
Benchmarking Optimizers
for Large Language Model Pretraining

Anonymous Author(s)
Affiliation
Address
email

Abstract
The recent development of Large Language Models (LLMs) has been accompanied1

by an effervescence of novel ideas and methods to better optimize the loss of deep2

learning models. Claims from those methods are myriad: from faster convergence3

to removing reliance on certain hyperparameters. However, the diverse experi-4

mental protocols used to validate these claims make direct comparisons between5

methods challenging. This study presents a comprehensive evaluation of recent6

optimization techniques across standardized LLM pre-training scenarios, systemat-7

ically varying model size, batch size, and training duration. Through careful tuning8

of each method, we provide guidance to practitioners on which optimizer is best9

suited for each scenario. For researchers, our work highlights promising directions10

for future optimization research. Finally, by releasing our code and making all11

experiments fully reproducible, we hope our efforts can help the development and12

rigorous benchmarking of future methods.13

1 Introduction14

Over the past five years, Large Language Models (LLMs) [15, 59, 22, 48] have shown growth in15

performance and size, demonstrating proficiency in various downstream tasks [80, 7, 85]. The success16

of LLM pretraining hinges on three key pillars: high-quality data [65, 44], architectural innovations17

[31, 15], and scalable optimization techniques.18

Among these, the choice of optimizer has remained notably consistent in recent years, with Adam(W)19

[38, 50] dominating deep learning for nearly a decade. However, recent advances [33, 47, 84, 62,20

66, 17] challenge this status quo, offering alternatives that surpass AdamW in speed, communication21

efficiency [1] or final downstream performance on various benchmarks [12, 37], particularly for22

autoregressive language modeling [70]. Despite these innovations, current benchmarks and ablation23

studies [96, 34] remain narrow in scope, often examining only isolated aspects of optimizer design.24

This lack of systematic comparison makes it difficult to obtain trustworthy insights for practitioners,25

or identify the next promising research directions.26

In this work, our goal to revisit the problem of benchmarking optimizers for LLM pretraining.27

We do so through standardized experiments which vary important parameters such as batch size,28

model size, and the number of training iterations. This allows us to formulate an up-to-date list of29

best-performing methods for the community of researchers and practitioners. We demonstrate the30

efficiency of each considered method through careful tuning, and present insightful ablations along31

the way. Furthermore, we provide a set of best practices for LLM pretraining that are applicable32

regardless of the optimizer chosen.33

We summarize our contributions as follows:34

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



(Contribution 1) We conduct the first large-scale, controlled benchmark of 11 different optimization35

methods across diverse LLM training scenarios. A fair comparison is ensured by precise accounting36

for compute costs, and extensive hyperparameter tuning. We identify optimal optimizer choices in37

several relevant training regimes, for both dense and MoE architectures.38

(Contribution 2) We perform comprehensive ablations of critical training hyperparameters—39

including warmup duration, initialization schemes, gradient clipping, final learning rates, and learning40

rate scheduler choices—providing actionable insights for optimizing LLM training in practice.41

(Contribution 3) We open-source our full benchmarking toolkit, including training scripts, evaluation42

pipelines, and hyperparameter configurations, to enable reproducible research and facilitate future43

optimizer development.44

Figure 1: A comparison of leading optimiz-
ers, for training a 720M parameter LLM.

For practitioners, our work provides an evidence-45

based answer to the burning question: “Is Adam still46

the most effective optimizer in the age of LLMs, or47

can we achieve better performance at scale with48

novel optimizers?”. For researchers, our work de-49

livers a unified benchmarking framework for LLM50

pretraining, along with extensive ablation studies51

which systematically evaluate both popular and over-52

looked optimizer designs—revealing previously un-53

explored tradeoffs between efficiency, stability, and54

final model performance. Overall, our findings not55

only challenge long-held assumptions about opti-56

mizer selection but also establish a foundation for57

future advances in large-scale model training. By58

bridging the gap between theoretical innovation and59

practical deployment, this work aims to accelerate60

progress in both research and industry applications61

of LLM training.62

2 Background & Related Work63

Optimizers. While computer vision models often show comparable performance between SGD [72]64

and AdamW [94], the landscape differs dramatically in LLM training. Recent work [95] demon-65

strates that adaptive methods like AdamW provide substantially better optimization characteristics66

for transformer-based language models. The question of why AdamW works so well has been a67

long-standing topic of research [2, 60, 93, 43, 41]. Modern methods often inherit AdamW’s core ideas68

in their structure, such as ADOPT [83] and AdEMAMix [62]. ADOPT has been motivated by solving69

long-standing convergence issues in AdamW. By normalizing the second-order moment prior to the70

momentum update, they eliminate the non-convergence issues of AdamW on smooth non-convex71

functions. Meanwhile AdEMAMix extends AdamW with an additional slower momentum buffer, i.e. a72

slower exponential moving average (EMA), which allows the use of much larger momentum values,73

accelerating convergence.74

One interpretation of AdamW’s effectiveness lies in its sign-based update [42]: without the exponential75

moving average (EMA), AdamW resembles signSGD [6]. Recent work [96, 36] has shown that76

Signum (signSGD with momentum), can perform comparably to AdamW. Earlier, the community also77

discussed Lion [9], a method with a similar sign-based structure. Signum and Lion offer memory78

benefits due to the use of only a single instead of Adam’s two buffers for optimizer states.79

Another family of methods stems from AdamW’s approximate second-order structure, where the80

diagonal of the Fisher information matrix or other preconditioning approaches [52, 24] are used as81

the second moment estimate. This idea has given rise to Sophia [46], SOAP [84], and, to some extent,82

Muon [33].83

The parameter-free concept [61] has led to the development of Schedule-Free AdamW84

(SF-AdamW) [17] and Prodigy [54]. These optimizers do not require a decreasing learning rate85

schedule, making them relevant for continual training. Last but not least, MARS [88], builds upon this86

line of research and incorporates a variance reduction mechanism in its update rule.87

2



Benchmarks. To a large extent, the benchmarking setup determines the final conclusions. Some88

benchmarks are designed for short speedruns in terms of training or validation loss [32], while89

others focus on a downstream target metric after training [96, 12, 76]. Methods that perform well90

in short speedruns might not be optimal for longer training horizons as in real LLM training runs91

(see Figure 3). ”But what constitutes a sufficiently long horizon?” ”What should be the compute92

budget for LLM training?” These are questions explored by scaling laws [35]. Early benchmarks93

for optimizers and other ablation studies often rely on Chinchilla scaling laws [26] with a ratio of94

roughly 20 tokens per parameter (TPR) needed for pretraining. However, recent research [69, 74]95

argues that this is far from sufficient for production-ready models.96

Another important issue is the choice of loss function. Recent setups have been using an auxiliary97

z-loss [86, 11] in addition to cross-entropy, which requires further investigation. We believe this98

choice is influenced by the use of the OLMo [58] codebase, which we also address in our work.99

Additionally, we found that previous setups for comparing optimizers do not align with recent best100

practices regarding weight decay, learning rate decay, and overall hyperparameter tuning. All of these101

questions are revisited in our work.102

3 Experimental Setup103

Notations. We use the following notations. Let ω be the learning rate, ε the weight decay coefficient,104

and T the total number of iterations. Momentum-related parameters are represented by the symbol ϑ.105

Models & Data. For most experiments, we use a Llama-like transformer [48] architecture, including106

SwiGLU activations [77], RMSNorm [91], and RoPE embeddings [81]. We experiment with four107

sizes of models: 124M, 210M, 583M, 720M. We train on a 100B tokens1 subset of FineWeb [64].108

It consists of a cleaned and deduplicated corpus for LLM pretraining, which we tokenize using the109

GPT-2 tokenizer prior to splitting into train and validation sequences. MoE setup described in110

Iterations & Batch size. Throughout our experiments, we use a sequence length of 512 tokens. For111

clarity, we often report the batch size in tokens by writing Batch size→sequence length. For the 124M112

model, we use batch sizes of 32→ 512 = 16k, 256→ 512 = 131k, and 512→ 512 = 262k tokens;113

for the 210M model, we use a batch size of 256→ 512 = 131k; and for 583M model, we leverage114

the batch sizes of 1024→ 512 = 524k and 3936→ 512 = 2M tokens. Depending on the model size,115

we vary the number of iterations — also measured in tokens for compatibility with scaling laws and116

to accommodate different batch size settings. We train 124M and 210M models for equal durations117

of {1, 2.1, 4.2, 6.3, 8.4, 16.8}B tokens. This corresponds to T ↑ {64, 128, 256, 384, 512, 1024}k118

iterations for a batch size of 32, and T ↑ {8, 16, 32, 48, 64, 128}k iterations for a batch size of 256.119

For 583M models, we train on {13, 32}B tokens, corresponding to T ↑ {6.5, 16}k iterations, resp.120

T ↑ {25, 61.5}k iterations, for a batch size of 3936, resp. 1024. In the setup with 720M model,121

we have T ↑ {8, 16, 48}k iterations for a batch size of 1M tokens. Thus, for all model scales,122

we include both Chinchilla optimal lengths of training and beyond. More details are available in123

Appendix C.124

Loss. We train using the classical cross-entropy next token prediction loss. Some prior works125

introducing optimizers use a z-loss in addition to cross-entropy [30, 11, 86, 84, 96]. We found that126

this has little impact and, therefore, do not use z-loss. An ablation showing results with and without127

z-loss is in the appendix.128

Hyperparameter Tuning. Training LLMs is a computationally intensive task. As a guidance,129

practitioners often rely on insights gathered at lower scales, scaling laws, and other rules [87, 18].130

It is also commonplace to run experiments for only a shorter duration of training, as a way to test131

certain hyperparameters prior to extending the training horizon to more iterations. Because a full132

grid search over every hyperparameter, for each setting and optimizer, would be too costly, we133

resort to a similar approach. More precisely, for each model size, batch size, and optimizer, we tune134

optimization hyperparameters extensively for a number of training tokens which is near-Chinchilla135

optimal. We then keep those hyperparameters when we increase the number of iterations. While we136

found that the sensitivity to several hyperparameters can change as we increase the training horizon,137

we found this approach simple and yet effective. The hyperparameters being considered depend on the138

optimizer. We proceeded from small to large model scale, and used insights gathered at smaller scales139

1https://huggingface.co/datasets/HuggingFaceFW/fineweb

3

https://huggingface.co/datasets/HuggingFaceFW/fineweb


to guide the hyperparameter search at larger scales. Our hyperparameter sweeps are summarized in140

Appendix D. We present the clarifications regarding the connection between the number of iterations141

and tokens for different batch size settings as well as the Chinchilla optimal length of training for142

our models in Tables 3 and 5. As learning rate schedulers, we compare cosine [49], linear and143

warmup-stable-decay (WSD) [27, 90, 28]. Unless specified, we use a cosine scheduler. Results with144

WSD and linear schedulers are discussed in Section 4. Recent works also emphasize the importance145

of sufficiently decaying the learning rate [4, 75, 28]. As such, we take care to decay to 0.01 → ω146

instead of the often used 0.1 → ω. To give an idea of how much effort was put into tuning each147

method, across all model sizes, batches and iterations, we trained a total of 2400 models, and have148

spent roughly 30000 GPU hours.149

Optimizers. Here is a list of the optimizers we considered in our work. For each algorithm, we150

write in parentheses the optimizer-specific hyperparameters we tuned: AdamW(ϑ1,ϑ2), SOAP(ϑ1,ϑ2)151

and preconditioning frequency, Lion(ϑ1,ϑ2), MARS(ϖ,ϑ1,ϑ2) and Newton-Schulz hyperpa-152

rameters, ADOPT(ϑ1,ϑ2), Signum(ϑ), Prodigy(ϑ1,ϑ2), SF-AdamW(ϑ1,ϑ2), Muon(ωM,ϑ,ϑ1,ϑ2),153

Sophia(ϱ,ϑ1,ϑ2), AdEMAMix(ϑ1,ϑ2,ϑ3,ς). When an optimizer has several momentum variants154

e.g. Nesterov [57] or Polyak [67], we try both. In addition, we tune the learning rate ω extensively155

for all methods. We also try different gradient clipping, warmup steps, and weight-decay values. A156

summary of the hyperparameters tested and selected for each model size is in Appendix D. All the157

optimizers are described in depth in Appendix A.158

4 Results159

We structure our story starting with smaller models and batch sizes, and gradually scaling up to larger160

configurations. In some instances, we complement the core benchmarking results with additional161

ablations and possible best-practices.162

4.1 Benchmarking at Small Scale: Training Models of 124M Parameters163

Using “small” batches. We first report results when using batches of 32→ 512 tokens in Figure 3.164

We tune hyperparameters by training for 2.1B tokens (128k iterations) and then keep those hyperpa-165

rameters for all other training durations. The best hyperparameters are reported in Appendix D.1.166

We observe how, for the smallest number of iterations we considered (1B tokens ↓ 64k), SOAP,167

ADOPT and AdEMAMix all outperform AdamW, with SOAP being the best. As we increase the number168

of iterations, AdEMAMix takes the lead while AdamW closes the gap with both ADOPT and SOAP. A169

sign-based methods such as Lion and Signum are expected to perform poorly when the batch size is170

small. Intuitively, this is due to the sign(·) operator being sensitive to gradient noise. As described171

in its original paper, MARS also performs poorly when the batch size is small. We found Prodigy,172

Muon and SF-AdamW to underperform in this setting compared to AdamW. On this scale, Prodigy173

suffers from the lack of bias correction of the learning rate, as well as being sensitive to (ϑ1,ϑ2) (see174

Figure 17.175

Using “large” batches. We now report results when using batches of 256 → 512 tokens — 8→176

larger than for our small batch setting. Results in Figure 2 show how Signum, Mars, Lion, Prodigy177

greatly benefit from the increased batch size. Remarkably, we observe that the Prodigy method178

scales similarly to AdamW. We emphasize the possible community interest in this algorithm as its179

EMA Prodigy adaptively emulates the learning rate behaviour. For a small number of iterations180

(e.g. T ↑ {8k, 16k} corresponding to 1B and 2B tokens), all methods outperform AdamW except for181

SF-AdamW and Sophia. As we increase the number of iterations ADOPT, SOAP, and AdEMAMix take182

the lead. In particular, AdEMAMix has a consistent lead over other methods. While we anticipated—in183

accordance with Vyas et al.[84]—that SOAP would greatly benefit from the larger batch size, its184

behavior remains relatively consistent compared to our previous small batch setting.185

Stability across training horizons. As mentioned in Section 3, we tune hyperparameters training186

on 2.1B tokens and keep those hyperparameters when extending the training horizon. In Figure 3187

we study whether it is possible to find better parameters for AdamW, SOAP, and AdEMAMix. When188

training on 16.8B tokens, we see it is beneficial to increase the ϑ3 from 0.999 to 0.9999. Without this189

improvement, SOAP ends up matching the performances of AdEMAMix when extending the training190

horizon further to 33.6B tokens (↓ 256k iterations). In our experiments, ϑ3 = 0.999 is only better191

than ϑ3 = 0.9999 when the number of training iterations is less than 32k. This matches observation192

4



(a) Batch size 32→ 512 tokens. (b) Batch size 256→ 512 tokens.

Figure 2: Ranking of optimizers for 124M models with small and large batch sizes. In both
(a) and (b), we show the final validation loss for different training durations, corresponding to
different numbers of tokens. Above each token number, we write the number of training iterations
corresponding. In (a), we use a “small” batch size of 32→ 512 tokens. In (b), we use a larger batch
size of 256→ 512 tokens.

from [62], which recommends reducing ϑ3 when training for fewer iterations. We also test whether193

the learning rate ω changes as we increase the number of tokens/iterations. In Figure 5, we run a194

sweep over ω when training for 16.8B tokens. While for most methods, the best ω obtained in the195

previous sweep remains optimal, this is not the case for SOAP and SF-AdamW, which can benefit from196

a larger ω = 0.002.197

WSD vs. cosine & linear ω-schedulers. Learning rate schedulers received a lot of attention recently198

[79, 28]. We conducted a series of experiments comparing WSD [27, 90] and linear with cosine [49]199

learning rate schedulers. Surprisingly, the performance gap between these two schedulers observed200

in Figure 23 is often significant2 for benchmarking optimizers. Consequently, we decided to adopt201

the cosine scheduler for all further experiments.202

Decaying ω sufficiently. In Figure 8 we show the impact of decaying more or less the learning rate203

ω(t). From ω = 10→3 we train models using cosine decay down to ωend ↑ {10→4, 10→5, . . . , 10→9}.204

We found that decaying the learning rate sufficiently matters. In particular, the often use rule205

consisting in decaying to 0.1 → ω is suboptimal. This agrees with the recent works [28, 75, 4].206

Building on this findings, we consistently use cosine decay down to 0.01→ ω.207

Takeaway 1. After the experiment in the small-batch setting, we conclude that: (i) AdEMAMix
scales in the best manner with the number of iterations, SOAP underperforms AdamW when the
length of training increases. ADOPT and Prodigy show almost equal performance across all
training durations. Sign-based methods, predictably, underperform when the batch size is small,
but what is interesting, is that Sophia diverges at all, even if trains with sufficiently small learning
rate.

208

Increasing the batch size further. We also run an experiment with batches of 512→ 512 = 262k209

tokens, training for 64k iterations. Results in Figure 3 show mostly consistent results. Noticeably210

MARS becomes the second best performing method behind AdEMAMix, followed closely by Prodigy,211

Lion, and SOAP. Interestingly, Signum performs comparably to AdamW.212

Takeaway 2. Taking into consideration large batch size setting, we found that many methods,
once properly tuned, can show a remarkable performance compared to AdamW and also outperform
it.

213

Weight decay ablation. As recent frameworks for LLM pretraining or ablation studies omit weight214

decay as a default non-zero hyperparameter, some setups even mislead by not incorporating weight215

decay in their experiments. In this work, we demonstrate the importance of weight decay and its216

impact across different optimizers. Surprisingly, increasing weight decay while keeping the learning217

2We emphasize that the difference between the two schedulers is generally less than 5% of the total compute
spent. However, this still represents a significant gap in our benchmarking setup, e.g., SF-AdamW may outperform
AdamW in some settings (see Figure 23).

5



(a) Scaling batch size. (b) Scaling number of tokens.

Figure 3: Our results demonstrate that (a): scaling the batch size significantly improves MARS,
Signum, Lion and Prodigy making them as good as AdamW even for a long training for 16.8B tokens.
Which was not the case in Figure 2 (b), where we still observed a significant gap in performance; and
(b): indeed, with scaling of the number of iterations, the gap between SOAP and AdEMAMix narrow
and, finally, increases. But, on the other hand, with increase of the AdEMAMix ϑ3 parameter, the
performance gap with SOAP reappears.

rate constant proves to be an effective technique for training on shorter horizons. This approach is218

so effective that methods like Signum and Lion with high weight decay significantly outperform219

AdamW without weight decay (see Figure 4). Implementation details also warrant attention. Coupled220

weight decay is still used in some settings, including the PyTorch [63] optimizer implementations.221

Notably, the popular implementation of Signum becomes ineffective when weight decay is applied.222

Highlighting this oversight for the community, we contribute by demonstrating our implementation223

of Signum (Algorithm 6) with decoupled weight decay. The influence of weight decay on model224

weights is intriguing. As is known, model weights typically grow during training, but weight decay,225

by modifying the optimized function, significantly reduces the growth of the model’s parameter norm.226

Such ablations of weight decay are also of interest to the community [13, 40].227

Regarding the ablation of weight decay for optimizers, we again select the best setup for each and228

conduct a sweep over weight decay values. Our results are presented in Figure 4 and in Figure 21.229

(a) (b) (c)

Figure 4: Larger weight decay achieves significantly better results when training on fewer
tokens. In (a) we observe that runs of AdamW, Signum, and Lion with the large weight decay of
0.5 consistently outperform the baseline AdamW with weight decay of 0.1 for all training durations
except for the last one. Notably, Signum and Lion with large weight decay perform even better than
AdamW with the same learning rate. In (b), we also consider a setting without weight decay. We
observe that this is suboptimal not only for AdamW, but also for the majority of other optimizers (see
Appendix E.2), while the typical weight decay of 0.1 remains the best for large training durations.
Importantly, in (c), we ablate the impact od weight decay on the model’s φ2 norm.

With our weight decay ablation, we are ready to provide one more insight.230

Takeaway 3. The use of weight decay, particularly a large decoupled weight decay term, can
significantly impact the final loss value and optimizer behavior. However, for extended training
horizons, a moderate, non-zero weight decay proves to be a robust option.

231

Learning rate sensitivity. Since we tune optimizers at a smaller scale and then extrapolate, we232

pose the question whether the best learning rate we have found so far transfers to the larger training233

duration. To verify this, we run 124M model on 16.8B tokens in 256 → 512 batch size setting,234

sweeping the learning rate across five typical values: {1e→4, 3e→4, 5e→4, 1e→3, 2e→3}. The best235

6



learning rate for each method at the moment of hyperparameter tuning on near Chinchilla-optimal236

2.1B training duration we report in Appendix D.1. A summary of our results for larger number of237

tokens is provided in Figure 5 and detailed results of the sweep are presented in Appendix E.2.238

(a) (b)

Figure 5: Optimal learning rate stability across optimizers. The optimal learning rate determined
during tuning on 2.1B tokens remains consistent after a learning rate sweep on 16.8B tokens for
most optimizers. In (a), we observe that sign-based methods and similar to them Sophia diverge with
increasing learning rate. Interestingly, in (b), SF-AdamW and SOAP demonstrate the best performance
with a large learning rate of 0.002. In our work, we further show that it is possible to increase the
learning rate even more for such methods.

Warmup ablation. Another important ingredient of the pretraining is learning-rate warmup in239

the initial phase of training. Recent studies have explored the necessity of warmup in modern240

deep learning, with some investigating its elimination [39] and others ablating it to improve model241

performance and stability [92]. We focus on the latter, examining how warmup affects optimizer242

setup and whether it can significantly enhance performance. For each optimizer’s best configuration,243

we vary warmup across three values: {0.27, 1, 4.2}B tokens, which corresponds to {2, 8, 32}k244

iterations. Our choice of the largest warmup value is inspired by [92]. We describe this experiment in245

Appendix E.2. Mainly, we observe that Signum and SF-AdamW perform better with a larger warmup246

of 8k steps when training on 16.8B tokens. We also ablate the claim from [92] that a warmup of 25%247

of the Chinchilla optimal duration is the best. However, our findings contradict this assertion (see248

Figure 18). We show that a moderate values of the warmup, generally, is better, however, different249

optimizers could prefer different number of warmup steps. As such, SF-AdamW, Sophia, Signum250

prefer larger warmup, which is clearly depicted in Figure 6.251

Figure 6: Warmup ablation. We report the final validation loss on the FineWeb dataset for 124M
model trained on the batch size of 256. We sweep over the batch sizes of {1.56%, 6.25%, 25%} of
the length of training, which corresponds to {2000, 8000, 32000}k iterations, respectively.

Cosine vs WSD. At the outset of our study, we indicated a preference for the cosine scheduler252

over WSD. In this section, we provide a more detailed ablation of this choice. Having optimally253

tuned the cosine scheduler for each optimizer, we replicate the setup of [28], which allows us to254

avoid adjusting additional hyperparameters. Our findings, which demonstrate the superiority of the255

cosine scheduler across various optimization methods, are presented in Figure 7, and in the Appendix256

Figures 23 and 24. These results not only validate our initial preference but also provide insights257

into the interaction between learning rate schedules and different optimizers in large-scale language258

model training.259

7



(a) (b) (c)

Figure 7: Comparisons between WSD and cosine scheduler. Notably, WSD and cosine scheduler
behave differently with respect to optimizer. In (a), the Muon optimizer shows a preference for WSD
across most training durations. Sophia exhibits an almost perfect match between both schedulers.
However, for AdamW, along with the majority of other optimizers studied (see Figure 24), we get
a better performance with cosine. We also report a detailed comparison with linear scheduler in
Appendix E.2.

4.2 Benchmarking at medium scale: Training Models of 210M Parameters260

In this section, we verify if our selected hyperparameters from smaller 124M allow accurate transfer261

to a slightly larger model. We point out that the most important hyperparameters to be sweeped are262

learning rate and gradient clipping. Regarding the learning rate, we observe that it only becomes a263

sensitive choice for sign-based methods, while the optimal hyperparameters for AdamW remain the264

same.265

Results with a batch size of 256→ 512. Results provided in the Appendix in Figure 20 are consistent266

with those obtained training 124M models with large batches.267

(a) (b) (c)

Figure 8: Decaying the learning rate down to 0.01→ ωmax and beyond, instead of only to 10%
We observe a common pattern for different schedulers that decreasing the learning rate to moderate
10→2 value is a better choice than decreasing it down to zero. Interestingly, the linear learning rate
scheduler for models at a given scale, requires 0.001→ ωmax.

Figure 9: Wall-clock time comparison. After conducting experiments for 124M and 210M models,
we are ready to present the wall-time comparison for each methods. For this purposes, we use a single
GPU, and run each optimizer for 100 iterations on a small batch size without gradient accumulation
and torch.compile. We report the wall-clock time per 100 iterations. We observe that all methods
take the roughly the same time or very close time to complete 100 iterations, with the exception of
Muon and SOAP. In addition, we point out that SOAP’s runtime exhibits a non-linear dependence on
the model size, due to its preconditioner matrices operations which are fast only for certain matrices
smaller than a predefined size.

4.3 Scaling Up: Benchmarking models of 583M and 720M Parameters268

We pick three methods: AdamW, SOAP, and AdEMAMix, and run experiments with a larger model269

of 583M parameters, and a large batch size of 2M tokens. The goal being to get closer to one of the270

8



settings described in [84]. We train for 6500 and 16000 iterations, corresponding to 13B and 32B271

tokens respectively.272

Comparison between our setting and [84]. We found several key differences between our codebase273

and [84]: (i) we decay the learning rate to 0.01→ ω instead of 0.1→ ω, with ω being the maximum274

learning rate, (ii) we use typical weight decay values of e.g. 0.1 instead of smaller values such as 0.01275

or 0.0001, (iii) we do not use a z-loss in addition to ours. It has been shown recently that properly276

decaying the learning rate has an important effect on the optimization [4]. We run an ablation to277

compare both settings and conclude that removing the z-loss and increasing the weight decay to 0.1278

improves the results. Results further improve when the learning rate is decayed more. This ablation279

is shown in Figure 8.280

Figure 10: Results for the 583M model. On the left, we show our results when training for 6500
iterations. In this setting, AdamW gives best results, followed by AdEMAMix and then SOAP. This
is surprising as it conflicts with findings from [84]. Those results are partly reconciled with the figure
on the right. And we see that the difference in performance between models trained with and without
the z-loss regularizer is quite minor.

5 Extension to MoEs281

Setup & Comparison. Besides training dense Llama-like transformers, we also conver a com-282

parison for MoE architectures [78]. Our variant of MoE is based on the Switch-Transformer im-283

plementation [20]. We use a classical linear gating with softmax and top-k routing (k = 2) and 8284

experts. The activation functions remains the same as for the dense base model from Section 3. Such285

a configuration of the MoE model gives us approximately 520M parameters. We cover additional286

details in Appendix E.6. In this setting we train with a batch size of 256→ 512 for T ↑ {42, 336}k287

iterations. Again we cover both a Chinchilla-optimal horizon and the beyond. We summarize the288

results in the following Table 1.289

Opt. 42k 336k
AdEMAMix 22.37 18.47
D-Muon 22.67 18.51
ADOPT 22.70 18.58
AdamW 22.85 18.69

Prodigy 22.82 18.78

Opt. 42k 336k
Lion 23.20 18.87

Signum 23.31 19.09
SF-AdamW 23.34 19.13
Sophia 23.41 19.22
MARS 22.73 19.33

Table 1: Final validation perplexity for MoE training (↔).

6 Discussion290

Our advices on tuning each method. Overall, we validate the already widely used hyperparameters291

of ε = 0.1 and Twarmup ↗ 2k. For Lion—as mentioned in [9]—we find that the best value for ϑ1292

is consistently 0.99. The mechanism for Lion seems similar to AdEMAMix, one can imagine that293

Lion could be better with larger ϑ1, which would require schedulers. We also pose an interesting294

observation toward Prodigy: while it may not be so efficient with a super small batch sizes, with295

scaling of the model size and the batch size it becomes almost as competitive as AdamW. Importantly,296

Muon and D-Muon performed poorly at a small scale with relatively small batch sizes (32, 256),297

however, as we see in Figure 1298

9



References299

[1] Kwangjun Ahn and Byron Xu. Dion: A communication-efficient optimizer for large models,300

2025.301

[2] Lukas Balles and Philipp Hennig. Dissecting adam: The sign, magnitude and variance of302

stochastic gradients, 2020.303

[3] C. Bekas, E. Kokiopoulou, and Y. Saad. An estimator for the diagonal of a matrix. Applied304

Numerical Mathematics, 57(11):1214–1229, 2007. Numerical Algorithms, Parallelism and305

Applications (2).306

[4] Shane Bergsma, Nolan Dey, Gurpreet Gosal, Gavia Gray, Daria Soboleva, and Joel Hestness.307

Straight to zero: Why linearly decaying the learning rate to zero works best for llms, 2025.308

[5] Jeremy Bernstein and Laker Newhouse. Old optimizer, new norm: An anthology, 2024.309

[6] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Anima Anandkumar. signsgd:310

Compressed optimisation for non-convex problems, 2018.311

[7] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,312

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel313

Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.314

Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz315

Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec316

Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.317

[8] David Edwin Carlson, Edo Collins, Ya-Ping Hsieh, Lawrence Carin, and Volkan Cevher.318

Preconditioned spectral descent for deep learning. In Neural Information Processing Systems,319

2015.320

[9] Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Yao Liu, Hieu Pham,321

Xuanyi Dong, Thang Luong, Cho-Jui Hsieh, Yifeng Lu, and Quoc V. Le. Symbolic discovery322

of optimization algorithms, 2023.323

[10] Savelii Chezhegov, Yaroslav Klyukin, Andrei Semenov, Aleksandr Beznosikov, Alexander324

Gasnikov, Samuel Horváth, Martin Takáč, and Eduard Gorbunov. Gradient clipping improves325

adagrad when the noise is heavy-tailed, 2024.326

[11] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam327

Roberts, Paul Barham, and Hyung Won. Palm: Scaling language modeling with pathways,328

2022.329

[12] George E. Dahl, Frank Schneider, Zachary Nado, Naman Agarwal, Chandramouli Shama Sastry,330

Philipp Hennig, Sourabh Medapati, Runa Eschenhagen, Priya Kasimbeg, Daniel Suo, Juhan331

Bae, Justin Gilmer, Abel L. Peirson, Bilal Khan, Rohan Anil, Mike Rabbat, Shankar Krishnan,332

Daniel Snider, Ehsan Amid, Kongtao Chen, Chris J. Maddison, Rakshith Vasudev, Michal333

Badura, Ankush Garg, and Peter Mattson. Benchmarking Neural Network Training Algorithms,334

2023.335

[13] Francesco D’Angelo, Maksym Andriushchenko, Aditya Varre, and Nicolas Flammarion. Why336

do we need weight decay in modern deep learning?, 2024.337

[14] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast338

and memory-efficient exact attention with io-awareness, 2022.339

[15] DeepSeek-AI. Deepseek-v3 technical report, 2024.340

[16] Aaron Defazio and Konstantin Mishchenko. Learning-rate-free learning by d-adaptation, 2023.341

[17] Aaron Defazio, Xingyu Alice Yang, Harsh Mehta, Konstantin Mishchenko, Ahmed Khaled, and342

Ashok Cutkosky. The road less scheduled, 2024.343

10



[18] Nolan Dey, Quentin Anthony, and Joel Hestness. The practitioner’s guide344

to the maximal update parameterization. https://www.cerebras.ai/blog/345

the-practitioners-guide-to-the-maximal-update-parameterization, September346

2024.347

[19] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning348

and stochastic optimization. Journal of Machine Learning Research, 12(61):2121–2159, 2011.349

[20] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion350

parameter models with simple and efficient sparsity, 2022.351

[21] Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason352

Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The Pile:353

An 800gb dataset of diverse text for language modeling. arXiv preprint arXiv:2101.00027,354

2020.355

[22] Google Gemini Team. Gemini: A family of highly capable multimodal models, 2024.356

[23] Alex Graves. Generating sequences with recurrent neural networks, 2014.357

[24] Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor358

optimization, 2018.359

[25] Nicholas J. Higham. Functions of Matrices. Society for Industrial and Applied Mathematics,360

2008.361

[26] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza362

Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom363

Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia364

Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent365

Sifre. Training compute-optimal large language models, 2022.366

[27] Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei367

Fang, Yuxiang Huang, Weilin Zhao, Xinrong Zhang, Zheng Leng Thai, Kaihuo Zhang, Chongyi368

Wang, Yuan Yao, Chenyang Zhao, Jie Zhou, Jie Cai, Zhongwu Zhai, Ning Ding, Chao Jia,369

Guoyang Zeng, Dahai Li, Zhiyuan Liu, and Maosong Sun. Minicpm: Unveiling the potential of370

small language models with scalable training strategies, 2024.371

[28] Alexander Hägele, Elie Bakouch, Atli Kosson, Loubna Ben Allal, Leandro Von Werra, and372

Martin Jaggi. Scaling laws and compute-optimal training beyond fixed training durations, 2024.373

[29] Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon374

Wilson. Averaging weights leads to wider optima and better generalization, 2019.375

[30] Sami Jaghouar, Jack Min Ong, Manveer Basra, Fares Obeid, Jannik Straube, Michael Keiblinger,376

Elie Bakouch, Lucas Atkins, Maziyar Panahi, Charles Goddard, Max Ryabinin, and Johannes377

Hagemann. Intellect-1 technical report, 2024.378

[31] Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris379

Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,380

Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier,381

Marie-Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak,382

Teven Le Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and383

William El Sayed. Mixtral of experts, 2024.384

[32] Keller Jordan, Jeremy Bernstein, Brendan Rappazzo, @fernbear.bsky.social, Boza Vlado,385

You Jiacheng, Franz Cesista, Braden Koszarsky, and @Grad62304977. modded-nanogpt:386

Speedrunning the nanogpt baseline, 2024.387

[33] Keller Jordan, Yuchen Jin, Vlado Boza, You Jiacheng, Franz Cecista, Laker Newhouse, and388

Jeremy Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024.389

[34] Jean Kaddour, Oscar Key, Piotr Nawrot, Pasquale Minervini, and Matt J. Kusner. No train no390

gain: Revisiting efficient training algorithms for transformer-based language models, 2023.391

11

https://www.cerebras.ai/blog/the-practitioners-guide-to-the-maximal-update-parameterization
https://www.cerebras.ai/blog/the-practitioners-guide-to-the-maximal-update-parameterization
https://www.cerebras.ai/blog/the-practitioners-guide-to-the-maximal-update-parameterization


[35] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,392

Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language393

models, 2020.394

[36] Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi. Error feed-395

back fixes signSGD and other gradient compression schemes. In ICML 2019 - International396

Conference on Machine Learning, pages 3252–3261. PMLR, 2019.397

[37] Andrej Karpathy. NanoGPT. https://github.com/karpathy/nanoGPT, 2022.398

[38] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.399

[39] Atli Kosson, Bettina Messmer, and Martin Jaggi. Analyzing & reducing the need for learning400

rate warmup in gpt training, 2024.401

[40] Atli Kosson, Bettina Messmer, and Martin Jaggi. Rotational equilibrium: How weight decay402

balances learning across neural networks, 2024.403

[41] Frederik Kunstner. Why do machine learning optimizers that work, work? PhD thesis, University404

of British Columbia, 2024.405

[42] Frederik Kunstner, Jacques Chen, Jonathan Wilder Lavington, and Mark Schmidt. Noise is not406

the main factor behind the gap between sgd and adam on transformers, but sign descent might407

be, 2023.408

[43] Frederik Kunstner, Robin Yadav, Alan Milligan, Mark Schmidt, and Alberto Bietti. Heavy-tailed409

class imbalance and why adam outperforms gradient descent on language models, 2024.410

[44] Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Yitzhak Gadre, Hritik411

Bansal, Etash Guha, Sedrick Scott Keh, Kushal Arora, et al. Datacomp-lm: In search of the next412

generation of training sets for language models. Advances in Neural Information Processing413

Systems, 37:14200–14282, 2024.414

[45] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke,415

Jeff Smith, Brian Vaughan, Pritam Damania, and Soumith Chintala. Pytorch distributed:416

Experiences on accelerating data parallel training, 2020.417

[46] Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic418

second-order optimizer for language model pre-training, 2024.419

[47] Jingyuan Liu, Jianlin Su, Xingcheng Yao, Zhejun Jiang, Guokun Lai, Yulun Du, Yidao Qin,420

Weixin Xu, Enzhe Lu, Junjie Yan, Yanru Chen, Huabin Zheng, Yibo Liu, Shaowei Liu, Bohong421

Yin, Weiran He, Han Zhu, Yuzhi Wang, Jianzhou Wang, Mengnan Dong, Zheng Zhang,422

Yongsheng Kang, Hao Zhang, Xinran Xu, Yutao Zhang, Yuxin Wu, Xinyu Zhou, and Zhilin423

Yang. Muon is scalable for llm training, 2025.424

[48] AI @ Meta Llama Team. The llama 3 herd of models, 2024.425

[49] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts, 2017.426

[50] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.427

[51] James Martens. New insights and perspectives on the natural gradient method, 2020.428

[52] James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approx-429

imate curvature. In International conference on machine learning, pages 2408–2417. PMLR,430

2015.431

[53] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,432

Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, and Hao Wu. Mixed433

precision training, 2018.434

[54] Konstantin Mishchenko and Aaron Defazio. Prodigy: An expeditiously adaptive parameter-free435

learner, 2024.436

12

https://github.com/karpathy/nanoGPT


[55] A.S. Nemirovskii and Yu.E. Nesterov. Optimal methods of smooth convex minimization. USSR437

Computational Mathematics and Mathematical Physics, 25(2):21–30, 1985.438

[56] Yu. Nesterov and V. Shikhman. Quasi-monotone Subgradient Methods for Nonsmooth Convex439

Minimization. Journal of Optimization Theory and Applications, 165(3):917–940, June 2015.440

[57] Yurii Nesterov. A method for unconstrained convex minimization problem with the rate of441

convergence o(1/k2), 1983.442

[58] Team OLMo. 2 olmo 2 furious, 2024.443

[59] OpenAI. Gpt-4 technical report, 2024.444

[60] Francesco Orabona. Neural networks (maybe) evolved to make adam the best optimizer, 2020.445

[61] Francesco Orabona and Dávid Pál. Open problem: Parameter-free and scale-free online446

algorithms. In Vitaly Feldman, Alexander Rakhlin, and Ohad Shamir, editors, 29th Annual447

Conference on Learning Theory, volume 49 of Proceedings of Machine Learning Research,448

pages 1659–1664, Columbia University, New York, New York, USA, 23–26 Jun 2016. PMLR.449

[62] Matteo Pagliardini, Pierre Ablin, and David Grangier. The ademamix optimizer: Better, faster,450

older, 2024.451

[63] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,452

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas453

Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,454

Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,455

high-performance deep learning library, 2019.456

[64] Guilherme Penedo, Hynek Kydlíček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell,457

Colin Raffel, Leandro Von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web458

for the finest text data at scale, 2024.459

[65] Guilherme Penedo, Hynek Kydlíček, Vinko Sabolčec, Bettina Messmer, Negar Foroutan, Martin460

Jaggi, Leandro von Werra, and Thomas Wolf. Fineweb2: A sparkling update with 1000s of461

languages, December 2024.462

[66] Thomas Pethick, Wanyun Xie, Kimon Antonakopoulos, Zhenyu Zhu, Antonio Silveti-Falls, and463

Volkan Cevher. Training deep learning models with norm-constrained lmos, 2025.464

[67] Boris Polyak. Some methods of speeding up the convergence of iteration methods. Ussr465

Computational Mathematics and Mathematical Physics, 4:1–17, 1964.466

[68] Boris Polyak. New method of stochastic approximation type. Automation and Remote Control,467

1990, 01 1990.468

[69] Tomer Porian, Mitchell Wortsman, Jenia Jitsev, Ludwig Schmidt, and Yair Carmon. Resolving469

discrepancies in compute-optimal scaling of language models, 2024.470

[70] Alec Radford and Karthik Narasimhan. Improving language understanding by generative471

pre-training. 2018.472

[71] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language473

models are unsupervised multitask learners. OpenAI, 2019.474

[72] Herbert Robbins and Sutton Monro. A Stochastic Approximation Method. The Annals of475

Mathematical Statistics, 22(3):400 – 407, 1951.476

[73] David Ruppert. Efficient estimations from a slowly convergent robbins-monro process. 1988.477

[74] Nikhil Sardana, Jacob Portes, Sasha Doubov, and Jonathan Frankle. Beyond chinchilla-optimal:478

Accounting for inference in language model scaling laws, 2024.479

[75] Fabian Schaipp, Alexander Hägele, Adrien Taylor, Umut Simsekli, and Francis Bach. The480

surprising agreement between convex optimization theory and learning-rate scheduling for large481

model training, 2025.482

13



[76] Robin M. Schmidt, Frank Schneider, and Philipp Hennig. Descending through a crowded valley483

- benchmarking deep learning optimizers, 2021.484

[77] Noam Shazeer. Glu variants improve transformer, 2020.485

[78] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,486

and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts487

layer, 2017.488

[79] Yikang Shen, Matthew Stallone, Mayank Mishra, Gaoyuan Zhang, Shawn Tan, Aditya Prasad,489

Adriana Meza Soria, David D. Cox, and Rameswar Panda. Power scheduler: A batch size and490

token number agnostic learning rate scheduler, 2024.491

[80] Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute492

optimally can be more effective than scaling model parameters, 2024.493

[81] Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer:494

Enhanced transformer with rotary position embedding, 2023.495

[82] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of496

initialization and momentum in deep learning. In Sanjoy Dasgupta and David McAllester,497

editors, Proceedings of the 30th International Conference on Machine Learning, Proceedings498

of Machine Learning Research, pages 1139–1147, Atlanta, Georgia, USA, 17–19 Jun 2013.499

PMLR.500

[83] Shohei Taniguchi, Keno Harada, Gouki Minegishi, Yuta Oshima, Seong Cheol Jeong, Go Na-501

gahara, Tomoshi Iiyama, Masahiro Suzuki, Yusuke Iwasawa, and Yutaka Matsuo. Adopt:502

Modified adam can converge with any ϑ2 with the optimal rate, 2024.503

[84] Nikhil Vyas, Depen Morwani, Rosie Zhao, Itai Shapira, David Brandfonbrener, Lucas Janson,504

and Sham Kakade. Soap: Improving and stabilizing shampoo using adam, 2024.505

[85] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi,506

Quoc Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language507

models, 2023.508

[86] Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang, Ce Bian, Chao Yin, Chenxu Lv,509

Da Pan, Dian Wang, Dong Yan, et al. Baichuan 2: Open large-scale language models. arXiv510

preprint arXiv:2309.10305, 2023.511

[87] Greg Yang, Edward J. Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick512

Ryder, Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor programs v: Tuning large513

neural networks via zero-shot hyperparameter transfer, 2022.514

[88] Huizhuo Yuan, Yifeng Liu, Shuang Wu, Xun Zhou, and Quanquan Gu. Mars: Unleashing the515

power of variance reduction for training large models, 2024.516

[89] Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. Adaptive517

methods for nonconvex optimization. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,518

N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems,519

volume 31. Curran Associates, Inc., 2018.520

[90] Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transform-521

ers, 2022.522

[91] Biao Zhang and Rico Sennrich. Root mean square layer normalization, 2019.523

[92] Hanlin Zhang, Depen Morwani, Nikhil Vyas, Jingfeng Wu, Difan Zou, Udaya Ghai, Dean524

Foster, and Sham Kakade. How does critical batch size scale in pre-training?, 2024.525

[93] Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi,526

Sanjiv Kumar, and Suvrit Sra. Why are adaptive methods good for attention models? Advances527

in Neural Information Processing Systems, 33:15383–15393, 2020.528

14



[94] Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank J Reddi,529

Sanjiv Kumar, and Suvrit Sra. Why are adaptive methods good for attention models?, 2020.530

[95] Yushun Zhang, Congliang Chen, Tian Ding, Ziniu Li, Ruoyu Sun, and Zhi-Quan Luo. Why531

transformers need adam: A hessian perspective, 2024.532

[96] Rosie Zhao, Depen Morwani, David Brandfonbrener, Nikhil Vyas, and Sham Kakade. Decon-533

structing what makes a good optimizer for language models. ICLR, 2025.534

15



NeurIPS Paper Checklist535

1. Claims536

Question: Do the main claims made in the abstract and introduction accurately reflect the537

paper’s contributions and scope?538

Answer: [Yes]539

Justification: the contribution of this paper is described accurately in the abstract and540

introduction.541

Guidelines:542

• The answer NA means that the abstract and introduction do not include the claims543

made in the paper.544

• The abstract and/or introduction should clearly state the claims made, including the545

contributions made in the paper and important assumptions and limitations. A No or546

NA answer to this question will not be perceived well by the reviewers.547

• The claims made should match theoretical and experimental results, and reflect how548

much the results can be expected to generalize to other settings.549

• It is fine to include aspirational goals as motivation as long as it is clear that these goals550

are not attained by the paper.551

2. Limitations552

Question: Does the paper discuss the limitations of the work performed by the authors?553

Answer: [Yes]554

Justification: we discuss a limitations and mention experiments we have not tried to run555

Guidelines:556

• The answer NA means that the paper has no limitation while the answer No means that557

the paper has limitations, but those are not discussed in the paper.558

• The authors are encouraged to create a separate "Limitations" section in their paper.559

• The paper should point out any strong assumptions and how robust the results are to560

violations of these assumptions (e.g., independence assumptions, noiseless settings,561

model well-specification, asymptotic approximations only holding locally). The authors562

should reflect on how these assumptions might be violated in practice and what the563

implications would be.564

• The authors should reflect on the scope of the claims made, e.g., if the approach was565

only tested on a few datasets or with a few runs. In general, empirical results often566

depend on implicit assumptions, which should be articulated.567

• The authors should reflect on the factors that influence the performance of the approach.568

For example, a facial recognition algorithm may perform poorly when image resolution569

is low or images are taken in low lighting. Or a speech-to-text system might not be570

used reliably to provide closed captions for online lectures because it fails to handle571

technical jargon.572

• The authors should discuss the computational efficiency of the proposed algorithms573

and how they scale with dataset size.574

• If applicable, the authors should discuss possible limitations of their approach to575

address problems of privacy and fairness.576

• While the authors might fear that complete honesty about limitations might be used by577

reviewers as grounds for rejection, a worse outcome might be that reviewers discover578

limitations that aren’t acknowledged in the paper. The authors should use their best579

judgment and recognize that individual actions in favor of transparency play an impor-580

tant role in developing norms that preserve the integrity of the community. Reviewers581

will be specifically instructed to not penalize honesty concerning limitations.582

3. Theory assumptions and proofs583

Question: For each theoretical result, does the paper provide the full set of assumptions and584

a complete (and correct) proof?585

Answer: [NA]586

16



Justification: this is not a theoretical work587

Guidelines:588

• The answer NA means that the paper does not include theoretical results.589

• All the theorems, formulas, and proofs in the paper should be numbered and cross-590

referenced.591

• All assumptions should be clearly stated or referenced in the statement of any theorems.592

• The proofs can either appear in the main paper or the supplemental material, but if593

they appear in the supplemental material, the authors are encouraged to provide a short594

proof sketch to provide intuition.595

• Inversely, any informal proof provided in the core of the paper should be complemented596

by formal proofs provided in appendix or supplemental material.597

• Theorems and Lemmas that the proof relies upon should be properly referenced.598

4. Experimental result reproducibility599

Question: Does the paper fully disclose all the information needed to reproduce the main ex-600

perimental results of the paper to the extent that it affects the main claims and/or conclusions601

of the paper (regardless of whether the code and data are provided or not)?602

Answer: [Yes]603

Justification: we open-source our code604

Guidelines:605

• The answer NA means that the paper does not include experiments.606

• If the paper includes experiments, a No answer to this question will not be perceived607

well by the reviewers: Making the paper reproducible is important, regardless of608

whether the code and data are provided or not.609

• If the contribution is a dataset and/or model, the authors should describe the steps taken610

to make their results reproducible or verifiable.611

• Depending on the contribution, reproducibility can be accomplished in various ways.612

For example, if the contribution is a novel architecture, describing the architecture fully613

might suffice, or if the contribution is a specific model and empirical evaluation, it may614

be necessary to either make it possible for others to replicate the model with the same615

dataset, or provide access to the model. In general. releasing code and data is often616

one good way to accomplish this, but reproducibility can also be provided via detailed617

instructions for how to replicate the results, access to a hosted model (e.g., in the case618

of a large language model), releasing of a model checkpoint, or other means that are619

appropriate to the research performed.620

• While NeurIPS does not require releasing code, the conference does require all submis-621

sions to provide some reasonable avenue for reproducibility, which may depend on the622

nature of the contribution. For example623

(a) If the contribution is primarily a new algorithm, the paper should make it clear how624

to reproduce that algorithm.625

(b) If the contribution is primarily a new model architecture, the paper should describe626

the architecture clearly and fully.627

(c) If the contribution is a new model (e.g., a large language model), then there should628

either be a way to access this model for reproducing the results or a way to reproduce629

the model (e.g., with an open-source dataset or instructions for how to construct630

the dataset).631

(d) We recognize that reproducibility may be tricky in some cases, in which case632

authors are welcome to describe the particular way they provide for reproducibility.633

In the case of closed-source models, it may be that access to the model is limited in634

some way (e.g., to registered users), but it should be possible for other researchers635

to have some path to reproducing or verifying the results.636

5. Open access to data and code637

Question: Does the paper provide open access to the data and code, with sufficient instruc-638

tions to faithfully reproduce the main experimental results, as described in supplemental639

material?640

17



Answer: [Yes]641

Justification: we provide our code and the datasets are mentioned clearly642

Guidelines:643

• The answer NA means that paper does not include experiments requiring code.644

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/645

public/guides/CodeSubmissionPolicy) for more details.646

• While we encourage the release of code and data, we understand that this might not be647

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not648

including code, unless this is central to the contribution (e.g., for a new open-source649

benchmark).650

• The instructions should contain the exact command and environment needed to run to651

reproduce the results. See the NeurIPS code and data submission guidelines (https:652

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.653

• The authors should provide instructions on data access and preparation, including how654

to access the raw data, preprocessed data, intermediate data, and generated data, etc.655

• The authors should provide scripts to reproduce all experimental results for the new656

proposed method and baselines. If only a subset of experiments are reproducible, they657

should state which ones are omitted from the script and why.658

• At submission time, to preserve anonymity, the authors should release anonymized659

versions (if applicable).660

• Providing as much information as possible in supplemental material (appended to the661

paper) is recommended, but including URLs to data and code is permitted.662

6. Experimental setting/details663

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-664

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the665

results?666

Answer: [Yes]667

Justification: we specify all of the important hyperparameters as well as hyperparameter668

tuning.669

Guidelines:670

• The answer NA means that the paper does not include experiments.671

• The experimental setting should be presented in the core of the paper to a level of detail672

that is necessary to appreciate the results and make sense of them.673

• The full details can be provided either with the code, in appendix, or as supplemental674

material.675

7. Experiment statistical significance676

Question: Does the paper report error bars suitably and correctly defined or other appropriate677

information about the statistical significance of the experiments?678

Answer: [No]679

Justification: in our large-scale experiments we could not affort so. and we are running all680

of the experiment with the same seed for generation data splits, etc.681

Guidelines:682

• The answer NA means that the paper does not include experiments.683

• The authors should answer "Yes" if the results are accompanied by error bars, confi-684

dence intervals, or statistical significance tests, at least for the experiments that support685

the main claims of the paper.686

• The factors of variability that the error bars are capturing should be clearly stated (for687

example, train/test split, initialization, random drawing of some parameter, or overall688

run with given experimental conditions).689

• The method for calculating the error bars should be explained (closed form formula,690

call to a library function, bootstrap, etc.)691

• The assumptions made should be given (e.g., Normally distributed errors).692

18

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It should be clear whether the error bar is the standard deviation or the standard error693

of the mean.694

• It is OK to report 1-sigma error bars, but one should state it. The authors should695

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis696

of Normality of errors is not verified.697

• For asymmetric distributions, the authors should be careful not to show in tables or698

figures symmetric error bars that would yield results that are out of range (e.g. negative699

error rates).700

• If error bars are reported in tables or plots, The authors should explain in the text how701

they were calculated and reference the corresponding figures or tables in the text.702

8. Experiments compute resources703

Question: For each experiment, does the paper provide sufficient information on the com-704

puter resources (type of compute workers, memory, time of execution) needed to reproduce705

the experiments?706

Answer: [Yes]707

Justification: we provide this in Appendix708

Guidelines:709

• The answer NA means that the paper does not include experiments.710

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,711

or cloud provider, including relevant memory and storage.712

• The paper should provide the amount of compute required for each of the individual713

experimental runs as well as estimate the total compute.714

• The paper should disclose whether the full research project required more compute715

than the experiments reported in the paper (e.g., preliminary or failed experiments that716

didn’t make it into the paper).717

9. Code of ethics718

Question: Does the research conducted in the paper conform, in every respect, with the719

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?720

Answer: [Yes]721

Justification: this paper is consistent with NeurIPS Code of Ethics.722

Guidelines:723

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.724

• If the authors answer No, they should explain the special circumstances that require a725

deviation from the Code of Ethics.726

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-727

eration due to laws or regulations in their jurisdiction).728

10. Broader impacts729

Question: Does the paper discuss both potential positive societal impacts and negative730

societal impacts of the work performed?731

Answer: [NA]732

Justification: there is no societal impact of the work performed.733

Guidelines:734

• The answer NA means that there is no societal impact of the work performed.735

• If the authors answer NA or No, they should explain why their work has no societal736

impact or why the paper does not address societal impact.737

• Examples of negative societal impacts include potential malicious or unintended uses738

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations739

(e.g., deployment of technologies that could make decisions that unfairly impact specific740

groups), privacy considerations, and security considerations.741

19

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied742

to particular applications, let alone deployments. However, if there is a direct path to743

any negative applications, the authors should point it out. For example, it is legitimate744

to point out that an improvement in the quality of generative models could be used to745

generate deepfakes for disinformation. On the other hand, it is not needed to point out746

that a generic algorithm for optimizing neural networks could enable people to train747

models that generate Deepfakes faster.748

• The authors should consider possible harms that could arise when the technology is749

being used as intended and functioning correctly, harms that could arise when the750

technology is being used as intended but gives incorrect results, and harms following751

from (intentional or unintentional) misuse of the technology.752

• If there are negative societal impacts, the authors could also discuss possible mitigation753

strategies (e.g., gated release of models, providing defenses in addition to attacks,754

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from755

feedback over time, improving the efficiency and accessibility of ML).756

11. Safeguards757

Question: Does the paper describe safeguards that have been put in place for responsible758

release of data or models that have a high risk for misuse (e.g., pretrained language models,759

image generators, or scraped datasets)?760

Answer: [NA]761

Justification: the paper poses no such risks.762

Guidelines:763

• The answer NA means that the paper poses no such risks.764

• Released models that have a high risk for misuse or dual-use should be released with765

necessary safeguards to allow for controlled use of the model, for example by requiring766

that users adhere to usage guidelines or restrictions to access the model or implementing767

safety filters.768

• Datasets that have been scraped from the Internet could pose safety risks. The authors769

should describe how they avoided releasing unsafe images.770

• We recognize that providing effective safeguards is challenging, and many papers do771

not require this, but we encourage authors to take this into account and make a best772

faith effort.773

12. Licenses for existing assets774

Question: Are the creators or original owners of assets (e.g., code, data, models), used in775

the paper, properly credited and are the license and terms of use explicitly mentioned and776

properly respected?777

Answer: [Yes]778

Justification: we cite them and respect, see Sections 1 and 2779

Guidelines:780

• The answer NA means that the paper does not use existing assets.781

• The authors should cite the original paper that produced the code package or dataset.782

• The authors should state which version of the asset is used and, if possible, include a783

URL.784

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.785

• For scraped data from a particular source (e.g., website), the copyright and terms of786

service of that source should be provided.787

• If assets are released, the license, copyright information, and terms of use in the788

package should be provided. For popular datasets, paperswithcode.com/datasets789

has curated licenses for some datasets. Their licensing guide can help determine the790

license of a dataset.791

• For existing datasets that are re-packaged, both the original license and the license of792

the derived asset (if it has changed) should be provided.793

20

paperswithcode.com/datasets


• If this information is not available online, the authors are encouraged to reach out to794

the asset’s creators.795

13. New assets796

Question: Are new assets introduced in the paper well documented and is the documentation797

provided alongside the assets?798

Answer: [NA]799

Justification: the paper does not propose new assets.800

Guidelines:801

• The answer NA means that the paper does not release new assets.802

• Researchers should communicate the details of the dataset/code/model as part of their803

submissions via structured templates. This includes details about training, license,804

limitations, etc.805

• The paper should discuss whether and how consent was obtained from people whose806

asset is used.807

• At submission time, remember to anonymize your assets (if applicable). You can either808

create an anonymized URL or include an anonymized zip file.809

14. Crowdsourcing and research with human subjects810

Question: For crowdsourcing experiments and research with human subjects, does the paper811

include the full text of instructions given to participants and screenshots, if applicable, as812

well as details about compensation (if any)?813

Answer: [NA]814

Justification: our work does not include research with human subjects.815

Guidelines:816

• The answer NA means that the paper does not involve crowdsourcing nor research with817

human subjects.818

• Including this information in the supplemental material is fine, but if the main contribu-819

tion of the paper involves human subjects, then as much detail as possible should be820

included in the main paper.821

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,822

or other labor should be paid at least the minimum wage in the country of the data823

collector.824

15. Institutional review board (IRB) approvals or equivalent for research with human825

subjects826

Question: Does the paper describe potential risks incurred by study participants, whether827

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)828

approvals (or an equivalent approval/review based on the requirements of your country or829

institution) were obtained?830

Answer: [NA]831

Justification: our work does not include research with human subjects.832

Guidelines:833

• The answer NA means that the paper does not involve crowdsourcing nor research with834

human subjects.835

• Depending on the country in which research is conducted, IRB approval (or equivalent)836

may be required for any human subjects research. If you obtained IRB approval, you837

should clearly state this in the paper.838

• We recognize that the procedures for this may vary significantly between institutions839

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the840

guidelines for their institution.841

• For initial submissions, do not include any information that would break anonymity (if842

applicable), such as the institution conducting the review.843

16. Declaration of LLM usage844

21



Question: Does the paper describe the usage of LLMs if it is an important, original, or845

non-standard component of the core methods in this research? Note that if the LLM is used846

only for writing, editing, or formatting purposes and does not impact the core methodology,847

scientific rigorousness, or originality of the research, declaration is not required.848

Answer: [NA]849

Justification: the core development of our work does not involve LLMs.850

Guidelines:851

• The answer NA means that the core method development in this research does not852

involve LLMs as any important, original, or non-standard components.853

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)854

for what should or should not be described.855

22

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background & Related Work
	Experimental Setup
	Results
	Benchmarking at Small Scale: Training Models of 124M Parameters
	Benchmarking at medium scale: Training Models of 210M Parameters
	Scaling Up: Benchmarking models of 583M and 720M Parameters

	Extension to MoEs
	Discussion
	Optimizers we study
	AdamW, ADOPT, AdEMAMix
	Sign-based methods: Lion and Signum
	Muon, SOAP, Sophia
	Schedule-Free AdamW, Prodigy
	MARS

	Implementation
	Model & Data
	Hyperparameter tuning
	124M parameters model
	210M parameters model
	600M parameters model

	Additional results
	Benchmarking: 124M
	Ablations for 124M model
	Benchmarking: 210M
	Ablations for 210M model
	Wall-clock performance of optimizers across models of different scale
	Extension to MoEs.


