© ® N O g A~ W N =

o

11

Benchmarking Optimizers
for Large Language Model Pretraining

Anonymous Author(s)
Affiliation
Address

email

Abstract

The recent development of Large Language Models (LLMs) has been accompanied
by an effervescence of novel ideas and methods to better optimize the loss of deep
learning models. Claims from those methods are myriad: from faster convergence
to removing reliance on certain hyperparameters. However, the diverse experi-
mental protocols used to validate these claims make direct comparisons between
methods challenging. This study presents a comprehensive evaluation of recent
optimization techniques across standardized LLM pre-training scenarios, systemat-
ically varying model size, batch size, and training duration. Through careful tuning
of each method, we provide guidance to practitioners on which optimizer is best
suited for each scenario. For researchers, our work highlights promising directions
for future optimization research. Finally, by releasing our code and making all
experiments fully reproducible, we hope our efforts can help the development and
rigorous benchmarking of future methods.

1 Introduction

Over the past five years, Large Language Models (LLMs) [15} 159} 122} 48] have shown growth in
performance and size, demonstrating proficiency in various downstream tasks [80, [7}85]. The success
of LLM pretraining hinges on three key pillars: high-quality data [65] 44], architectural innovations
[31,115], and scalable optimization techniques.

Among these, the choice of optimizer has remained notably consistent in recent years, with Adam (W)
[38,150] dominating deep learning for nearly a decade. However, recent advances [33} 147, 184, 162}
66!, [17]] challenge this status quo, offering alternatives that surpass AdamW in speed, communication
efficiency [1] or final downstream performance on various benchmarks [12} 37], particularly for
autoregressive language modeling [70]. Despite these innovations, current benchmarks and ablation
studies [96 34] remain narrow in scope, often examining only isolated aspects of optimizer design.
This lack of systematic comparison makes it difficult to obtain trustworthy insights for practitioners,
or identify the next promising research directions.

In this work, our goal to revisit the problem of benchmarking optimizers for LLM pretraining.
We do so through standardized experiments which vary important parameters such as batch size,
model size, and the number of training iterations. This allows us to formulate an up-to-date list of
best-performing methods for the community of researchers and practitioners. We demonstrate the
efficiency of each considered method through careful tuning, and present insightful ablations along
the way. Furthermore, we provide a set of best practices for LLM pretraining that are applicable
regardless of the optimizer chosen.

‘We summarize our contributions as follows:

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

35
36
37
38

39
40
41

42
43
44

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

63

64
65
66
67
68
69
70
71
72
73
74

75
76
77
78
79

80
81
82
83

84
85
86
87

(Contribution 1) We conduct the first large-scale, controlled benchmark of 11 different optimization
methods across diverse LLM training scenarios. A fair comparison is ensured by precise accounting
for compute costs, and extensive hyperparameter tuning. We identify optimal optimizer choices in
several relevant training regimes, for both dense and MoE architectures.

(Contribution 2) We perform comprehensive ablations of critical training hyperparameters—
including warmup duration, initialization schemes, gradient clipping, final learning rates, and learning
rate scheduler choices—providing actionable insights for optimizing LLM training in practice.

(Contribution 3) We open-source our full benchmarking toolkit, including training scripts, evaluation
pipelines, and hyperparameter configurations, to enable reproducible research and facilitate future
optimizer development.

For practitioners, our work provides an evidence-

based answer to the burning question: “Is Adam still
the most effective optimizer in the age of LLMs, or
can we achieve better performance at scale with
novel optimizers?”. For researchers, our work de-
livers a unified benchmarking framework for LLM
pretraining, along with extensive ablation studies
which systematically evaluate both popular and over-
looked optimizer designs—revealing previously un- 28

Validation Loss

explored tradeoffs between efficiency, stability, and 8 16 18
final model performance. Overall, our findings not Tokens (B)

only challenge long-held assumptions about opti- ix ——DMuon ——NARS —— ADCPT
mizer selection but also establish a foundation for

future advances in large-scale model training. By Figure 1: A comparison of leading optimiz-
bridging the gap between theoretical innovation and ~ €rs, for training a 720M parameter LLM.
practical deployment, this work aims to accelerate

progress in both research and industry applications

of LLM training.

2 Background & Related Work

Optimizers. While computer vision models often show comparable performance between SGD [72]]
and AdamW [94]], the landscape differs dramatically in LLM training. Recent work [95] demon-
strates that adaptive methods like AdamW provide substantially better optimization characteristics
for transformer-based language models. The question of why AdamW works so well has been a
long-standing topic of research [2} 160} 93,43, 41]. Modern methods often inherit AdamW’s core ideas
in their structure, such as ADOPT [83]] and AdEMAMix [[62]]. ADOPT has been motivated by solving
long-standing convergence issues in AdamW. By normalizing the second-order moment prior to the
momentum update, they eliminate the non-convergence issues of AdamW on smooth non-convex
functions. Meanwhile AAdEMAMix extends AdamW with an additional slower momentum buffer, i.e. a
slower exponential moving average (EMA), which allows the use of much larger momentum values,
accelerating convergence.

One interpretation of AdamW’s effectiveness lies in its sign-based update [42]: without the exponential
moving average (EMA), AdamW resembles signSGD [6]. Recent work [96, |36] has shown that
Signum (signSGD with momentum), can perform comparably to AdamW. Earlier, the community also
discussed Lion [9], a method with a similar sign-based structure. Signum and Lion offer memory
benefits due to the use of only a single instead of Adam’s two buffers for optimizer states.

Another family of methods stems from AdamW’s approximate second-order structure, where the
diagonal of the Fisher information matrix or other preconditioning approaches [52, 24]] are used as
the second moment estimate. This idea has given rise to Sophia [46], SOAP [84], and, to some extent,
Muon [33].

The parameter-free concept [61] has led to the development of Schedule-Free AdamW
(SF-AdamW) [17] and Prodigy [54]]. These optimizers do not require a decreasing learning rate
schedule, making them relevant for continual training. Last but not least, MARS [88]], builds upon this
line of research and incorporates a variance reduction mechanism in its update rule.

88
89
90
91
92
93
94
95
96

97
98
99

100
101
102

103

104
105

106
107
108
109
110

111
112
113
114
115
116
117
118
119
120
121
122
123
124

125
126
127
128

129
130
131
132
133
134
135
136
137
138
139

Benchmarks. To a large extent, the benchmarking setup determines the final conclusions. Some
benchmarks are designed for short speedruns in terms of training or validation loss [32], while
others focus on a downstream target metric after training [96, |12} [76]. Methods that perform well
in short speedruns might not be optimal for longer training horizons as in real LLM training runs
(see Figure [3). “But what constitutes a sufficiently long horizon?” ”What should be the compute
budget for LLM training?”” These are questions explored by scaling laws [35]]. Early benchmarks
for optimizers and other ablation studies often rely on Chinchilla scaling laws [26] with a ratio of
roughly 20 tokens per parameter (TPR) needed for pretraining. However, recent research [69, [74]
argues that this is far from sufficient for production-ready models.

Another important issue is the choice of loss function. Recent setups have been using an auxiliary
z-loss [86, [11] in addition to cross-entropy, which requires further investigation. We believe this
choice is influenced by the use of the OLMo [58]] codebase, which we also address in our work.

Additionally, we found that previous setups for comparing optimizers do not align with recent best
practices regarding weight decay, learning rate decay, and overall hyperparameter tuning. All of these
questions are revisited in our work.

3 Experimental Setup

Notations. We use the following notations. Let «y be the learning rate, A the weight decay coefficient,
and 7 the total number of iterations. Momentum-related parameters are represented by the symbol 5.

Models & Data. For most experiments, we use a Llama-like transformer 48] architecture, including
SwiGLU activations [77], RMSNorm [91], and RoPE embeddings [81]. We experiment with four
sizes of models: 124M, 210M, 583M, 720M. We train on a 100B token subset of FineWeb [64]).
It consists of a cleaned and deduplicated corpus for LLM pretraining, which we tokenize using the
GPT-2 tokenizer prior to splitting into train and validation sequences. MoE setup described in

Iterations & Batch size. Throughout our experiments, we use a sequence length of 512 tokens. For
clarity, we often report the batch size in tokens by writing Batch size x sequence length. For the 124M
model, we use batch sizes of 32 x 512 = 16k, 256 x 512 = 131k, and 512 x 512 = 262k tokens;
for the 210M model, we use a batch size of 256 x 512 = 131k; and for 583M model, we leverage
the batch sizes of 1024 x 512 = 524k and 3936 x 512 = 2M tokens. Depending on the model size,
we vary the number of iterations — also measured in tokens for compatibility with scaling laws and
to accommodate different batch size settings. We train 124M and 210M models for equal durations
of {1,2.1,4.2,6.3,8.4,16.8}B tokens. This corresponds to T' € {64,128, 256,384,512,1024}k
iterations for a batch size of 32, and T' € {8, 16, 32,48, 64, 128}k iterations for a batch size of 256.
For 583M models, we train on {13, 32} B tokens, corresponding to 7' € {6.5, 16}k iterations, resp.
T € {25,61.5}k iterations, for a batch size of 3936, resp. 1024. In the setup with 720M model,
we have T' € {8, 16,48}k iterations for a batch size of 1M tokens. Thus, for all model scales,
we include both Chinchilla optimal lengths of training and beyond. More details are available in

Appendix

Loss. We train using the classical cross-entropy next token prediction loss. Some prior works
introducing optimizers use a z-loss in addition to cross-entropy [30, (11} 86} 84, 96]. We found that
this has little impact and, therefore, do not use z-loss. An ablation showing results with and without
z-loss is in the appendix.

Hyperparameter Tuning. Training LLMs is a computationally intensive task. As a guidance,
practitioners often rely on insights gathered at lower scales, scaling laws, and other rules [87, [18].
It is also commonplace to run experiments for only a shorter duration of training, as a way to test
certain hyperparameters prior to extending the training horizon to more iterations. Because a full
grid search over every hyperparameter, for each setting and optimizer, would be too costly, we
resort to a similar approach. More precisely, for each model size, batch size, and optimizer, we tune
optimization hyperparameters extensively for a number of training tokens which is near-Chinchilla
optimal. We then keep those hyperparameters when we increase the number of iterations. While we
found that the sensitivity to several hyperparameters can change as we increase the training horizon,
we found this approach simple and yet effective. The hyperparameters being considered depend on the
optimizer. We proceeded from small to large model scale, and used insights gathered at smaller scales

"https://huggingface.co/datasets/HuggingFaceFW/fineweb

https://huggingface.co/datasets/HuggingFaceFW/fineweb

140
141
142
143
144
145
146
147
148
149

150
151
152
153
154
155
156
157
158

159

160
161
162

163

164
165
166
167
168
169
170
171
172
173
174
175

176
177
178
179
180
181
182
183
184
185

186
187
188
189
190
191
192

to guide the hyperparameter search at larger scales. Our hyperparameter sweeps are summarized in
Appendix D, We present the clarifications regarding the connection between the number of iterations
and tokens for different batch size settings as well as the Chinchilla optimal length of training for
our models in Tables E and E As learning rate schedulers, we compare cosine [49]], linear and
warmup-stable-decay (WSD) [27, 190, 28]. Unless specified, we use a cosine scheduler. Results with
WSD and linear schedulers are discussed in Section[d] Recent works also emphasize the importance
of sufficiently decaying the learning rate [4} |75, 28]. As such, we take care to decay to 0.01 x ~
instead of the often used 0.1 x . To give an idea of how much effort was put into tuning each
method, across all model sizes, batches and iterations, we trained a total of 2400 models, and have
spent roughly 30000 GPU hours.

Optimizers. Here is a list of the optimizers we considered in our work. For each algorithm, we
write in parentheses the optimizer-specific hyperparameters we tuned: AdamW (31, 82), SOAP(f1, 52)
and preconditioning frequency, Lion(fi,[32), MARS(n,[1,02) and Newton-Schulz hyperpa-
rameters, ADOPT (31, B2), Signum(3), Prodigy (531, 32), SF-AdamW (531, 32), Muon(¥*, 3, B1, B2),
Sophia(p, 1, f2), AAEMAMix(S1, B2, B3, @). When an optimizer has several momentum variants
e.g. Nesterov [S7] or Polyak [67], we try both. In addition, we tune the learning rate y extensively
for all methods. We also try different gradient clipping, warmup steps, and weight-decay values. A
summary of the hyperparameters tested and selected for each model size is in Appendix [D] All the
optimizers are described in depth in Appendix [A!

4 Results

We structure our story starting with smaller models and batch sizes, and gradually scaling up to larger
configurations. In some instances, we complement the core benchmarking results with additional
ablations and possible best-practices.

4.1 Benchmarking at Small Scale: Training Models of 124M Parameters

Using “small” batches. We first report results when using batches of 32 x 512 tokens in Figure|3.
We tune hyperparameters by training for 2.1B tokens (128k iterations) and then keep those hyperpa-
rameters for all other training durations. The best hyperparameters are reported in Appendix
We observe how, for the smallest number of iterations we considered (1B tokens = 64k), SOAP,
ADOPT and AdEMAMix all outperform AdamW, with SOAP being the best. As we increase the number
of iterations, AdEMAMix takes the lead while AdamW closes the gap with both ADOPT and SOAP. A
sign-based methods such as Lion and Signum are expected to perform poorly when the batch size is
small. Intuitively, this is due to the sign(-) operator being sensitive to gradient noise. As described
in its original paper, MARS also performs poorly when the batch size is small. We found Prodigy,
Muon and SF-AdamW to underperform in this setting compared to AdamW. On this scale, Prodigy
suffers from the lack of bias correction of the learning rate, as well as being sensitive to (81, 32) (see

Figure

Using “large” batches. We now report results when using batches of 256 x 512 tokens — 8%
larger than for our small batch setting. Results in Figure 2[show how Signum, Mars, Lion, Prodigy
greatly benefit from the increased batch size. Remarkably, we observe that the Prodigy method
scales similarly to AdamW. We emphasize the possible community interest in this algorithm as its
EMA Prodigy adaptively emulates the learning rate behaviour. For a small number of iterations
(e.g. T € {8k, 16k} corresponding to 1B and 2B tokens), all methods outperform AdamW except for
SF-AdamW and Sophia. As we increase the number of iterations ADOPT, SOAP, and AdEMAMix take
the lead. In particular, AAEMAMix has a consistent lead over other methods. While we anticipated—in
accordance with Vyas et al.[84]—that SOAP would greatly benefit from the larger batch size, its
behavior remains relatively consistent compared to our previous small batch setting.

Stability across training horizons. As mentioned in Section|[3, we tune hyperparameters training
on 2.1B tokens and keep those hyperparameters when extending the training horizon. In Figure[3
we study whether it is possible to find better parameters for AdamW, SOAP, and AJEMAMix. When
training on 16.8B tokens, we see it is beneficial to increase the 33 from 0.999 to 0.9999. Without this
improvement, SOAP ends up matching the performances of AdEMAMix when extending the training
horizon further to 33.6B tokens (= 256k iterations). In our experiments, 53 = 0.999 is only better
than 83 = 0.9999 when the number of training iterations is less than 32k. This matches observation

193
194
195
196
197

198
199
200
201
202

204
205
206
207

208
209
210
211
212

213
214
215
216
217

3.6)
; Lion
2 @ 3.5 —e— AdamW
S35 S —=— AdEMAMix
» = 34 ——SF-Adani
= = —%—Prodigy
! 34 HE ——S0AP
£ £33 Sigmn
—~ 3.3 —_ ——Muon
E g —+—Sophia
&= = 39 ——MARS
3.2 | ADOPT
64k 128k 256k 384k 512k 1024k 8k 16k 32k 48k 64k 128k
121 42 63 84 16.8 121 42 63 84 16.8
Tokens (B) Tokens (B)
(a) Batch size 32 x 512 tokens. (b) Batch size 256 x 512 tokens.

Figure 2: Ranking of optimizers for 124M models with small and large batch sizes. In both
(a) and (b), we show the final validation loss for different training durations, corresponding to
different numbers of tokens. Above each token number, we write the number of training iterations
corresponding. In (a), we use a “small” batch size of 32 x 512 tokens. In (b), we use a larger batch
size of 256 x 512 tokens.

from [62], which recommends reducing 83 when training for fewer iterations. We also test whether
the learning rate y changes as we increase the number of tokens/iterations. In Figure[5, we run a
sweep over v when training for 16.8B tokens. While for most methods, the best v obtained in the
previous sweep remains optimal, this is not the case for SOAP and SF-AdamW, which can benefit from
a larger v = 0.002.

WSD vs. cosine & linear ~y-schedulers. Learning rate schedulers received a lot of attention recently
[79.128]. We conducted a series of experiments comparing WSD [27,190] and linear with cosine [49]
learning rate schedulers. Surprisingly, the performance gap between these two schedulers observed
in Figure @ is often signiﬁcan for benchmarking optimizers. Consequently, we decided to adopt
the cosine scheduler for all further experiments.

Decaying ~ sufficiently. In Figure 8| we show the impact of decaying more or less the learning rate
7). From = 10~ we train models using cosine decay down to e € {107%,1072,...,107°}.
We found that decaying the learning rate sufficiently matters. In particular, the often use rule
consisting in decaying to 0.1 x ~y is suboptimal. This agrees with the recent works [28, [75] |4].
Building on this findings, we consistently use cosine decay down to 0.01 x ~.

Takeaway 1. After the experiment in the small-batch setting, we conclude that: (i) AAEMAMix
scales in the best manner with the number of iterations, SOAP underperforms AdamW when the
length of training increases. ADOPT and Prodigy show almost equal performance across all
training durations. Sign-based methods, predictably, underperform when the batch size is small,
but what is interesting, is that Sophia diverges at all, even if trains with sufficiently small learning
rate.

Increasing the batch size further. We also run an experiment with batches of 512 x 512 = 262k
tokens, training for 64k iterations. Results in Figure[3 show mostly consistent results. Noticeably
MARS becomes the second best performing method behind AdEMAMizx, followed closely by Prodigy,
Lion, and SOAP. Interestingly, Signum performs comparably to AdamW.

Takeaway 2. Taking into consideration large batch size setting, we found that many methods,
once properly tuned, can show a remarkable performance compared to AdamW and also outperform
it.

Weight decay ablation. As recent frameworks for LLM pretraining or ablation studies omit weight
decay as a default non-zero hyperparameter, some setups even mislead by not incorporating weight
decay in their experiments. In this work, we demonstrate the importance of weight decay and its
impact across different optimizers. Surprisingly, increasing weight decay while keeping the learning

2We emphasize that the difference between the two schedulers is generally less than 5% of the total compute
spent. However, this still represents a significant gap in our benchmarking setup, e.g., SF-AdamW may outperform
AdamW in some settings (see Figure[23).

218
219
220
221
222
223
224
225
226
227

228
229

230

231

232

234
235

Batch Size 512 (124M) 2 Batch Size 256 (124M)
3.40
2 Lion = 3.15 —e— AdanW
Q 3.35 | = Adamv =] —e— AdEMAMix
'J o AJEMAMix _9 —e- AdEMAMix, 33 = 0.9999
S 330 | = sr-adanw B3 | ST = —— sowp
é = Prodigy =] T~ellD -4~ SOAP, §, = 0.9999
< 395 | = soap = Tl
= 0 Signn g szl T
< 3.20 | = Muon e =0
> = Sophia < ~~—g
== MARS =312
T 8.4 16.8 P 16.8 33.6
Tokens (B) Tokens (B)
(a) Scaling batch size. (b) Scaling number of tokens.

Figure 3: Our results demonstrate that (a): scaling the batch size significantly improves MARS,
Signum, Lion and Prodigy making them as good as AdamW even for a long training for 16.8B tokens.
Which was not the case in Figure 2] (b), where we still observed a significant gap in performance; and
(b): indeed, with scaling of the number of iterations, the gap between SOAP and AdEMAMix narrow
and, finally, increases. But, on the other hand, with increase of the AdEMAMix (33 parameter, the
performance gap with SOAP reappears.

rate constant proves to be an effective technique for training on shorter horizons. This approach is
so effective that methods like Signum and Lion with high weight decay significantly outperform
AdamW without weight decay (see Figure). Implementation details also warrant attention. Coupled
weight decay is still used in some settings, including the PyTorch [63] optimizer implementations.
Notably, the popular implementation of Signum becomes ineffective when weight decay is applied.
Highlighting this oversight for the community, we contribute by demonstrating our implementation
of Signum (Algorithm [6) with decoupled weight decay. The influence of weight decay on model
weights is intriguing. As is known, model weights typically grow during training, but weight decay,
by modifying the optimized function, significantly reduces the growth of the model’s parameter norm.
Such ablations of weight decay are also of interest to the community [[13}40].

Regarding the ablation of weight decay for optimizers, we again select the best setup for each and
conduct a sweep over weight decay values. Our results are presented in Figure 4 and in Figure 21]

g 37 —— AdanV 2 —— AdamW U — Adamw

S 36 Adani, wd 0.5 S 36 —— Adami,nowd E o | — Adaai,nowd

g 55 =T Signum, wd0.5 g s —— Aden¥,wd0.5 > —— Adami, wd 0.5

k=] Lion, wd0.5 Z 2 1210

=RV =R 3

= —_ \ = S

= 33 = 3 33 = o

= T =

3. T 32 —
210
121 42 63 84 165 121 42 63 84 165 121 42 63 s4 165

Tokens (B) Tokens (B) Tokens (B)
(a) (b) (©

Figure 4: Larger weight decay achieves significantly better results when training on fewer
tokens. In (a) we observe that runs of AdamW, Signum, and Lion with the large weight decay of
0.5 consistently outperform the baseline AdamW with weight decay of 0.1 for all training durations
except for the last one. Notably, Signum and Lion with large weight decay perform even better than
AdamW with the same learning rate. In (b), we also consider a setting without weight decay. We
observe that this is suboptimal not only for AdamW, but also for the majority of other optimizers (see
Appendix [E.2), while the typical weight decay of 0.1 remains the best for large training durations.
Importantly, in (c), we ablate the impact od weight decay on the model’s /5 norm.

With our weight decay ablation, we are ready to provide one more insight.

Takeaway 3. The use of weight decay, particularly a large decoupled weight decay term, can
significantly impact the final loss value and optimizer behavior. However, for extended training
horizons, a moderate, non-zero weight decay proves to be a robust option.

Learning rate sensitivity. Since we tune optimizers at a smaller scale and then extrapolate, we
pose the question whether the best learning rate we have found so far transfers to the larger training
duration. To verify this, we run 124M model on 16.8B tokens in 256 x 512 batch size setting,
sweeping the learning rate across five typical values: {le™*,3e™*,5¢7% 1e73,2¢72}. The best

236
237
238

239
240
241
242
243
244
245
246
247
248
249
250
251

252
253
254
255
256
257
258
259

learning rate for each method at the moment of hyperparameter tuning on near Chinchilla-optimal
2.1B training duration we report in Appendix[D.I} A summary of our results for larger number of
tokens is provided in Figure [5]and detailed results of the sweep are presented in Appendix

2 Trained on 16.8B tokens (124M) @ Trained on 16.8B tokens (124M)
) T Q
= 326 —— Sophia = a5 —= tum
=} =] —&— SF-AdamW
Q) Signum 9 —e— Adami
=324 & = 3.30 ADOPT
< Lion <
g = —e— soaP
e ! = 32 e s
> . : > —e— AdEMAMix
~ 320 | a0 | o=
S] & o T ——3————
B 318 H g
e 0.0001 0.0003 0.0005 0.001 0.002 F 0.0001 0.0003 0.0005 0.001 0.002

Learning Rate Learning Rate

(@) (b)

Figure 5: Optimal learning rate stability across optimizers. The optimal learning rate determined
during tuning on 2.1B tokens remains consistent after a learning rate sweep on 16.8B tokens for
most optimizers. In (a), we observe that sign-based methods and similar to them Sophia diverge with
increasing learning rate. Interestingly, in (b), SF-AdamW and SOAP demonstrate the best performance
with a large learning rate of 0.002. In our work, we further show that it is possible to increase the
learning rate even more for such methods.

Warmup ablation. Another important ingredient of the pretraining is learning-rate warmup in
the initial phase of training. Recent studies have explored the necessity of warmup in modern
deep learning, with some investigating its elimination [39] and others ablating it to improve model
performance and stability [92]]. We focus on the latter, examining how warmup affects optimizer
setup and whether it can significantly enhance performance. For each optimizer’s best configuration,
we vary warmup across three values: {0.27,1,4.2}B tokens, which corresponds to {2, 8,32}k
iterations. Our choice of the largest warmup value is inspired by [92]]. We describe this experiment in
Appendix [E:2] Mainly, we observe that Signum and SF-AdamW perform better with a larger warmup
of 8k steps when training on 16.8B tokens. We also ablate the claim from that a warmup of 25%
of the Chinchilla optimal duration is the best. However, our findings contradict this assertion (see
Figure[I8). We show that a moderate values of the warmup, generally, is better, however, different
optimizers could prefer different number of warmup steps. As such, SF-AdamW, Sophia, Signum
prefer larger warmup, which is clearly depicted in Figure [f]

Batch Size 256 (124M, Trained on 16.8B Tokens)

M AcEMAMix [N ADOPT MMMl Prodigy [N Signum - uon
[soaP BN AdamW SN MARS B SF-AdamW MMM Sophia

0.27B 1B 12B
Warmup Tokens (B)

Figure 6: Warmup ablation. We report the final validation loss on the FineWeb dataset for 124M
model trained on the batch size of 256. We sweep over the batch sizes of {1.56%, 6.25%, 25%} of
the length of training, which corresponds to {2000, 8000, 32000 }k iterations, respectively.

Cosine vs WSD. At the outset of our study, we indicated a preference for the cosine scheduler
over WSD. In this section, we provide a more detailed ablation of this choice. Having optimally
tuned the cosine scheduler for each optimizer, we replicate the setup of [28]], which allows us to
avoid adjusting additional hyperparameters. Our findings, which demonstrate the superiority of the
cosine scheduler across various optimization methods, are presented in Figure[7] and in the Appendix
Figures [23/and[24. These results not only validate our initial preference but also provide insights
into the interaction between learning rate schedules and different optimizers in large-scale language
model training.

260

261
262

264
265

267

268

269
270

—— AdamW
==+ Adami, WSD

Muon Sophia

—=—- Sophia, WSD

=== Muon, WSD

Validation Loss
Validation Loss

121 42 63 84 16.8 L2142 63 84 168 12 12 63 84 168

Tokens (B) Tokens (B) Tokens (B)

(a) (b) (©)

Figure 7: Comparisons between WSD and cosine scheduler. Notably, WSD and cosine scheduler
behave differently with respect to optimizer. In (a), the Muon optimizer shows a preference for WSD
across most training durations. Sophia exhibits an almost perfect match between both schedulers.
However, for AdamW, along with the majority of other optimizers studied (see Figure 24), we get
a better performance with cosine. We also report a detailed comparison with linear scheduler in

Appendix [E.2}

4.2 Benchmarking at medium scale: Training Models of 210M Parameters

In this section, we verify if our selected hyperparameters from smaller 124IM allow accurate transfer
to a slightly larger model. We point out that the most important hyperparameters to be sweeped are
learning rate and gradient clipping. Regarding the learning rate, we observe that it only becomes a
sensitive choice for sign-based methods, while the optimal hyperparameters for AdamW remain the
same.

Results with a batch size of 256 x 512. Results provided in the Appendix in Figure[20|are consistent
with those obtained training 124M models with large batches.

Cosine Decay (Adamil, 210M. max LR 10~%) Linear Decay (Adami, 210M, max LR 10~%) ; WSD Decay (Adami, 210M, max LR 5x 10"*)

Final Validatio

10 10 10 5x10° 5x10° 5x107 5x10°% 5x100 5x1070

10 10" 10 10 10°° 10
Final Learning Rate Final Learning Rate

10 10 10 10
Final Learning Rate

(a) (b) ()

Figure 8: Decaying the learning rate down to 0.01 X ~,, .. and beyond, instead of only to 10%
We observe a common pattern for different schedulers that decreasing the learning rate to moderate
10~2 value is a better choice than decreasing it down to zero. Interestingly, the linear learning rate
scheduler for models at a given scale, requires 0.001 X Vmax-

124M 210M
160
2 2
g g
80 & 130
< oz
B < 100
T 60 _“7‘
= =
40 40
& » P o & S S & & B & S &S S A P Foe & B
N AR 6\\3& S S F »b’y of ¥ < VoS S /@"’9 & S P &
W < & & ®

Figure 9: Wall-clock time comparison. After conducting experiments for 124M and 210M models,
we are ready to present the wall-time comparison for each methods. For this purposes, we use a single
GPU, and run each optimizer for 100 iterations on a small batch size without gradient accumulation
and torch.compile. We report the wall-clock time per 100 iterations. We observe that all methods
take the roughly the same time or very close time to complete 100 iterations, with the exception of
Muon and SOAP. In addition, we point out that SOAP’s runtime exhibits a non-linear dependence on
the model size, due to its preconditioner matrices operations which are fast only for certain matrices
smaller than a predefined size.

4.3 Scaling Up: Benchmarking models of 583M and 720M Parameters

We pick three methods: AdamW, SOAP, and AJEMAMix, and run experiments with a larger model
of 583M parameters, and a large batch size of 2M tokens. The goal being to get closer to one of the

271
272

273
274
275
276
277
278
279

281

282
283
284
285
286
287
288
289

290

291
292
293
294
295

297
298

settings described in [84]]. We train for 6500 and 16000 iterations, corresponding to 13B and 32B
tokens respectively.

Comparison between our setting and [84]. We found several key differences between our codebase
and [84]: (i) we decay the learning rate to 0.01 x «y instead of 0.1 x ~y, with y being the maximum
learning rate, (ii) we use typical weight decay values of e.g. 0.1 instead of smaller values such as 0.01
or 0.0001, (iii) we do not use a z-loss in addition to ours. It has been shown recently that properly
decaying the learning rate has an important effect on the optimization [4]]. We run an ablation to
compare both settings and conclude that removing the z-loss and increasing the weight decay to 0.1
improves the results. Results further improve when the learning rate is decayed more. This ablation
is shown in Figure 8]

n . < « « H « «
z Batch Size 3936 (583M) Batch Size 3936 (583M)
3.4
- n
72}
g Q 33
S . _
= 2,96 ,-< N max Ir
< = 3.2 :
= £
=
< 2,95 < 3.1
> = — SOAP, z-loss, wd 0.1 nax Ir
—_ S 3.0 | = S0P, wd 0.1, 0.01x
g 2.94 > ’o e AJEMAMix, wd 0.1, 0.01 x max Ir
& , 28
= ng’y {\\g& %0‘3 2 1 6 8 10 13
& Tokens (B)

Figure 10: Results for the 583M model. On the left, we show our results when training for 6500
iterations. In this setting, AdamW gives best results, followed by AAEMAMIix and then SOAP. This
is surprising as it conflicts with findings from [84]. Those results are partly reconciled with the figure
on the right. And we see that the difference in performance between models trained with and without
the z-loss regularizer is quite minor.

5 Extension to MoEs

Setup & Comparison. Besides training dense Llama-like transformers, we also conver a com-
parison for MoE architectures [78]]. Our variant of MoE is based on the Switch-Transformer im-
plementation [20]. We use a classical linear gating with softmax and top-k routing (k = 2) and 8
experts. The activation functions remains the same as for the dense base model from Section 3] Such
a configuration of the MoE model gives us approximately 520M parameters. We cover additional
details in Appendix In this setting we train with a batch size of 256 x 512 for T' € {42,336}k
iterations. Again we cover both a Chinchilla-optimal horizon and the beyond. We summarize the
results in the following Table [T]

Opt. 42k | 336k Opt. 42k | 336k
AdEMAMix | 22.37 | 18.47 Lion 2320 | 18.87
D-Muon | 22.67 | 18.51 Signum | 23.31 | 19.09
ADOPT 2270 | 18.58 SF-AdamW | 23.34 | 19.13
AdamW 22.85 | 18.69 Sophia | 23.41 | 19.22
Prodigy | 22.82 | 18.78 MARS 2273 | 19.33

Table 1: Final validation perplexity for MoE training (/).

6 Discussion

Our advices on tuning each method. Overall, we validate the already widely used hyperparameters
of A = 0.1 and Tyarmup ~ 2k. For Lion—as mentioned in [9]—we find that the best value for 8;
is consistently 0.99. The mechanism for Lion seems similar to AdEMAMix, one can imagine that
Lion could be better with larger 31, which would require schedulers. We also pose an interesting
observation toward Prodigy: while it may not be so efficient with a super small batch sizes, with
scaling of the model size and the batch size it becomes almost as competitive as AdamW. Importantly,
Muon and D-Muon performed poorly at a small scale with relatively small batch sizes (32, 256),
however, as we see in Figure[]]

299

300
301

302
303

304
305
306

307
308

309

310
311

312
313
314
315
316
317

318
319

321
322
323

324
325
326

327
328
329

330

332
333
334
335

336

338
339

340

341

342
343

References

[1] Kwangjun Ahn and Byron Xu. Dion: A communication-efficient optimizer for large models,
2025.

[2] Lukas Balles and Philipp Hennig. Dissecting adam: The sign, magnitude and variance of
stochastic gradients, 2020.

[3] C. Bekas, E. Kokiopoulou, and Y. Saad. An estimator for the diagonal of a matrix. Applied
Numerical Mathematics, 57(11):1214-1229, 2007. Numerical Algorithms, Parallelism and
Applications (2).

[4] Shane Bergsma, Nolan Dey, Gurpreet Gosal, Gavia Gray, Daria Soboleva, and Joel Hestness.
Straight to zero: Why linearly decaying the learning rate to zero works best for llms, 2025.

[5] Jeremy Bernstein and Laker Newhouse. Old optimizer, new norm: An anthology, 2024.

[6] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Anima Anandkumar. signsgd:
Compressed optimisation for non-convex problems, 2018.

[7] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.

[8] David Edwin Carlson, Edo Collins, Ya-Ping Hsieh, Lawrence Carin, and Volkan Cevher.
Preconditioned spectral descent for deep learning. In Neural Information Processing Systems,
2015.

[9] Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Yao Liu, Hieu Pham,
Xuanyi Dong, Thang Luong, Cho-Jui Hsieh, Yifeng Lu, and Quoc V. Le. Symbolic discovery
of optimization algorithms, 2023.

[10] Savelii Chezhegov, Yaroslav Klyukin, Andrei Semenov, Aleksandr Beznosikov, Alexander
Gasnikov, Samuel Horvath, Martin Takac, and Eduard Gorbunov. Gradient clipping improves
adagrad when the noise is heavy-tailed, 2024.

[11] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, and Hyung Won. Palm: Scaling language modeling with pathways,
2022.

[12] George E. Dahl, Frank Schneider, Zachary Nado, Naman Agarwal, Chandramouli Shama Sastry,
Philipp Hennig, Sourabh Medapati, Runa Eschenhagen, Priya Kasimbeg, Daniel Suo, Juhan
Bae, Justin Gilmer, Abel L. Peirson, Bilal Khan, Rohan Anil, Mike Rabbat, Shankar Krishnan,
Daniel Snider, Ehsan Amid, Kongtao Chen, Chris J. Maddison, Rakshith Vasudev, Michal
Badura, Ankush Garg, and Peter Mattson. Benchmarking Neural Network Training Algorithms,
2023.

[13] Francesco D’Angelo, Maksym Andriushchenko, Aditya Varre, and Nicolas Flammarion. Why
do we need weight decay in modern deep learning?, 2024.

[14] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast
and memory-efficient exact attention with io-awareness, 2022.

[15] DeepSeek-Al. Deepseek-v3 technical report, 2024.

[16] Aaron Defazio and Konstantin Mishchenko. Learning-rate-free learning by d-adaptation, 2023.

[17] Aaron Defazio, Xingyu Alice Yang, Harsh Mehta, Konstantin Mishchenko, Ahmed Khaled, and
Ashok Cutkosky. The road less scheduled, 2024.

10

344
345
346
347

348
349

354

356

357

358
359

360
361

362
363
364
365
366

367
368
369

371

372
373

374
375

376
377
378

379
380
381
382
383
384

385
386

388
389

390
391

[18] Nolan Dey, Quentin Anthony, and Joel Hestness. The practitioner’s guide
to the maximal update parameterization. https://www.cerebras.ai/blog/
the-practitioners-guide-to-the-maximal-update-parameterization, September
2024.

[19] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12(61):2121-2159, 2011.

[20] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion
parameter models with simple and efficient sparsity, 2022.

[21] Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The Pile:
An 800gb dataset of diverse text for language modeling. arXiv preprint arXiv:2101.00027,
2020.

[22] Google Gemini Team. Gemini: A family of highly capable multimodal models, 2024.
[23] Alex Graves. Generating sequences with recurrent neural networks, 2014.

[24] Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor
optimization, 2018.

[25] Nicholas J. Higham. Functions of Matrices. Society for Industrial and Applied Mathematics,
2008.

[26] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia
Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent
Sifre. Training compute-optimal large language models, 2022.

[27] Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei
Fang, Yuxiang Huang, Weilin Zhao, Xinrong Zhang, Zheng Leng Thai, Kaihuo Zhang, Chongyi
Wang, Yuan Yao, Chenyang Zhao, Jie Zhou, Jie Cai, Zhongwu Zhai, Ning Ding, Chao Jia,
Guoyang Zeng, Dahai Li, Zhiyuan Liu, and Maosong Sun. Minicpm: Unveiling the potential of
small language models with scalable training strategies, 2024.

[28] Alexander Higele, Elie Bakouch, Atli Kosson, Loubna Ben Allal, Leandro Von Werra, and
Martin Jaggi. Scaling laws and compute-optimal training beyond fixed training durations, 2024.

[29] Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon
Wilson. Averaging weights leads to wider optima and better generalization, 2019.

[30] Sami Jaghouar, Jack Min Ong, Manveer Basra, Fares Obeid, Jannik Straube, Michael Keiblinger,
Elie Bakouch, Lucas Atkins, Maziyar Panahi, Charles Goddard, Max Ryabinin, and Johannes
Hagemann. Intellect-1 technical report, 2024.

[31] Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier,
Marie-Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak,
Teven Le Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and
William El Sayed. Mixtral of experts, 2024.

[32] Keller Jordan, Jeremy Bernstein, Brendan Rappazzo, @fernbear.bsky.social, Boza Vlado,
You Jiacheng, Franz Cesista, Braden Koszarsky, and @Grad62304977. modded-nanogpt:
Speedrunning the nanogpt baseline, 2024.

[33] Keller Jordan, Yuchen Jin, Vlado Boza, You Jiacheng, Franz Cecista, Laker Newhouse, and
Jeremy Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024.

[34] Jean Kaddour, Oscar Key, Piotr Nawrot, Pasquale Minervini, and Matt J. Kusner. No train no
gain: Revisiting efficient training algorithms for transformer-based language models, 2023.

11

https://www.cerebras.ai/blog/the-practitioners-guide-to-the-maximal-update-parameterization
https://www.cerebras.ai/blog/the-practitioners-guide-to-the-maximal-update-parameterization
https://www.cerebras.ai/blog/the-practitioners-guide-to-the-maximal-update-parameterization

392
393
394

395
396
397

398

399

400
401

402
403

404
405

406
407
408

409
410

411
412
413
414

415
416
417

418
419

420
421
422
423
424

425

426

427

428

429
430
431

432
433
434

435
436

[35] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models, 2020.

[36] Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi. Error feed-
back fixes signSGD and other gradient compression schemes. In ICML 2019 - International
Conference on Machine Learning, pages 3252-3261. PMLR, 2019.

[37] Andrej Karpathy. NanoGPT. https://github.com/karpathy/nanoGPT, 2022.
[38] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

[39] Atli Kosson, Bettina Messmer, and Martin Jaggi. Analyzing & reducing the need for learning
rate warmup in gpt training, 2024.

[40] Atli Kosson, Bettina Messmer, and Martin Jaggi. Rotational equilibrium: How weight decay
balances learning across neural networks, 2024.

[41] Frederik Kunstner. Why do machine learning optimizers that work, work? PhD thesis, University
of British Columbia, 2024.

[42] Frederik Kunstner, Jacques Chen, Jonathan Wilder Lavington, and Mark Schmidt. Noise is not
the main factor behind the gap between sgd and adam on transformers, but sign descent might
be, 2023.

[43] Frederik Kunstner, Robin Yadav, Alan Milligan, Mark Schmidt, and Alberto Bietti. Heavy-tailed
class imbalance and why adam outperforms gradient descent on language models, 2024.

[44] Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Yitzhak Gadre, Hritik
Bansal, Etash Guha, Sedrick Scott Keh, Kushal Arora, et al. Datacomp-lm: In search of the next

generation of training sets for language models. Advances in Neural Information Processing
Systems, 37:14200-14282, 2024.

[45] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke,
Jeff Smith, Brian Vaughan, Pritam Damania, and Soumith Chintala. Pytorch distributed:
Experiences on accelerating data parallel training, 2020.

[46] Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic
second-order optimizer for language model pre-training, 2024.

[47] Jingyuan Liu, Jianlin Su, Xingcheng Yao, Zhejun Jiang, Guokun Lai, Yulun Du, Yidao Qin,
Weixin Xu, Enzhe Lu, Junjie Yan, Yanru Chen, Huabin Zheng, Yibo Liu, Shaowei Liu, Bohong
Yin, Weiran He, Han Zhu, Yuzhi Wang, Jianzhou Wang, Mengnan Dong, Zheng Zhang,
Yongsheng Kang, Hao Zhang, Xinran Xu, Yutao Zhang, Yuxin Wu, Xinyu Zhou, and Zhilin
Yang. Muon is scalable for llm training, 2025.

[48] Al @ Meta Llama Team. The llama 3 herd of models, 2024.

[49] Tlya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts, 2017.
[50] Tlya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.

[51] James Martens. New insights and perspectives on the natural gradient method, 2020.

[52] James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approx-
imate curvature. In International conference on machine learning, pages 2408-2417. PMLR,
2015.

[53] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, and Hao Wu. Mixed
precision training, 2018.

[54] Konstantin Mishchenko and Aaron Defazio. Prodigy: An expeditiously adaptive parameter-free
learner, 2024.

12

https://github.com/karpathy/nanoGPT

437
438

439
440

441
442

443

444

445

446
447
448
449

450
451

452
453
454
455
456

457
458
459

460
461
462

463
464

466

467
468

470

471
472

473
474

475
476

477

478
479

481
482

[55] A.S. Nemirovskii and Yu.E. Nesterov. Optimal methods of smooth convex minimization. USSR
Computational Mathematics and Mathematical Physics, 25(2):21-30, 1985.

[56] Yu. Nesterov and V. Shikhman. Quasi-monotone Subgradient Methods for Nonsmooth Convex
Minimization. Journal of Optimization Theory and Applications, 165(3):917-940, June 2015.

[57] Yurii Nesterov. A method for unconstrained convex minimization problem with the rate of
convergence o(1/k?), 1983.

[58] Team OLMo. 2 olmo 2 furious, 2024.
[59] OpenAl. Gpt-4 technical report, 2024.
[60] Francesco Orabona. Neural networks (maybe) evolved to make adam the best optimizer, 2020.

[61] Francesco Orabona and Dévid Pal. Open problem: Parameter-free and scale-free online
algorithms. In Vitaly Feldman, Alexander Rakhlin, and Ohad Shamir, editors, 29th Annual
Conference on Learning Theory, volume 49 of Proceedings of Machine Learning Research,
pages 1659-1664, Columbia University, New York, New York, USA, 23-26 Jun 2016. PMLR.

[62] Matteo Pagliardini, Pierre Ablin, and David Grangier. The ademamix optimizer: Better, faster,
older, 2024.

[63] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library, 2019.

[64] Guilherme Penedo, Hynek Kydlicek, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell,
Colin Raffel, Leandro Von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web
for the finest text data at scale, 2024.

[65] Guilherme Penedo, Hynek Kydlic¢ek, Vinko Sabolcec, Bettina Messmer, Negar Foroutan, Martin
Jaggi, Leandro von Werra, and Thomas Wolf. Fineweb2: A sparkling update with 1000s of
languages, December 2024.

[66] Thomas Pethick, Wanyun Xie, Kimon Antonakopoulos, Zhenyu Zhu, Antonio Silveti-Falls, and
Volkan Cevher. Training deep learning models with norm-constrained Imos, 2025.

[67] Boris Polyak. Some methods of speeding up the convergence of iteration methods. Ussr
Computational Mathematics and Mathematical Physics, 4:1-17, 1964.

[68] Boris Polyak. New method of stochastic approximation type. Automation and Remote Control,
1990, 01 1990.

[69] Tomer Porian, Mitchell Wortsman, Jenia Jitsev, Ludwig Schmidt, and Yair Carmon. Resolving
discrepancies in compute-optimal scaling of language models, 2024.

[70] Alec Radford and Karthik Narasimhan. Improving language understanding by generative
pre-training. 2018.

[71] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAl, 2019.

[72] Herbert Robbins and Sutton Monro. A Stochastic Approximation Method. The Annals of
Mathematical Statistics, 22(3):400 — 407, 1951.

[73] David Ruppert. Efficient estimations from a slowly convergent robbins-monro process. 1988.

[74] Nikhil Sardana, Jacob Portes, Sasha Doubov, and Jonathan Frankle. Beyond chinchilla-optimal:
Accounting for inference in language model scaling laws, 2024.

[75] Fabian Schaipp, Alexander Hégele, Adrien Taylor, Umut Simsekli, and Francis Bach. The
surprising agreement between convex optimization theory and learning-rate scheduling for large
model training, 2025.

13

483
484

485

494

496
497
498
499
500

502
503

504
505

506

508

509
510
511

512
513
514

515
516

517
518
519

521
522

523

524
525

527
528

[76] Robin M. Schmidt, Frank Schneider, and Philipp Hennig. Descending through a crowded valley
- benchmarking deep learning optimizers, 2021.

[77] Noam Shazeer. Glu variants improve transformer, 2020.

[78] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts
layer, 2017.

[79] Yikang Shen, Matthew Stallone, Mayank Mishra, Gaoyuan Zhang, Shawn Tan, Aditya Prasad,
Adriana Meza Soria, David D. Cox, and Rameswar Panda. Power scheduler: A batch size and
token number agnostic learning rate scheduler, 2024.

[80] Charlie Snell, Jachoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute
optimally can be more effective than scaling model parameters, 2024.

[81] Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer:
Enhanced transformer with rotary position embedding, 2023.

[82] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of
initialization and momentum in deep learning. In Sanjoy Dasgupta and David McAllester,
editors, Proceedings of the 30th International Conference on Machine Learning, Proceedings
of Machine Learning Research, pages 11391147, Atlanta, Georgia, USA, 17-19 Jun 2013.
PMLR.

[83] Shohei Taniguchi, Keno Harada, Gouki Minegishi, Yuta Oshima, Seong Cheol Jeong, Go Na-
gahara, Tomoshi liyama, Masahiro Suzuki, Yusuke Iwasawa, and Yutaka Matsuo. Adopt:
Modified adam can converge with any S5 with the optimal rate, 2024.

[84] Nikhil Vyas, Depen Morwani, Rosie Zhao, Itai Shapira, David Brandfonbrener, Lucas Janson,
and Sham Kakade. Soap: Improving and stabilizing shampoo using adam, 2024.

[85] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi,
Quoc Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models, 2023.

[86] Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang, Ce Bian, Chao Yin, Chenxu Ly,
Da Pan, Dian Wang, Dong Yan, et al. Baichuan 2: Open large-scale language models. arXiv
preprint arXiv:2309.10305, 2023.

[87] Greg Yang, Edward J. Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick
Ryder, Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor programs v: Tuning large
neural networks via zero-shot hyperparameter transfer, 2022.

[88] Huizhuo Yuan, Yifeng Liu, Shuang Wu, Xun Zhou, and Quanquan Gu. Mars: Unleashing the
power of variance reduction for training large models, 2024.

[89] Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. Adaptive
methods for nonconvex optimization. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc., 2018.

[90] Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transform-
ers, 2022.

[91] Biao Zhang and Rico Sennrich. Root mean square layer normalization, 2019.

[92] Hanlin Zhang, Depen Morwani, Nikhil Vyas, Jingfeng Wu, Difan Zou, Udaya Ghai, Dean
Foster, and Sham Kakade. How does critical batch size scale in pre-training?, 2024.

[93] Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi,
Sanjiv Kumar, and Suvrit Sra. Why are adaptive methods good for attention models? Advances
in Neural Information Processing Systems, 33:15383—-15393, 2020.

14

529
530

531
532

533
534

[94] Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank J Reddi,
Sanjiv Kumar, and Suvrit Sra. Why are adaptive methods good for attention models?, 2020.

[95] Yushun Zhang, Congliang Chen, Tian Ding, Ziniu Li, Ruoyu Sun, and Zhi-Quan Luo. Why
transformers need adam: A hessian perspective, 2024.

[96] Rosie Zhao, Depen Morwani, David Brandfonbrener, Nikhil Vyas, and Sham Kakade. Decon-
structing what makes a good optimizer for language models. ICLR, 2025.

15

535

536

537
538

539

541
542
543
544
545
546
547
548
549
550
551

552

553

554

555

556

557

558

559

560
561
562
563
564
565
566
567
568
569
570
571
572

574

575
576

577

579
580
581
582

583

584
585

586

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: the contribution of this paper is described accurately in the abstract and
introduction.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: we discuss a limitations and mention experiments we have not tried to run
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

16

587

588

589
590

592
593
594
595
596
597

598

599

600
601
602

603

604

605

606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625

627
628
629
630
631
632
633
634

636

637

638
639
640

Justification: this is not a theoretical work
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: we open-source our code
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

17

641

642

643

644

645
646

647
648
649
650

651
652
653

654
655

656
657
658

659
660

661
662
663

664
665
666

667

668
669

670

671

672
673

674
675
676

677
678

679

680
681

682

683
684
685
686
687
688
689
690
691

692

Answer: [Yes]
Justification: we provide our code and the datasets are mentioned clearly
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: we specify all of the important hyperparameters as well as hyperparameter
tuning.
Guidelines:
* The answer NA means that the paper does not include experiments.
* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.
* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: in our large-scale experiments we could not affort so. and we are running all
of the experiment with the same seed for generation data splits, etc.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

18

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

693
694

695
696
697

698
699

701
702

703

704
705
706

707

708

709

710

71
712

713
714

715
716
717

718

719
720

721

722

723

724

725
726

727
728

729

731

732

733

734

735

737
738

740
741

8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: we provide this in Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: this paper is consistent with NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: there is no societal impact of the work performed.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

19

https://neurips.cc/public/EthicsGuidelines

742
743
744
745
746
747
748

749
750
751
752

753
754
755
756

757

759
760

761

762

763

764

765
766
767
768

770

771
772
773

774

775
776
77

778

779

780

781
782

783
784
785
786
787
788
789
790
791
792
793

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: the paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: we cite them and respect, see Sections and
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

20

paperswithcode.com/datasets

794
795

796

797
798

799

800

801

802
803

805

806
807

808
809

810

811
812
813

814

815

816

817

818

819
820
821
822
823
824

825
826

827
828
829
830

831

832

833

834

835
836
837
838
839
840
841
842
843

844

13.

14.

15.

16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: the paper does not propose new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: our work does not include research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: our work does not include research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

21

845
846
847
848

849

850

851

852
853
854
855

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: the core development of our work does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

22

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background & Related Work
	Experimental Setup
	Results
	Benchmarking at Small Scale: Training Models of 124M Parameters
	Benchmarking at medium scale: Training Models of 210M Parameters
	Scaling Up: Benchmarking models of 583M and 720M Parameters

	Extension to MoEs
	Discussion
	Optimizers we study
	AdamW, ADOPT, AdEMAMix
	Sign-based methods: Lion and Signum
	Muon, SOAP, Sophia
	Schedule-Free AdamW, Prodigy
	MARS

	Implementation
	Model & Data
	Hyperparameter tuning
	124M parameters model
	210M parameters model
	600M parameters model

	Additional results
	Benchmarking: 124M
	Ablations for 124M model
	Benchmarking: 210M
	Ablations for 210M model
	Wall-clock performance of optimizers across models of different scale
	Extension to MoEs.

