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Abstract

Effective brain representation learning is a key step toward revealing the under-1

standing of cognitive processes and unlocking detecting and potential therapeutic2

interventions for neurological diseases/disorders. Existing studies have focused3

on either (1) voxel-level activity, where only a single beta weight for each voxel4

(i.e., aggregation of voxel activity over a time window) is considered, missing5

their temporal dynamics, or (2) functional connectivity of the brain in the level of6

region of interests, missing voxel-level activities. In this paper, we bridge this gap7

and design BRAINMIXER, an unsupervised learning framework that effectively8

utilizes both functional connectivity and associated time series of voxels to learn9

voxel-level representation in an unsupervised manner. BRAINMIXER employs two10

simple yet effective MLP-based encoders to simultaneously learn the dynamics11

of voxel-level signals and their functional correlations. To encode voxel activity,12

BRAINMIXER fuses information across both time and voxel dimensions via a13

dynamic self-attention mechanism. To learn the structure of the functional connec-14

tivity graph, BRAINMIXER presents a temporal graph patching and encodes each15

patch by combining its nodes’ features via a new adaptive temporal graph pooling.16

Our experiments show that BRAINMIXER attains outstanding performance and17

outperforms 13 baselines in different downstream tasks and experimental setups.18

1 Introduction19

Understanding the human brain is a long-term intriguing goal for neuroscience and recent advance-20

ments in machine learning methods have provided powerful paradigms to achieve this goal (Guo21

et al., 2016; Poldrack & Farah, 2015). While neuroimaging techniques, as the principal source of22

brain data, provide rich information about brain functions, the provided data is high-dimensional23

and complex in nature (Poldrack & Gorgolewski, 2014). To overcome this challenge, representation24

learning serves as the backbone of machine learning methods on neuroimaging data and provides a25

low-dimensional representation of brain components at different levels of granularity, enabling the26

understanding of behaviors (Schneider et al., 2023), brain functions (Yamins & DiCarlo, 2016) and/or27

detecting neurological diseases or disorders (Behrouz & Seltzer, 2023a; Uddin et al., 2017).28

In the brain imaging literature, studies have mainly focused on two spatial scales—voxel-level29

and network-level—as well as two analysis approaches—multivariate pattern analysis (MVPA)30

and functional connectivity (Mahmoudi et al., 2012; Van Den Heuvel & Pol, 2010). The MVPA31

approach is often employed at the voxel-level scale and in task-based studies to associate neural32

activities at a very fine-grained and local level with particular cognitive functions, behaviors, or33

stimuli. This method has found applications in various areas, including the detection of neurological34

conditions (Sundermann et al., 2014; Bray et al., 2009), neurofeedback interventions (Cortese et al.,35

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.



D
yn

am
ic

 A
tt

en
ti

on

D
im

en
si

on
 R

ed
uc

ti
on

D
yn

am
ic

 A
tt

en
ti

on

D
yn

am
ic

 P
os

it
io

na
l

En
co

di
ng

Te
m

po
ra

l G
ra

ph
Pa

tc
hi

ng

N
on

-p
ar

am
et

ri
c

 F
ea

tu
re

 M
ix

in
g

Voxel Mixer

D
im

en
si

on
 R

ed
uc

ti
on

M
LP

-M
ix

er

Temporal Graph Mixer

Ti
m

e 
En

co
di

ng

D
yn

am
ic

 P
os

it
io

na
l

En
co

di
ng

TPMixer

M
ut

ua
l I

nf
or

m
at

io
n

Ze
ro

 P
ad

di
ng

MLP-Mixer

Node-level

Edge-level

Graph-level

Patch Encoding

Concat of End
Points

MLP

ROI

Ti
m

e

Time Mixer

Fu
nc

ti
on

al
 P

at
ch

in
g

Time

Figure 1: Schematic of the BRAINMIXER. BRAINMIXER consists of two main modules: (1) Voxel
Activity Encoder (top), and (2) Functional Connectivity Encoder (bottom).

2021), decoding neural responses to visual stimuli (Horikawa & Kamitani, 2017), deciphering memory36

contents (Lee & Baker, 2016; Chadwick et al., 2012), and classifying cognitive states (Mitchell et al.,37

2003). The functional connectivity analysis, on the other hand, focuses on the temporal correlations38

or statistical dependencies between the activity of different brain regions at larger scales to assess how39

these areas communicate and collaborate. This method has been utilized to study various topics such40

as task-related network dynamics (Gonzalez-Castillo & Bandettini, 2018; Hutchison et al., 2013) and41

the effects of neurological disorders on brain connectivity (Greicius, 2008; Du et al., 2018).42

Limitation of Previous Methods. Despite the advances in the representation learning of brain43

signals, existing studies suffer from a subset of five limitations: 1 Study the human brain at a44

single scale: Most existing studies study the brain at either voxel-level or functional connectivity,45

while these two scales can provide complementary information to each other; e.g., although voxel-46

level activity provides detailed and more accurate information about brain activity, it misses the47

information about how different areas communicate with each other at a high level. Recently, this48

limitation has motivated researchers to search for new methods of integrating these two levels of49

analyses (Nieto-Castanon, 2022; McNorgan et al., 2020). 2 Supervised setting: Learning brain50

activity in a supervised setting relies on a large number of clinical labels while obtaining accurate51

and reliable clinical labels is challenging due to its high cost (Avberšek & Repovš, 2022). 3 Missing52

information by averaging: Most existing studies on voxel activities aggregate measured voxel activity53

(e.g., its blood-oxygen level dependence) over each time window to obtain a single beta weight (Roth54

et al., 2022; Vassena et al., 2020; Roth & Merriam, 2023). However, this approach misses the55

voxel activity dynamic over each task. Moreover, most studies on brain functional connectivity56

also aggregate closed voxels to obtain brain activity in the Region of Interest (ROI) level, missing57

individual voxel activities. 4 Missing the dynamics of the interactions: Some existing studies neglect58

the fact that the functional connectivity of the human brain dynamically changes over time, even in59

resting-state neuroimaging data (Calhoun et al., 2014). In task-dependent neuroimage data, subjects60

are asked to perform different tasks in different time windows, and the dynamics of the brain activity61

play an important role in understanding neurological disease/disorder (Hernandez et al., 2015). 562

Designed for a particular task or neuroimaging modality: Due to the different and complex clinical63

patterns of brain signals (da Silva, 1991), some existing methods are designed for a particular type of64

brain signal data (Lanciano et al., 2020; Cai et al., 2023), and there is a lack of a unified framework.65

Application to Understanding Object Representation in the Brain. Understanding object rep-66

resentation in the brain is a key step toward revealing the basic building blocks of human visual67

processing (Hebart et al., 2023). Due to the hierarchical nature of human visual processing, it68

requires analyzing brain activity at different scales, i.e., both functional connectivity graph and69

voxel-level activity. However, there is a small number of studies in this area, possibly due to the lack70

of proper large-scale datasets. In this study, we present two large-scale graph-structured datasets,71

BVFC and BVFC-MEG, based on raw fMRI and MEG from THINGS (Hebart et al., 2023) dataset.72

BVFC (resp. BVFC-MEG) comprises 26,220 graphs (resp. 89,792 graphs) with up to 13,166 nodes73

(resp. 272 nodes), representing brain voxels’ activity (resp. channels) in functional MRI (fMRI)74

(resp. magnetoencephalographic (MEG)) for human subjects when seeing natural or unrecognizable75

GAN-generated images. We believe this dataset can bridge graph anomaly detection and graph76

classification tasks to understanding object representation in the brain (see §4). See Appendix B for77

more details.78
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Contributions. To overcome the above limitations, we leverage both voxel-level activity and79

functional connectivity of the brain. We present BRAINMIXER, an unsupervised MLP-based brain80

representation learning approach that jointly learns voxel-level activity and functional connectivity.81

BRAINMIXER employs a novel multivariate timeseries encoder that binds information across both82

time and voxel dimensions. It uses a simple MLP with functional patching to fuse information across83

different timestamps and learns dynamic self-attention weights to fuse information across voxels84

based on their functionality. On the other hand, BRAINMIXER uses a novel temporal graph learning85

method to encode the brain functional connectivity. The graph encoder first extracts temporal patches86

using temporal random walks and then fuses information within each patch using the designed87

dynamic self-attention mechanism. We further propose an adaptive permutation invariant pooling88

to obtain patch encodings. Since voxel activity and functional connectivity encodings are different89

views of the same context, we propose an unsupervised pre-training approach to jointly learn voxel90

activity and functional connectivity by maximizing their mutual information. In the experimental91

evaluations, we provide two new large-scale graph and timeseries datasets based on THINGS (Hebart92

et al., 2023). Extensive experiments on six datasets show the superior performance of BRAINMIXER93

and the significance of each of its components in a variety of downstream tasks.94

For the sake of consistency, we explain BRAINMIXER for fMRI modality; however, as it is shown in95

§4, it can simply be used for any other neuroimaging modalities that provide a timeseries for each96

part of the brain (e.g., MEG and EEG). When dealing with MEG or EEG, we can replace the term97

“voxel” with “channel”. Supplementary materials (code and Appendix) can be found in this link.98

2 Related Work99

To situate our BRAINMIXER in a broader context, we briefly review machine learning models for100

timeseries, graphs, and neuroscience. For extensive discussion of related work see Appendix C.101

Timeseries Learning. Attention mechanisms are powerful models to capture long-range depen-102

dencies and so recently, Transformer-based models have attracted much attention in time series103

forecasting (Zerveas et al., 2021; Li et al., 2019). Due to their quadratic time complexity, several104

studies aim to reduce the time and memory usage of these methods (Child et al., 2019). Another type105

of work uses (hyper)graph learning frameworks to learn (higher-order) patterns in timeseries (Park106

et al., 2009; Sawhney et al., 2021). Inspired by the recent success of MLP-MIXER (Tolstikhin et al.,107

2021), Li et al. (2023) and Chen et al. (2023) presented two variants of MLP-MIXER for timeseries108

forecasting. All these methods are different from BRAINMIXER, as 1 they use static attention109

mechanisms, 2 do not take advantage of the functionality of voxels in patching, and 3 are designed110

for timeseries forecasting and cannot simply be extended to various downstream tasks on the brain.111

MLP-based Graphs Learning. Learning on graphs has been an active research area in recent112

years (Jiang et al., 2021; Veličković et al., 2018; Chamberlain et al., 2023). While most studies use113

message-passing frameworks to learn the local and global structure of the graph, recently, due to114

the success of MLP-based methods (Tolstikhin et al., 2021), MLP-based graph learning methods115

have attracted much attention (Hu et al., 2021; Behrouz et al., 2023). For example, Cong et al. (2023)116

and He et al. (2023) presented two extensions of MLP-MIXER to graph-structured data. However,117

all these methods are different from BRAINMIXER and specifically FC Encoder, as either 1 use118

time-consuming graph clustering algorithms for patching, 2 are static methods and cannot capture119

temporal properties, or 3 are attention-free and cannot capture the importance of nodes.120

Graph Learning and Timeseries for Neuroscience. In recent years, several studies have analyzed121

functional connectivity to differentiate human brains with a neurological disease/disorder (Jie et al.,122

2016; Chen et al., 2011; Wee et al., 2011). With the success of graph neural networks in graph123

data analysis, deep learning models have been developed to predict brain diseases by studying brain124

network structures (Behrouz & Seltzer, 2022; Zhu et al., 2022; Cui et al., 2022). Moreover, several125

studies focus on brain signals (Craik et al., 2019; Shoeibi et al., 2021) to detect neurological diseases.126

For example, Cai et al. (2023) designed a self-supervised learning framework to detect seizures127

from EEG and SEEG data. However, all these methods are different from BRAINMIXER as they are128

designed for a particular task (e.g., brain classification), a particular neuroimaging modality (e.g.,129

fMRI or EEG), and/or supervised settings.130
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3 Method:BRAINMIXER131

In this section, we first discuss the notation we use throughout the paper. Detailed discussion about132

background concepts can be found in Appendix A.133

Notation. We represent the neuroimaging of a human brain as B = {B(t)}Tt=1 where B(t) =134

(V,G(t)
F ,X (t),F) represents the neural data in time window 1 ≤ t ≤ T . Here, V is the set of voxels,135

G(t)
F = (V, E(t),A(t)) is the functional connectivity graph, E(t) ⊆ V × V is the set connections136

between voxels, A(t) is the correlation matrix (weighted adjacency matrix of G(t)
F ), X (t) ∈ R|V|×T̃ is a137

multivariate timeseries of voxels activities, and F is the set of functional systems in the brain (Schaefer138

et al., 2018) in time window t.139

3.1 Voxel Activity Encoder140

The main goal of this module is to learn the time series of the voxel-level activity. However, the141

activities of voxels are not disjoint; for example, an increase in fusiform face area (FFA) activity might142

be associated with a rise in V1 activity. Accordingly, effectively learning their dynamics patterns143

requires both capturing cross-voxel and within-voxel time series information. The vanilla MLP-144

MIXER (Tolstikhin et al., 2021) can be used to bind information across both of these dimensions, but145

the human brain has unique traits that make directly applying MLP-MIXER insufficient/impractical.146

1 There does not exist in general a canonical grid of the brain to encode voxel activities, which147

makes patch extraction challenging. 2 Contrary to images that can be divided into patches of the148

same size, the partitioning of voxels might not be all the same size due to the complex brain topology.149

3 MLP-MIXER employs a fixed static mixing matrix for binding patches, while in the brain the150

functionality of each token is important and a different set of tokens should be mixed differently151

based on their connections and functionality. To address these challenges, the VA Encoder employs152

two submodules, time-mixer and voxel-mixer with dynamic mixing matrix, to fuse information across153

both time and voxel dimensions, respectively.154

The human brain is comprised of functional systems (FS) (Schaefer et al., 2018), which are groups155

of voxels that perform similar functions (Smith et al., 2013). We take advantage of this hierarchical156

structure and patch voxels based on their functionality. However, the main challenge is that the sizes157

of the patches (set of voxels with similar functionality) are different. To this end, inspired by the158

inference of ViT models (Dosovitskiy et al., 2021), we linearly interpolate patches with smaller sizes.159

Functional Patching. Let K be the number of voxels and X ∈ RK×(T×T̃ ) represents the time160

series of voxels activities over all time windows. We split X to spatio-temporal patches Xi with size161

|fi|×tp, where fi ∈ F is a functional system (Schaefer et al., 2018), and tp is the temporal-dimension162

length. To address the challenge of patches with different sizes, we use INTERPOLATE(.) to linearly163

interpolate patches to the same size Np: i.e., X̃i = INTERPOLATE(Xi), where X̃i ∈ RNp×tp .164

Voxel-Mixer. Since the effect of each task (e.g., in task-based fMRI) on brain activity as well as165

the time it lasts varies (Yang et al., 2023a), for different tasks, we might need to emphasize more166

on a subset of voxels. To this end, to bind information across voxels, we use a dynamic attention167

mechanism that uses a learnable dynamic mixing matrix Pi, learning to mix a set of input voxels168

based on their functionality. While using different learnable matrices for mixing voxels activity169

provides a more powerful architecture, its main challenge is a large number of parameters. To mitigate170

this challenge, we first reduce the dimensions of X̃, split it into a set of segments, denoted as S, and171

then combine the transformed matrices. Given a segment s ∈ S we have:172

X̂(t)(s) = X̃(t) W
(s)
segment, (Dimension Reduction)

P
(s)
i = SOFTMAX

(
FLAT

(
X̂(t)(s)

)
W

(s)(i)

flat

)
, (Learning Dynamic Mixer)

X
(t)
PE =

[∥∥
s∈S

P(s)X̃(t)(s)
]
WPE, (Dynamic Positional Encoding)

H
(t)
Voxel = Norm

(
X̃(t)

)
+ SIGMOID

(
X

(t)
PE X

(t)⊤

PE√
T̃

)
X

(t)
PE , (Dynamic Self-Attention)
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where W
(s)
segment ∈ RT̃×d, W(s)(i)

flat ∈ R(K×d)×K , WPE ∈ RT̃×T̃ are learnable parameters, ∥ is173

concatenation, and SIGMOID(.) is row-wise sigmoid normalization. Note that for different segments174

we use different dimensionality reduction matrices to reinforce the power of the Voxel Mixing.175

Time Mixer. We first fuse information in the time dimension by using the Time Mixer submodule.176

To this end, the Time Mixer employs a 2-layer MLP with layer-normalization (Ba et al., 2016):177

H
(t)
Time = H

(t)
Voxel +

(
σ
(
LayerNorm

(
H

(t)
Voxel

)
W

(1)
Time

)
W

(2)
Time

)
, (1)

where W
(1)
Time and W

(1)
Time are learnable matrices, σ(.) is an activation function (we use178

GeLU (Hendrycks & Gimpel, 2020)), and LayerNorm is layer normalization (Ba et al., 2016).179

3.2 Functional Connectivity Graph Encoder180

To encode the functional connectivity graph, we design an MLP-based architecture that learns both181

the structural and temporal properties of the graph. Inspired by the recent success of all-MLP182

architecture in graphs (Cong et al., 2023), we extend MLP-MIXER to temporal graphs. We first183

define patches in temporal graphs. While patches in images, videos, and multivariate timeseries184

can simply be non-overlapping regular grids, patches in graphs are overlapping non-grid structures,185

which makes the patching extraction challenging. He et al. (2023) suggest using graph partitioning186

algorithms to extract graph patches; however, these partitioning algorithms 1 only consider structural187

properties, missing the temporal dependencies, and 2 can be time-consuming, limiting the scalability188

to dense graphs like brain functional connectome. To this end, we propose a temporal-patch extraction189

algorithm such that nodes (voxels) in each patch share similar temporal and structural properties.190

Temporal Patching. To extract temporal patches from the graph, we use a biased temporal random191

walk that walks over both nodes (voxels) and timestamps. Given a functional connectivity graph192

GF = {G(t)
F }Tt=1, we sample M walks with length m + 1 started from node (voxel) v0 ∈ V like:193

Walk : (v0, t0) → (v1, t1) → · · · → (vm, tm), such that (vi−1, vi) ∈ E(ti), and t0 ≥ t1 ≥ t2 ≥194

· · · ≥ tm. Note that, contrary to some previous temporal random walks (Wang et al., 2021; Behrouz195

et al., 2023), we allow the walker to walk in the same timestamp at each step. While backtracking196

over time, we aim to capture temporal information and extract the dynamics of voxels’ activity over197

related timestamps. Previous studies show that doing a task can affect brain activity even after 2198

minuetes (Yang et al., 2023a). To this end, since more recent connections can be more informative,199

we use a biased sampling procedure. Let vp be the previously sampled node, we use hyperparameters200

θ, θ0 ≥ 0 to sample a node v with probability proportional to exp (θ(t− tp + θ0)), where t and tp201

are the timestamps that (vp, v) ∈ E(t) and the timestamp of the previous sample, respectively. In this202

sampling procedure, smaller (resp. larger) θ means less (resp. more) emphasis on recent timestamps.203

Each walk started from v can be seen as a temporal subgraph, and so we let ρv be the union of all204

these subgraphs (walks started from v). We treat each of ρv as a temporal patch.205

Temporal Pooling Mixer. Given the temporal graph patches that we extracted above, we need to206

encode each patch to obtain patch encodings (we later use these patch encodings as their corresponding207

voxel’s encodings). While simple poolings (e.g., SUM(.)) are shown to miss information (Behrouz208

et al., 2023), more complicated pooling functions consider a static pooling rule. However, as discussed209

above, the effect of performing a task on the neuroimaging data might last for a period of time and210

the pooling rule might change over time. To this end, we design a temporal pooling, TPMIXER(.),211

that dynamically pools a set of voxels in a patch based on their timestamps.212

Given a patch ρv0 = {v0, v1, . . . , vk}, for each voxel we consider the correlation of its activity with213

other voxels’ as its preliminary feature vector. That is, for each voxel v, we consider its feature vector214

in the time window t as A(t)
v , the v’s corresponding row in A(t). We abuse the notation and use A(t)

ρv215

to refer to the set of A(t)’s rows corresponding to ρv. Since patch sizes are different, we zero pad216

A(t)
ρv matrices to a fixed size. Note that this zero padding is important to capture the size of each voxel217

neighborhood. The voxel with more zero-padded dimensions in its patch has less correlation with218

others. To capture both cross-feature and cross-voxel dependencies, we can use the same architecture219

as the Time Mixer and Voxel-Mixer. However, the main drawback of this approach is that a pooling220
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function is expected to be permutation invariant while the Voxel Mixer phase is permutation variant.221

To address this challenge, we fuse information across features in a non-parametric manner as follows:222

H
(t)
F = A(t)

ρv
+ σ

(
Softmax

(
LayerNorm

(
A(t)

ρv

)⊤))⊤

, (2)

where σ(.) is an activation function and Softmax(.) is used to normalize across features to bind and223

fuse feature-wise information in a non-parametric manner, avoiding permutation variant operations in224

the Time Mixer. To dynamically fuse information across voxels, we use the same idea as dynamic225

self-attention in §3.1 and learn dynamic matrices PPooli ; let dpatch be the patch size:226

PPooli = SOFTMAX
(

FLAT
(
H

(t)
F

)
W

(i)
Pool

)
(3)

hρv
= MEAN

(
Norm(H(t)

F ) +H
(t)
PE SOFTMAX

(
H

(t)⊤

PE H
(t)
PE√

dpatch

))
, (4)

where H
(t)
PE = H

(t)
F PPool is the transformation of H(t)

F by dynamic matrix PPool.227

Theorem 1. TPMIXER is permutation invariant and a universal approximator of multisets.228

Time Encoding. To distinguish different timestamps in the functional connectivity graph, we use a229

non-learnable time encoding module proposed by Cong et al. (2023). This encoding approach helps230

reduce the number of parameters, and also it has been shown to be more stable and generalizable (Cong231

et al., 2023). Given hyperparameters α, β, and d, we use feature vector ω = {α−i/β}d−1
i=0 to encode232

each timestamp t using cos (ωt) function. Therefore, we obtain the time encoding as ηt = cos (ωt).233

Voxel-, Edge-, and Graph-level Encodings. Depending on the downstream task, we might obtain234

voxel-, edge-, or graph-level encodings. For each voxel v ∈ V , we let E(t)[ρv] be the set of connections235

in the patch of v. To obtain the voxel-level encoding of each voxel v, ψv, we use patch encoding236

and concatenate it with all the weighted mean of timestamp encodings; i.e., ψt
v = MLP([hρv

∥Tv]),237

where Tv =
∑t

t0=1 E(t0)[ρv ]ηt0∑t
t0=1 E(t0)[ρv ]

. For a connection e = (u, v) ∈ E(t), we obtain its encoding by238

concatenating its endpoints and its timestamp encodings; i.e., ζ(t)(u,v) = MLP ([ψt
u,ψ

t
v,ηt]). Finally,239

to obtain the graph level encoding, we use vanilla MLP-MIXER (Tolstikhin et al., 2021) on patch240

encodings; let Ψ(t) be the matrix whose rows are ψ(t)
v :241

Ψ
(t)
token = Ψ(t) +W

(2)
tokenσ

(
W

(1)
tokenLayerNorm

(
Ψ(t)

))
, (5)

ENC(G(t)
F ) = MEAN

(
Ψ

(t)
token + σ

(
LayerNorm

(
Ψ

(t)
token

)
W

(1)
channel

)
W

(2)
channel

)
. (6)

3.3 Self-supervised Pre-training242

In §3.1 and §3.2 we obtained the encodings of the same contexts, from different perspectives. In this243

section, inspired by (Hjelm et al., 2019; Bachman et al., 2019), we use the mutual information of these244

two perspectives from the same context, to learn voxel- and brain-level encodings in a self-supervised245

manner. To this end, let Ψ be the voxel-level encodings obtained from functional connectome,246

Z
(t)
F = ENC(G(t)

F ) be the global encoding (brain-level) of the functional connectome, H(t)
Voxel be the247

voxel activity encodings from the brain activity timeseries, and Z
(t)
V be the global encoding (brain-248

level) of the voxel activity timeseries, we aim to maximize I(Z(t)
F ,ψ

(t)
v,i)+ I(Z

(t)
V , (H

(t)
Voxel)v,j) for all249

v ∈ V and possible i, j. Following previous studies (Bachman et al., 2019), we use Noise-Contrastive250

Estimation (NCE) (Gutmann & Hyvärinen, 2010) and minimize the following loss function:251

E
(Z

(t)
F ,ψ

(t)
v,i)

[
EN

[
LΦ(Z

(t)
F ,ψ

(t)
v,i,N )

]]
+ E

(Z
(t)
V ,(H

(t)
Voxel)v,j)

[
EN

[
LΦ(Z

(t)
V , (H

(t)
Voxel)v,j ,N )

]]
, (7)

where N is the set of negative samples, (Z(t)
F ,ψ

(t)
v,i) and (Z

(t)
V , (H

(t)
Voxel)v,j) are the positive sample252

pairs, and LΦ is a standard Log-Softmax.253
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Table 1: Performance on brain classification: Mean ACC (%) ± standard deviation.
Methods BVFC BVFC-MEG HCP-Mental HCP-Age

USAD 48.52±1.94 50.02±1.13 73.49±1.56 39.17±1.68

HYPERSAGCN 51.92±1.47 51.19±1.88 90.37±1.61 47.38±1.96

GMM 53.11±1.44 53.04±1.73 90.92±1.83 47.75±1.26

GRAPHMIXER 53.17±1.21 53.12±1.18 91.13±1.44 48.32±1.11

BRAINNETCNN 49.10±1.83 50.12±1.57 83.58±1.68 42.26±2.03

BRAINGNN 50.63±1.67 51.08±0.96 85.25±2.17 43.08±1.54

FBNETGEN 50.18±0.98 50.94±1.39 84.47±1.88 42.83±1.78

ADMIRE 54.36±1.39 54.87±1.92 89.74±1.93 47.82±1.72

PTGB 55.89±1.78 55.11±1.62 92.58±1.31 48.41±1.47

BNTRANSFORMER 55.03±1.35 55.17±1.74 91.71±1.48 47.94±1.15

BRAINMIXER 67.24±1.47 62.58±1.12 96.32±0.29 57.83±1.03

Data Augmentation & Negative Samples. MLP-MIXER-based architectures are known to have254

the potenial of overfitting (Liu et al., 2021). To mitigate this, we perform data augmentation. For255

G(t)
F = (V, E(t)), in patch extraction, we randomly mask p connections and then we sample temporal256

walks to generate new patches. Note that, at the end, each patch is an induced subgraph and might257

include masked connections as well. Furthermore, to generate negative samples: 1 To corrupt the258

functional connectivity, we randomly change one endpoint of a subset of connections. 2 To corrupt259

the timeseries, we follow existing studies (Yue et al., 2022; Woo et al., 2022) on timeseries and260

replace a brain signal in time window t with another signal that is randomly selected from the batch.261

Given a pre-trained model M, for different downstream tasks in a semi-supervised setting, we262

fine-tune M using a small subset of labeled training data. Also, for each voxel, we concatenate its263

encodings from VA and FC Encoders.264

4 Experiments265

Dataset. We use six real-world datasets: 1 We present BVFC, a task-based fMRI large-scale dataset266

that includes voxel activity timeseries and functional connectivity of 3 subjects when looking at267

the 8460 images from 720 categories. This data is based on THINGS dataset (Hebart et al., 2023).268

2 BVFC-MEG is the MEG counterpart of BVFC. 3 ADHD (Milham et al., 2011) contains data for269

250 subjects in the ADHD group and 450 subjects in the typically developed (TD) control group.270

4 The Seizure detection TUH-EEG dataset (Shah et al., 2018) consists of EEG data (31 channels)271

of 642 subjects. 5 ASD (Craddock et al., 2013) contains data for 45 subjects in the ASD group272

and 45 subjects in the TD control group. 6 HCP (Van Essen et al., 2013) contains data from 7440273

neuroimaging samples each of which is associated with one of the seven ground-truth mental states.274

Evaluation Tasks. In our experiments we focus on 4 downstream tasks: 1 Edge-Anomaly Detection275

(AD), 2 Voxel AD, 3 Brain AD, and 4 Brain Classification. For the AD tasks, we follow previous276

studies (Behrouz & Seltzer, 2023a; Ma et al., 2021), and inject 1% and 5% anomalous edges into the277

functional connectivity in the control group of all datasets, except BVFC, and BVFC-MEG. BVFC278

and BVFC-MEG has ground-truth anomalies, the brain response of subjects when looking at not279

recognizable images, generated by generative adversarial neural network BigGAN (Brock et al.,280

2019). For brain classification, we focus on disease/disorder detection (in ADHD, ASD, and TUH-281

EEG), the category of seen object by the subject (in BVFC, and BVFC-MEG), and age prediction and282

mental state decoding (in HCP-Age, and HCP-Mental).283

Baselines. For anomaly detection and graph classification tasks, we compare BRAINMIXER with284

state-of-the-art time series, graph, and brain anomaly detection and learning models: 1 Graph-based285

methods: GOutlier (Aggarwal et al., 2011), NETWALK (Yu et al., 2018), HYPERSAGCN (Zhang286

et al., 2020), Graph MLP-Mixer (GMM) (He et al., 2023), GRAPHMIXER (Cong et al., 2023).287

2 brain-network-based methods: BRAINGNN (Li et al., 2021), FBNETGEN (Kan et al., 2022a),288

BRAINNETCNN (Kawahara et al., 2017), ADMIRE (Behrouz & Seltzer, 2023b), and BNTRANS-289

FORMER (Kan et al., 2022b), PTGB (Yang et al., 2023b). 3 Time-series-based methods: USAD (Au-290

dibert et al., 2020), Time Series Transformer (TST) (Zerveas et al., 2021), and MVTS (Potter et al.,291

2022). We may exclude some baselines in some tasks as they cannot be applied in that setting. The292

details of baselines can be found in Appendix F.1.293

294
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Table 2: Performance on anomaly detection: Mean AUC (%) ± standard deviation.
Methods BVFC BVFC-MEG HCP ADHD TUH-EEG ASD

Anomaly % 1% 5 % 1% 5 % 1% 5 % 1% 5 %

E
dg

e-
le

ve
lA

D
GOUTLIER 65.12±2.97 59.45±2.61 62.47±1.15 61.83±1.28 65.37±0.93 64.70±2.09 65.61±1.82 64.12±0.97 60.85±0.97 59.13±1.86

NETWALK 71.67±1.56 62.75±1.16 73.12±1.25 72.19±1.31 70.29±2.15 69.86±2.58 71.14±1.36 70.27±1.42 69.07±2.20 68.52±2.55

HYPERSAGCN 80.17±1.59 70.83±1.27 82.94±1.14 81.98±1.58 84.22±1.61 83.96±1.47 73.99±0.83 72.65±0.97 73.26±1.08 73.18±0.92

GRAPHMIXER 87.13±0.99 75.91±1.59 86.87±1.96 86.19±1.48 85.12±1.46 84.86±1.58 75.93±0.95 75.12±1.08 84.91±2.27 83.52±2.03

BRAINNETCNN 80.92±1.18 71.54±2.07 80.79±1.23 79.44±1.18 80.58±1.62 79.95±2.01 73.06±1.74 72.87±1.31 72.68±2.12 72.01±1.45

BRAINGNN 81.96±1.76 72.68±1.13 82.15±1.84 81.38±1.61 79.02±1.85 78.64±1.43 72.96±1.58 71.73±1.14 72.14±1.25 71.82±1.73

FBNETGEN 81.58±1.92 72.66±1.52 82.05±1.19 81.53±1.82 79.89±1.63 78.97±1.84 73.04±1.53 72.56±1.33 72.51±1.28 71.62±1.82

ADMIRE 87.12±1.61 75.91±1.43 87.01±1.27 86.38±1.17 86.23±1.74 85.18±2.21 76.68±1.82 75.14±1.67 86.52±1.72 85.44±1.49

PTGB 86.52±1.64 75.93±1.71 86.83±1.59 86.00±1.28 86.14±1.15 85.22±1.21 75.98±1.16 74.92±1.08 86.18±1.58 85.72±1.05

BNTRANSFORMER 86.61±1.72 75.82±1.18 86.22±1.77 85.15±1.12 85.83±1.97 85.14±1.67 75.91±1.72 75.24±1.53 74.92±1.18 74.11±1.37

BRAINMIXER 91.62±1.36 82.58±1.92 90.14±1.72 90.02±1.49 91.74±0.93 91.48±1.41 80.91±1.19 80.85±1.62 90.44±1.57 90.27±1.39

Vo
xe

l-
le

ve
lA

D

USAD 68.27±1.16 62.73±1.27 65.49±1.31 65.01±1.18 72.79±1.48 72.19±0.94 72.81±1.42 71.36±1.03 66.28±1.16 65.17±1.15

TST 70.62±1.48 68.57±1.81 69.18±1.64 69.11±1.32 74.81±1.14 73.99±1.47 73.71±1.55 73.03±1.47 69.23±1.82 68.94±1.73

MVTS N/A N/A N/A N/A N/A N/A 80.99±1.36 80.27±1.49 N/A N/A
GOUTLIER 64.66±2.38 60.17±1.25 63.59±1.62 63.07±1.52 68.97±1.16 67.12±0.93 65.18±1.09 65.01±1.57 59.67±1.42 58.49±1.35

NETWALK 68.73±1.16 63.61±1.31 66.98±1.44 66.04±1.63 75.16±1.23 74.73±1.01 72.21±0.91 71.62±1.46 71.28±1.17 71.02±1.49

HYPERSAGCN 78.84±1.22 71.62±1.96 80.74±1.51 79.18±1.83 83.94±1.13 83.01±0.92 75.62±1.12 74.83±0.78 74.93±1.47 74.15±1.19

GRAPHMIXER 76.94±1.68 71.44±1.39 81.55±1.82 81.07±1.27 81.37±1.09 80.83±1.16 72.95±1.26 72.01±0.82 72.49±1.28 72.27±1.69

BRAINNETCNN 80.17±1.49 73.91±1.54 82.75±1.27 82.21±1.73 82.79±1.08 81.12±1.16 73.98±1.24 73.01±1.08 73.18±0.95 72.88±1.04

BRAINGNN 79.92±1.63 73.25±1.94 82.99±1.65 82.13±1.66 81.14±1.05 80.83±0.87 73.06±1.14 72.74±0.86 72.54±1.38 71.12±1.19

FBNETGEN 79.17±2.04 72.35±1.84 82.26±1.37 81.62±1.49 80.91±1.12 80.94±1.74 72.53±1.48 72.06±1.29 72.11±1.94 71.28±1.22

PTGB 85.18±1.83 76.16±1.08 85.72±1.14 84.95±1.33 86.43±1.16 86.36±1.15 77.54±1.37 77.32±1.21 77.92±1.26 77.76±1.25

BN-TRANSFORMER 85.19±1.23 75.67±1.14 85.02±0.96 84.36±1.59 86.13±1.21 86.11±1.82 77.96±1.32 77.08±1.06 76.05±1.52 75.72±1.18

BRAINMIXER 90.14±1.57 81.52±1.32 89.27±1.61 88.94±1.24 89.97±1.14 89.81±1.27 79.45±1.19 79.23±0.94 89.51±1.78 89.24±1.59

B
ra

in
-l

ev
el

A
D

USAD 71.93±1.15 61.32±1.71 67.79±2.28 67.36±2.61 82.87±2.03 80.52±1.84 72.03±1.17 71.48±1.05 71.62±1.58 70.98±1.41

TST 72.47±1.23 67.12±2.07 67.94±1.69 67.22±1.17 83.54±1.38 83.04±1.12 72.96±1.39 72.11±1.58 72.76±1.71 72.04±1.56

MVTS N/A N/A N/A N/A N/A N/A 83.53±1.91 82.41±1.02 N/A N/A
NETWALK 72.16±1.44 69.57±1.73 69.14±1.49 68.66±1.52 83.11±1.02 82.81±1.61 71.06±1.05 69.94±1.12 72.85±1.17 72.21±1.34

HYPERSAGCN 80.25±1.15 76.91±1.18 72.26±1.47 72.01±1.21 86.94±1.63 86.17±1.49 75.31±0.85 74.79±1.09 76.72±1.32 75.81±1.58

GMM 81.79±1.24 77.84±1.52 74.87±1.58 74.02±1.10 85.89±0.98 85.03±1.18 76.62±1.17 76.11±1.26 76.37±1.83 75.68±1.59

GRAPHMIXER 82.56±1.19 77.91±1.26 75.03±1.72 74.46±1.53 86.02±1.15 85.64±1.09 77.49±1.09 76.63±1.22 76.82±1.84 76.18±1.80

BRAINNETCNN 78.47±1.18 73.12±1.27 70.73±1.77 70.12±1.86 85.84±0.96 85.07±1.52 73.92±0.97 73.07±1.51 75.96±1.66 75.03±1.28

BRAINGNN 79.81±1.57 75.28±1.61 72.98±1.55 72.41±1.16 84.59±1.26 83.72±1.35 72.41±1.38 71.55±1.16 75.12±1.33 74.57±1.52

FBNETGEN 78.94±1.24 74.49±1.33 71.62±1.53 71.06±1.48 84.67±1.26 84.08±1.37 72.69±1.18 71.87±1.12 75.34±1.21 74.73±1.39

ADMIRE 83.72±1.18 78.83±1.56 75.52±1.81 74.59±1.12 86.27±1.72 85.18±1.56 78.12±1.47 77.59±1.68 77.18±1.61 76.33±1.45

PTGB 84.08±1.35 79.68±1.62 76.01±1.07 75.13±1.48 87.59±1.12 86.99±0.96 79.17±1.36 78.64±1.55 80.56±1.29 80.04±1.16

BN-TRANSFORMER 83.86±1.52 79.03±1.78 75.64±1.82 75.09±1.18 87.54±1.04 86.92±1.48 79.36±1.71 78.08±1.16 77.19±2.01 76.58±1.73

BRAINMIXER 88.13±1.27 84.59±1.70 80.67±1.13 80.49±1.07 91.38±0.94 90.98±1.02 85.74±1.16 85.63±1.23 89.14±1.54 88.99±1.15

Table 3: Ablation study on BRAINMIXER. AUC scores on edge AD and ACC on classification.
Methods BVFC BVFC-MEG HCP ADHD

Edge AD Classification Edge AD Classification Edge AD Classification Edge AD Classification

BRAINMIXER 91.62±1.36 67.24±1.47 82.58±1.92 62.68±1.12 90.02±1.49 96.32±0.29 91.48±1.41 90.98±1.02
Without Pre-training 88.75±2.16 63.58±2.09 80.21±1.63 61.02±1.37 88.14±1.29 93.81±0.92 90.18±1.13 89.27±1.06

Without VA Encoder 87.99±2.04 59.14±4.51 78.52±2.18 60.53±1.83 86.97±2.05 92.41±1.24 88.29±1.41 88.76±1.19

Without FC Encoder 84.27±4.37 65.82±2.18 77.09±3.41 59.73±1.12 85.59±2.47 91.64±1.58 86.97±1.16 87.62±2.16

Without Functional Patching 86.35±2.97 60.42±3.53 77.21±1.93 60.28±1.72 86.14±3.09 91.97±1.88 87.51±1.86 88.25±2.53

Replace TPMIXER by MEAN(.) 88.51±1.03 63.38±1.48 78.94±1.85 60.91±2.01 87.52±1.91 93.31±1.73 89.04±0.95 89.11±1.52

Static Self-Attention 88.39±1.40 63.01±2.10 78.63±1.97 60.78±1.64 87.04±1.53 92.95±1.49 88.96±1.22 88.83±2.07

Remove Time Encoding 89.58±0.81 66.14±1.52 79.91±1.75 61.19±1.36 88.82±2.07 94.12±1.92 90.57±0.91 89.99±1.04

fix θ = 0 83.60±4.52 59.33±2.58 75.96±2.05 59.11±1.46 85.39±1.52 90.51±1.38 86.24±2.01 87.18±1.94

Brain Classification. Table 1 reports the performance of BRAINMIXER and baselines on brain295

classification tasks. BRAINMIXER achieves the best accuracy on all datasets with 14.3% average296

improvement (20.3% best improvement) over the best baseline. There are three main reasons for297

BRAINMIXER’s superior performance: 1 While the time series-based model only uses voxel activity298

timeseries, and graph-based methods only use functional connectivity graph, BRAINMIXER takes299

advantage of both and learns the brain representation at different levels of granularity, which can300

provide complementary information. 2 Static methods (e.g., PTGB, BRAINGNN, etc.), miss the301

dynamics of brain activity, while BRAINMIXER employs a time encoding module to learn temporal302

properties. 3 Compared to graph learning methods (e.g., GMM, GRAPHMIXER, etc.), BRAINMIXER303

is specifically designed for the brain, taking advantage of its special properties.304

Anomaly Detection. Table 2 reports the performance of BRAINMIXER and baselines on anomaly305

detection tasks at different scales: i.e., edge-, voxel-, and brain-level. BRAINMIXER achieves the306

best AUC on all datasets with 6.2%, 5.7%, 4.81% average improvement over the best baseline in307

edge AD, voxel AD, and brain AD, respectively. The main reasons for this superior performance308

are as above. Note that brain-level anomaly detection can also be seen as a brain classification task.309

However, here, based on the nature of the data, we separate these two tasks.310

311 Ablation Study. We next conduct ablation studies on the BVFC, BVFC-MEG, HCP, and ADHD312

datasets to validate the effectiveness of BRAINMIXER’s critical components. Table 3 shows AUC313

for edge AD and accuracy for classification tasks. The first row reports the performance of the314

complete BRAINMIXER implementation with pre-training. Each subsequent row shows results for315
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Figure 2: Average distribution of brain activities in
the visual cortex when seeing (Left) GAN-generated
images, (Right) Normal image.

Figure 3: The distribution of detected abnor-
mal voxels by BRAINMIXER in condition
ADHD group.

BRAINMIXER with one module modification: row 2 removes the pre-training phase, row 3 removes316

the VA Encoder module, row 4 removes FC Encoder module, row 5 removes functional patching and317

randomly patches voxels, row replaces TPMIXER with MEAN(.) pooling, row 7 replaces dynamic318

with static self-attention, row 8 removes time encoder, the last row set θ = 0, removing biased in the319

sampling. These results show that each component is critical for achieving BRAINMIXER’s superior320

performance. The greatest contribution comes from biased sampling, VA and FC encoders, functional321

patching, and dynamic self-attention, respectively.322

Parameter Sensitivity. We discuss the effect of the number of walks, M , the walk length, m, and time323

decay, θ on the performance in Appendix G. Results show that increasing the number of walks results324

in better performance as each patch is a better representation of the node’s neighborhood. The effect325

of the walk length on performance peaks at a certain point, but the exact value varies with datasets. In326

Appendix G, we further discuss how aggregating timeseries to obtain beta weights and aggregating327

voxels to obtain ROIs can affect performance.328

How Does Brain Detect GAN Generated Images? The visual cortex, responsible for processing329

visual information, is hierarchically organized with multiple layers building upon simpler features330

at lower stages (Van Essen & Maunsell, 1983). Initially, neurons detect edges and colors, but on331

deeper levels, they specialize in recognizing more complex patterns and objects. Figure 2 (Left)332

(resp. (Right)) reports the average distribution of brain activity of a subject when looking at non-333

recognizable images (resp. natural images). Interestingly, while the distributions share similar334

patterns in lower levels (e.g., V1 and V2 voxels), higher-level voxels (e.g., V3) are less active when335

the subject sees non-recognizable images.336

Case Study: ADHD In this case study, we train our model on the neuroimages of the typically337

developed group and test it on the ADHD condition group to detect abnormal voxel activities that338

might be correlated to ADHD symptoms. Figure 3 reports the distribution of anomalous voxels within339

the brain of the ADHD group. 78% of all found abnormal voxel activities by BRAINMIXER are340

located in the Frontal Pole, Left and Right Temporal Poles, and Lingual Gyrus. Surprisingly, these341

findings are consistent with previous studies on ADHD, which use diffusion tensor imaging (Lei342

et al., 2014) and Forman–Ricci curvature changes (Chatterjee et al., 2021).343

5 Conclusion344

In this work, we present an unsupervised pre-training framework, BRAINMIXER, that bridges the345

representation learning of voxel activity and functional connectivity by maximizing their mutual346

information. BRAINMIXER presents two novel variations of MLP-MIXER to multivariate timeseries347

(VA Encoder) and graphs (FC Encoder) that both take advantage of special properties of the brain to348

obtain effective representations of voxels. Consequently, the experimental results show the potential349

of BRAINMIXER in 1 detecting abnormal brain activity that might cause a brain disease/disorder,350

2 disease/disorder detection, and 3 understanding object representation in the brain. Experiments351

further support the significance of each BRAINMIXER’s component and show its superior performance352

compared to the state-of-the-art in a variety of tasks. We discuss potential limitations and future work353

in Appendix H.354
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