
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FTP: EFFICIENT PREFILLING FOR LONG-CONTEXT
LLM INFERENCE VIA FFN TOKEN PRUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have demonstrated remarkable performance
across various NLP tasks, and have extended their capability to long-context sce-
narios. However, the increasing context length leads to longer inference time in
both the prefilling and decoding stages. Existing token pruning methods primarily
evict tokens to compress the KV cache, and only accelerate the decoding stage.
Recent studies have extended token pruning to both stages, but they either yield
subtle speedup during the prefilling stage or defer a portion of computations to the
decoding phase. Critically, these approaches prioritize the attention module, over-
looking the significant computations in the Feed-Forward Network (FFN) module.
In this work, we focus on the prefilling stage and propose a novel token pruning
method named FTP for long-context LLM inference. Our approach is based on
the observation that the FFN module accounts for over 60% of the inference time.
FTP reduces this by pruning non-critical tokens before the inference of FFN. The
importance of each token, along with the quantity to be pruned, are dynamically
determined by the attention scores in each layer. Unlike previous token pruning
methods, FTP preserves a substantial amount of information of the pruned tokens
through the residual connection, thereby achieving a notable speedup with only
a negligible decrease in performance. Specifically, the Qwen2-7B-Instruct model
with FTP achieves a speedup of 1.24× in the prefilling stage with only a 1.30%
performance drop compared to the baseline model. The speedup is further boosted
to 1.39× on a Qwen1.5-32B-Chat model. Extensive experiments on long-context
datasets across various tasks demonstrate the potential and effectiveness of FTP.

1 INTRODUCTION

Large language models (LLMs) have shown remarkable performance in a wide range of natural
language processing applications, including summarization, question-and-answer, dialogue systems,
and contextual learning (Thoppilan et al., 2022; Yuan et al., 2022; Wei et al., 2022; Zhang et al.,
2023a). Recently, long-context models have emerged as an important trend in the development of
LLMs, and several of them have already been launched to process complex and long prompts. For
example, GPT4 (Achiam et al., 2023) and Qwen2 (Yang et al., 2024a) are both capable of 128k
context length, and Claude-3 (Anthropic, 2024) can even process up to 200k tokens.

Given the advantages of long-context models, they nevertheless pose enormous challenges at in-
ference time. As depicted in Figure 1, the inference of transformer-based LLMs with a KV cache
typically consists of two stages: 1) the prefilling stage, which applies the self-attention, normaliza-
tion, and the Feed-Forward Network (FFN) modules to all input token parallelly, records the key and
value in the KV cache, and finally produces the first generated token. 2) the decoding stage, which
takes the last generated token as input and iteratively predicts the next token with the input and the
KV cache. We refer to the time spent in the prefilling stage as time to first token (TTFT).

While there have been various methods trying to reduce the inference time of long-context LLMs
by pruning the input prompt (Jiang et al., 2023b;a; Pan et al., 2024), compressing the KV cache (Li
et al., 2024; Zandieh et al., 2024), improving the efficiency of decoding (Leviathan et al., 2022; Sun
et al., 2023; Chen et al., 2023), and optimizing the attention kernel with sparse computation (Jiang
et al., 2024), few works (Yang et al., 2024b; Fu et al., 2024) place attention to the reduction of TTFT.
However, the computationally intensive nature of the prefilling stage implies that the TTFT for long-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

...

LLM

 Prefilling 

LLM LLM LLM

 Generation Steps 

 Decoding 

Figure 1: An illustration of the typical inference process of a transformer-based LLM with a KV
cache. The first stage is called prefilling, which processes all input tokens in parallel and yields the
first output token. The second stage is called decoding, which iteratively takes the latest generated
token as input and generates the subsequent token until the termination condition is satisfied.

NarrativeQA MuSiQue TriviaQA RepoBench-P
Dataset

0

500

1000

1500

2000

2500

3000

3500

4000

M
ea

n 
In

fe
re

nc
e 

Ti
m

e 
(m

s)

79.84%

63.87%
56.56% 23.71%

Prefilling Time
Decoding Time

Figure 2: Prefilling proportion during inference.
The average prompt lengths are 18409, 11214,
8209, and 4206 respectively. The average gen-
erating lengths are 12.08, 16.91, 17.10, and
61.10 respectively.

FFN

62.4%

LayerNorm

4.7%

Attention

32.9%

(a) Llama3-8B-Instruct

FFN

61.3%

LayerNorm

3.4%

Attention

35.3%

(b) Qwen2-7B-Instruct

Figure 3: Walltime proportion of the main mod-
ules in each decoder layer during prefilling. The
time proportion is averaged across all test sam-
ples in the TriviaQA dataset.

context inputs is nontrivial. We profile the prefilling and decoding time with the Qwen2-7B-Instruct
model on the NarrativeQA (Kočiský et al., 2018), MuSiQue (Trivedi et al., 2022), TriviaQA (Joshi
et al., 2017), and the RepoBench-P (Liu et al., 2023) datasets in LongBench (Bai et al., 2023b).
For example, in Figure 2, the TTFT accounts for up to 80% of inference time on the NarrativeQA
dataset, representing an obstacle to the application of LLMs in long-context scenarios.

To tackle this problem, we focus on the TTFT optimization of long-context LLM inference and
propose a novel token pruning method named FFN Token Pruning (FTP) to alleviate computational
demands in the prefilling stage. We first investigate the time proportion of the main modules (i.e.,
the self-attention, normalization, and FFN module) in each layer by conducting experiments on the
TriviaQA (Joshi et al., 2017) dataset and profiling the walltime spent on each module. As shown
in Figure 3, the FFN module consistently takes a large proportion of inference time on both the
Llama3 (AI@Meta, 2024) model and the Qwen2 (Yang et al., 2024a) model, suggesting a large
potential for TTFT acceleration by reducing the tokens involving the FFN computation.

Unlike previous token pruning methods (Xiao et al., 2024; Li et al., 2024; Zhang et al., 2023b; Yang
et al., 2024b) where tokens are directly pruned from the whole layer, FTP dynamically selects a
certain proportion of tokens with an attention-based strategy and prunes them before the inference
of FFN. For the pruned tokens, their FFN outputs are logically set to zeros vectors and they remain
identical before and after the FFN due to the residual connection. Since the attention scores typically
concentrate on a small proportion of tokens, a substantial amount of the FFN calculation can be cir-
cumvented, thereby reducing the TTFT. Furthermore, since the attention mechanism of each layer
is fully preserved, the underlying context information associated with the tokens is substantially re-
tained, leading to negligible accuracy loss. Extensive experiments on LongBench (Bai et al., 2023b)
have demonstrated that our method has a balanced performance both in speedup and accuracy.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

LLM inference optimization for long-context inputs has emerged as a significant area of NLP re-
search. Several prior works (Dao et al., 2022; Kwon et al., 2023; Jiang et al., 2024) directly optimize
the computing and memory footprint underlying the common operations in LLMs. In addition to
these approaches, a substantial body of work concentrate on the logical inference of the model and
optimize the inference process through two kinds of strategies: token pruning and layer skipping.

2.1 TOKEN PRUNING

Token pruning for sequence models has become a popular resesarch field before the era of LLM.
Ren et al. (2023) proposes a model architecture named SeqBoat to skip non-activated sub-modules.
Kim et al. (2022) and Guan et al. (2022) learn certain thresholds or parameterized modules to facil-
itate token pruning. For LLMs, many existing works (Liu et al., 2024; Adnan et al., 2024; Nawrot
et al., 2024; Feng et al., 2024; Dong et al., 2024) accerlate inference by dropping irrelevant tokens,
based on the observation that the attention scores are sparse in most layers. StreamingLLM (Xiao
et al., 2024) only preserves the attention sink (i.e., initial tokens) as well as the recent tokens to en-
able efficient infinite prompt requests. H2O (Zhang et al., 2023b) introduces the concept of “heavy
hitter” and evicts tokens according to the cumulative attention score. SnapKV (Li et al., 2024) votes
important previous tokens with the attention scores obtained by the “observation window”, and
prunes the unimportant ones to reduce the KV cache used in decoding. While these studies effec-
tively compress the computation and memory footprint, they mainly accelerate the decoding phase
without reducing the TTFT. On the other hand, PyramidInfer (Yang et al., 2024b) prunes tokens in
both the prefilling and decoding phase, only reserving the “pivotal context” tokens in the KV cache.
LazyLLM (Fu et al., 2024) also drops tokens from the prefilling stage and proposes an aux cache to
avoid redundant computing, enabling the model to pick any subset of the input tokens at each layer,
even if some tokens are already pruned. However, these methods either yield subtle speedup during
prefilling or defer some computation to the decoding stage. More importantly, they prioritize the
attention module and overlook the significant computation demands in the FFN module in practice,
where flash attention (Dao et al., 2022) is a prevalent choice for efficient attention computation. Our
work accelerates prefilling by pruning non-critical tokens prior to the FFN inference.

2.2 LAYER SKIPPING

Layer skipping accelerates the LLM inference by skipping the computation of some decoder layers.
LayerSkip (Elhoushi et al., 2024) proposes a layer dropout strategy and an early exit loss during
training, enabling layer skipping during inference, without a significant accuracy drop. MoD (Ra-
poso et al., 2024) learns a router to determine for a token whether to skip both the self-attention and
MLP blocks in a layer. Tyukin et al. (2024) investigates three types of layer skipping: 1) skipping
MLP layers, 2) skipping attention layers, and 3) skipping transformer blocks on the 7B and 13B
Llama2 Touvron et al. (2023) models, and observes that dropping the attention modules leads to
much lower decrease in performance than dropping the FFN modules. Although our work focuses
on reducing the computation in the FFN modules, the modules are not entirely bypassed, which
results in slight degradation in performance.

3 FTP

3.1 LLM INFERENCE PERFORMANCE ANALYSIS

The inference of common LLMs comprises two phases: prefilling and decoding. The prefilling
phase processes all prompt tokens in parallel, involving numerous GEMM operations, while the
decoding phase iteratively takes the last generated token as input and predicts the next token until
the stop condition is met.

As most existing LLMs utilize the transformer architecture, their inference process usually involves
the forward of the stack of decoder layers, each of which mainly consists of three modules: nor-
malization, self-attention and feed-forward network (FFN). As shown in Figure 3, the FFN module
takes up over 60% of walltime of each decoder layer, highlighting a clear opportunity for accel-

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

SUM

Masked
Attention Scores

Per Token
Importance

Reserved Token
Indices

Hidden States

All Tokens

Select By Indices
0
1
5
7

Compressed
Hidden States

Up_Proj

Gate_ProjActivation

Down_Proj

3
4

6

2

7

5

0
1

Residual

7

0
1
5

7

0
1
5

3
4

6

0

2
1

7

5

Update By Indices

3
4

6

0

2
1

7

5

Updated
Hidden States

Feed-Forward Network

N

Figure 4: Overview of FTP in a layer. FTP starts from the end of the self-attention module. First,
FTP obtains the attention scores from the last N queries to all keys, and sums them in the head and
query dimension (note that the head dimension is omitted in the figure) to derive the importance
score S for each token. Next, the indices R of the tokens to prune are determined via Equation 2.
Then token selection is performed based on R, and only the chosen tokens are processed through
the FFN. Finally, the FFN results (i.e., residual) are utilized to update the corresponding token as
specified by R, while the unimportant tokens are not updated during the FFN inference in this layer.

eration. Taking two commonly encountered models, Llama3 (AI@Meta, 2024) and Qwen2 (Yang
et al., 2024a), as examples, the FFN module takes the features of a sequence of L tokens T ∈ RL×C

as input, and processes them token-wisely according to the function below:

FFN(T ) = (T ′WU ⊙A(T ′WG))WD, (1)

where T ′ = Norm(T ) are the normalized features, A(·) refers to the activation fucntion (e.g.,
SiLU (Elfwing et al., 2018) in Llama3), and WD ∈ RI×C , WU ∈ RC×I , WG ∈ RC×I refers to the
Down Projection, Up Projection and Gate Projection matrices respectively. The formula indicates
that most operations of FFN take place in the large and dense matrix multiplication with the three
weight matrices, and the total FLOPs of these three matrix multiplication sum up to 6LCI (i.e.,
2LCI for one matrix multiplication). Note that other LLMs probably have slightly different FFN
architectures, but the most computationally expensive part of theirs are still the matrix multiplication,
which matches our analysis. Since both the hidden size of tokens (i.e., C) and the size of weight
matrices (i.e., C and I) are fixed in an off-the-shelf model, reducing the sequence length L emerges
as a viable strategy for FFN acceleration.

3.2 TOKEN PRUNING FOR FFN

Based on the analysis above, in this work, we propose to reduce the number of tokens before feeding
them into FFN to accelerate the prefilling stage. Let us denote the “important” and “unimportant”
sets of tokens as TI ∈ RLI×C and TU ∈ RLU×C , where LI and LU are the number of “important”
and “unimportant” tokens. As shown in Figure 4, only the “important” tokens are involved in the
FFN calculation as formulated in Equation 1, and the FFN results for the “unimportant” tokens are
logically set to zero vectors (i.e., FFN(TU ) = 0). Thanks to the residual connection surrounding
the FFN module, setting the FFN results to be zeros vectors is equivalent to bypassing the updates
in the FFN. Consequently, the FLOPs required for the FFN are reduced to 6LICI from 6LCI .

To this end, two critical questions arise: 1) how to divide the input tokens into “important” and
“unimportant” ones, and 2) how many tokens could be pruned, without causing obvious harm to the
model performance? We analyse and discuss them in the following Section 3.2.1 and Section 3.2.2.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100
Token Position

0
5

10
15
20
25
30

La
ye

r I
nd

ex

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Attention Weight

(a) Sample 1

0 20 40 60 80 100
Token Position

0
5

10
15
20
25
30

La
ye

r I
nd

ex

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Attention Weight

(b) Sample 2

Figure 5: Visualization of the normalized attention weight for each layer. The experiment is con-
ducted on a Llama3-8B-Instruct model on the Qasper dataset. Since the input length is too long to
visualize, we divide the tokens into several groups with a group size of 32. Each column in the graph
represents the average attention weight of a group of tokens across all layers. More visualization of
the samples is in Appendix 6.2.

3.2.1 TOKEN PRUNING WITH ATTENTION SCORE

Token pruning is a common method to compress the input to LLM modules. Many existing
works (Li et al., 2024; Fu et al., 2024; Yang et al., 2024b) propose to evaluate the importance of
tokens with either the exact attention score matrix (i.e., softmax(QKT

√
dk

)) or an estimated one.
Inspired by these studies and the computational order of self-attention and the FFN module, we
propose to evaluate the importance of the tokens with the attention score from the current layer.

To investigate whether the attention score is suitable for token pruning for FFN, we visualize the
attention score of layers from different depths in the Llama3-8B-Instruct (AI@Meta, 2024) model.
As shown in Figure 5, we discover that 1) the attention scores in each layer are typically concentrated
on a small number of tokens; 2) tokens with high attention scores in one layer may not necessarily
be prioritized in the same manner across other layers; 3) the number of tokens with high attention
scores varies among different layers.

Based on these observations, we propose an attention-based approach to evaluate the importance
of the tokens in each layer. Let us denote the attention score matrices for all attention heads as
M = {Mh ∈ RL×L}Hh=1 = {softmax(

QhK
T
h√

dk
)}Hh=1, where H is the number of attention heads.

Since prior work (Li et al., 2024) has empirically revealed that the attention pattern obtained by the
queries at the end of the prompts is nearly consistent with that obtained by all queries, we only retain
the attention scores M′ from the last N queries to reduce overhead (i.e., M′ = {M ′

h ∈ RN×L}Hh=1).
The attention scores M′ are summed over all heads and queries to form the importance score S for
each token. Inspired by Xiao et al. (2024), we statically reserve the initial P and the last N tokens
in the prompts to maintain accuracy. These tokens are excluded from S, resulting in the length of S
being L− P −N . After that, the reserved token indices R can be calculated as

R = {i|i ∈ Z ∧ 1 <= i <= P}
∪ {i+ P |i ∈ Γ(S, k)}
∪ {i|i ∈ Z ∧ L−N < i <= L}, (2)

k = min
Σi∈Γ(S,n)Si>=ηΣiSi

n, (3)

where Γ(A, a) returns the set of indices corresponding to the top a elements in vector A. In this way,
we reserve the top k tokens such that their proportions of importance scores sums up to the reserve
ratio η, as well as the initial P and last N tokens. The pseudo-code for FTP is in Algorithm 1.

Given that the attention scores tend to concentrate on a small number of tokens, a substantial number
of tokens can be pruned in each layer even when η approaches to 1.0. More importantly, the impor-
tance score S is computed with little overhead at each layer, which alleviates the problem reflected
by the second observation. Since we use a reserved ratio η rather than a static number to determine
the number of tokens to retain, our approach is capable of handling various distributions of attention
scores in different layers, as revealed in the third observation.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

0 10 20 30 40 50 60 70 80 90 100
Normalized Token Length (%)

0

10

20

30

40

50

60

70

80

90

100

C
um

m
ul

at
iv

e 
Su

m
 P

er
ce

nt
ag

e 
(%

)

(a) Result on Qasper

0 10 20 30 40 50 60 70 80 90 100
Normalized Token Length (%)

0

10

20

30

40

50

60

70

80

90

100

C
um

m
ul

at
iv

e 
Su

m
 P

er
ce

nt
ag

e 
(%

)

(b) Result on HotpotQA

Figure 6: The cumulative percentage of attention scores w.r.t. the normalized token length. The
experiments are conducted on the Qasper (Dasigi et al., 2021) and HotpotQA (Yang et al., 2018)
dataset with a Llama3-8B model. The results are averaged among all decoder layers and all samples.

3.2.2 TOKEN PRUNING PROPORTION

Since the number of pruned tokens is determined by the reserved ratio η in each layer, we quan-
titatively investigate the relationship between η and the number of reserved tokens by conducting
an experiment on the Qasper (Dasigi et al., 2021) and HotpotQA (Yang et al., 2018) dataset with a
Llama3-8B (AI@Meta, 2024) model. Concretely, we first derive the attention score matrices at each
layer, average the scores along the head and query dimension, and obtain the averaged attention
score for each token at each layer. Next, for each layer, we sort the tokens descendingly by their
averaged attention score. Then we uniformly divide the input length into 100 steps, and record the
cumulative percentage of attention score at each step. Finally, we average the cumulative percentage
over all layers and all samples in the dataset, and the result is depicted in Figure 6. As shown in the
result, a large proportion of attention score (i.e., 95%) is occupied by only 60% of tokens, which is
consistent with the first observation in Section 3.2.1, and suggests an opportunity for token pruning.

On the other hand, we empirically discover that shallow layers are more sensitive to our FTP (see
Section 4.6), which is consistent with the conclusions of previous works (Fu et al., 2024; Yang et al.,
2024b). However, we propose to preserve the whole layer (i.e., η = 1.0) for the first F layers, and
apply token pruning to the following layers. Thanks to the high pruning efficiency of FTP, the model
maintains a considerable overall pruning rate.

Algorithm 1 PyTorch Pseudo Code for FTP

Input: current layer index c, hidden state X , number of attention heads H , η, F , L, P and N
1: O, M = self-attention(X)
2: if c > F then
3: S = M.sum(0).sum(0)[P :−N ] # Assume M has a size of (H , L, L)
4: score, idx = sort(S, descending=True)
5: cumSum = cumsum(score)
6: threshold = cumSum[−1] ∗η
7: n = where(cumSum > threshold)[0] +1 # The first index that meets the condition
8: idx = idx[:n] + P # Select the top n indices and shift them by P
9: R = cat(arange(P), idx, arange(L−N , L))

10: residual = FFN(O[R, :])
11: O[R, :] += residual
12: else
13: residual = FFN(O)
14: O += residual
15: end if
Output: Output hidden state O

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Tasks Method Llama3-8B-Instruct Qwen2-7B-Instruct

Score TTFT Speedup (×) Score TTFT Speedup (×)

Single-Document QA

Baseline 37.20 1.00 39.00 1.00
LLMLingua2 29.29 0.71 30.24 0.98
PyramidInfer* 31.33 0.56 / /
PyramidInfer 32.05 1.02 29.19 1.21

Ours 36.06 1.20 38.75 1.22

Multi-Document QA

Baseline 36.85 1.00 37.48 1.00
LLMLingua2 30.43 0.72 31.38 1.10
PyramidInfer* 33.92 0.53 / /
PyramidInfer 33.43 0.97 32.86 1.19

Ours 34.85 1.21 35.21 1.26

Summarization

Baseline 26.80 1.00 26.70 1.00
LLMLingua2 23.83 0.73 23.54 1.01
PyramidInfer* 24.20 0.62 / /
PyramidInfer 24.21 1.06 22.65 1.20

Ours 24.41 1.19 25.01 1.23

Few-shot Learning

Baseline 69.33 1.00 70.17 1.00
LLMLingua2 38.73 0.82 42.88 1.08
PyramidInfer* 66.69 0.53 / /
PyramidInfer 66.37 0.97 66.10 1.24

Ours 67.55 1.21 69.11 1.25

Synthetic

Baseline 37.00 1.00 37.50 1.00
LLMLingua2 12.75 0.66 7.75 1.10
PyramidInfer* 36.00 0.50 / /
PyramidInfer 35.50 0.94 35.50 1.16

Ours 36.00 1.25 36.75 1.30

Code Completion

Baseline 55.17 1.00 58.43 1.00
LLMLingua2 31.47 0.69 37.69 0.88
PyramidInfer* 55.29 0.66 / /
PyramidInfer 55.24 1.10 56.52 1.24

Ours 35.91 1.19 56.74 1.22

Table 1: TTFT speedup and accuracy score across various long-context tasks on LongBench. The
result for each task is computed by averaging the results of datasets belonging to the task. Note that
the attention modules of all methods except for PyramidInfer* are implemented with flash attention,
which is lossless in accuracy and efficient in time and memory, while PyramidInfer* is the official
implementation with PyTorch-implemented attention. Additionally, PyramidInfer* encounters out-
of-memory issues when applied to the Qwen2 model, which has a max context length of 32k.

4 EXPERIMENTS

Datasets. We conduct experiments on the LongBench (Bai et al., 2023b) benchmark, containing
16 long-context datasets for 6 types of tasks (i.e., single-document QA, multi-document QA, sum-
marization, few-shot learning, synthetic tasks, and code completion), which provides a comprehen-
sive assessment on the long-context understanding capability of LLMs. The average context length
across the datasets ranges from 5, 000 to 15, 000, with the number of test samples in each dataset
typically being 200, except for the datasets of code completion, which contain 500 samples. We
follow the official pipeline of LongBench to pre-process the data and evaluate the models.

Metrics. We utilize two kinds of metrics to assess the quality and efficiency of the generating pro-
cess of the LLMs with our proposed FTP. The quality metric is the accuracy score from LongBench.
Since the datasets in LongBench adopt various metrics for the accuracy evaluation, the accuracy
score for each dataset is one of the following metrics: 1) F1 Score, 2) Rouge-L, 3) Accuracy, and
4) Edit Similarity. All of these metrics have a range from 0.0 to 1.0, hence we average them to
represent the accuracy score of a task. The efficiency metric is the TTFT speedup (i.e.TTFTbaseline

TTFTFTP
)

w.r.t. the baseline model (i.e., inferencing the pre-trained model with the standard process).

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4.1 IMPLEMENTATION DETAILS

Basic Configuration. We implement FTP on the Llama3-8B-Instruct (AI@Meta, 2024), Qwen2-
7B-Instruct (Yang et al., 2024a) and two larger models (see Section 4.5). The max context length for
Qwen2 and Llama3 are 32k and 8k respectively, and the data samples that exceed the max context
length of the models are truncated during the data pre-processing pipeline of LongBench. We set
P = 100 and N = 50 for both models. For the Llama3-8B model, we set F = 10 to preserve the
first 10 layers and η = 0.90 for the following layers. When it comes to the Qwen2-7B model, F and
η are set as 10 and 0.95 respectively. Note that FTP is free of further training and shares the same
weights with the original model. All experiments are conducted on NVIDIA A100 GPUs without
model quantization.

Attention Implementation. Our method is implemented with the transformers library (Wolf et al.,
2020) and flash attention, which is a prevalent choice in practical inference of LLMs. Given that
flash attention inherently does not return attention weights, we recalculate the necessary attention
weights to assess token importance, introducing only a negligible cost (refer to Section 4.6.1).

4.2 RESULTS ON LONGBENCH

We conduct experiments on LongBench (Bai et al., 2023b), including six long-context tasks, to
evaluate the accuracy score and TTFT speedup of our method. In addition to the baseline model, we
incorporate a state-of-the-art prompt compression method (Pan et al., 2024) for comparison, which
formulates prompt compression as a token classification problem and utilizes a transformer encoder
with a linear classification head to prune the prompt before feeding them into the LLM.

The performance for each task is calculated by averaging the results of datasets associated with
that specific task. As shown in Table 1, FTP generally presents considerable speedup across all six
long-context tasks with a negligible drop in accuracy score. Thanks to the longer context support
(i.e., 32k) of Qwen2-7B-Instruct, FTP achieves even greater speed improvements, despite applying
a higher reserved ratio η. Furthermore, LLMLingua2 (Pan et al., 2024) on both models can hardly
accelerate the pre-filling stage even with a compression ratio of 0.2.

4.3 COMPARISON WITH STATE-OF-THE-ART METHOD

We conduct a comparative analysis between FTP and PyramidInfer (Yang et al., 2024b), a state-of-
the-art method of prefilling acceleration. PyramidInfer accelerates both the prefilling and decoding
stages by compressing the KV cache with different compression rates for each layer.

We conduct experiments on the Llama3-8B-Instruct and Qwen2-7B-Instruct models, and the results
are in Table 1. We present two versions of PyramidInfer for comparison. The official implementa-
tion of PyramidInfer (denoted as PyramidInfer* in Table 1) utilizes PyTorch-implemented attention
module and fails to accelerate the prefilling stage. Furthermore, it encounters out-of-memory issues
when applied to the Qwen2 model, which has a max context length of 32k. On the other hand, we
re-implement PyramidInfer (denoted as PyramidInfer in Table 1)with flash attention and re-calculate
the necessary attention weights (i.e., 20% attention weights following the official setting) for it. At
this time, PyramidInfer gets rid of out-of-memory issues on Qwen2 model but is still slower with
more accuracy degradation than FTP in most tasks.

4.4 ACCURACY VS. TTFT SPEEDUP

The TTFT speedup of FTP can be modulated from two aspects: 1) the number of layers to which
FTP is applied, and 2) the reserved ratio η at each decoder layer. We further examine the variation of
accuracy score w.r.t. TTFT speedup by evaluating the accuracy score at various levels of inference
efficiency. We incorporate LLMLinuga-2 for comparison and adjust the prompt compression rate
to achieve different speedups. As shown in Figure 7, FTP achieves notable TTFT speedup with
negligible performance drop across various tasks, presenting an effective balance between speedup
and accuracy. Moreover, the accuracy score of FTP even surpasses that of the baseline in certain
tasks (e.g., Single-Document QA and Synthetic Task). Conversely, LLMLingua2 experiences an
evident decline in accuracy to accelerate the prefilling stage.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
Speedup (×)

0

20

40

60

80

100

120

R
el

at
iv

e 
Sc

or
e 

w
.r.

t. 
B

as
el

in
e 

(%
)

Single-Document QA

Baseline
Ours
Llmlingua

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
Speedup (×)

0

20

40

60

80

100

120

R
el

at
iv

e 
Sc

or
e 

w
.r.

t. 
B

as
el

in
e 

(%
)

Multi-Document QA

Baseline
Ours
Llmlingua

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
Speedup (×)

0

20

40

60

80

100

120

R
el

at
iv

e 
Sc

or
e 

w
.r.

t. 
B

as
el

in
e 

(%
)

Summarization

Baseline
Ours
Llmlingua

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
Speedup (×)

0

20

40

60

80

100

120

R
el

at
iv

e 
Sc

or
e 

w
.r.

t. 
B

as
el

in
e 

(%
)

Few-shot Learning

Baseline
Ours
Llmlingua

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
Speedup (×)

0

20

40

60

80

100

120

R
el

at
iv

e 
Sc

or
e 

w
.r.

t. 
B

as
el

in
e 

(%
)

Synthetic Task

Baseline
Ours
Llmlingua

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
Speedup (×)

0

20

40

60

80

100

120

R
el

at
iv

e 
Sc

or
e 

w
.r.

t. 
B

as
el

in
e 

(%
)

Code Completion

Baseline
Ours
Llmlingua

Figure 7: TTFT speedup vs. accuracy comparison for Qwen2-7B-Instruct across different tasks.

4.5 FTP ON LARGER MODELS

In this section, we further investigate the effectiveness of FTP on larger LLMs and evaluate our
method on Qwen1.5-32B-Chat (Bai et al., 2023a) and Qwen2-72B-Instruct (Yang et al., 2024a),
both of which support a max context length of 32k. For the Qwen1.5-32B-Chat model, we preserve
the first F = 10 layers and set η = 0.90 for the subsequent 54 layers. For the Qwen2-72B-Instruct
model, we preserve the first F = 10 and set η = 0.93 for the following 70 layers. As shown in
Table 2, FTP facilitates a significant speedup across all tasks with a subtle impact on the accuracy
score, which indicates the potential of practical application of FTP.

We attribute this enhanced acceleration on the larger models to two primary factors. Firstly, larger
models have deeper architectures. Therefore, compared to the smaller models, more tokens can be
pruned even though the first F layers are fully preserved. Secondly, these models have up to 4× and
even 10× of weights, and they exhibit robustness on accuracy even when a substantial number of
tokens are pruned.

Tasks Method Qwen1.5-32B-Chat Qwen2-72B-Instruct

Score TTFT Speedup (×) Score TTFT Speedup (×)

Single-Document QA Baseline 40.68 1.00 43.78 1.00
Ours 37.16 1.37 41.36 1.31

Multi-Document QA Baseline 44.98 1.00 62.70 1.00
Ours 42.06 1.39 60.92 1.33

Summarization Baseline 25.91 1.00 28.32 1.00
Ours 23.78 1.37 26.80 1.32

Few-shot Learning Baseline 66.99 1.00 69.87 1.00
Ours 67.74 1.40 67.15 1.33

Synthetic Baseline 52.67 1.00 54.50 1.00
Ours 46.25 1.45 51.00 1.34

Code Completion Baseline 46.97 1.00 69.05 1.00
Ours 46.63 1.39 68.35 1.36

Table 2: TTFT speedup and accuracy on various tasks on Qwen1.5-32B and Qwen2-72B models.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

4.6 ABLATION STUDY

We conduct an ablation study of FTP on the approaches and hyper-parameters we proposed in Sec-
tion 3.2. The experiment for our token pruning strategy is in Section 4.6.1, and more analysis can
be found in Appendix 6.1.

4.6.1 TOKEN PRUNING STRATEGY

To evaluate the token pruning strategy proposed in Section 3.2.1, we replace our attention-based
strategy with a random selecting strategy and evaluate the model performance with Llama3-8B-
Instruct and Qwen2-7B-Instruct. Concretely, we first record the number of pruned tokens in each
layer for each sample in our approach, and then randomly prune the same number of tokens in the
“random” variant. As illustrated in Table 3, our attention-based strategy is crucial in determining
which tokens to prune. The model accuracy consistently suffers a significant drop across all tasks
when applied a random pruning strategy. On the other hand, the TTFT of FTP is only marginally
higher than that of the random variant, indicating that the computational cost introduced by FTP is
trivial. Specifically, the computational cost introduced by FTP on Llama3 and Qwen2 models are
7-10ms and 8-15ms respectively, accounting for only 1%-3% and 0.8%-1.9% of the TTFT.

Tasks Method Llama3-8B-Instruct Qwen2-7B-Instruct

Score TTFT (ms) Score TTFT (ms)

Single-Document QA
Baseline 37.20 574.70 39.00 1122.30
Random 11.14 469.99 20.63 907.75

Ours 36.06 480.24 38.75 923.18

Multi-Document QA
Baseline 36.85 664.80 37.48 1080.73
Random 7.56 541.11 9.82 845.63

Ours 34.85 551.23 35.21 859.11

Summarization
Baseline 26.80 526.11 26.70 797.57
Random 15.90 428.95 18.67 636.32

Ours 24.41 438.08 25.01 647.59

Few-shot Learning
Baseline 69.33 594.20 70.17 810.22
Random 21.58 481.82 33.81 630.81

Ours 67.55 489.26 69.11 641.58

Synthetic
Baseline 37.00 732.98 37.50 1235.10
Random 2.72 573.84 1.71 947.67

Ours 36.00 584.18 36.75 955.94

Code Completion
Baseline 55.17 449.45 58.43 621.11
Random 16.28 367.09 24.41 489.04

Ours 35.91 375.22 56.74 498.15

Table 3: Accuracy and TTFT comparison for Llama3-8B-Instruct and Qwen2-7B-Instruct employ-
ing random pruning strategy and our attention-based strategy. The random variant prunes the iden-
tical number of tokens at each layer as ours.

5 CONCLUSION

In this work, we explore a novel approach of prefilling acceleration by pruning tokens for FFN, and
propose the FFN Token Pruning (FTP) technique for long-context inference of LLMs, without addi-
tional training or finetuning. We start by analyzing the TTFT proportion in long-context inference of
LLMs, and profiling the time proportion of the primary components in a typical LLM layer. Observ-
ing the substantial time allocation to FFN during prefilling, we reduces FFN computation time by
“pruning” non-critical tokens with an attention-based strategy prior to FFN inference. In a addition,
FTP preserves a large amount of information of the pruned toknes through the residual connection.
Experiments on long-context datasets across various tasks indicate that FTP is capable of delivering
significant acceleration while maintaining performance.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Muhammad Adnan, Akhil Arunkumar, Gaurav Jain, Prashant Nair, Ilya Soloveychik, and Pu-
rushotham Kamath. Keyformer: Kv cache reduction through key tokens selection for efficient
generative inference. Proceedings of Machine Learning and Systems, 6:114–127, 2024.

AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/
llama3/blob/main/MODEL_CARD.md.

Chenxin An, Shansan Gong, Ming Zhong, Mukai Li, Jun Zhang, Lingpeng Kong, and Xipeng Qiu.
L-eval: Instituting standardized evaluation for long context language models, 2023.

Anthropic. The claude 3 model family: Opus, sonnet, haiku, 2024. URL https://www-cdn.
anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_
Card_Claude_3.pdf.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu,
Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi
Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng
Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi
Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report. arXiv preprint
arXiv:2309.16609, 2023a.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long
context understanding. arXiv preprint arXiv:2308.14508, 2023b.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, L. Sifre, and John M.
Jumper. Accelerating large language model decoding with speculative sampling. ArXiv,
abs/2302.01318, 2023. URL https://api.semanticscholar.org/CorpusID:
256503945.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast and
memory-efficient exact attention with IO-awareness. In Advances in Neural Information Process-
ing Systems (NeurIPS), 2022.

Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan, Noah A. Smith, and Matt Gardner. A
dataset of information-seeking questions and answers anchored in research papers. In Proceed-
ings of the 2021 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, pp. 4599–4610, Online, June 2021. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.365. URL https:
//aclanthology.org/2021.naacl-main.365.

Harry Dong, Xinyu Yang, Zhenyu Zhang, Zhangyang Wang, Yuejie Chi, and Beidi Chen. Get more
with less: Synthesizing recurrence with kv cache compression for efficient llm inference, 2024.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning. Neural networks, 107:3–11, 2018.

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti, Liangzhen Lai,
Anas Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman, Ahmed A Aly, Beidi Chen, and
Carole-Jean Wu. Layerskip: Enabling early exit inference and self-speculative decoding, 2024.
URL https://arxiv.org/abs/2404.16710.

11

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://api.semanticscholar.org/CorpusID:256503945
https://api.semanticscholar.org/CorpusID:256503945
https://aclanthology.org/2021.naacl-main.365
https://aclanthology.org/2021.naacl-main.365
https://arxiv.org/abs/2404.16710


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, and S. Kevin Zhou. Ada-kv: Optimizing kv cache
eviction by adaptive budget allocation for efficient llm inference, 2024. URL https://arxiv.
org/abs/2407.11550.

Qichen Fu, Minsik Cho, Thomas Merth, Sachin Mehta, Mohammad Rastegari, and Mahyar Najibi.
Lazyllm: Dynamic token pruning for efficient long context llm inference, 2024. URL https:
//arxiv.org/abs/2407.14057.

Yue Guan, Zhengyi Li, Jingwen Leng, Zhouhan Lin, and Minyi Guo. Transkimmer: Transformer
learns to layer-wise skim. arXiv preprint arXiv:2205.07324, 2022.

Huiqiang Jiang, Qianhui Wu, , Xufang Luo, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and Lili
Qiu. Longllmlingua: Accelerating and enhancing llms in long context scenarios via prompt com-
pression. ArXiv preprint, abs/2310.06839, 2023a. URL https://arxiv.org/abs/2310.
06839.

Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. LLMLingua: Compressing
prompts for accelerated inference of large language models. In Proceedings of the 2023 Confer-
ence on Empirical Methods in Natural Language Processing, pp. 13358–13376. Association for
Computational Linguistics, December 2023b. doi: 10.18653/v1/2023.emnlp-main.825. URL
https://aclanthology.org/2023.emnlp-main.825.

Huiqiang Jiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhen-
hua Han, Amir H Abdi, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. Minference
1.0: Accelerating pre-filling for long-context llms via dynamic sparse attention. arXiv preprint
arXiv:2407.02490, 2024.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A large scale distantly
supervised challenge dataset for reading comprehension. In Regina Barzilay and Min-Yen Kan
(eds.), Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 1601–1611, Vancouver, Canada, July 2017. Association for Com-
putational Linguistics. doi: 10.18653/v1/P17-1147. URL https://aclanthology.org/
P17-1147.

G Kamradt. Needle in a haystack–pressure testing llms, 2023.

Sehoon Kim, Sheng Shen, David Thorsley, Amir Gholami, Woosuk Kwon, Joseph Hassoun, and
Kurt Keutzer. Learned token pruning for transformers. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 784–794, 2022.

Tomáš Kočiský, Jonathan Schwarz, Phil Blunsom, Chris Dyer, Karl Moritz Hermann, Gábor Melis,
and Edward Grefenstette. The NarrativeQA reading comprehension challenge. Transactions of
the Association for Computational Linguistics, 6:317–328, 2018. doi: 10.1162/tacl a 00023.
URL https://aclanthology.org/Q18-1023.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Yaniv Leviathan, Matan Kalman, and Y. Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, 2022. URL https://api.
semanticscholar.org/CorpusID:254096365.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before
generation, 2024. URL https://arxiv.org/abs/2404.14469.

Tianyang Liu, Canwen Xu, and Julian McAuley. Repobench: Benchmarking repository-level code
auto-completion systems, 2023.

12

https://arxiv.org/abs/2407.11550
https://arxiv.org/abs/2407.11550
https://arxiv.org/abs/2407.14057
https://arxiv.org/abs/2407.14057
https://arxiv.org/abs/2310.06839
https://arxiv.org/abs/2310.06839
https://aclanthology.org/2023.emnlp-main.825
https://aclanthology.org/P17-1147
https://aclanthology.org/P17-1147
https://aclanthology.org/Q18-1023
https://api.semanticscholar.org/CorpusID:254096365
https://api.semanticscholar.org/CorpusID:254096365
https://arxiv.org/abs/2404.14469


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios
Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance
hypothesis for llm kv cache compression at test time. Advances in Neural Information Processing
Systems, 36, 2024.

Piotr Nawrot, Adrian Łańcucki, Marcin Chochowski, David Tarjan, and Edoardo M Ponti. Dy-
namic memory compression: Retrofitting llms for accelerated inference. arXiv preprint
arXiv:2403.09636, 2024.

Zhuoshi Pan, Qianhui Wu, Huiqiang Jiang, Menglin Xia, Xufang Luo, Jue Zhang, Qingwei Lin,
Victor Ruhle, Yuqing Yang, Chin-Yew Lin, H. Vicky Zhao, Lili Qiu, and Dongmei Zhang.
LLMLingua-2: Data distillation for efficient and faithful task-agnostic prompt compression.
ArXiv preprint, abs/2403.12968, 2024. URL https://arxiv.org/abs/2403.12968.

David Raposo, Sam Ritter, Blake Richards, Timothy Lillicrap, Peter Conway Humphreys, and
Adam Santoro. Mixture-of-depths: Dynamically allocating compute in transformer-based lan-
guage models. arXiv preprint arXiv:2404.02258, 2024.

Liliang Ren, Yang Liu, Shuohang Wang, Yichong Xu, Chenguang Zhu, and Cheng Xiang Zhai.
Sparse modular activation for efficient sequence modeling. Advances in Neural Information Pro-
cessing Systems, 36:19799–19822, 2023.

Ziteng Sun, Ananda Theertha Suresh, Jae Hun Ro, Ahmad Beirami, Himanshu Jain, Felix Yu,
Michael Riley, and Sanjiv Kumar. Spectr: Fast speculative decoding via optimal transport.
In Workshop on Efficient Systems for Foundation Models @ ICML2023, 2023. URL https:
//openreview.net/forum?id=d0mGsaheuT.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. Lamda: Language models for dialog
applications. arXiv preprint arXiv:2201.08239, 2022.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023. URL https://arxiv.org/abs/2307.09288.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. MuSiQue: Multi-
hop questions via single-hop question composition. Transactions of the Association for Compu-
tational Linguistics, 2022.

Georgy Tyukin, Gbetondji J-S Dovonon, Jean Kaddour, and Pasquale Minervini. Attention is all
you need but you don’t need all of it for inference of large language models, 2024. URL https:
//arxiv.org/abs/2407.15516.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol
Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language models,
2022. URL https://arxiv.org/abs/2206.07682.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gug-
ger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art

13

https://arxiv.org/abs/2403.12968
https://openreview.net/forum?id=d0mGsaheuT
https://openreview.net/forum?id=d0mGsaheuT
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2407.15516
https://arxiv.org/abs/2407.15516
https://arxiv.org/abs/2206.07682


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations, pp. 38–45, Online, October 2020. As-
sociation for Computational Linguistics. URL https://www.aclweb.org/anthology/
2020.emnlp-demos.6.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming lan-
guage models with attention sinks, 2024. URL https://arxiv.org/abs/2309.17453.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin Xu, Jin-
gren Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin
Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao,
Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wen-
bin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng
Ren, Xuejing Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu,
Zeyu Cui, Zhenru Zhang, Zhifang Guo, and Zhihao Fan. Qwen2 technical report, 2024a. URL
https://arxiv.org/abs/2407.10671.

Dongjie Yang, XiaoDong Han, Yan Gao, Yao Hu, Shilin Zhang, and Hai Zhao. Pyramidinfer:
Pyramid kv cache compression for high-throughput llm inference, 2024b.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question
answering. In Conference on Empirical Methods in Natural Language Processing (EMNLP),
2018.

Ann Yuan, Andy Coenen, Emily Reif, and Daphne Ippolito. Wordcraft: story writing with large lan-
guage models. In Proceedings of the 27th International Conference on Intelligent User Interfaces,
pp. 841–852, 2022.

Amir Zandieh, Insu Han, Vahab Mirrokni, and Amin Karbasi. Subgen: Token generation in sublin-
ear time and memory, 2024. URL https://arxiv.org/abs/2402.06082.

Tianyi Zhang, Faisal Ladhak, Esin Durmus, Percy Liang, Kathleen McKeown, and Tatsunori B.
Hashimoto. Benchmarking large language models for news summarization, 2023a. URL https:
//arxiv.org/abs/2301.13848.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, Zhangyang Wang, and Beidi Chen. H2o: Heavy-
hitter oracle for efficient generative inference of large language models, 2023b. URL https:
//arxiv.org/abs/2306.14048.

6 APPENDIX

6.1 ADDITIONAL ANALYSIS OF FTP

6.1.1 RESULTS ON L-EVAL

We conduct additional experients on the L-Eval (An et al., 2023) benchmark for a comprehensive
evaluation. L-Eval has two groups of tasks: closed-ended tasks and open-ended tasks. The former
group focus on evaluating an LLM’s ability of reasoning and understanding a long context, while
the latter one is more about summarization tasks for a long document. We run FTP and Pyramid-
Infer (Yang et al., 2024b) on the Llama3-8B-Instruct and Qwen2-7B-Instruct models for both tasks,
and the results are in Table 4 and Table 5 respectively.

For closed-ended tasks, FTP with the Llama3 model sustains considerable performance across half
of the datasets, and achieves a TTFT speedup comparable to PyramidInfer. When applied on Qwen2-
7B-Instruct model, FTP not only enhances the performance on the GSM (Cobbe et al., 2021) and
CodeU datasets, but also surpasses the baseline scores. Furthermore, the longer context length for
Qwen2 illustrates the acceleration of FTP during the prefilling stage, showcasing its efficiency.

14

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://arxiv.org/abs/2309.17453
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2402.06082
https://arxiv.org/abs/2301.13848
https://arxiv.org/abs/2301.13848
https://arxiv.org/abs/2306.14048
https://arxiv.org/abs/2306.14048


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

For open-ended tasks, we employ GPT4 as a judge to compare the outputs from the model with
those from GPT-3.5-turbo-16k-0613. Each pair of predictions is evaluated by GPT4 twice, with
their positions swapped after the first judgement. The number of wins and ties for the model are
recorded in Table 5. As illustrated in the results, FTP achieves higher TTFT speedup for both
models, and notably, the performance on Qwen2-7B-Instruct even surpasses that of the baseline.

Model Coursera GSM QuALITY CodeU SFiction TRL TPO Avg. SpeedUp

Llama3 Baseline 52.76 66.00 60.40 4.44 71.09 62.00 75.46 56.02 1.00
Llama3 + FTP 53.20 38.00 55.45 4.44 69.53 52.00 74.35 49.57 1.21

Llama3 + PyramidInfer 52.18 68.00 60.40 4.44 71.09 49.33 75.84 54.47 1.24

Qwen2 Baseline 68.60 24.00 65.35 7.78 73.44 47.33 81.04 52.51 1.00
Qwen2 + FTP 68.60 30.00 65.35 10.00 72.66 43.33 80.30 52.89 2.50

Qwen2 + PyramidInfer 69.77 30.00 65.35 6.67 71.88 42.67 81.04 52.48 2.01

Table 4: L-Eval results on closed-ended tasks. “TRL” stands for the “topic retrieval longchat”
dataset, and “SpeedUp” represents the TTFT speedup w.r.t. the baseline.

Model Wins Ties Win-rate (%) TTFT SpeedUp

Llama3 Baseline 50 62 42.19 1.00
Llama3 + FTP 44 67 40.36 1.19

Llama3 + PyramidInfer 49 51 38.80 1.08

Qwen2 Baseline 42 75 42.97 1.00
Qwen2 + FTP 47 69 43.58 1.21

Qwen2 + PyramidInfer 35 69 37.37 1.09

Table 5: L-Eval results on open-ended tasks. The output of models are compared with that of GPT-
3.5-turbo-16k-0613 by the judge model (i.e., GPT4).

6.1.2 NEEDLE-IN-A-HAYSTACK EVALUATION

In this section, we evaluate whether FTP results in the loss of intermediate information by conduct-
ing the Needle-in-a-Haystack (Kamradt, 2023) experiment. The Needle-in-a-Haystack test inserts
a specific statement (referred to as the “needle”) in the middle of a long-context document (the
“haystack”), and requires the LLM to retrieve this statement. For evaluation, a GPT4 (Achiam et al.,
2023) model is utilized to score the relevance between the LLM’s output and the “needle”.

We iterate the context length from 1000 to the max context length of the model, and position the
“needle” from the beginning (0.0%) to the end (100%) in steps of 10% for each context length.
The result for the Llama3-8B-Instruct and Qwen2-7B-Instruct models are presented in Figure 8.
As demonstrated in the results, the Qwen2 baseline model exhibits substantial retrieval capabilities.
Our method appears to have minimal impact on this feature, successfully retrieve the “needle” across
nearly all context lengths and depths of the “needle”. For the Llama3 model, FTP even enhances
performance as the context length approaches its limit. The results in Figure 8 suggest that FTP does
not lead to a loss, and may even reduce the loss of intermediate information.

6.1.3 THE IMPACT OF INITIAL AND THE LAST TOKENS

In this section, we tune the hyper-parameters P and N mentioned in Section 3.2.1 to analyse their
impact on model accuracy. The experiments are conducted on the Qasper (Dasigi et al., 2021)
HotpotQA (Yang et al., 2018) dataset, with a Llama3-8B-Instruct model, F = 10 and η = 0.95,
and the results are in Table 6. The results demonstrates that choosing an excessively small P or
N yields significant decrease in accuracy, although they reduce the computational overhead of FTP.
Nonetheless, an increase in P or N does not necessarily translate to improved accuracy. Moreover,
a larger N typically incurs additional computational cost and results in a reduced number of pruned
tokens given the same η.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

10
00

14
67

19
33

24
00

28
67

33
33

38
00

42
67

47
33

52
00

56
67

61
33

66
00

70
67

75
33

80
00

Context Length

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

D
ep

th
 P

er
ce

nt
 (%

)

Llama3-8B-Instruct Baseline

2

4

6

8

10

Sc
or

e

10
00

14
67

19
33

24
00

28
67

33
33

38
00

42
67

47
33

52
00

56
67

61
33

66
00

70
67

75
33

80
00

Context Length

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

D
ep

th
 P

er
ce

nt
 (%

)

Llama3-8B-Instruct with FTP

2

4

6

8

10

Sc
or

e

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0
11

00
0
12

00
0
13

00
0
14

00
0
15

00
0
16

00
0
17

00
0
18

00
0
19

00
0
20

00
0
21

00
0
22

00
0
23

00
0
24

00
0
25

00
0
26

00
0
27

00
0
28

00
0
29

00
0
30

00
0
31

00
0
32

00
0

Context Length

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

D
ep

th
 P

er
ce

nt
 (%

)

Qwen2-7B-Instruct Baseline

2

4

6

8

10

Sc
or

e

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0
11

00
0
12

00
0
13

00
0
14

00
0
15

00
0
16

00
0
17

00
0
18

00
0
19

00
0
20

00
0
21

00
0
22

00
0
23

00
0
24

00
0
25

00
0
26

00
0
27

00
0
28

00
0
29

00
0
30

00
0
31

00
0
32

00
0

Context Length

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

D
ep

th
 P

er
ce

nt
 (%

)

Qwen2-7B-Instruct with FTP

2

4

6

8

10

Sc
or

e

Figure 8: Visualization of the result of the Needle-in-a-Haystack test for Llama-3-8B-Instruct and
Qwen2-7B-Instruct with and without FTP. The x-axis represents the length of the documents and
the y-axis denotes the position of the statement “needle”. The scores are given by GPT4 (Achiam
et al., 2023) by evaluating the relevance of the model output and the “needle”.

P
N 1 10 20 50 80 100 150 200

1 34.99 43.16 43.80 42.74 41.74 42.44 43.49 42.99
10 37.25 42.44 45.34 45.11 45.14 44.90 44.89 45.40
20 37.38 42.44 45.50 45.06 44.93 45.19 44.36 44.41
50 36.77 42.67 45.40 44.75 44.61 44.95 43.73 45.03
80 37.26 43.05 44.95 45.27 45.11 44.73 45.24 43.85

100 38.13 43.44 44.81 45.75 44.92 45.46 44.94 44.39
150 37.27 43.05 44.51 44.57 45.08 45.67 45.25 45.61
200 38.46 42.87 44.78 45.00 45.38 45.43 44.88 45.01

Table 6: Accuracy score under different settings of the initial and the last reserved tokens. The
scores are averaged over Qasper and HotpotQA datasets.

6.1.4 RESERVED RATIOS

We also conduct experiments to analyse the impact of the reserved ratio η for FTP as mentioned in
Section 3.2.1. We statically reserve the first F = 10 layers and set different reserved ratios η for the
subsequent layers of the Qwen2-7B-Instruct model. The experients are conducted on LongBench

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Tasks η = 0.65 η = 0.70 η = 0.75 η = 0.80 η = 0.85 η = 0.90 η = 0.95

Single-Document QA 33.20 34.13 34.96 36.46 36.79 37.23 38.75
Multi-Document QA 29.69 30.28 30.53 32.24 34.23 34.60 35.21

Summarization 21.22 21.43 21.90 22.63 23.34 24.25 25.01
Few-shot Learning 64.13 64.29 65.17 66.08 68.20 67.34 69.11

Synthetic 25.00 29.00 31.75 33.25 35.75 34.50 36.75
Code Completion 50.22 50.92 52.35 54.14 53.97 56.08 56.74

Table 7: The accuracy score for each task in LongBench when applying different reserved ratios η
for FTP on the Qwen2-7B-Instruct model.

and the results of accuracy score and TTFT speedup are shown in Table 7 and Table 8 respectively.
As shown in the results, FTP has a considerable TTFT speedup even when η is set to 0.95, suggesting
a substantial number of tokens are pruned. More importantly, as η is progressively reduced from 0.95
to 0.65, the speedup continues to increase, but the rate of increment in speedup gradually becomes
smaller. This observation is consistent with our analysis in Section 3.2.2 and Figure 6. However, the
decrease in accuracy does not follow this pattern. Therefore, FTP can achieve an optimal balance
between accuracy and TTFT speedup when η is approximately 0.80.

Tasks η = 0.65 η = 0.70 η = 0.75 η = 0.80 η = 0.85 η = 0.90 η = 0.95

Single-Document QA 1.49 1.47 1.45 1.41 1.37 1.32 1.22
Multi-Document QA 1.54 1.52 1.49 1.46 1.42 1.36 1.26

Summarization 1.48 1.46 1.44 1.41 1.37 1.31 1.23
Few-shot Learning 1.50 1.48 1.46 1.43 1.40 1.35 1.25

Synthetic 1.55 1.54 1.52 1.50 1.46 1.40 1.30
Code Completion 1.48 1.45 1.44 1.41 1.37 1.32 1.22

Table 8: The TTFT speedup (×) for each task in LongBench when applying different reserved ratio
η for FTP on the Qwen2-7B-Instruct model.

6.1.5 RESERVED LAYERS

In this section, we explore the impact of reserving shallow layers as mentioned in Section 3.2.2.
We set different F to reserve different numbers of shallow layers and fix η to 0.90 for the following
layers of Qwen2-7B-Instruct when applying FTP. The experiments are conducted on LongBench and
the results of accuracy score and TTFT speedup are presented in Table 9 and Table 10 respectively.
As shown in the results, the accuracy score increases as more shallow layers of the model are fully
reserved. However, some certain tasks (e.g., Few-Shot Learning and Synthetic) exhibit little changes
in accuracy score or even demonstrate an increase in accuracy when F is incremented from 5 to 10.
In general, the TTFT speedup increases as we decrease F . However, there is an anomalous decline
in speedup when F is reduced from 10 to 9. This anomaly could be explained by a change to the
distribution of attention weights to a more uniform pattern at F = 9 compared to F = 10, resulting
in a decrease in the number of pruned tokens.

Tasks F = 4 F = 5 F = 6 F = 7 F = 8 F = 9 F = 10

Single-Document QA 33.70 33.99 36.00 35.73 36.56 36.81 37.23
Multi-Document QA 31.68 31.72 32.44 32.65 32.23 33.30 34.60

Summarization 22.24 22.61 22.69 22.95 23.38 23.78 24.25
Few-shot Learning 65.67 67.38 67.74 67.82 67.32 67.38 67.34

Synthetic 32.25 35.75 34.50 33.25 38.00 36.25 34.50
Code Completion 52.98 53.20 53.93 54.70 54.79 55.82 56.08

Table 9: The accuracy score for each task in LongBench when reserving different numbers of shal-
low layers for FTP on the Qwen2-7B-Instruct model.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Tasks F = 4 F = 5 F = 6 F = 7 F = 8 F = 9 F = 10

Single-Document QA 1.42 1.40 1.39 1.37 1.35 1.30 1.32
Multi-Document QA 1.47 1.45 1.43 1.42 1.40 1.35 1.36

Summarization 1.42 1.41 1.39 1.37 1.36 1.30 1.31
Few-shot Learning 1.47 1.44 1.42 1.41 1.39 1.34 1.35

Synthetic 1.51 1.50 1.48 1.47 1.45 1.40 1.40
Code Completion 1.42 1.41 1.39 1.37 1.36 1.30 1.32

Table 10: The TTFT speedup (×) for each task in LongBench when reserving different numbers of
shallow layers for FTP on the Qwen2-7B-Instruct model.

6.2 ADDITIONAL VISUALIZATION OF ATTENTION WEIGHTS

To illustrate the generalizability of our findings discussed in Section 3.2.1, we visualize the attention
weights of more samples from the Qasper (Dasigi et al., 2021) dataset, as presented in Figure 9.

0 20 40 60 80 100
Token Position

0
5

10
15
20
25
30

La
ye

r I
nd

ex

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Attention Weight

(a) Sample 3

0 20 40 60 80 100
Token Position

0
5

10
15
20
25
30

La
ye

r I
nd

ex

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Attention Weight

(b) Sample 4

0 20 40 60 80 100
Token Position

0
5

10
15
20
25
30

La
ye

r I
nd

ex

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Attention Weight

(c) Sample 5

0 20 40 60 80 100
Token Position

0
5

10
15
20
25
30

La
ye

r I
nd

ex

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Attention Weight

(d) Sample 6

0 20 40 60 80 100
Token Position

0
5

10
15
20
25
30

La
ye

r I
nd

ex

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Attention Weight

(e) Sample 7

0 20 40 60 80 100
Token Position

0
5

10
15
20
25
30

La
ye

r I
nd

ex

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Attention Weight

(f) Sample 8

Figure 9: Additional visualization of the normalized attention weight for each layer. The experiment
is conducted on a Llama3-8B-Instruct model on the Qasper dataset. Since the input length is too
long to visualize, we divide the tokens into several groups with a group size of 32. Each column in
the graph represents the average attention weight of a group of tokens across all layers.

18


	Introduction
	Related Work
	Token Pruning
	Layer Skipping

	FTP
	LLM inference performance analysis
	Token pruning for FFN
	Token Pruning with Attention Score
	Token Pruning Proportion


	Experiments
	Implementation Details
	Results on LongBench
	Comparison with State-of-The-Art Method
	Accuracy vs. TTFT Speedup
	FTP on Larger Models
	Ablation Study
	Token pruning strategy


	Conclusion
	Appendix
	Additional analysis of FTP
	Results on L-Eval
	Needle-in-a-Haystack Evaluation
	The impact of initial and the last tokens
	Reserved Ratios
	Reserved Layers

	Additional visualization of attention weights


