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Abstract

Black-box Unsupervised Domain Adaptation (BUDA) aims to transfer source
domain knowledge to an unlabeled target domain, without accessing the source
data or trained source model. Recent diffusion models have significantly advanced
the ability to generate images from texts. While they can produce realistic visuals
across diverse prompts and demonstrate impressive compositional generalization,
these diffusion-based domain adaptation methods focus solely on composition,
overlooking their sensitivity to textual nuances. In this work, we propose a novel
diffusion-based method, called Rectifying-reasoning Errors of Diffusion (RrED)
for BUDA. RrED is a two-stage learning strategy under diffusion supervision to
effectively enhance the target model via the decomposed text and visual encoders
from the diffusion model. Specifically, RrED consists of two stages: Diffusion-
Target model Rectification (DTR) and Self-rectifying Reasoning Model (SRM).
In DTR, we decouple the image and text encoders within the diffusion model:
the visual encoder integrates our proposed feature-sensitive module to generate
inferentially-enhanced visuals, while the text encoder enables multi-modal joint
fine-tuning. In SRM, we prioritize the BUDA task itself, leveraging the target
model’s differential reasoning capability to rectify errors during learning. Extensive
experiments confirm that RrED significantly outperforms other methods on four
benchmark datasets, demonstrating its effectiveness in enhancing reasoning and
generalization abilities.

1 Introduction

To address domain shift in training deep neural networks [1], domain generalization (DG) methods
[2, 3] only use source data for model learning to achieve generalization. However, in scenarios with
accessible target samples, domain adaptation (DA) methods [4–15] show a significant performance
advantage. Traditional unsupervised domain adaptation (UDA) methods [4–8] focus on adapting
models trained on a fully labeled source domain to an unlabeled target domain, aiming to alleviate
the constraints of data collection and annotation. However, in scenarios like personal medical
records, privacy-preserving policies restrict access to source data, thus limiting the application of
UDA techniques. To address this, source-free domain adaptation (SFDA) methods [9–12] have
been recently introduced, assuming that only unlabeled target domain data and a pre-trained source
model are available during the adaptation process. Even though SFDA methods lower the possibility
of privacy leaks by utilizing the pre-trained source model rather than source data, [15] found that
certain generation techniques like [13, 14] have the potential to reconstruct the source data through
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learning from the source model. In comparison to other UDA settings, black-box unsupervised
domain adaptation (BUDA) offers enhanced data privacy protection along with greater flexibility in
portability. BUDA adapts a model by leveraging the unlabeled target data and a black-box predictor
trained on the source domain, e.g., an API service in the cloud [15], to avoid privacy and safety
problems caused by data and model leakage.
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Figure 1: Conceptual figure of our RrED. Above: our RrED
simulates the human decision-making process under the guid-
ance of external knowledge. Below: in stage 1, RrED aligns
the decision boundaries of the diffusion model under guid-
ance; in stage 2, RrED enhances the model’s self-reasoning
ability by rectifying the errors among different versions.

Recent mainstream BUDA methods
[15–18] follow a self-distillation pro-
cess: distilling source knowledge and
fine-tuning the model for the target
domain. This process relies on high-
reliability samples to suppress the neg-
ative impact of low-reliability ones.
However, AEM [19] observes that
distillation-based methods selectively
ignore those samples that are classi-
fied as low reliability, resulting in un-
derlying structural information from
low-reliability samples not being uti-
lized. To alleviate this problem, AEM
introduces the multi-modal model
CLIP [20] as an external prompt to
extract semantic knowledge. How-
ever, AEM primarily forces the target
model to align with CLIP, overlook-
ing the further exploration of the tar-
get model. Similar to CLIP, diffusion
models [21–23] also use multi-modal
techniques, which represent a new cat-
egory of likelihood-based generative
models that introduce iterative noise
and denoising processes to model the
data distribution. Compared to other multi-modal models, diffusion models not only have rich
semantic knowledge but also can stably generate diverse images. Previous diffusion-based DA
methods [24–26] focus on enhancing sample distribution generalization via the image encoder, with
limited exploration of the text encoder, and are restricted in scenarios where source samples are
inaccessible due to protective policies. In the BUDA setting, such stable generation helps enhance
model generalization by providing consistent image-level augmentation. How to effectively leverage
diffusion models in BUDA tasks to guide the target model in enhancing its reasoning ability while
preventing its potential negative effects? This is the key problem that needs to be addressed in this
research.

In the field of neuroscience [27, 28], the human decision-making process is typically regarded
as an interaction between two stages: Stage 1 unconsciously generates intuitive responses but
tends to exhibit cognitive biases and struggles with complex tasks like mathematical reasoning or
weighing pros and cons; Stage 2 relies on domain knowledge for deliberate reasoning, handling
complex problems more accurately but at a slower pace. Recent works [29, 30] have observed that
discrepancies between multi-stage decision-making can introduce potential errors in reasoning. To
address this issue, these works introduce a knowledge base to guide the intuitive learning process
during the intuitive response process, leveraging domain knowledge to identify and correct potential
errors in the neural network’s output during the reasoning phase, thereby producing outputs consistent
with the knowledge base.

Inspired by these works, we propose a novel diffusion-based method, named Rectifying-reasoning
Errors of Diffusion (RrED), which is the first work that applies the diffusion model to high-security
BUDA tasks innovatively. Specifically, RrED addresses the limitations of previous diffusion-based
methods by continually fine-tuning the text encoder while learning from the diffusion model. RrED
is composed of two stages: Diffusion-Target model Rectification (DTR) that performs separation
learning of the diffusion image encoder and text encoder and task-specific fine-tuning of the text
encoder, Self-rectifying Reasoning Model (SRM) that leverages the differential reasoning ability of the
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Table 1: Comparison of different settings. Diffusion-based DA relies on both labeled source and
unlabeled target data, guided by an external diffusion model. Black-box DA only relies on the
unlabeled target data and the predicted labels from a black-box predictor, thus offering better data
privacy at the cost of partial performance. Our RrED follows Black-box DA setting for training with
a diffusion model incorporated, achieving performance improvement while maintaining high-level
data privacy protection.

Setting Source data Source model Predicted target labels Target data External prompt Privacy risk

DG ✓ ✓ × × × Medium

Traditional DA ✓ ✓ ✓ ✓ × High
Source-free DA × ✓ ✓ ✓ × Medium
Black-box DA × × ✓ ✓ × Low

Diffusion-based DA ✓ ✓ ✓ ✓ ✓ High

Our RrED × × ✓ ✓ ✓ Low

target model and samples generated by the fine-tuned diffusion model to correct errors in the learning
process. RrED introduces the diffusion model as a knowledge base to rectify the memory repository
of BUDA. As shown in Figure 1, in DTR, the target model (modeled as the human brain) receives the
guidance information from the diffusion model to make intuitive judgments about the task-specific
information of BUDA and feeds back the discrepancies between predictions to fine-tune the diffusion
model. In SRM, after being guided by the diffusion model, the target model conducts thoughtful
comparative reasoning and error correction on the task-specific information. The purpose of the two
stages is to fine-tune the text encoder of the diffusion model and use the fine-tuned diffusion model
to further improve the discriminative ability of the target model. Experimental results demonstrate
that RrED significantly outperforms the previous SOTA methods on four benchmarks, confirming its
effectiveness in enhancing the model’s reasoning and generalization abilities.

Our contributions are summarized as follows:

• We observe some weaknesses in existing DA methods and address them by proposing a novel
method, named RrED, which introduces the diffusion model into the BUDA setup and strengthens
the target model’s reasoning ability through our two-stage learning.

• Inspired by the improved human decision-making process, RrED is designed to consist of two
stages, namely DTR and SRM. DTR guides the target model’s learning process by rectifying diffusion
model reasoning errors and leveraging its knowledge. SRM corrects errors in the learning process
by leveraging the differential reasoning ability of the target model and samples generated by the
fine-tuned diffusion model.

• To evaluate the effectiveness of RrED, we conduct extensive experiments, achieving SOTA perfor-
mance on four benchmarks. Ablation studies further highlight the contributions of each component
and provide a detailed analysis of the relationship among them.

2 Related Works

Domain Adaptation. The challenge of unsupervised domain adaptation (UDA) resides in transferring
the knowledge from the labeled source domain to a related yet distinct unlabeled target domain.
Recently, UDA has been the subject of widespread research in diverse deep learning tasks, including
image classification [4, 5, 31], semantic segmentation [7, 32, 33], object detection [6, 34, 35], and
time series forecasting [8, 36, 37]. However, UDA relies on access to both the labeled source domain
and the unlabeled target domain during training, which becomes restrictive under privacy-preserving
policies that limit source data availability. To overcome this, source-free domain adaptation (SFDA)
[9, 38, 39, 10] enhances privacy protection by requiring only the trained source model and unlabeled
target data. Although SFDA methods mitigate privacy data breaches to some extent, recent works
[15, 40] highlight the risks of exposing the training white-box model in SFDA, as reverse generation
techniques [13, 14] can exploit this vulnerability.

Black-box Unsupervised Domain Adaptation. BUDA has no need to access the source data or
trained model, which enhances data privacy protection more effectively than other DA settings,
reducing the risk of data breaches. Early work LNL-KL [41] proposes a noisy label learning
approach using soft labels. Recent work DINE [15] first distills knowledge to encourage source-target
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class alignment and then fine-tunes the distilled model to match the target distribution, using the
reliable knowledge from distillation to cluster unreliable samples during fine-tuning. Building on
the self-distillation process, recent methods [16, 17] partition the target domain into high- and low-
reliability subdomains, and align their distribution discrepancies. BiMem [40] performs information
discrimination between useful and irrelevant information, emphasizing prioritized learning of useful
samples while roughly aggregating irrelevant ones. RFC [18] further introduces neighborhood
clustering into [15, 16] to avoid minority class forgetting. Moreover, AEM [19] first introduces a
multi-modal model CLIP [20] as an external prompt into BUDA, utilizing CLIP’s rich semantic
knowledge to conduct feature alignment of the target domain model.

Diffusion Models in Domain Adaptation. Diffusion models [22, 21, 42] use a parameterized
Markov chain to transform noise from a common distribution to a target distribution. Recently,
diffusion models have been applied across various tasks like image generation [26], video generation
[23], and text-to-image generation [43], due to their support for the interaction and creation of
text and image contents. In domain adaptation, some studies [25, 24, 26, 44] have recognized that
diffusion can be used to improve the target model’s generalization ability. DAD [25] learns additional
source-style target samples by continuously synthesizing source and target domain images, gradually
transforming the data distribution. SDA [44] maps source and target domain images to a synthesis
space, transforming domain transfer into sample alignment in the synthesis space. However, we
observe that current diffusion-based UDA methods rely on both source and target data, limiting
their application when policy restrictions prevent access to source data or models. Moreover, these
methods are based on image encoder synthesis and do not contribute to the development of text
encoder in diffusion models. To solve these problems, RrED integrates diffusion into the BUDA task
and guides the diffusion model’s generation by fine-tuning the text encoder. As shown in Table 1, the
respective processes and the differences among various settings are presented.

The Definition of Reasoning Ability. In human decision-making systems [27, 28], the definition
of reasoning ability refers to the capacity of individuals to make further judgments about target
objects by leveraging prior knowledge and logical analysis based on partial observations when
confronted with complex information and dynamic environments. Similarly, in computer vision,
the model’s reasoning process mirrors human decision-making by utilizing existing knowledge
and feature similarity computations to determine whether targets in complex scenes meet the task
requirements. This perspective aligns with the explanations provided by Grad-CAM [45], where
models reason about predicted image classes based on convolutional feature maps, analogous to how
humans reason about image categories through attention maps. While the reasoning ability of Large
Language Models (LLMs) typically refers to abstract and logical inference, in computer vision it
focuses on identifying the input regions that most influence the model’s decision to infer the most
probable target class. The reasoning definition is based on the well-known Grad-CAM technique [45]
in computer vision, and our work further integrates the observations of the human decision-making
system to refine this definition and enhance the model’s reasoning capabilities.

3 Proposed Method

We first define an unlabeled target domain Dt = {(xi)}Nt

i=1, where Nt represents the number of
unlabeled target domain data. In the BUDA setting, Dt is uploaded to a black-box predictor (i.e.,
cloud API service), which provides the hard predictions Ps using a source model trained on the
source domain Ds. Dt and Ds share an identical label distribution over b classes, with a common
label set L = {1, 2, · · · , b}. Our goal is to enable the target model Mθ to adapt in the target domain,
parameterized by θ and composed of a feature extractor fθ and a prediction classifier cθ. The feature
extractor is defined as fθ : xi → zi ∈ Rd, where d is the feature space dimension and zi is the
d-dimensional transitional output. The prediction classifier is defined as cθ : zi → yi ∈ Rb, where yi
is the prediction output of the target samples. The complete training process is shown in Figure 2.

3.1 Black-box Learning and Diffusion Process

Task-specific Black-box Learning. Before the training period, the black-box predictor exposes only
an open API, allowing external clients to request predictions by uploading data. The source model
and source samples remain inaccessible throughout the process, effectively preventing potential data
leakage. Additionally, batching requests through a queue-based mechanism can improve response
efficiency. Previous BUDA methods [15, 16, 40] stored the predicted labels of target samples returned
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Figure 2: Overview of the whole training of RrED. According to the BUDA setting, (a) the source
model is initially trained with standard procedures and transferred to a black-box predictor; (b) the
black-box predictor then exposes a restricted API, allowing external clients to query only batches
of hard target predictions through iterative requests. In our RrED, (c) DTR guides the target
model’s learning by correcting reasoning errors from the diffusion model and leveraging its semantic
knowledge; (d) SRM corrects the reasoning error of the target model by leveraging the model’s
reasoning from predictive differences across versions.

by the open API into a smooth label repository and employed adaptive label smoothing (ALS) [15] to
filter out some redundant and noisy information. The ALS updating S(xi) can be expressed as:

S(xi) =

{ 1

Nt

∑Nt

j=1
AdaLS(P i

s), beginning

µS(xi) + (1− µ)yi, otherwise
, (1)

where AdaLS(P i
s) is a function for initializing the smooth label repository in ALS [15]; P i

s represents
the hard prediction of the i-th sample, obtained from the black-box predictor prior to training; and µ
is set to 0.6 following [15, 16, 40], representing the static coefficient to stabilize the ALS updating.

During the learning process, the task-specific loss stably transfers knowledge from S(xi) to the target
model to accomplish the BUDA task, ensuring efficient learning of target domain knowledge without
forgetting source domain knowledge. The task-specific loss can be expressed as:

Ltask = −min
Mθ

Exi∈Dt
[DKL(Mθ(xi)||S(xi))], (2)

where DKL(·) is the Kullback-Leibler divergence.

Diffusion model for RrED. In this work, we introduce an image encoder with fixed weights from
CLIP [20] and leverage the predictor along with the image encoder during the diffusion-target model
rectification to fine-tune the text encoder. Moreover, before the SRM period, the fine-tuned text
encoder is fed back to the diffusion model to enable more controllable image generation and adapt
the target model to the BUDA task. The diffusion process and how the diffusion model is applied to
RrED are described in detail in Appendix A.

3.2 Diffusion-Target model Rectification

Feature-Sensitive Generation (FSG). During the first-stage training, the target model stably learns
from the images generated by the diffusion model under the control of FSG. Despite the constraints
imposed by the text encoder on the diffusion model, the image-generation process remains uncon-
trollable. To prevent the negative impacts of this uncontrollable factor, FSG needs to determine
which regions should be composed of synthetic images, enhancing generalization without sacrificing
discriminative ability. Specifically, FSG first evaluates the feature-sensitive regions of the model by
evaluating the global image and comparing it with each local region, leveraging the local regions and
their adjacent contextual information. The weight evaluation of each local area can be expressed as:

weighti,j,k = max{Tanh(
∑b

n=1

∑d

l=1

zl
i,(j,k)

zi
· ∂yni
∂zl

i,(j,k)

), 0}, (3)
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where i is the index of the i-th sample; j ∈ [1, 2, ..., h = H
u ], h is the number obtained through

dividing the image height H by the local block height u; k ∈ [1, 2, ..., w = W
u ], w is the number

obtained through dividing the image width W by the local block width u; the patch size u of square
block is set to max (min (H,W ) /32, 8); l is the index of the feature space dimension d, zl is the
l-th dimensional feature of the transitional output zi; n is the class index and yn is the classification
prediction for the n-th class. ∂yn

i

∂zl
i,(j,k)

is the gradient information obtained by backpropagation of

n-th class on the l-th dimensional feature. The operation of max{Tanh(·)} is employed to suppress
the negative pixels belonging to other categories that the model does not focus on. In the absence
of max{Tanh(·)}, the weight values sometimes do not effectively highlight the target class alone,
leading to worse performance in feature localization. Next, FSG retains the areas with model-
interested features and replaces the areas that the model is not interested in with images generated by
the diffusion model. By image fusion, target data with feature differences can be expressed as:

x̃i = xi[weighti,j,k > ri]⊙ xi,(g)[weighti,j,k < ri], (4)

where ri is controlled by hyperparameter r is to determine the ratio between areas of model interest
and non-interest, ri = r

h×w

∑h
j=1

∑w
k=1 weighti,j,k; ⊙ is the element-wise multiplication symbol.

xi,(g) represents the i-th generated data output by the diffusion model; the generated fusion domain
is defined as D̃t = {(x̃i)}Nt

i=1.

Fine-tuning Multi-modal Model. To better align the diffusion model with the target domain style,
RrED fine-tunes the text encoder from the diffusion model to rectify reasoning errors that arise during
the inference process. Before fine-tuning, we introduce the diffusion-based predictor to leverage
reliable semantic information from the diffusion model. Meanwhile, we introduce a matching image
encoder from [20] to fine-tune the text encoder. In fine-tuning, we introduce the prompt learning to
adapt BUDA by inserting learnable continuous vectors into the original text input, as follows:

Prompt Text = {[v1], ..., [vm
2
], [CLS], [vm

2 +1], ..., [vm]}, (5)

where [v1], ..., [vm] denote prompt word embeddings of the same dimensionality, m is the number of
context tokens, and [CLS] is the class name. Then, we propose a task-specific prompt learning loss
to accomplish the fine-tuning of multi-modal model, which can be expressed as:

LVθ
= −min

Vθ

Exi,x̃i∈Dt,D̃t
(S(xi) or pθ(xi))

T
logVθ(x̃i), (6)

where Vθ is defined as the multi-modal model; during the training period, only prompt word em-
beddings [v1], ..., [vm] are unlocked, while all other parameters are fixed; pθ(xi) is diffusion model
prediction from the diffusion-based predictor; S(xi) is the ALS prediction for the i-th sample used
as input from the smooth label repository and used for the initialization of the multi-modal model. As
shown in Appendix G, when only source domain knowledge is available, domain discrepancy causes
the model to fail in adapting well to the target domain. The diffusion model has more reliable seman-
tic knowledge than the black-box predictor. Therefore, after initialization, S(xi) in the fine-tuning
process is replaced by pθ(xi).

Adaptation Loss in DTR. During the early and middle stages of training, domain discrepancies
often result in noisy and unreliable pseudo-labels for the target domain. Such discrepancies amplify
erroneous gradients throughout the training process, thereby heightening the probability of compro-
mised feature learning and detrimental knowledge transfer [19]. Therefore, we propose a guidance
correction to use the diffusion model rich in semantic knowledge to guide the learning of the target
model, which can be expressed as:

LGC = −min
Mθ

Exi,x̃i∈Dt,D̃t
pθ(xi)

T
logMθ(x̃i), (7)

where LGC is a standard cross-entropy function. The entropy minimization process defined in LGC

inherently biases predictions toward sample-dense areas in the feature distribution, consequently
diminishing model generalization ability [46]. To mitigate this effect, we introduce a conditional
constraint loss to limit this impact while maintaining robust feature space consolidation:

LCC = −min
Mθ

∑Nt

i=1

∑Nt

j=1
(I − tr{Mθ(x̃i)

TMθ(x̃j)}
∥Mθ(x̃i)∥ ∥Mθ(x̃j)∥

) · Mθ(x̃i)
TMθ(x̃j), (8)
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Table 2: Accuracies (%) on the Office-Home using ResNet-50 and the VisDA-17 using ResNet-101.
The setting of U, SF, and BP corresponds to UDA, SFDA, and BUDA, respectively. P and D indicate
whether external prompts and diffusion model are utilized (✓) or not (×). “Source-only” refers to
using the black-box predictor to evaluate the predicted target samples. The top-performing BUDA
methods are highlighted in bold. The complete results on VisDA-17 are in Appendix B.

Method Setting P D Office-Home VisDA
A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Mean Mean

Source-only − × × 44.1 66.9 74.2 54.5 63.3 66.1 52.8 41.2 73.2 66.1 46.7 77.5 60.6 48.9

HMA [47] U × × 60.6 79.1 82.9 68.9 77.5 79.3 69.1 55.9 83.5 74.6 62.3 84.4 73.2 88.1
DAPL [48] U ✓ × 54.1 84.3 84.4 74.4 83.7 85.0 74.5 54.6 84.8 75.2 54.7 83.8 74.5 86.9
PDA [49] U ✓ × 55.4 85.1 85.8 75.2 85.2 85.2 74.2 55.2 85.8 74.7 55.8 86.3 75.3 89.7

DATUM [50] U ✓ ✓ 49.3 68.4 72.8 70.6 69.3 72.1 69.9 50.2 73.9 77.1 51.5 75.8 66.7 75.3
S-Fusion [26] U ✓ ✓ 57.4 76.0 80.2 67.7 76.5 77.6 67.9 56.4 81.2 75.6 62.1 86.4 72.1 86.1
DACDM [24] U ✓ ✓ 60.4 78.8 82.7 69.6 80.5 79.6 65.2 58.3 83.1 75.8 64.2 85.6 73.6 86.8

DAD [25] U ✓ ✓ 62.5 78.6 83.0 70.4 79.2 79.8 70.2 58.3 83.1 76.3 63.5 88.2 74.4 90.0

PLUE [51] SF × × 49.1 73.5 78.2 62.9 73.5 74.5 62.2 48.3 78.6 68.6 51.8 81.5 66.9 90.0
C-SFDA [10] SF × × 58.6 80.2 82.9 69.8 78.6 79.0 67.8 55.7 82.3 73.6 60.1 84.9 72.8 87.8

DIFO [52] SF ✓ × 70.6 90.6 88.8 82.5 90.6 88.8 80.9 70.1 88.9 83.4 70.5 91.2 83.1 90.3

DINE [15] BP × × 52.2 78.4 81.3 65.3 76.6 78.7 62.7 49.6 82.2 69.8 55.8 84.2 69.7 75.6
BiMem [40] BP × × 54.5 78.8 81.4 66.7 78.7 79.6 65.9 53.6 82.3 73.6 57.8 84.9 71.5 83.6
BETA [16] BP × × 57.2 78.5 82.1 68.0 78.6 79.7 67.5 56.0 83.0 71.9 58.9 84.2 72.1 85.1
RFC [18] BP × × 57.4 80.0 82.8 67.0 80.6 80.2 68.3 57.8 82.8 72.8 59.3 85.9 72.9 85.2

SEAL [17] BP × × 58.5 81.4 84.7 71.7 80.4 82.1 72.2 54.3 86.0 76.2 60.6 86.3 74.5 89.2
AEM [19] BP ✓ × 65.4 88.3 89.5 80.1 90.7 89.7 78.9 61.4 89.9 79.2 63.6 90.8 80.6 89.3

RrED BP ✓ ✓ 82.3 93.9 90.0 82.0 93.7 90.1 82.6 83.0 90.4 84.7 83.3 94.1 87.5 91.2

where tr{·} is the trace of a matrix. The prediction discriminability within a mini-batch reaches its
peak when the lower bound of LCC and the minimum of LGC are attained simultaneously, yielding
fully determined prediction matrices. In DTR, the objective loss for the target model can be expressed
as:

LMθ(DTR) = Ltask + LGC + γLCC , (9)
where γ is a hyperparameter to control the role of the conditional constraint loss LCC .

3.3 Self-Rectifying Reasoning Model

Sample-Version Interaction (SVI). Before the second phase begins, we substitute the original text
encoder in the diffusion model for the fine-tuned text encoder with prompt word embeddings. In
this regard, diffusion can generate images with more stable target domain styles. Then, we generate
differentiated synthetic images according to the process of FSG, and perform interactive learning
between the synthetic images and the target images in SVI. For this, our proposed interactive learning
can be divided into two parts: (1) the former term corrects model reasoning errors by measuring
similarity between different versions of predictions, enforcing scattered data distribution boundaries to
stabilize around the nearest feature cluster centers; (2) the latter term strengthens feature discrepancies
between different versions of predictions to enhance model generalization and prevent overfitting.
The interactive optimization can be expressed as:

LSV I = −min
Mθ

Exi,x̃i∈Dt,D̃t
w log{sim (Mθ(xi),Mθ(x̃i))}︸ ︷︷ ︸

Rectify reasoning errors

− log{1− sim (Mθ(xi),Mθ(x̃i))}︸ ︷︷ ︸
Strengthen feature discrepancies

,

(10)
where sim(·) denotes the operation of calculating cosine similarity; w is employed to assign different
weights according to the similarities between the features in the target data predictions Mθ(xi) and
the synthesized data predictions Mθ(x̃i). The similarity weight w can be formulated as:

w = exp(−sort(− log{sim (Mθ(xi),Mθ(x̃i))})), (11)

where sort(·) denotes sorting in descending order and returning the corresponding indices of the
samples.

Adaptation Loss in SRM. In the SRM stage, our goal is to enable self-rectification of the target
model by contrasting the reasoning discrepancies among different versions of the same sample,
thereby enhancing its reasoning ability for better adaptation to the target domain. In SRM, the
objective loss for the target model can be expressed as:

LMθ(SRM) = Ltask + LSV I . (12)
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Figure 3: Qualitative and quantitative ablation studies on VisDA-17 using Grad-CAM [45]. Each
result is reported when the best accuracy is achieved. Zooming for a clearer view. The complete
quantitative results of ablation are reported in Appendix E.

To explain why our algorithm RrED works effectively and why it contributes to BUDA, we derive
an error bound through theoretical analysis in Appendix C. Moreover, the whole training process of
RrED is shown in Appendix D.

4 Experiments

Table 3: Accuracies (%) on the Office-31 using ResNet-50
backbone.

Method Setting P D A→D A→W D→A D→W W→A W→D Mean

Source-only − × × 79.9 76.6 56.4 92.8 60.9 98.5 77.5

HMA [47] U × × 95.8 95.1 79.3 99.3 77.6 100 91.2
DAPL [48] U ✓ × 81.7 80.3 81.2 81.8 81.0 81.3 81.2
PDA [49] U ✓ × 91.2 92.1 83.5 98.1 82.5 99.8 91.2

DATUM [50] U ✓ ✓ 89.3 83.7 80.5 88.4 81.7 97.3 86.8
S-Fusion [26] U ✓ ✓ 94.8 95.3 78.3 99.1 78.6 100 91.0
DACDM [24] U ✓ ✓ 97.5 96.9 79.8 98.9 77.7 97.5 91.8

DAD [25] U ✓ ✓ 95.6 98.5 81.4 99.5 82.2 100 92.8

PLUE [51] SF × × 89.2 88.4 72.8 97.1 69.6 97.9 85.8
C-SFDA [10] SF × × 96.2 93.9 77.3 98.8 77.9 99.7 90.5
SF(DA)2 [9] SF × × 95.8 92.1 75.7 99.0 76.8 99.8 89.9
DIFO [52] SF ✓ × 97.2 95.5 83.0 97.2 83.2 98.8 92.5

DINE [15] BP × × 91.6 86.8 72.2 96.2 73.3 98.6 86.4
BiMem [40] BP × × 92.8 88.2 73.9 96.8 75.3 99.4 87.7
BETA [16] BP × × 93.6 88.3 76.1 95.5 76.5 99.0 88.2
RFC [18] BP × × 94.4 93.0 76.7 95.6 77.5 98.1 89.2

SEAL [17] BP × × 95.1 88.3 77.6 96.0 76.7 99.3 88.8
AEM [19] BP ✓ × 95.1 94.0 81.8 98.2 82.6 99.4 91.9

RrED BP ✓ ✓ 97.8 95.9 83.7 99.1 84.5 99.8 93.5

Datasets. RrED is evaluated on
four widely-used domain adaptation
benchmarks. Office-31 [53] is a
small-scale dataset with 4,110 im-
ages in 31 categories from three do-
mains: Amazon (A), Dslr (D), and
Webcam (W). Office-Home [54] is
a medium-scale dataset, containing
15.5K images across 65 categories
from four domains: Real World (R),
Clipart (C), Art (A), and Product (P).
VisDA-17 [55] is a large-scale bench-
mark, including 152K synthetic im-
ages (source) and 55K real-world im-
ages (target) across 12 categories, em-
phasizing the synthetic-to-real domain
gap. DomainNet [56] is the most ex-
tensive benchmark, with about 600K
images. Following previous methods
[17, 52], the evaluation setup for adap-
tation scenarios involves merely 4 do-
mains with 126 categories, including
Real (R), Clipart (C), Painting (P), and Sketch (S). There is a need to overcome the domain gaps
among 12 subtasks with different adaptation scenarios.

Comparison Methods. We evaluate the performance of RrED by comparing it with several related
methods across UDA, SFDA, and BUDA settings. For UDA, we conduct comparisons with HMA
[47], DAPL [48], DATUM [50], S-Fusion [26], DACDM [24], DAD [25], PDA [49], and AD-CLIP
[57]. For SFDA, we compare with PLUE [51], C-SFDA [10], SF(DA)2 [9], TPDS [58], and DIFO
[52]. For BUDA, we compare with previous SOTA methods, including DINE [15], BiMem [40],
BETA [16], RFC [18], SEAL [17], and AEM [19]. Among them, the previous methods include
DATUM, S-Fusion, DACDM, and DAD use the diffusion model as an external prompt; DAPL, PDA,
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Table 4: Accuracies (%) on the DomainNet using ResNet-50 backbone.
Method Setting P D C→P C→R C→S P→C P→R P→S R→C R→P R→S S→C S→P S→R Mean

Source-only − × × 36.1 52.1 41.3 40.7 56.5 34.6 48.3 46.8 35.2 50.5 35.9 46.1 43.7

DAPL [48] U ✓ × 72.4 87.6 65.9 72.7 87.6 65.6 73.2 72.4 66.2 73.8 72.9 87.8 74.8
AD-CLIP [57] U ✓ × 71.7 88.1 66.0 73.2 86.9 65.2 73.6 73.0 68.4 72.3 74.2 89.3 75.2

PLUE [51] SF × × 59.8 74.0 56.0 61.6 78.5 57.9 61.6 65.9 53.8 67.5 64.3 76.0 64.7
TPDS [58] SF × × 62.9 77.1 59.8 65.6 79.0 61.5 66.4 67.0 58.2 68.6 64.3 75.3 67.1
DIFO [52] SF ✓ × 76.6 87.2 74.9 80.0 87.4 75.6 80.8 77.3 75.5 80.5 76.7 87.3 80.0

DINE [15] BP × × 43.7 61.5 44.0 44.0 62.9 38.7 54.3 53.1 41.7 54.0 44.5 59.3 50.1
BETA [16] BP × × 48.3 64.7 49.2 49.6 66.3 43.4 58.1 57.7 45.7 58.7 49.9 63.1 54.5
SEAL [17] BP × × 49.5 67.9 48.7 49.9 68.5 44.0 60.6 57.4 46.7 59.2 50.4 67.1 55.8
AEM [19] BP ✓ × 66.4 77.8 72.1 80.0 86.7 69.1 79.5 76.6 67.8 78.1 72.6 77.6 75.4

RrED BP ✓ ✓ 76.8 87.9 71.9 81.5 88.7 74.7 83.5 80.1 73.0 81.7 78.3 88.3 80.5
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Figure 4: The accuracy trends of predictions on the VisDA-17 and Office-Home (A→C). γ controls
the effect of LCC , as shown in (a) and (b). r determines the ratio between regions of interest and
non-interest, as shown in (c) and (d).

AD-CLIP, DIFO, and AEM use the multi-modal model CLIP [20] as an external prompt. Specific
implementation details are shown in Appendix F.

Results. As reported in Tables 2, 3, and 4, RrED achieves consistently superior performance over
previous SOTA methods across all four benchmarks. We choose DINE [15] as the baseline. In terms
of average accuracy, RrED surpasses the prior BUDA approach AEM [19] by 6.9%, 1.9%, 1.6%, and
5.1% on the Office-Home, VisDA-17, Office-31, and DomainNet, respectively. Furthermore, compared
to the diffusion-based UDA method DAD [25], RrED achieves a maximum improvement of 13.1%
on the Office-Home. These results demonstrate, by introducing the diffusion model into black-box
learning through a two-stage strategy and fine-tuning the diffusion model’s text encoder, RrED more
effectively utilizes the diffusion model to enhance target model discriminability compared to previous
methods that either generate semantically-rich additional samples or directly perform prediction using
diffusion model. Furthermore, RrED exhibits significantly superior performance in scenarios with
more stringent security protection constraints compared to previous diffusion-based DA methods.

Ablation Study. Figure 3 presents our ablation studies on the VisDA-17 using Grad-CAM [45]
visualizations. RrED is inspired by human decision-making systems and aims to refine model
reasoning through a two-stage correction process. In computer vision, the model’s reasoning process
mirrors human decision-making by utilizing existing knowledge and feature similarity computations
to determine whether targets in complex scenes meet the task requirements. As indicated in Figure 2,
RrED’s two-stage correction focuses on improving the diffusion model’s reasoning ability, thereby
guiding and enhancing the reasoning of the target model. Therefore, verifying whether the model’s
reasoning ability improves during optimization is a central focus of our experiments. To verify
the model’s reasoning ability, we introduce Grad-CAM, which is well-known for validating the
reasoning ability of models. For the functional, we employ Grad-CAM in Figure 3 to highlight the
vital and irreplaceable roles play in the overall performance. As shown in Figure 3, Grad-CAM
clearly demonstrates that our model exhibits stronger reasoning capabilities, better object recognition,
and more precise capture of fine-grained features in target samples compared with existing SOTA
methods. In DTR period, FSG is designed to prevent the diffusion-generated images from causing
irreversible negative effects. When FSG is removed, the uncontrolled images solely generated by
the diffusion model mislead the target model, resulting in a significant performance drop. LGC

and LCC act in a complementary manner: LGC enhances the model’s discriminative capability via
cross-entropy learning, while LCC mitigates the sample enrichment effect introduced by LGC to
improve model’s generalization. When LCC is removed, the target model exhibits the overfitting
phenomenon prematurely. Only when both components work jointly can the full effectiveness be
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realized. In SRM period, LSV I performs self-rectifying inference learning by integrating interactive
learning with the samples generated by the diffusion model whose text encoder has been fine-tuned.
The combination of LSV I with the fine-tuned diffusion model allows the overall model to capture
key features more accurately. From the perspective of model reasoning, we observe from Figure 3
that (1) FSG enhances generalization and helps the model attend to the correct class-discriminative
regions; (2) LGC and LCC jointly determine the approximate region of feature extraction from the
target model; (3) the fine-tuned text encoder and LSV I jointly optimize features for the region of
interest of the model. More ablation studies are shown in Appendix E.

Parameter Analysis and Comparison. As shown in Figure 4, the effects under different values
of γ and r are presented. γ controls LCC to modulate the distributional density of samples within
the feature space. When λ is equal to 0, LCC is not effective; when λ is equal to 5, excessive
amplification of feature discrepancies severely impairs the model’s ability to distinguish between
samples. For the large-scale dataset VisDA-17, appropriate λ leads to notable improvements. For the
medium-scale Office-Home, the differences between samples more significantly affect the model’s
discriminative ability. r determines the ratio between regions of interest and non-interest. When r
is 0, FSG outputs the original target domain samples. When r is 200%, FSG fails, and the outputs
are entirely generated by the diffusion model. These results indicate that selecting an appropriate r
can effectively enhance the generalization ability of the target model, while also demonstrating that
images generated solely by the diffusion model are unreliable. More visual comparisons and further
analysis are provided in Appendix G. The computational consumption is presented in Appendix H.

5 Conclusion

In this paper, we observe that existing methods have certain weaknesses. To tackle them, we propose
a diffusion-based algorithm, RrED, the first to introduce the diffusion model into the BUDA task and
perform task-specific fine-tuning on its text encoder. Inspired by the human decision-making process,
RrED is composed of DTR and SRM stages: DTR facilitates the target model’s training by correcting
reasoning errors from the diffusion model while harnessing its implicit knowledge; SRM refines the
learning process by utilizing the target model’s differential reasoning in combination with samples
produced by the fine-tuned diffusion model. The experimental results show that RrED enhances class
discrimination ability and model reasoning ability, ultimately achieving performance improvements
far exceeding previous SOTA methods on all evaluated datasets.

Acknowledgment

This work was supported in part by the National Natural Science Foundation of China under Grant
62176162 and in part by Guangdong Basic and Applied Basic Research Foundation under Grant
2023A1515012875 and Grant 2022A1515140099.

References
[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2016, pp. 770–778.

[2] J. Cha, S. Chun, K. Lee, H.-C. Cho, S. Park, Y. Lee, and S. Park, “Swad: Domain generalization
by seeking flat minima,” in Proceedings of the 34th International Conference on Neural
Information Processing Systems (NeurIPS), 2021, pp. 22 405–22 418.

[3] K. Zhou, Z. Liu, Y. Qiao, T. Xiang, and C. C. Loy, “Domain generalization: A survey,” IEEE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI), vol. 45, no. 4, pp. 4396–
4415, 2023.

[4] P. O. Pinheiro, “Unsupervised domain adaptation with similarity learning,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2018, pp.
8004–8013.

10



[5] D. Hu, J. Liang, X. Wang, and C.-S. Foo, “Pseudo-calibration: Improving predictive uncer-
tainty estimation in unsupervised domain adaptation,” in Proceedings of the 41th International
Conference on Machine Learning (ICML), 2024, pp. 19 304–19 326.

[6] B. Pu, X. Lv, J. Yang, H. Guannan, X. Dong, Y. Lin, L. Shengli, T. Ying, L. Fei, M. Chen,
Z. Jin, K. Li, and X. Li, “Unsupervised domain adaptation for anatomical structure detection in
ultrasound images,” in Proceedings of the 41th International Conference on Machine Learning
(ICML), 2024, pp. 41 204–41 220.

[7] Y. Zou, Z. Yu, B. V. Kumar, and J. Wang, “Unsupervised domain adaptation for semantic
segmentation via class-balanced self-training,” in Proceedings of the 15th European Conference
on Computer Vision (ECCV), 2018, pp. 289–305.

[8] X. Jin, Y. Park, D. Maddix, H. Wang, and Y. Wang, “Domain adaptation for time series
forecasting via attention sharing,” in Proceedings of the 39th International Conference on
Machine Learning (ICML), 2022, pp. 10 280–10 297.

[9] U. Hwang, J. Lee, J. Shin, and S. Yoon, “SF(DA)2: Source-free domain adaptation through the
lens of data augmentation,” in International Conference on Learning Representations (ICLR),
2024. [Online]. Available: https://openreview.net/forum?id=kUCgHbmO11

[10] N. Karim, N. C. Mithun, A. Rajvanshi, H.-p. Chiu, S. Samarasekera, and N. Rahnavard, “C-sfda:
A curriculum learning aided self-training framework for efficient source free domain adaptation,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2023, pp. 24 120–24 131.

[11] J. Liang, D. Hu, and J. Feng, “Do we really need to access the source data? Source hypoth-
esis transfer for unsupervised domain adaptation,” in Proceedings of the 37th International
Conference on Machine Learning (ICML), 2020, pp. 6028–6039.

[12] Y. Wang, J. Liang, and Z. Zhang, “A curriculum-style self-training approach for source-free
semantic segmentation,” IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), vol. 46, no. 12, pp. 9890–9907, 2024.

[13] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio, “Generative adversarial nets,” in Proceedings of the 27th International Conference
on Neural Information Processing Systems (NIPS), 2014, pp. 2672–2680.

[14] Z. Fei, M. Fan, L. Zhu, J. Huang, X. Wei, and X. Wei, “Masked auto-encoders meet generative
adversarial networks and beyond,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2023, pp. 24 449–24 459.

[15] J. Liang, D. Hu, J. Feng, and R. He, “Dine: Domain adaptation from single and multiple
black-box predictors,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2022, pp. 7993–8003.

[16] J. Yang, X. Peng, K. Wang, Z. Zhu, J. Feng, L. Xie, and Y. You, “Divide to
adapt: Mitigating confirmation bias for domain adaptation of black-box predictors,” in
International Conference on Learning Representations (ICLR), 2023. [Online]. Available:
https://openreview.net/forum?id=hVrXUps3LFA

[17] M. Xia, J. Zhao, G. Lyu, Z. Huang, T. Hu, G. Chen, and H. Wang, “A separation and alignment
framework for black-box domain adaptation,” in Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI), 2024, pp. 16 005–16 013.

[18] S. Zhang, C. Shen, S. Lü, and Z. Zhang, “Reviewing the forgotten classes for domain adaptation
of black-box predictors,” in Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI), 2024, pp. 16 830–16 837.

[19] S. Xiao, M. Ye, Q. He, S. Li, S. Tang, and X. Zhu, “Adversarial experts model for black-box
domain adaptation,” in Proceedings of the 32nd ACM International Conference on Multimedia
(ACMMM), 2024, pp. 8982–8991.

11

https://openreview.net/forum?id=kUCgHbmO11
https://openreview.net/forum?id=hVrXUps3LFA


[20] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, G. Krueger, and I. Sutskever, “Learning transferable visual models from
natural language supervision,” in Proceedings of the 38th International Conference on Machine
Learning (ICML), 2021, pp. 8748–8763.

[21] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” in Proceedings of the
33th International Conference on Neural Information Processing Systems (NeurIPS), 2020.

[22] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution image synthe-
sis with latent diffusion models,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2022, pp. 10 684–10 695.

[23] Z. Xing, Q. Feng, H. Chen, Q. Dai, H. Hu, H. Xu, Z. Wu, and Y.-G. Jiang, “A survey on video
diffusion models,” ACM Computing Surveys (CSUR), vol. 57, no. 2, pp. 1–42, 2024.

[24] Y. Zhang, S. Chen, W. Jiang, Y. Zhang, J. Lu, and J. T. Kwok, “Domain-guided conditional
diffusion model for unsupervised domain adaptation,” Neural Networks (NN), vol. 184, p.
107031, 2025.

[25] D. Peng, Q. Ke, A. Ambikapathi, Y. Yazici, Y. Lei, and J. Liu, “Unsupervised domain adaptation
via domain-adaptive diffusion,” IEEE Transactions on Image Processing (TIP), vol. 33, pp.
4245–4260, 2024.

[26] K. Song, L. Han, B. Liu, D. Metaxas, and A. Elgammal, “Stylegan-fusion: Diffusion guided
domain adaptation of image generators,” in Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision (WACV), 2024, pp. 5453–5463.

[27] “Cognitive reflection and decision making,” Journal of Economic Perspectives (JEP), vol. 19,
pp. 25–42, 2005.

[28] D. Kahneman, Thinking, Fast and Slow. Macmillan, 2011.

[29] W. Hu, W. Z. Dai, and Z. H. Zhou, “Efficient rectification of neuro-symbolic reasoning in-
consistencies by abductive reflection,” in Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), 2025, pp. 17 333–17 341.

[30] L.-W. Cai, W.-Z. Dai, Y.-X. Huang, Y.-F. Li, S. H. Muggleton, and Y. Jiang, “Abductive learning
with ground knowledge base,” in Proceedings of the Thirtieth International Joint Conference on
Artificial Intelligence (IJCAI), 2021, pp. 1815–1821.

[31] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand, and
V. Lempitsky, “Domain-adversarial training of neural networks,” Journal of Machine Learning
Research (JMLR), vol. 17, pp. 2096–2030, 2016.

[32] L. Hoyer, D. Dai, H. Wang, and L. Van Gool, “Mic: Masked image consistency for context-
enhanced domain adaptation,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2023, pp. 11 721–11 732.

[33] L. Hoyer, D. Dai, and L. Van Gool, “Hrda: Context-aware high-resolution domain-adaptive
semantic segmentation,” in Proceedings of the 17th European Conference on Computer Vision
(ECCV), 2022, pp. 372–391.

[34] M. Khodabandeh, A. Vahdat, M. Ranjbar, and W. G. Macready, “A robust learning approach to
domain adaptive object detection,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), 2019, pp. 480–490.

[35] Y. Chen, W. Li, C. Sakaridis, D. Dai, and L. Van Gool, “Domain adaptive faster r-cnn for object
detection in the wild,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018, pp. 3339–3348.

[36] R. Cai, J. Chen, Z. Li, W. Chen, K. Zhang, J. Ye, Z. Li, X. Yang, and Z. Zhang, “Time series
domain adaptation via sparse associative structure alignment,” in Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), 2020, pp. 6859–6867.

12



[37] M. Ragab, E. Eldele, Z. Chen, M. Wu, C.-K. Kwoh, and X. Li, “Self-supervised autoregressive
domain adaptation for time series data,” IEEE Transactions on Neural Networks and Learning
Systems (TNNLS), vol. 35, no. 1, pp. 1341–1351, 2024.

[38] M. Jing, J. Li, K. Lu, L. Zhu, and H. T. Shen, “Visually source-free domain adaptation via
adversarial style matching,” IEEE Transactions on Image Processing (TIP), vol. 33, pp. 1032–
1044, 2024.

[39] S. Yang, Y. Wang, K. Wang, S. Jui, and J. van de Weijer, “Attracting and dispersing: a
simple approach for source-free domain adaptation,” in Proceedings of the 35th International
Conference on Neural Information Processing Systems (NeurIPS), 2022, pp. 5802–5815.

[40] J. Zhang, J. Huang, X. Jiang, and S. Lu, “Black-box unsupervised domain adaptation with
bi-directional atkinson-shiffrin memory,” in Proceedings of the IEEE/CVF International Con-
ference on Computer Vision (ICCV), 2023, pp. 11 771–11 782.

[41] H. Zhang, Y. Zhang, K. Jia, and L. Zhang, “Unsupervised domain adaptation of black-box
source models,” ArXiv, vol. abs/2101.02839, 2021.

[42] A. C. Li, M. Prabhudesai, S. Duggal, E. Brown, and D. Pathak, “Your diffusion model is secretly
a zero-shot classifier,” in Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), 2023, pp. 2206–2217.

[43] Y. Xu, Y. Zhao, Z. Xiao, and T. Hou, “Ufogen: You forward once large scale text-to-image
generation via diffusion gans,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2024, pp. 81 968–8206.

[44] J. Guo, J. Zhao, C. Du, Y. Wang, C. Ge, Z. Ni, S. Song, H. Shi, and G. Huang, “Everything
to the synthetic: Diffusion-driven test-time adaptation via synthetic-domain alignment,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2025, pp. 3453–3454.

[45] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-cam:
Visual explanations from deep networks via gradient-based localization,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp.
618–626.

[46] S. Cui, S. Wang, J. Zhuo, L. Li, Q. Huang, and Q. Tian, “Towards discriminability and diversity:
Batch nuclear-norm maximization under label insufficient situations,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 3941–
3950.

[47] L. Zhou, M. Ye, X. Zhu, S. Xiao, X.-Q. Fan, and F. Neri, “Homeomorphism alignment for
unsupervised domain adaptation,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision (CVPR), 2023, pp. 18 653–18 664.

[48] C. Ge, R. Huang, M. Xie, Z. Lai, S. Song, S. Li, and G. Huang, “Domain adaptation via prompt
learning,” IEEE Transactions on Neural Networks and Learning Systems (TNNLS), vol. 36,
no. 1, pp. 1160–1170, 2025.

[49] S. Bai, M. Zhang, W. Zhou, S. Huang, Z. Luan, D. Wang, and B. Chen, “Prompt-based distribu-
tion alignment for unsupervised domain adaptation,” in Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI), 2024, pp. 729–737.

[50] Y. Benigmim, S. Roy, S. Essid, V. Kalogeiton, and S. Lathuilière, “One-shot unsupervised
domain adaptation with personalized diffusion models,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2023, pp. 698–708.

[51] M. Litrico, A. Del Bue, and P. Morerio, “Guiding pseudo-labels with uncertainty estimation for
source-free unsupervised domain adaptation,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2023, pp. 7640–7650.

13



[52] S. Tang, W. Su, M. Ye, and X. Zhu, “Source-free domain adaptation with frozen multimodal
foundation model,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2024, pp. 23 711–23 720.

[53] K. Saenko, B. Kulis, M. Fritz, and T. Darrell, “Adapting visual category models to new domains,”
in Proceedings of the 11th European Conference on Computer Vision (ECCV), 2010, pp. 213–
226.

[54] H. Venkateswara, J. Eusebio, S. Chakraborty, and S. Panchanathan, “Deep hashing network for
unsupervised domain adaptation,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2017, pp. 5018–5027.

[55] X. Peng, B. Usman, N. Kaushik, J. Hoffman, D. Wang, and K. Saenko, “Visda: The visual
domain adaptation challenge,” ArXiv, vol. abs/1710.06924, 2017.

[56] X. Peng, Q. Bai, X. Xia, Z. Huang, K. Saenko, and B. Wang, “Moment matching for multi-
source domain adaptation,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), 2019, pp. 1406–1415.

[57] M. Singha, H. Pal, A. Jha, and B. Banerjee, “Ad-clip: Adapting domains in prompt space using
clip,” in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV),
2023, pp. 4355–4364.

[58] S. Tang, A. Chang, F. Zhang, X. Zhu, M. Ye, and C. Zhang, “Source-free domain adaptation via
target prediction distribution searching,” International Journal of Computer Vision (IJCV), vol.
132, no. 3, pp. 654–672, 2023.

[59] P. Alquier, “User-friendly introduction to pac-bayes bounds,” Foundations and Trends in
Machine Learning Found (Trends Mach. Learn.), vol. 17, no. 2, pp. 174–303, 2024.

[60] P. Alquier, J. Ridgway, and N. Chopin, “On the properties of variational approximations of
gibbs posteriors,” Journal of Machine Learning Research (JMLR), vol. 17, no. 236, pp. 1–41,
2016.

[61] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. Vaughan, “A theory of
learning from different domains,” Machine Learning, vol. 79, pp. 151–175, 2010.

[62] M. Long, Y. Cao, Z. Cao, J. Wang, and M. I. Jordan, “Transferable representation learning with
deep adaptation networks,” IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), vol. 41, no. 12, pp. 3071–3085, 2019.

[63] M. Jing, J. Li, K. Lu, L. Zhu, and H. T. Shen, “Visually source-free domain adaptation via
adversarial style matching,” IEEE Transactions on Image Processing (TIP), vol. 33, pp. 1032–
1044, 2024.

[64] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale
hierarchical image database,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2009, pp. 248–255.

[65] L. van der Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of Machine Learning
Research (JMLR), vol. 9, no. 86, pp. 2579–2605, 2008.

14



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims of this paper can be found in the Abstract and Introduction
sections, which accurately reflect the paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide the limiting analysis in Appendix I.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

15



Justification: We provide the theoretical analysis in Appendix C.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper fully discloses all necessary information for reproducibility. The
whole training process is shown in Algorithm 1. The implementation details in Appendix F.
The experimental code and the main code are available in the Supplementary Materials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

16



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The experimental code and the main code are available in the Supplementary
Materials.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the details are described, including hyperparameters, experiments, and
datasets.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments in the Experiments section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the computational cost comparison in Table 7.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics in every respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We provide the broader impacts in Appendix I.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

18

https://neurips.cc/public/EthicsGuidelines


• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: In the Related Works and Introduction sections, we have explained that our
aim is to provide better data privacy protection with more flexible portability to prevent the
leakage of source data or the trained source model.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the code and dataset utilized in this work are publicly available and are
only intended to compare the performances of different algorithms on classification tasks.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

19



• For scraped data from a particular source (e.g., website), the copyright and terms of
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or other labor should be paid at least the minimum wage in the country of the data
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institution) were obtained?

Answer: [NA]
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
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scientific rigorousness, or originality of the research, declaration is not required.
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Justification: This submission poses no such risks.
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for what should or should not be described.
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Appendix

A. Diffusion Process for BUDA

A standard diffusion model (e.g., DDPM [21]) consists of two core components: a forward diffusion
operator q and a reverse denoising operator p. In the forward process, DDPM diffuses the target data
distribution by gradually injecting Gaussian noise into the data point xi over the total ST steps using
a fixed Markov chain. The forward diffusion operator q can be expressed as:

q(xj
i |x

j−1
i ) = N (xj

i ;
√
1− βjx

j−1
i , βjI), (13)

where j is defined as the diffusion timestep, j ∈ [0, 1, ..., ST ]; βj is the fixed variance scheduler that
controls the scale of the Gaussian noise, βj ∈ [0, 1]; N represents the probability density function of
the Gaussian distribution; I is a unit vector; and βjI is the covariance matrix. In the reverse denoising
operator, DDPM concentrates the target data distribution by gradually generating a sequence of
denoised images xg over the same T steps. The reverse denoising operator p can be expressed as:

p(xk−1
g |xk

g) = N (xk−1
g ;

1
√
αk

(xk
g − 1− αk√

1− αk
σθ(x

k
g , k)), βkI), (14)

where k is defined as the denoising timestep, k ∈ [ST, ST − 1, ..., 0]; αk = 1− βk; αi =
∏k

i=1 αi;
and σθ(x

k
g , k) predicts the noise at the current timestep k and denoises the corresponding input

data xk
g , σθ(x

k
g , k) ∈ [0, 1]. To introduce the diffusion model into BUDA, we follow [42] to add a

predictor pθ with fixed weights to judge the category of the target data xi. The judgment process of
the predictor is as follows:

pθ(Lj |xi) =
exp(−Ek∈T

∥∥σ − σθ(x
k
i , Lj)

∥∥2)∑b
l=1 exp(−Ek∈T

∥∥σ − σθ(xk
i , Ll)

∥∥2) , (15)

where Lj is a low-dimensional text embedding corresponding to the j-th class of the i-th sample
xi; b is the number of classes; σ follows the standard Gaussian distribution N (0, 1). In this work,
we introduce an image encoder with fixed weights from CLIP [20] and leverage the predictor along
with the image encoder during the diffusion-target model rectification to fine-tune the text encoder.
Moreover, before the SRM period, the fine-tuned text encoder is fed back to the diffusion model to
enable more controllable image generation and adapt the target model to the BUDA task.

B. Supplement of Complete Experimental Results

As shown in Table 5, the comparison results demonstrate that our RrED effectively employs a
two-stage strategy guided by diffusion model for target model optimization, achieving significantly

Table 5: The complete accuracies (%) on the VisDA-17 using ResNet-101 backbone.
Method Setting P D plane bike bus car horse knife mcycle person plant sktbrd train truck Mean

Source-only − × × 64.3 24.6 47.9 75.3 69.6 8.5 79.0 31.6 64.4 31.0 81.4 9.2 48.9

HMA [47] U × × 97.6 88.4 84.3 76.0 98.4 97.1 91.3 81.4 97.0 96.7 88.8 60.7 88.1
DAPL [48] U ✓ × 97.8 83.1 88.8 77.9 97.4 91.5 94.2 79.7 88.6 89.3 92.5 62.0 86.9
PDA [49] U ✓ × 99.2 91.1 91.9 77.1 98.4 93.6 95.1 84.9 87.2 97.3 95.3 65.3 89.7

DATUM [50] U ✓ ✓ 85.7 76.4 79.7 75.4 84.1 82.3 80.4 76.7 81.9 82.6 78.4 20.2 75.3
S-Fusion [26] U ✓ ✓ 92.9 83.7 89.3 87.0 95.3 92.7 90.1 86.8 92.2 93.2 88.3 42.0 86.1
DACDM [24] U ✓ ✓ 96.2 84.8 83.2 73.3 94.8 96.6 91.0 88.2 93.0 93.4 87.5 59.7 86.8

DAD [25] U ✓ ✓ 97.4 89.6 92.2 91.6 97.3 97.0 95.1 89.8 97.2 96.9 93.7 42.5 90.0

PLUE [51] SF × × 97.3 96.2 90.5 91.8 90.0 94.2 87.4 87.7 97.0 84.3 93.0 81.0 90.0
C-SFDA [10] SF × × 97.6 88.8 86.1 72.2 97.2 94.4 92.1 84.7 93.0 90.7 93.1 63.5 87.8
SF(DA)2 [9] SF × × 96.8 89.3 82.9 81.4 96.8 95.7 90.4 81.3 95.5 93.7 88.5 64.7 88.1
DIFO [52] SF ✓ × 97.7 87.6 90.5 83.6 96.7 95.8 94.8 74.1 92.4 93.8 92.9 65.5 88.8

DINE [15] BP × × 81.4 86.7 77.9 55.1 92.2 34.6 80.8 79.9 87.3 87.9 84.3 58.7 75.6
BETA [16] BP × × 94.9 90.2 85.4 61.1 95.5 93.1 85.0 83.8 92.9 91.9 91.1 55.0 85.1
RFC [18] BP × × 95.6 89.7 87.8 75.8 96.5 96.5 90.4 82.8 96.0 70.0 85.7 55.1 85.2

SEAL [17] BP × × 97.9 92.2 88.0 73.5 97.1 96.1 92.4 85.7 93.9 95.6 91.2 66.4 89.2
AEM [19] BP ✓ × 98.6 88.1 89.7 74.8 98.0 93.9 93.0 89.3 90.1 97.2 95.2 63.5 89.3

RrED BP ✓ ✓ 97.5 91.9 88.1 88.0 98.1 96.9 94.3 88.8 96.6 96.6 94.1 63.8 91.2
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Figure 5: Classification results on VisDA-17 are visualized with a confusion matrix. Note that all these
results are obtained through the evaluation which is conducted in the same experimental environment.
(Zooming in for a clear view)

greater improvements on the large-scale benchmark VisDA-17 [55]. Furthermore, we observe that
RrED does not outperform some comparison methods [17, 19] on certain classes. We attribute this to
the fact that our target model is trained under the guidance of a diffusion model, which tends to focus
on broad class distinctions to enhance overall discriminative ability. In contrast, the distillation-based
method SEAL [17] exhibits slight overfitting to a few specific classes (e.g., the “bike” and “truck”
class), resulting in higher recognition accuracy on those classes but reduced performance on others.
The CLIP-based method AEM [19] demonstrates notable discriminative power on specific classes.
Based on our analysis of the CLIP model [20], we find that these classes are often overrepresented
during CLIP pretraining. For example, there is a strong similarity between the “person” class in the
target domain and pretraining classes such as “baseball player”, “bridegroom”, and “scuba diver”
in CLIP model. In contrast, classes that are absent (e.g., the “knife” class) or rarely seen (e.g., the
“plant” class) during pretraining tend to have much lower recognition accuracy. In addition, we
supplement the classification visualization of the VisDA-17 in Figure 5. For a fair comparison, all
the classification visualizations are obtained in the same experimental environment. These results
highlight that our RrED method substantially surpasses other BUDA approaches in improving class
discrimination ability.

C. Theoretical Justifications

We provide theoretical justifications grounded in the generalization bound of reasoning to clarify the
working mechanism of our algorithm.

First, we adopt PAC-Bayes theory [59] for the classification task to optimize the target model with
the uncertainty estimation of the black-box predictor.

Theorem 1 [60]. Given a target data distribution Dt, a hypothesis H , and a prior distribution π over
the hypothesis space Θ. For any τ ∈ (0, 1] and λ > 0, with a probability at least 1− τ over the target
samples xt ∼ Dt, for all posteriors ρ, we have:

Eρ(H) [L(H)] ≤ Eρ(H)

[
L̃xt

(H)
]
+

1

λ
[DKL(ρ||π) + log

1

τ
+Ψxt,π(λ, n)], (16)

where Ψxt,π(λ, n) = logEπ(H)Ext∼Dt
[exp(λ(L(H)− L̃(H)))].

Lemma 1 [59]. The PAC-Bayes bound, involving constants τ and n, as introduced in Theorem 1, is
minimized by the Bayesian posterior ρ(H), which represents the distribution over Θ.
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Proof. The Donsker-Varadhan’s change of measure states that for any measurable function ϕ : Θ →
R, we have:

Eρ(H)[ϕ(H)] ≤ DKL(ρ||π) + logEπ(H)[exp(ϕ(H))]. (17)

Thus, with ϕ(H) := λ(L(H − L̃(H,xt)) and ∀ρ over hypothesis space Θ, we have:

Eρ(H)

[
λ
(
L(H)− L̃(H,xt)

)]
= λ

(
Eρ(H)[L(H)]− Eρ(H)[L̃(H,xt)]

)
≤ DKL(ρ∥π) + logEπ(H)

[
exp

(
λ
(
L(H)− L̃(H,xt)

))]
. (18)

For the non-negative random variable ζπ(xt) := Eπ(H)[exp(λ(L(H) − L̃(H,xt)))], we apply
Markov’s inequality on it, and have:

P
(
ζ ≤ 1

τ
Ext∼Dt

[ζπ(xt)]

)
≥ 1− τ. (19)

This implies that with probability at least 1 − τ over the choice of xt ∼ Dt, we have ∀ρ over
hypothesis space Θ:

P
(
Eρ(H)[L(H)] ≤ Eρ(H)[L̃xt

(H)] +
1

λ[DKL(ρ||π) + log 1
τ +Ψxt,π(λ, n)]

)
≥ 1− τ, (20)

where Ψxt,π(λ, n) = logEπ(H)Ext∼Dt [exp(λ(L(H) − L̃(H)))], and we prove the statement of
Theorem 1. During target model training, as just as in Eq. (2), we utilize Mθ as the prediction of
posterior distribution and S(xi) as the prediction of prior distribution. Therefore, the upper bound of
our target model can be expressed as:

1

Nt

∑Nt

i=1
[Lother +

1

λ
DKL(Mθ(xi)||S(xi))], (21)

where Nt is defined as the number of the target data xt. Following previous BUDA works [40, 15–19],
as presented in Eq. (2), λ is set to 1 in the BUDA task. Moreover, Lother varies in different works.
For example, in RrED, Lother = LGC + LCC in the first stage DTR, and Lother = LGC + LSV I

in the second stage SRM. In summary, this proof fills the theoretical knowledge gap regarding the
black-box predictor in previous BUDA works.

Generalization Bound. Since our target model is trained in unlabeled target domain data and
further generates fusion data with feature differences based on the diffusion and our FSG module, we
denote xt ∼ Dt as the real sample distribution of the target domain and x̃t ∼ D̃t as the generated
fusion sample distribution of the target domain. And denote yt as the predicted labels of xt. For
the corresponding generated fusion samples, ỹt are the predicted labels of the target domain. Dt

is uploaded to a black-box predictor to obtain hard predictions from a source model trained on the
source domain Ds, where xs ∼ Ds as the sample distribution of the source domain. The pioneering
study [61] on theoretical analysis for domain adaptation provide the generalization bound. Following
[61], let H denote a hypothesis, which can be expressed as:

ϵt (H, yt) ≤ ϵs (H, ys) + dn∆n(Dt, Ds) + φ, (22)

where φ denotes the shared error of the ideal joint hypothesis, φ = min(ϵs (H, ys) , ϵt (H, yt)).
dn∆n(Ds, Dt) = 2 supH,H′∈n

∣∣Exs∼Ds

[
H(xs) ̸= H ′(xs)

]
− Ext∼Dt

[
H(xt) ̸= H ′(xt)

]∣∣.
ϵt (H, yt) is the expected error of the target sample distribution; ϵs (H, ys) is the expected error of
the source sample distribution, which is obtained from the black-box predictor. In the BUDA setting,
although we do not have the source domain data xs, we can obtain hard predictions Ps from the
black-box predictor. Therefore, according to the theory [62, 63] of source data absence, ϵs (H, ys) is
small and can be ignored, so we do not need to obtain xs and ys in BUDA.

Then, we model a generated fusion domain distribution D̃t that is distributed similarly to the target
distribution Dt. To reduce the classification error on the target domain, the distributions Ds, Dt, and
D̃t should be substantially similar to each other. Therefore, the generalization bound in RrED can be
transformed into:

ϵt (H, yt) ≤ ϵ̃t (H, ỹt) + dn∆n(Dt, D̃t) + φ1, (23)
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where φ1 = min(ϵt (H, yt) , ϵ̃t (H, ỹt)); ϵ̃t (H, ỹt) is the expected error of the generated fusion
domain distribution, which can be expressed as:

ϵ̃t (H, ỹt) ≤ ϵs (H, ys) + dn∆n(D̃t, Ds) + φ2, (24)

where φ2 = min(ϵ̃t (H, ỹt) , ϵs (H, ys)). Thus, our final generalization bound can be defined as:

ϵt (H, yt) ≤ ϵs (H, ys) + dn∆n(Dt, D̃t) + dn∆n(D̃t, Ds) + φ1 + φ2. (25)

For Eq. (25), we analyze each component in detail in this paragraph:

• ϵs (H, ys) is the expected error of the source sample distribution. During the training of the source
model, the error between the source domain data and its true labels is minimized by cross-entropy
loss. Thus, in the early stages of training, we can obtain good training results for the source samples
through the black-box predictor. As the training progresses, the model gradually adapts to the
distribution of the target domain with Adaptive Label Smoothing (ALS) [15]. The ALS maintains
source domain knowledge, enabling the model to learn target domain knowledge while preventing
the forgetting of source domain knowledge. Therefore, according to theories [62, 63], ϵs (H, ys) is
small in the whole training.

• Instead of reducing dn∆n(Dt, Ds) in Eq. (16), our goal is to reduce dn∆n(Dt, D̃t) and
dn∆n(D̃t, Ds). For dn∆n(Dt, D̃t), it depends on the expected error of the disagreement be-
tween two hypothesis on the target data and the generated fusion data distribution of the target
domain. During the whole training, we design the FSG module to determine which regions
should be composed of synthetic images. D̃t is generated from Dt, preserving key features of
Dt while adding differential features generated by the diffusion model. Therefore, the distribu-
tion divergence dn∆n(Dt, D̃t) is small. For dn∆n(D̃t, Ds), we can obtain that dn∆n(D̃t, Ds) =

2 supH,H′∈n

∣∣∣Ex̃t∼D̃t

[
H(x̃t) ̸= H ′(x̃t)

]
− Exs∼Ds

[
H(xs) ̸= H ′(xs)

]∣∣∣. As the training progresses,
DTR aligns xt and x̃t by continuously minimizing the cross-entropy loss to facilitate the target model’s
training; SRM narrows the feature space distance between xt and x̃t by contrasting their differences,
while enhancing the model’s discriminative and generalization abilities by increasing dissimilarities
with other samples. Therefore, Ex̃t∼D̃t

[
H(x̃t) ̸= H ′(x̃t)

]
≈ Ext∼Dt

[
H(xt) ̸= H ′(xt)

]
and it is

continuously reduced during training by minimizing LGC and Ltask. Meanwhile, LCC and LSV I

prevent overfitting of the target model. For Exs∼Ds

[
H(xs) ̸= H ′(xs)

]
, according to the previous

works [15, 16], the ALS maintains a source knowledge base and use Ltask to maintain the balance
between source knowledge and target knowledge. Therefore, Exs∼Ds

[
H(xs) ̸= H ′(xs)

]
always

maintains a small value during the whole adaptation phase.

• φ1 + φ2 denotes the shared error of the ideal joint hypothesis, which is assumed to be a sufficiently
small constant that reflects the complexity of the hypothesis space [62].

D. The Whole Training Process

Our pseudocode for the training process is shown in Algorithm 1. In addition, our experimental and
main code are available in the Supplementary Material.

E. Supplement of Complete Quantitative Ablation Experimental Results

As shown in Table 6, we report the complete quantitative results of ablation, and all the results include
the task-specific loss. FSG is the key module of our work to prevent the diffusion-generated images
from causing irreversible negative effects. When FSG and FT are not used, the results indicate that
directly applying the default Stable Diffusion model, without adaptation to the downstream task,
leads to a sharp performance drop. In contrast, our method exhibits highly task-aware sensitivity to
the structural characteristics of the Stable Diffusion model, enabling it to better leverage its semantic
knowledge for downstream BUDA tasks. The effective knowledge learning of the target model
through LGC and LCC can only be achieved when FSG is utilized. When LCC is not used, the
combined effect of Ltask and LGC enforces rapid sample clustering, which leads to overfitting of the
target model. LCC mitigates the sample enrichment effect to improve target model’s generalization.
In this regard, both Ltask and LGC can benefit from this process. LSV I is to integrate interactive
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Algorithm 1 RrED for BUDA task.
Input: Target samples Dt = {(xi)}Nt

i=1; black-box hard predictions Ps; diffusion model with the pre-
dictor pθ; multi-modal model Vθ ∈ {image encoder Iθ, text encoder Tθ}; and target model Mθ ∈
{feature extractor fθ, prediction classifier cθ}.
Parameter: Training epoch e; learnable prompt text embedding L; model parameter θ; and hyperparameters γ,
r.
1: Initialize: initialize the smooth label repository S with Ps; initialize Vθ with L and S; diffusion model

initializes to generate data xi,(g) corresponding to xi;
2: ======================= Diffusion-Target model Rectification =======================
3: for i← 1 to e/2 do
4: Get target sample xi and the sample predictions yi usingMθ: yi = fθ(cθ(xi));
5: Get generated fusion sample x̃i to fuse xi,(g) and xi using Eqs. (3)-(4);
6: Update the smooth label repository S using Eq. (1);
7: Get fusion sample predictions ỹi usingMθ: ỹi = fθ(cθ(x̃i));
8: Fine-tune Vθ by minimizing LVθ with pθ(xi) using Eqs. (5)-(6): min

Iθ

max
Tθ

LVθ ;

9: OptimizeMθ by minimizing LMθ(DTR) with pθ(xi) using Eq. (9): min
fθ

max
cθ
LMθ(DTR);

10: end for
11: ========================= Self-Rectifying Reasoning Model ========================
12: Initialize: Replace the original text encoder in the diffusion model with the fine-tuned text encoder with

prompt word embeddings;
13: for i← e/2 to e do
14: Get target sample xi and the sample predictions yi usingMθ: yi = fθ(cθ(xi));
15: Get generated fusion sample x̃i to fuse xi,(g) and xi using Eqs. (3)-(4);
16: Update the smooth label repository S using Eq. (1);
17: Get fusion sample predictions ỹi usingMθ: ỹi = fθ(cθ(x̃i));
18: Assign different weights w according to the similarities between yi and ỹi using Eq. (11);
19: OptimizeMθ by minimizing LMθ(SRM) with w using Eq. (12): min

fθ
max
cθ
LMθ(SRM);

20: end for
Output: Target modelMθ .

Table 6: The complete quantitative results of ablation study on the Office-31 and VisDA-17.
LMθ FSG FT Office-31 VisDA-17

LGC LCC LSV I A→D A→W D→A D→W W→A W→D Mean Mean
Source only 79.9 76.6 56.4 92.8 60.9 98.5 77.5 48.9

✓ ✓ 97.8 85.2 66.6 97.0 72.1 97.5 86.0 71.2
✓ ✓ 85.5 94.9 79.3 99.1 83.5 99.8 90.4 79.3

✓ ✓ 76.2 83.2 67.6 94.1 69.2 95.6 81.0 59.6
✓ ✓ ✓ 95.2 95.7 81.5 99.0 83.1 99.8 92.4 89.4

✓ ✓ 92.7 88.5 67.7 97.9 74.5 99.6 86.9 67.8
✓ ✓ ✓ 96.9 94.1 73.7 97.3 81.6 99.8 90.6 85.4

✓ ✓ ✓ 85.3 84.9 66.7 97.0 71.9 98.0 84.0 80.2
✓ ✓ ✓ ✓ 87.3 84.0 65.6 96.3 74.2 98.6 84.3 81.7

✓ ✓ ✓ 71.7 84.9 70.2 94.6 64.4 98.2 80.6 75.9
✓ ✓ ✓ ✓ 96.8 94.1 82.5 99.1 84.1 99.8 92.7 88.7
✓ ✓ ✓ ✓ 73.1 85.7 69.7 95.3 65.2 97.9 81.2 76.8
✓ ✓ ✓ ✓ ✓ 97.8 95.9 83.7 99.1 84.5 99.8 93.5 91.2

learning with the samples generated by the fine-tuned diffusion model. LSV I becomes effective only
when combined with fine-tuning. Experimental results show that this combination yields significant
performance gains on large-scale dataset VisDA-17, while improvements on small-scale dataset
Office-31 are relatively limited. In summary, each component of our RrED contributes effectively to
performance improvement and is indispensable.
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Source-only: 44.1% DINE [15]: 52.6% BETA [16]: 57.0% Diffusion [42]: 56.3%

RFC [18]: 57.5% SEAL [17]: 57.9% AEM [19]: 63.7% RrED: 82.3%

Figure 6: The feature visualization on the Office-Home (A→C) using the t-SNE [65]. Herein, the
points represent target samples and the different colors correspond to their ground-truth classes. RrED
introduces diffusion into BUDA and fine-tunes it, ultimately achieving remarkable improvement.

F. Implementation Details.

We implement our RrED based on PyTorch and conduct all experiments using an NVIDIA GeForce
RTX4090 GPU. For fair comparison, the backbone network is initialized following the protocol in
[15], employing the ImageNet [64] pre-trained ResNet architectures: ResNet-50 for Office-31, Office-
Home, and DomainNet, and ResNet-101 for VisDA-17. The optimization configuration employs SGD
with a momentum of 0.9, a weight decay of 1e-3, and differentiated learning rates, where the learning
rate is set to 1e-4 for the feature extractor fθ and 1e-3 for the classifier cθ. Following [16, 17], we
set the bottleneck dimension to 256, the batch size to 64, the static momentum coefficient µ to 0.6,
and the number of warm-up epochs to 3. To facilitate our joint multi-modal model CLIP [20] for
fine-tuning, we choose Stable Diffusion v-1.5 [22] as the diffusion model. The strength of the noise
addition is set to 0.6 in the diffusion model. For the diffusion predictor [42] and the fine-tuned
text encoder we introduced, we keep their parameters frozen during the whole training. During the
fine-tuning process, we follow [52, 19] to set the number of context tokens m to 4. All the reported
quantitative results are obtained by averaging multiple runs with seeds [2023, 2024, 2025].

G. More Visual Comparisons and Further Analysis

As shown in Figure 6, we use t-SNE [65] technique to visualize the distribution of target samples
in the feature space. Compared with previous methods, the discrimination ability of the target
model for target samples with similar features has been significantly improved under the training
of our RrED algorithm. Moreover, as can be clearly observed from the graph, due to the enhanced
generalization ability of the model after being trained by RrED, the differences between different
classes become more pronounced, and the distances between samples of the same class become more
compact. Compared to the previous method [42] that directly applies diffusion model for prediction,
our RrED exhibits superior model generalization and class discrimination capabilities. Therefore, we
conclude that the target model trained by RrED achieves significant performance improvement in the
high-security BUDA setting.

Next, we discuss our method’s exploration of the diffusion model to further demonstrate the superiority
of our approach. As shown in Figure 7, we show the images that are generated by the diffusion model
on the VisDA-17 under varying noise strengths. When the noise level is too low, the images generated
by the diffusion model are too similar to the target domain images, providing limited benefit for
enhancing the model’s reasoning ability. When the noise level is too high, the images generated by
the diffusion model differ drastically from those in the target domain and may even contain unrelated
objects. Directly using such images can irreversibly disrupt the discriminative ability of the target
model. How can we effectively utilize the diffusion model to guide the target model in enhancing
its reasoning ability while preventing its potential negative effects? This is the problem our work
RrED aims to solve. For this, FSG serves as the key module to preclude the diffusion-generated
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Figure 7: We present images generated by the diffusion model on the VisDA-17 under varying noise
strengths, along with those produced when the noise strength is 0.6 after our fine-tuning.

Table 7: Results of computational cost comparison on the VisDA-17 with the ResNet-101 backbone.
The batch size is 64.

Method Space (MiB) Time (s/epoch) Accuracy (%)

DINE 9881MiB 124s 75.6
BETA 20247MiB 1101s 85.1
SEAL Over 24G - 89.2
AEM 13747MiB 672s 89.3

RrED (Stage 1) 17654MiB 312s 89.4
RrED (Stage 2) 11721MiB 201s 91.2

images from bringing about irreversible adverse effects. FSG retains the regions of interest for the
model, allowing the target model to maintain image discernibility even under higher noise levels
in diffusion. Meanwhile, by fine-tuning the text encoder in the diffusion model, RrED enables it
to better understand the content to be generated while maintaining its generative capabilities. As
shown in Figure 7, the images generated by the fine-tuned diffusion model exhibit greater diversity,
more distinct features, and fewer interfering objects. This allows the target model, in the second
phase SRM, to first recognize the simpler generated images and then further distinguish the more
challenging target images.

H. Computational Cost Comparison and Optimization Evolution

We supplement the computational cost comparison of the VisDA-17 [55] in Table 7. For a fair
comparison, all the results are obtained in the same experimental environment. In Table 7, we
document the maximum GPU space usage, the average runtime cost, and the best accuracy of each
comparison method. When adapting to the VisDA-17 dataset, it is worth noting that the comparison
methods have consumption-related limitations. BETA [16] operates in two computationally intensive
stages: the first stage is the initialization, which requires initialization of the two models due to
their mutually-distilled network structures; the second stage is the two-step process, which requires
distillation and fine-tuning for each epoch. SEAL [17] is highly resource-intensive, and its official
code cannot complete the adaptation task on VisDA-17 under the same conditions with 24GB GPU
memory. During the training of AEM [19], two classifiers are required: one classifier processes the
output of the target model, while the other aligns with the predictions of the ViL model. Moreover, in

28



Source-only: 44.1% Stage 1: 79.8% Stage 2: 82.3%

Figure 8: The feature distribution evolutions of different stages on the Office-Home (A→C) using
t-SNE [65]. Herein, the points represent target samples and the different colors correspond to their
ground-truth classes.

each iteration, the weights of the overall model and the classifier weights need to be updated separately,
resulting in consuming a significant amount of time. Compared with the previous BUDA methods,
although RrED introduced the diffusion model in stage 1 to guide the learning of the target model,
it still significantly reduced the time consumption by cutting out unnecessary calculation processes
and optimizing loss functions. Moreover, in stage 2, after eliminating the resources consumed by
fine-tuning and diffusion, RrED demonstrates extremely low overhead. These results demonstrate
that our RrED significantly outperforms other BUDA methods in enhancing class discrimination
ability at a relatively low cost.

In Figure 8, the optimization evolutions of feature distribution are presented. The black-box predictor
fails to effectively separate and cluster target sample features, with samples from different classes
heavily entangled. This confusion introduces noisy signals during target model training, thereby
hindering effective adaptation. After the first stage of training, the target model has learned the rich
semantic knowledge in the diffusion model and significantly improved its class discrimination ability.
After the second stage of training, the scattered data distribution boundaries stabilize around the
nearest feature cluster centers, thus leading to the samples with similar features exhibiting a more
compact behavior. These results demonstrate the superiority of the two-stage training in RrED and
achieve the predefined objectives of each stage.

I. Broader Impacts and Limitations

Our work RrED focuses on the problem of Black-box Unsupervised Domain Adaptation (BUDA),
which provides better data privacy protection with more flexible portability compared with other
Domain Adaptation (DA) settings. Meanwhile, RrED demonstrates extremely superior performance,
significantly surpassing other DA methods. Inspired by research in neuroscience, RrED is specifically
designed for the classification task. While its effectiveness has been demonstrated through extensive
experiments and its theoretical soundness established, its applicability to other tasks remains an open
question. Therefore, we plan to further explore the practical utility of this algorithm in a broader
range of task scenarios.
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