tokens in each
layer for each sample in our approach, and then randomly prune the same number of tokens in the
“random” variant. As illustrated in Table 3, our attention-based strategy is crucial in determining
which tokens to prune. The model accuracy consistently suffers a significant drop across all tasks
when applied a random pruning strategy. On the other hand, the TTFT of FTP is only marginally
higher than that of the random variant, indicating that the computational cost introduced by FTP is
trivial. Specifically, the computational cost introduced by FTP on Llama3 and Qwen2 models are
7-10ms and 8-15ms respectively, accounting for only 1%-3% and 0.8%-1.9% of the TTFT.

Tasks Method Llama3-8B-Instruct Qwen2-7B-Instruct

Score TTFT (ms) Score TTFT (ms)

Single-Document QA
Baseline 37.20 574.70 39.00 1122.30
Random 11.14 469.99 20.63 907.75

Ours 36.06 480.24 38.75 923.18

Multi-Document QA
Baseline 36.85 664.80 37.48 1080.73
Random 7.56 541.11 9.82 845.63

Ours 34.85 551.23 35.21 859.11

Summarization
Baseline 26.80 526.11 26.70 797.57
Random 15.90 428.95 18.67 636.32

Ours 24.41 438.08 25.01 647.59

Few-shot Learning
Baseline 69.33 594.20 70.17 810.22
Random 21.58 481.82 33.81 630.81

Ours 67.55 489.26 69.11 641.58

Synthetic
Baseline 37.00 732.98 37.50 1235.10
Random 2.72 573.84 1.71 947.67

Ours 36.00 584.18 36.75 955.94

Code Completion
Baseline 55.17 449.45 58.43 621.11
Random 16.28 367.09 24.41 489.04

Ours 35.91 375.22 56.74 498.15

Table 3: Accuracy and TTFT comparison for Llama3-8B-Instruct and Qwen2-7B-Instruct employ-
ing random pruning strategy and our attention-based strategy. The random variant prunes the iden-
tical number of tokens at each layer as ours.

5 CONCLUSION

In this work, we explore a novel approach of prefilling acceleration by pruning tokens for FFN, and
propose the FFN Token Pruning (FTP) technique for long-context inference of LLMs, without addi-
tional training or finetuning. We start by analyzing the TTFT proportion in long-context inference of
LLMs, and profiling the time proportion of the primary components in a typical LLM layer. Observ-
ing the substantial time allocation to FFN during prefilling, we reduces FFN computation time by
“pruning” non-critical tokens with an attention-based strategy prior to FFN inference. In a addition,
FTP preserves a large amount of information of the pruned toknes through the residual connection.
Experiments on long-context datasets across various tasks indicate that FTP is capable of delivering
significant acceleration while maintaining performance.
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6 APPENDIX

6.1 ADDITIONAL ANALYSIS OF FTP

6.1.1 RESULTS ON L-EVAL

We conduct additional experients on the L-Eval (An et al., 2023) benchmark for a comprehensive
evaluation. L-Eval has two groups of tasks: closed-ended tasks and open-ended tasks. The former
group focus on evaluating an LLM’s ability of reasoning and understanding a long context, while
the latter one is more about summarization tasks for a long document. We run FTP and Pyramid-
Infer (Yang et al., 2024b) on the Llama3-8B-Instruct and Qwen2-7B-Instruct models for both tasks,
and the results are in Table 4 and Table 5 respectively.

For closed-ended tasks, FTP with the Llama3 model sustains considerable performance across half
of the datasets, and achieves a TTFT speedup comparable to PyramidInfer. When applied on Qwen2-
7B-Instruct model, FTP not only enhances the performance on the GSM (Cobbe et al., 2021) and
CodeU datasets, but also surpasses the baseline scores. Furthermore, the longer context length for
Qwen2 illustrates the acceleration of FTP during the prefilling stage, showcasing its efficiency.
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For open-ended tasks, we employ GPT4 as a judge to compare the outputs from the model with
those from GPT-3.5-turbo-16k-0613. Each pair of predictions is evaluated by GPT4 twice, with
their positions swapped after the first judgement. The number of wins and ties for the model are
recorded in Table 5. As illustrated in the results, FTP achieves higher TTFT speedup for both
models, and notably, the performance on Qwen2-7B-Instruct even surpasses that of the baseline.

Model Coursera GSM QuALITY CodeU SFiction TRL TPO Avg. SpeedUp

Llama3 Baseline 52.76 66.00 60.40 4.44 71.09 62.00 75.46 56.02 1.00
Llama3 + FTP 53.20 38.00 55.45 4.44 69.53 52.00 74.35 49.57 1.21

Llama3 + PyramidInfer 52.18 68.00 60.40 4.44 71.09 49.33 75.84 54.47 1.24

Qwen2 Baseline 68.60 24.00 65.35 7.78 73.44 47.33 81.04 52.51 1.00
Qwen2 + FTP 68.60 30.00 65.35 10.00 72.66 43.33 80.30 52.89 2.50

Qwen2 + PyramidInfer 69.77 30.00 65.35 6.67 71.88 42.67 81.04 52.48 2.01

Table 4: L-Eval results on closed-ended tasks. “TRL” stands for the “topic retrieval longchat”
dataset, and “SpeedUp” represents the TTFT speedup w.r.t. the baseline.

Model Wins Ties Win-rate (%) TTFT SpeedUp

Llama3 Baseline 50 62 42.19 1.00
Llama3 + FTP 44 67 40.36 1.19

Llama3 + PyramidInfer 49 51 38.80 1.08

Qwen2 Baseline 42 75 42.97 1.00
Qwen2 + FTP 47 69 43.58 1.21

Qwen2 + PyramidInfer 35 69 37.37 1.09

Table 5: L-Eval results on open-ended tasks. The output of models are compared with that of GPT-
3.5-turbo-16k-0613 by the judge model (i.e., GPT4).

6.1.2 NEEDLE-IN-A-HAYSTACK EVALUATION

In this section, we evaluate whether FTP results in the loss of intermediate information by conduct-
ing the Needle-in-a-Haystack (Kamradt, 2023) experiment. The Needle-in-a-Haystack test inserts
a specific statement (referred to as the “needle”) in the middle of a long-context document (the
“haystack”), and requires the LLM to retrieve this statement. For evaluation, a GPT4 (Achiam et al.,
2023) model is utilized to score the relevance between the LLM’s output and the “needle”.

We iterate the context length from 1000 to the max context length of the model, and position the
“needle” from the beginning (0.0%) to the end (100%) in steps of 10% for each context length.
The result for the Llama3-8B-Instruct and Qwen2-7B-Instruct models are presented in Figure 8.
As demonstrated in the results, the Qwen2 baseline model exhibits substantial retrieval capabilities.
Our method appears to have minimal impact on this feature, successfully retrieve the “needle” across
nearly all context lengths and depths of the “needle”. For the Llama3 model, FTP even enhances
performance as the context length approaches its limit. The results in Figure 8 suggest that FTP does
not lead to a loss, and may even reduce the loss of intermediate information.

6.1.3 THE IMPACT OF INITIAL AND THE LAST TOKENS

In this section, we tune the hyper-parameters P and N mentioned in Section 3.2.1 to analyse their
impact on model accuracy. The experiments are conducted on the Qasper (Dasigi et al., 2021)
HotpotQA (Yang et al., 2018) dataset, with a Llama3-8B-Instruct model, F = 10 and η = 0.95,
and the results are in Table 6. The results demonstrates that choosing an excessively small P or
N yields significant decrease in accuracy, although they reduce the computational overhead of FTP.
Nonetheless, an increase in P or N does not necessarily translate to improved accuracy. Moreover,
a larger N typically incurs additional computational cost and results in a reduced number of pruned
tokens given the same η.
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Figure 8: Visualization of the result of the Needle-in-a-Haystack test for Llama-3-8B-Instruct and
Qwen2-7B-Instruct with and without FTP. The x-axis represents the length of the documents and
the y-axis denotes the position of the statement “needle”. The scores are given by GPT4 (Achiam
et al., 2023) by evaluating the relevance of the model output and the “needle”.

P
N 1 10 20 50 80 100 150 200

1 34.99 43.16 43.80 42.74 41.74 42.44 43.49 42.99
10 37.25 42.44 45.34 45.11 45.14 44.90 44.89 45.40
20 37.38 42.44 45.50 45.06 44.93 45.19 44.36 44.41
50 36.77 42.67 45.40 44.75 44.61 44.95 43.73 45.03
80 37.26 43.05 44.95 45.27 45.11 44.73 45.24 43.85

100 38.13 43.44 44.81 45.75 44.92 45.46 44.94 44.39
150 37.27 43.05 44.51 44.57 45.08 45.67 45.25 45.61
200 38.46 42.87 44.78 45.00 45.38 45.43 44.88 45.01

Table 6: Accuracy score under different settings of the initial and the last reserved tokens. The
scores are averaged over Qasper and HotpotQA datasets.

6.1.4 RESERVED RATIOS

We also conduct experiments to analyse the impact of the reserved ratio η for FTP as mentioned in
Section 3.2.1. We statically reserve the first F = 10 layers and set different reserved ratios η for the
subsequent layers of the Qwen2-7B-Instruct model. The experients are conducted on LongBench
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Tasks η = 0.65 η = 0.70 η = 0.75 η = 0.80 η = 0.85 η = 0.90 η = 0.95

Single-Document QA 33.20 34.13 34.96 36.46 36.79 37.23 38.75
Multi-Document QA 29.69 30.28 30.53 32.24 34.23 34.60 35.21

Summarization 21.22 21.43 21.90 22.63 23.34 24.25 25.01
Few-shot Learning 64.13 64.29 65.17 66.08 68.20 67.34 69.11

Synthetic 25.00 29.00 31.75 33.25 35.75 34.50 36.75
Code Completion 50.22 50.92 52.35 54.14 53.97 56.08 56.74

Table 7: The accuracy score for each task in LongBench when applying different reserved ratios η
for FTP on the Qwen2-7B-Instruct model.

and the results of accuracy score and TTFT speedup are shown in Table 7 and Table 8 respectively.
As shown in the results, FTP has a considerable TTFT speedup even when η is set to 0.95, suggesting
a substantial number of tokens are pruned. More importantly, as η is progressively reduced from 0.95
to 0.65, the speedup continues to increase, but the rate of increment in speedup gradually becomes
smaller. This observation is consistent with our analysis in Section 3.2.2 and Figure 6. However, the
decrease in accuracy does not follow this pattern. Therefore, FTP can achieve an optimal balance
between accuracy and TTFT speedup when η is approximately 0.80.

Tasks η = 0.65 η = 0.70 η = 0.75 η = 0.80 η = 0.85 η = 0.90 η = 0.95

Single-Document QA 1.49 1.47 1.45 1.41 1.37 1.32 1.22
Multi-Document QA 1.54 1.52 1.49 1.46 1.42 1.36 1.26

Summarization 1.48 1.46 1.44 1.41 1.37 1.31 1.23
Few-shot Learning 1.50 1.48 1.46 1.43 1.40 1.35 1.25

Synthetic 1.55 1.54 1.52 1.50 1.46 1.40 1.30
Code Completion 1.48 1.45 1.44 1.41 1.37 1.32 1.22

Table 8: The TTFT speedup (×) for each task in LongBench when applying different reserved ratio
η for FTP on the Qwen2-7B-Instruct model.

6.1.5 RESERVED LAYERS

In this section, we explore the impact of reserving shallow layers as mentioned in Section 3.2.2.
We set different F to reserve different numbers of shallow layers and fix η to 0.90 for the following
layers of Qwen2-7B-Instruct when applying FTP. The experiments are conducted on LongBench and
the results of accuracy score and TTFT speedup are presented in Table 9 and Table 10 respectively.
As shown in the results, the accuracy score increases as more shallow layers of the model are fully
reserved. However, some certain tasks (e.g., Few-Shot Learning and Synthetic) exhibit little changes
in accuracy score or even demonstrate an increase in accuracy when F is incremented from 5 to 10.
In general, the TTFT speedup increases as we decrease F . However, there is an anomalous decline
in speedup when F is reduced from 10 to 9. This anomaly could be explained by a change to the
distribution of attention weights to a more uniform pattern at F = 9 compared to F = 10, resulting
in a decrease in the number of pruned tokens.

Tasks F = 4 F = 5 F = 6 F = 7 F = 8 F = 9 F = 10

Single-Document QA 33.70 33.99 36.00 35.73 36.56 36.81 37.23
Multi-Document QA 31.68 31.72 32.44 32.65 32.23 33.30 34.60

Summarization 22.24 22.61 22.69 22.95 23.38 23.78 24.25
Few-shot Learning 65.67 67.38 67.74 67.82 67.32 67.38 67.34

Synthetic 32.25 35.75 34.50 33.25 38.00 36.25 34.50
Code Completion 52.98 53.20 53.93 54.70 54.79 55.82 56.08

Table 9: The accuracy score for each task in LongBench when reserving different numbers of shal-
low layers for FTP on the Qwen2-7B-Instruct model.
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Tasks F = 4 F = 5 F = 6 F = 7 F = 8 F = 9 F = 10

Single-Document QA 1.42 1.40 1.39 1.37 1.35 1.30 1.32
Multi-Document QA 1.47 1.45 1.43 1.42 1.40 1.35 1.36

Summarization 1.42 1.41 1.39 1.37 1.36 1.30 1.31
Few-shot Learning 1.47 1.44 1.42 1.41 1.39 1.34 1.35

Synthetic 1.51 1.50 1.48 1.47 1.45 1.40 1.40
Code Completion 1.42 1.41 1.39 1.37 1.36 1.30 1.32

Table 10: The TTFT speedup (×) for each task in LongBench when reserving different numbers of
shallow layers for FTP on the Qwen2-7B-Instruct model.

6.2 ADDITIONAL VISUALIZATION OF ATTENTION WEIGHTS

To illustrate the generalizability of our findings discussed in Section 3.2.1, we visualize the attention
weights of more samples from the Qasper (Dasigi et al., 2021) dataset, as presented in Figure 9.
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Figure 9: Additional visualization of the normalized attention weight for each layer. The experiment
is conducted on a Llama3-8B-Instruct model on the Qasper dataset. Since the input length is too
long to visualize, we divide the tokens into several groups with a group size of 32. Each column in
the graph represents the average attention weight of a group of tokens across all layers.
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