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Abstract001

Automatic Prompt Optimization (APO) im-002
proves large language model (LLM) perfor-003
mance by refining prompts for specific tasks.004
However, prior APO methods typically focus005
only on user prompts, rely on unstructured feed-006
back, and require large sample sizes and long007
iteration cycles—making them costly and brit-008
tle. We propose ZERA (Zero-prompt Evolv-009
ing Refinement Agent), a novel framework010
that jointly optimizes both system and user011
prompts through principled, low-overhead re-012
finement. ZERA scores prompts using eight013
evaluation principles with automatically in-014
ferred weights, and revises prompts based on015
these structured critiques. This enables fast016
convergence to high-quality prompts using min-017
imal examples and short iteration cycles. We018
evaluate ZERA across five LLMs and nine di-019
verse datasets spanning reasoning, summariza-020
tion, and code generation tasks. Experimental021
results demonstrate consistent improvements022
over strong baselines. Further ablation studies023
highlight the contribution of each component024
to more effective prompt construction. Our025
implementation including all prompts will be026
publicly available.027

1 Introduction028

The effectiveness of LLMs significantly depends on the029
quality of prompts used to guide their behavior. Crafting030
effective prompts is essential not only for general LLM031
application but also crucial when integrating LLMs into032
larger agent-based systems. However, developing these033
prompts typically relies on handcrafted templates, do-034
main intuition, or extensive trial-and-error processes,035
which pose considerable challenges in scalability and036
transferability (Brown et al., 2020; Perez and et al.,037
2021; Zhao et al., 2021). Moreover, optimal prompts038
are often model-specific, necessitating careful tuning of039
prompts to the particular LLM being employed.040

To address these challenges, automatic prompt opti-041
mization (APO) methods have recently been proposed.042
The core objective of these approaches is to systemati-043
cally derive prompts that yield desired outputs for given044
inputs in a specific task. This typically involves an itera-045
tive process where an LLM evaluates the effectiveness046

of a prompt, identifies shortcomings, and incremen- 047
tally updates the prompt to enhance performance (Wang 048
et al., 2024; Yang et al., 2024; He et al., 2025). How- 049
ever, these methods predominantly rely on task-specific 050
metric scores and feedback derived solely from the pro- 051
vided examples, making them prone to overfitting and 052
limiting their robustness in generalization. 053

To mitigate this limitation, we propose ZERA (Zero- 054
prompt Evolving Refinement Agent), a novel APO ap- 055
proach designed to improve the generality and robust- 056
ness of optimized prompts. Instead of relying solely on 057
task-specific feedback or metric scores derived from a 058
small set of examples, ZERA employs eight evaluation 059
principles for prompt optimization: Completeness, Con- 060
ciseness, Correctness, Expression Style, Faithfulness, 061
Meaning Accuracy, Reasoning Quality, and Structural 062
Alignment. These principles serve as high-level evalua- 063
tion criteria that guide feedback generation and prompt 064
refinement, enabling the system to generalize beyond 065
individual examples and avoid overfitting. 066

Specifically, ZERA consists of two iterative stages: 067
Principle-based Critique Generation (PCG) and Meta- 068
cognitive Prompt Refinement (MPR). PCG utilizes task- 069
specific sample data to (1) evaluate the relative impor- 070
tance of each principle for a given task and (2) mea- 071
sure performance against each principle, generating out- 072
put analysis and actionable feedback. MPR integrates 073
this feedback to iteratively refine task-related meta- 074
information, including task descriptions and the targeted 075
optimization objectives—system and user prompt. 076

The iterative interaction between these two stages 077
based on the meta principles results in the development 078
of highly optimized system and user prompts. Notably, 079
ZERA can generate effective prompts even when pro- 080
vided with only a few task samples and no handcrafted 081
prompts or task descriptions. Furthermore, because task 082
evaluation and definition are driven by general princi- 083
ples, the optimized prompts exhibit resistance to overfit- 084
ting. Additionally, the influence of these general prin- 085
ciples promotes rapid convergence during the prompt 086
optimization steps, demonstrating ZERA’s practicality 087
and effectiveness. 088

We validated our proposed method across nine bench- 089
mark tasks—MMLU, MMLU-Pro, GSM8K, MBPP, 090
HumanEval, BBH, HellaSwag, CNN/DM, and Sam- 091
sum—optimizing prompts for models such as GPT- 092
3.5, GPT-4o, LLaMA-3.1-70B-Instruct (LLaMA-3.1), 093
Qwen-2.5-70B-Instruct (Qwen-2.5), and Mistral-7B- 094
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Instruct-v0.3 (Mistral-7B). In most cases, ZERA-095
derived prompts outperformed predefined prompts pro-096
vided for each task. Additionally, we compared ZERA097
with recent APO methodologies, including PromptA-098
gent (Wang et al., 2024), OPRO (Yang et al., 2024), and099
CriSPO (He et al., 2025), and observed that ZERA deliv-100
ered superior performance. Furthermore, we conducted101
an ablation study to analyze the distinct characteristics102
and effectiveness of individual components within our103
proposed approach.104

2 Related Work105

A wide range of methods have been proposed in the106
field of APO, broadly categorized by whether they re-107
quire training or gradient updates (Chen et al., 2024;108
Zhang and Sang, 2025; Jafari et al., 2024; Chen et al.,109
2025; Srivastava and Yao, 2025), or operate in a training-110
free manner (He et al., 2025; Xiang et al., 2025; Peng111
et al., 2025; Wang et al., 2024; Pryzant et al., 2023).112
Training-based approaches offer the advantage of task-113
specific optimization through reinforcement learning or114
supervised tuning, often leading to higher performance115
on narrowly defined tasks. In contrast, training-free116
methods are more readily adaptable to new tasks, as117
they eliminate the computational and data requirements118
associated with model training.119

Among training-free methods, one of the earlier no-120
table works is APE (He et al., 2025) which iteratively121
generates prompt variants and selects the best prompt122
based on task-specific metric scores. While effective,123
the use of scalar feedback offers limited guidance for124
understanding why a prompt is better or how to improve125
it further. To address this, subsequent works such as126
(Pryzant et al., 2023; Peng et al., 2025; Wang et al.,127
2024) enhance the optimization process by incorporat-128
ing natural language feedback derived from error exam-129
ples. These textual signals offer more descriptive and130
interpretable suggestions, guiding the LLM to generate131
improved prompts through enriched context.132

Building on this trajectory, more recent approaches133
such as OPRO (Yang et al., 2024) and CriSPO (He134
et al., 2025) further enhance prompt optimization by in-135
corporating additional signals beyond natural language136
feedback. OPRO stabilizes the optimization process by137
leveraging historical prompt traces, while CriSPO intro-138
duces a multi-aspect critique–suggestion agent that pro-139
vides aspect-specific feedback. These innovations en-140
able more targeted and robust improvements in prompt141
quality across iterations.142

While ZERA incorporates common strategies from143
prior work, such as natural language feedback and his-144
torical prompt traces, it distinguishes itself by grounding145
the optimization process in eight generalizable princi-146
ples. These principles guide structured feedback and147
drive the joint optimization of the user prompt, system148
prompt, and task description—components that are typ-149
ically fixed or ignored in earlier approaches. To the150
best of our knowledge, ZERA is the first to unify the151

optimization of all three prompt types within a principle- 152
driven framework. 153

3 Methodology 154

ZERA approaches prompt optimization through an itera- 155
tive, training-free framework comprising two key stages: 156
evaluation and refinement. This section introduces the 157
APO formulation and details the core components of 158
ZERA: principle-based evaluation and meta-cognitive 159
refinement modules, which work together to iteratively 160
improve prompts from generic initial prompts. 161

3.1 Iterative Two-stage Prompt Optimization 162

We begin by formalizing the prompt optimization ob- 163
jective and outlining its core challenges. We define a 164
task D as a set of paired examples (x, y), where x is the 165
raw input and y is the desired output. In prompt-based 166
learning, LLMs do not consume x directly; rather, it is 167
embedded into a textual prompt ptask that conditions the 168
model’s output. We denote the output of the LLM as 169
ŷ = LLM(x| ptask). 170

The objective of APO is to find an optimal prompt 171
function ptask that minimizes the expected distance be- 172
tween model output and the ground-truth label: 173

J(ptask) = E(x,y)∼D [dist(LLM(x| ptask), y)] . (1) 174

Here, dist(ŷ, y) denotes a distance metric quantifying 175
the discrepancy between the LLM-generated output ŷ 176
and the ground-truth target y. The goal of APO is to 177
identify an optimal prompt function p∗task that minimizes 178
this objective. However, there are three key challenges 179
in APO: (1) the LLM is typically accessed as a black 180
box, offering no gradient or parameter-level informa- 181
tion; (2) optimizing ptask is non-trivial, as traditional 182
gradient-based methods are inapplicable without model 183
retraining; and (3) the available data for D is often lim- 184
ited, posing a challenge for generalization. 185

The first and second challenges make it infeasible to 186
directly optimize prompts using task-specific objective 187
values. This has motivated the exploration of alternative, 188
training-free approaches for prompt optimization. In 189
particular, recent work (Wang et al., 2024; He et al., 190
2025) introduces natural language-based feedback and 191
optimization frameworks, where qualitative feedback, 192
which is generated by LLMs themselves, is used to 193
guide prompt refinement. Our method follows this line 194
of research, leveraging natural language feedback as 195
the central supervision signal for iteratively improving 196
prompts. 197

The third challenge poses a significant risk to gener- 198
alization. When prompt optimization depends heavily 199
on LLM-generated evaluations and feedback, there is a 200
heightened risk that prompts may overfit to a small set 201
of biased or unrepresentative examples. To address this 202
issue, our method introduces meta-level principles that 203
serve as high-level guides for evaluation and feedback. 204
By grounding prompt updates in these general reasoning 205
frameworks, rather than just task-specific signals, our 206
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Figure 1: Overview of the ZERA system. Given task samples and their corresponding output results, PCG
produces the critique comprising of: importance weight, evaluation score, analysis result and suggestion across
eight principles. MPR refines the task prompt by integrating prior prompt information with the critiques observed in
the current task examples.

approach promotes broader applicability and reduces207
the risk of overfitting.208

Given these constraints, prompt optimization is best209
approached in a heuristic, training-free framework com-210
posed of two iterative stages: evaluation and refinement.211
These two stages can be described as follows:212

ŷ(t) ← LLMtask

(
p
(t)
task(x

(t))
)

(2)213

c(t) ← Aeval

(
x(t), ŷ(t),y(t)

)
(3)214

p
(t+1)
task ← Arefine

(
x(t), ŷ(t),y(t), c(t), p

(t)
task

)
(4)215

Here, x(t) and y(t) denote the input and reference output216
sets at iteration t, and ŷ(t) is the set of outputs generated217

by the task LLM using the current prompt p(t)task. The218
evaluation agentAeval produces a set of natural language219
critiques c(t) that assess the quality of the generated220
outputs. These critiques, along with the original inputs,221
outputs, and prompt, are then passed to the prompt222
modification agent Arefine, which generates an updated223

prompt p(t+1)
task .224

As this formulation highlights, the effectiveness of225
the overall optimization process depends critically on226
the design of both Aeval and Arefine, which determine227
how feedback is generated and how prompts are refined.228

3.2 ZERA System229

ZERA is designed based on the two-stage optimization230
framework as shown in Figure 1. While ZERA adopts a231
structure similar to the conventional iterative two-stage232
APO framework, it uniquely integrates principle-based233
evaluations to assess the current prompt and guide its234
refinement. The rationale behind this design is to in-235
corporate pre-defined meta-level information—namely,236
a set of general principles—to reduce the risk of bias237
that may arise when optimizing prompts from a limited238
number of task examples.239

Based on our analysis across diverse benchmark tasks, 240
we identified eight generalizable principles that consis- 241
tently guided effective prompt evaluation and refine- 242
ment. These principles, summarized in Table 1, form 243
the foundation for assessing and improving prompts. 244
They are systematically applied by both PCG and MPR, 245
ensuring coherence and consistency throughout the op- 246
timization process. 247

3.3 Principle-based Critique Generation (PCG) 248

Given the task inputs x(t) and the corresponding LLM 249

outputs ŷ(t) generated using the current prompt p(t)task, 250
the evaluation agent Aeval produces a detailed assess- 251
ment and feedback for each sample. Our proposed PCG 252
structures this process around a set of eight general prin- 253
ciples, producing four key outputs. First, it analyzes 254
the task description to estimate the relative importance 255
of each principle, assigning a real-valued weight in the 256
range [0-1] to reflect its priority. Second, it evaluates the 257
generated outputs against each principle, producing a 258
score [0-1] per principle to reflect output quality. Third, 259
it conducts an error analysis to determine which aspects 260
of the outputs were well-handled or problematic based 261
on the eight principles. Lastly, it outputs targeted sug- 262
gestions for improvement aligned with each principle. 263

For clarity and formalization, we define the critique 264
tuple for the n-th task sample as cn = (αn, sn, an, fn). 265
Here, αn is an eight-dimensional vector representing 266
the estimated importance weights of the eight principles, 267
and sn denotes the corresponding evaluation scores as- 268
signed to the generated output. The component an cap- 269
tures the qualitative analysis of the output with respect 270
to each principle, while fn provides principle-specific 271
suggestions for improvement. 272

The critique tuple at time t can be identified through 273
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Table 1: Short description of eight principles. The detailed criteria be found in Appendix A1.

Principle Description

Meaning Accuracy Preserves intended meaning and logical consistency with the expected output.
Completeness Includes all key ideas or steps; no critical elements are missing.
Expression Style Matches tone, format, and stylistic elements of the expected output.
Faithfulness Avoids hallucination; stays true to given input and context.
Conciseness Maintains brevity; avoids unnecessary or repetitive content.
Correctness Final answer is factually/logically correct and meets formatting constraints.
Structural Alignment Matches the structure, formatting, and layout of the expected output.
Reasoning Quality Provides logically sound and well-structured reasoning aligned with task goals.

the following:274

c(t)n ←− LLMeval

(
T(t)

task, ŷ
(t)
n , y(t)n , x(t)

n

∣∣∣ peval

)
. (5)275

Here, T(t)
task denotes the task description at the t-th iter-276

ation, and peval corresponds to the critique generation277
prompt including predefined principle definitions. Note278
that the task prompt, ptask, is not directly utilized in this279
stage; rather, the outputs generated from it on task sam-280
ples are evaluated through the lens of the predefined281
principles.282

3.4 Meta-cognitive Prompt Refinement (MPR)283

In the prompt refinement stage, the core objective is to284
update the task prompt using the structured feedback285
produced during evaluation. Central to this process is286
our Meta-cognitive Prompt Refinement Agent, which287
leverages multi-dimensional, principle-based evalua-288
tions to guide refinement. By identifying which prin-289
ciples are most critical to the task—based on scalar290
importance scores—the agent redefines the task descrip-291
tion and adjusts the prompt accordingly. This principled292
approach ensures that the updated prompts align with293
high-level quality dimensions such as reasoning, ac-294
curacy, and structure, making it the primary driver of295
generalizable and task-aligned prompt improvement.296

To further stabilize and enhance the refinement pro-297
cess, the agent also incorporates historical information298
from past iterations. It considers (1) recent prompts299
and their evaluation results, (2) the best-performing300
prompt to date and its scores, and (3) exemplar task301
samples—specifically, the three with the highest scores302
and two with the lowest. These historical references303
provide meta-level context, helping the agent maintain304
consistent progress, avoid local optima, and balance305
prompt quality across a range of task instances. While306
secondary to principle-based feedback, incorporating307
the historical information trajectory enhances optimiza-308
tion stability by enabling the model to avoid prior errors309
and reinforce effective strategies (He et al., 2025).310

For formal description, let F(t)
task be a tuple of311

(p
(t)
task, c(t)), indicating the task prompt feedback at the312

t-th iteration. For the task sample, we denote F(t)
sample as313

a tuple of (x(t), ŷ(t), y(t), c(t)), corresponds to the task314
sample feedback at the t-th iteration. Using this defini-315
tions, the task prompt and description refinement can be316

described as the follow: 317

p
(t+1)
task ,T(t+1)

task ←− LLMrefine(T
(t)
task,F(t)

task,F(t−1)
task ,F(t−2)

task , 318

F(t),∗
task ,F(t),top-3

sample ,F(t),bottom-2
sample | prefine), (6) 319

where F(t),∗
task represents the tuple showing the best feed- 320

back score among all previous iterations. F(t),top-3
sample and 321

F(t),bottom-2
sample indicate the top three and the bottom two of 322

task sample feedback along with the evaluated scores 323
at the iteration t. By combining the current task and 324
sample feedback and the historical records, LLMrefine 325
refines the task prompt and description. 326

Since our evaluation is based on multiple principles, 327
it naturally produces multi-dimensional scores for each 328
output. To identify the best and worst prompt cases in 329
the historical data, we compute a unified score that inte- 330
grates these dimensions. This aggregation relies on the 331
principle importance weights generated during the eval- 332
uation stage, allowing the system to weigh each criterion 333
according to its relevance to the task. In other words, 334

for each sample, the unified score, u(t)
n is calculated as 335

follows: 336

u(t)
n =

∑
k

α
(t)
n,ks

(t)
n,k, (7) 337

where α(t)
n,k represents the principle importance ratio and 338

s
(t)
n,k indicates the evaluation score of ŷ(t)n in the view 339

of the k-th principle. These scores can be identified 340

from the critique tuple c
(t)
n,k. The weighting vector α is 341

adaptively determined based on the characteristics of 342
each task and sample, allowing the system to assess the 343
relative importance of different principles. As a result, 344
the multi-dimensional evaluation scores are aggregated 345
in a way that reflects what matters most for the specific 346
task. For instance, in tasks where reasoning is not a criti- 347
cal factor, the weight assigned to the reasoning principle 348
will be low. Consequently, scores related to reasoning 349
will have minimal influence in identifying strong or 350
weak task cases or in guiding prompt refinement. 351

3.5 Prompt Refinement from Zero Initialization 352

ZERA is initialized with a deliberately underspecified 353
prompt configuration, using a generic system prompt 354
("You are a helpful assistant") and a minimal 355
user prompt ("Hello! I’m here to help you"). 356
Unlike prior approaches, ZERA does not rely on task- 357
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Table 2: Performance across BBH subcategories. All results are re-evaluated under a consistent setting: GPT-3.5-
turbo is used as the base model for response generation, and GPT-4o is used for prompt refinement where applicable
(e.g., PromptAgent and ZERA). *Object Counting score for PromptAgent is taken from the original paper.

Method Penguins Geometry Epistemic Object Count Temporal Causal Judge Avg.

Human (0 shot) 0.595 0.227 0.452 0.612 0.720 0.470 0.513
CoT (0 shot) 0.747 0.320 0.532 0.542 0.734 0.610 0.581
PromptAgent (Wang et al., 2024) 0.853 0.577 0.740 0.860* 0.902 0.670 0.767

ZERA (Ours) 0.877 0.520 0.940 0.930 0.951 0.690 0.818

specific evaluation metrics. Instead, it leverages a multi-358
principle scoring framework grounded in generalizable,359
meta-level principles. Through iterative evaluation and360
refinement, ZERA progressively discovers prompts that361
guide the LLM toward outputs aligned with target re-362
sponses. Notably, all experiments are conducted with-363
out access to task-specific knowledge—such as eval-364
uation metrics or pre-defined task descriptions (often365
provided in datasets)—beyond a few example (5-20)366
instances drawn from the training data. Note that the367
“pre-defined task descriptions” mentioned here refer to368
those provided in benchmark datasets, and should not369
be confused with the task descriptions used earlier in370
this work, which are generated and refined as part of the371
optimization process.372

4 Experiments373

4.1 APO Experimental Setting374

APO seeks to generate a task-specific prompt that en-375
ables a LLM to perform well on a given task, using only376
a small number (5-20) of representative samples. In377
this setting, the optimization process must rely on lim-378
ited data while ensuring generalization across unseen379
examples.380

To simulate this scenario, we construct a task sample381
pool using the training and validation sets from stan-382
dard benchmark datasets. The optimized prompt is then383
evaluated on the benchmark’s held-out test set using the384
official evaluation metrics defined for each task. This385
experimental protocol aligns with widely adopted prac-386
tices in prior APO literature, ensuring consistency and387
comparability across different methods.388

Our benchmark suite spans nine datasets covering389
structured, unstructured, and reasoning-intensive tasks:390
GSM8K (Cobbe et al., 2021), MMLU-Pro (Hendrycks391
et al., 2021), and BBH (Suzgun et al., 2022) require392
symbolic or multi-step reasoning; MBPP (Austin et al.,393
2021) and HumanEval (Austin et al., 2021) involve394
functional code generation; CNN/DailyMail (Hermann395
et al., 2015), SAMSum (Gliwa et al., 2019), and Hel-396
laSwag (Zellers et al., 2019) test summarization and397
commonsense inference; and MMLU (Hendrycks et al.,398
2021) covers broad-domain factual QA. This diversity399
enables a comprehensive evaluation of ZERA’s prompt400
generalization capabilities across varying tasks.401

Table 3: GSM8K accuracy, CNN/DailyMail and SAM-
Sum ROUGE-L scores evaluated with LLaMA-3.1.

Method GSM8K CNN Samsum Avg.

Baseline (0 shot) 0.341 0.280 0.266 0.296
Baseline (5 shot) 0.357 0.296 0.286 0.313
OPRO (2024) 0.892 0.295 0.273 0.487
CRiSPO (2025) 0.896 0.309 0.270 0.492

ZERA 0.927 0.296 0.333 0.519

4.2 Performance Comparison from Baselines 402

To demonstrate the effectiveness of ZERA, we con- 403
ducted a series of comparative experiments against 404
state-of-the-art prompt optimization methods, includ- 405
ing PromptAgent, OPRO, and CriSPO. To ensure fair- 406
ness, each comparison was carried out under the orig- 407
inal experimental settings proposed and reproduced 408
by the respective methods. Specifically, we report 409
results from (1) direct comparisons with OPRO and 410
CriSPO, (2) head-to-head evaluation with PromptAgent, 411
and (3) performance analysis across nine benchmark 412
datasets, where ZERA is also compared against the 413
default prompts provided by each benchmark. All ex- 414
periments are conducted using a variety of LLMs to 415
measure robustness and generalization across models 416
and tasks. 417

4.2.1 Comparison with OPRO and CriSPO 418

We compare ZERA with two recent APO baselines, 419
OPRO (Yang et al., 2024) and CriSPO (He et al., 2025), 420
on three tasks spanning math reasoning and summariza- 421
tion: GSM8K, CNN/DailyMail, and SAMSum. Follow- 422
ing the original CriSPO setup, we evaluate all methods 423
on 500 randomly sampled test instances per dataset us- 424
ing the LLaMA-3.1. Results for OPRO and CriSPO are 425
reproduced using their official codebase.1 426

As shown in Table 3, ZERA achieves the highest av- 427
erage performance across the three tasks, outperforming 428
both OPRO and CriSPO on GSM8K and SAMSum. No- 429
tably, ZERA delivers a substantial improvement of +6.0 430
ROUGE-L on SAMSum, demonstrating strong capa- 431
bilities in dialogue-style summarization. Appendix A2 432
shows the final prompt from ZERA in this task. 433

1https://github.com/amazon-science/CriSPO
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Table 4: Performance comparison between baseline prompts and ZERA prompts across models and tasks. Each
cell shows Baseline / ZERA score using the task’s standard evaluation metric. All values are reported as Baseline /
ZERA score. EM = exact match, ROUGE-L = recall-oriented summary metric, pass@1 = functionally correct code
generation on first attempt.

Dataset (Metric) GPT-4o GPT-3.5-turbo LLaMA-3.1 Qwen2.5 Mistral-7B

MMLU (EM) 84.1 / 85.5 65.4 / 66.9 75.8 / 75.4 80.4 / 79.8 56.4 / 55.7
MMLU-Pro (EM) 58.7 / 75.3 37.3 / 46.2 50.8 / 60.1 54.5 / 72.8 30.0 / 30.1
GSM8K (EM) 95.8 / 95.3 72.55 / 78.2 34.1 / 92.6 92.12 / 96.1 11.5 / 53.0
MBPP (pass@1) 28.4 / 61.8 36.2 / 60.4 62.3 / 63.4 22.1 / 68.0 42.6 / 45.4
HumanEval (pass@1) 82.9 / 85.4 65.2 / 61.6 71.3 / 73.8 75.0 / 76.2 15.24 / 29.9
BBH (EM) 75.4 / 84.1 45.9 / 59.8 58.7 / 72.9 62.3 / 77.4 34.5 / 36.2
HellaSwag (EM) 90.6 / 90.0 46.3 / 66.6 81.6 / 84.2 87.8 / 89.2 66.0 / 62.6
CNN/DM (ROUGE-L) 27.8 / 29.0 28 / 29.9 28 / 29.6 26.5 / 30.0 28.0 / 29.8
Samsum (ROUGE-L) 27.7 / 38.2 28.0 / 31.9 26.2 / 33.7 29.8 / 36.0 24.5 / 34.0

Avg. Gain (∆) +8.1 +8.5 +10.8 +10.6 +7.6

4.2.2 Comparison with PromptAgent434

To further assess ZERA’s reasoning capabilities, we435
evaluate it against PromptAgent on six BBH sub-436
tasks—Penguins in a Table, Geometry, Epistemic Rea-437
soning, Object Counting, Temporal Sequences, and438
Causal Judgment—following the experimental setup439
of the original PromptAgent paper. All evaluations are440
conducted using GPT-3.5-turbo as the base model for441
response generation, with GPT-4o used as the optimizer442
for prompt refinement in both ZERA and PromptAgent.443

As shown in Table 2, ZERA outperforms PromptA-444
gent in 5 out of 6 sub-tasks, including substantial gains445
in epistemic reasoning (+20.0) and temporal reasoning446
(+4.9). ZERA also achieves the highest overall average447
score (0.818), surpassing PromptAgent’s 0.767. These448
results highlight ZERA’s robust capabilities in complex449
multi-step reasoning and deep inference. Appendix A3450
shows the final prompt from ZERA for the epistemic451
task.452

4.2.3 Comparison with Primary Prompts453

To evaluate ZERA’s generalization across model fam-454
ilies and task types, we benchmark it using five di-455
verse LLMs: GPT-3.5-turbo(Ye et al., 2023), GPT-456
4o(OpenAI, 2024), Qwen2.5-72B-Instruct(Team, 2024),457
LLaMA-3.1-70B-Instruct(Dubey et al., 2024), and458
Mistral-7B-Instruct-v0.3(Jiang et al., 2023). All models459
are evaluated via API or open checkpoints without ad-460
ditional fine-tuning. We use the same nine benchmark461
datasets introduced in Section 4, sampling 500 test in-462
stances per task, following the evaluation protocol of463
previous literature (He et al., 2025; Wang et al., 2024).464

For baseline comparison, we adopt minimal yet465
format-compliant prompts (See Appendix A4.) that466
satisfy basic evaluation criteria without manual opti-467
mization. These serve as practical lower bounds for468
fair and reproducible measurement. Performance is469
measured using task-specific metrics: exact match for470
reasoning and classification tasks (e.g., MMLU, BBH,471

GSM8K), ROUGE-L for summarization (CNN/Daily- 472
Mail, SAMSum), and pass@1 for code generation tasks 473
(MBPP, HumanEval). 474

ZERA consistently improves over baseline prompts 475
across a variety of models and tasks (Table 4). The 476
gains are especially pronounced on structured reason- 477
ing benchmarks: on GSM8K, for example, ZERA 478
boosts LLaMA-3.1 to 92.6% accuracy—approaching 479
the 95.1% reported in the original LLaMA paper us- 480
ing 8-shot chain-of-thought prompting Dubey et al. 481
(2024). It also outperforms instruction-tuned models 482
such as Qwen2.5, exceeding their published scores on 483
GSM8K (91.5% vs. 96.1%) and MMLU-Pro (58.1% vs. 484
72.8%) Team (2024). These results highlight ZERA’s ro- 485
bustness across diverse models and tasks, even relative 486
to expert-tuned few-shot configurations. 487

4.3 Process Analysis of ZERA 488

As described in Section 3.5, ZERA begins with zero 489
prompt initialization and optimizes based solely on a 490
small number of task samples—typically around five 491
per iteration. In this section, we analyze ZERA’s opti- 492
mization dynamics from two perspectives: (1) tracking 493
the trajectory of the unified evaluation score to illustrate 494
how the prompt converges over iterations, and (2) quali- 495
tatively examining how the prompt content evolves and 496
expands throughout the refinement process. 497

4.3.1 Analysis on Evaluation Score Trajectory 498

We analyze how prompt quality evolves over refinement 499
iterations by tracking the unified evaluation score at 500
each step (up to 20 iterations). Figure 2 shows the score 501
trajectories for three representative datasets: (GSM8K, 502
BBH, and CNN). Substantial gains often emerge within 503
the first 1–5 iterations, especially in GSM8K and CNN, 504
which tend to converge quickly with as few as 5 train- 505
ing examples. In contrast, BBH, which requires more 506
complex reasoning, show continued improvement even 507
in later iterations, reflecting the benefit of extended re- 508
finement on more complex task structures. 509
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Figure 2: The trajectories of evaluation scores identified
by PCG. Each iteration samples 5 task examples and
evaluate the current prompt based on the eight principles.
Avg. anc Top-3. indicate the average over all sampled
examples and the average of top-3 scored samples.

Table 5: Prompt evolution across iterations on BBH.

# System Prompt

1 You are a helpful assistant.
2 You are a helpful AI assistant. Reason freely through

problems before providing precise, concise responses
formatted clearly per the question’s requirements.

19 You are a logical reasoning expert. Clearly reason
each question step-by-step in natural, explicit lan-
guage. Upon completing your analysis, distinctly sep-
arate it from your final concise answer, which must
strictly follow the provided formatting instructions.

# User Prompt

1 Hello! I’m here to help you.
2 Please answer the following questions clearly and con-

cisely. [ZERA-generated reasoning exemplar, 1-shot]
Begin now.

19 Solve these logical reasoning problems by explicitly
thinking through them step-by-step before providing
your final answer.[ZERA-generated reasoning exem-
plar, 3-shot] Now, begin solving.

Although each iteration of ZERA uses only a small510
number of task samples, we observe that the result-511
ing prompts yield stable unified scores across steps.512
This indicates that the principle-based evaluation and513
prompt refinement process remains stable, even as the514
task samples vary at each step. These findings suggest515
that ZERA’s optimization trajectory is both stable and516
convergent, with minimal fluctuation in performance517
despite changes in the evaluation data per iteration.518

4.3.2 Analysis on Prompt Evolution519

ZERA incrementally transforms underspecified prompts520
into task-adapted formats through iterative self-521
refinement. Across iterations, the prompts increas-522
ingly encode task structure, role assignments, output523
constraints, and formatting conventions—progressively524
aligning with task-specific demands. This evolution525
occurs both semantically (e.g., shifting from vague to526
expert roles) and structurally (e.g., introducing reason-527
ing steps or enforcing output schemas).528

As shown in Table 5, ZERA adaptively introduces529

Table 6: Effect of principle-based criteria. Baseline eval-
uates prompts without any principles and other utilize
the subset or all principles.

Criteria BBH MMLU-Pro

No principles (baseline) 45.9 37.3
Correctness, reasoning 26.2 45.4
All w/o correctness, reasoning 55.2 43.2
All eight principles 59.8 46.2

Table 7: Ablation on task-adaptive principle weight.
Fixed. indicates to ZERA using uniform weights; Dyn-
maic. refers to ZERA with task-adaptive weights.

principle weight type BBH MMLU-Pro

Fixed. (uniform) 42.6 41.1
Dynamic. 59.8 46.2

self-generated reasoning exemplars and reasoning scaf- 530
folds for BBH, adopts a question → reasoning → an- 531
swer format for BBH. These structures emerge not from 532
handcrafted examples, but through self-refinement us- 533
ing task-weighted feedback. These evolved prompts 534
converge toward task-effective formats without relying 535
on external supervision or manual prompt engineering. 536
More prompt optimization results on other benchmarks 537
can be found in Appendix A5. 538

4.4 Ablation Studies 539

Beyond overall performance, we conduct a focused abla- 540
tion study to assess the contribution of key components 541
in ZERA, including its scoring strategy, evaluation crite- 542
ria, prompt component coverage, and base model align- 543
ment. 544

4.4.1 Analaysis on Principles 545

We investigate how the number and type of evaluation 546
criteria affect prompt refinement. Specifically, we com- 547
pare three variants of ZERA: one using all eight criteria, 548
one using only two (reasoning quality and correctness), 549
and one using the remaining six. As shown in Table 6, 550
using the full set of eight criteria yields the best perfor- 551
mance on both BBH and MMLU-Pro. Reducing the 552
evaluation to only two dimensions leads to a substantial 553
drop on BBH (–33.6), highlighting the importance of 554
structural and stylistic signals in tasks requiring multi- 555
step reasoning. Even when using six criteria, perfor- 556
mance remains slightly below the full setting, suggest- 557
ing that ZERA benefits from a holistic view of output 558
quality that balances reasoning, faithfulness, clarity, and 559
structure. 560

4.4.2 Analysis on Principle Weights 561

Beyond the structure and content of the prompts them- 562
selves, the evaluation mechanism used during refine- 563
ment plays a critical role in overall performance. To as- 564
sess this, we compare three variants: a minimal baseline, 565
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Figure 3: Visualization of task-adaptive scoring weights
over nine benchmarks. The values are averaged over
task examples, sampled at the optimal step from the
experiment in section 4.2.3.

Table 8: Ablation study on the prompt components.
User Only indicates no use of system prompt in a tar-
geted task prompt.

Method GSM8K CNN Samsum BBH Avg.

w/o T(t)
task 0.930 0.266 0.345 0.728 0.567

User Only 0.914 0.270 0.327 0.726 0.559

ZERA 0.927 0.296 0.337 0.729 0.571

ZERA with fixed uniform weights, and full ZERA with566
dynamically inferred task-specific weights. As shown567
in Table 7, dynamic weighting consistently improves568
performance in BBH and MMLU-Pro, validating the569
effectiveness of task-adaptive prioritization. The fixed-570
weight variant generally performs between the baseline571
and full ZERA, indicating that structure-inducing re-572
finement offers meaningful benefits, while task-specific573
weighting further amplifies these gains.574

We further investigate how the principle weights vary575
across different types of tasks, shown in Figure 3. They576
guide MPG toward structure-sensitive prompt strategies577
tailored to each task’s demands. For instance, “reason-578
ing quality” receives the highest weight in tasks such579
as GSM8K and MMLU-Pro, both of which demand580
multi-step logical inference. Meanwhile, “correctness”581
is also emphasized in MMLU-Pro and MMLU, reflect-582
ing its need for factual precision in knowledge-intensive583
QA. In contrast, summarization tasks like CNN and584
SAMSum assign greater weight to “conciseness” and585
“faithfulness”, highlighting the importance of generating586
informative yet succinct summaries.587

These task-adaptive scoring patterns indicate that588
PCG aligns evaluation emphasis with task de-589
mands—prioritizing structural, semantic, or reasoning590
criteria as needed—without relying on manual heuristics591
or fixed weights.592

Table 9: Analysis on transferability of optimized prompt
by ZERA. LLMZERA indicates LLM model used in both
PCG and MPR.

LLMZERA LLMtask BBH MMLU-Pro GSM8K MBPP

GPT-3.5 LLaMA 72.9 57.3 92.6 57.9
LLaMA LLaMA 76.9 60.7 92.7 58.3

4.4.3 Ablation on Prompt Components 593

Complementing the analysis of evaluation criteria diver- 594
sity, we examine how the structure of the prompt itself, 595
specifically, the inclusion of different prompt compo- 596
nents, affects performance. We compare the full version 597
of ZERA, which incorporates the system prompt, task 598
specification, and user prompt, with two ablated vari- 599
ants: one that omits the explicit task type definition (w/o 600
Task) and another that uses only the user prompt (User 601
Only). As shown in Table 8, both variants result in per- 602
formance drops across tasks, with the User Only setting 603
yielding the lowest average score. These results suggest 604
that including both task specification and system-level 605
intent improves alignment with evaluation objectives 606
and enables more effective prompt optimization. 607

4.4.4 Analysis on Transferability of Prompt 608

Lastly, we assess how the alignment between the base 609
model used during prompt refinement and the model 610
used at inference time affects performance. Specifically, 611
we compare prompts refined using GPT-3.5-turbo and 612
LLaMA-3.1, with both evaluated on LLaMA-3.1. As 613
shown in Table 9, prompts optimized on LLaMA-3.1 614
consistently outperform those generated with GPT-3.5, 615
across all tasks. The gap is most notable on BBH and 616
MMLU-Pro, where alignment between the refinement- 617
time and inference-time models appears crucial for max- 618
imizing performance. While prompts transferred from 619
GPT-3.5 still yield competitive results (e.g., 92.6 on 620
GSM8K), model-specific nuances—especially in rea- 621
soning or formatting—are better captured when prompts 622
are tuned on the target architecture. 623

5 Conclusion 624

This paper introduces ZERA, a novel APO method that 625
operates solely on target task samples without rely- 626
ing on predefined initial prompt and evaluation met- 627
rics. ZERA generates critiques of prompt outputs based 628
on eight generalizable principles and refines prompts 629
accordingly through an iterative process. By leverag- 630
ing prompt update history and principle-based scor- 631
ing, ZERA achieves stable refinement and consistently 632
converges toward high-performing prompts. Extensive 633
experiments across diverse tasks and models demon- 634
strate the efficiency and effectiveness of the proposed 635
approach. These results highlight ZERA’s potential 636
as a general-purpose, model-agnostic solution for scal- 637
able and interpretable prompt engineering across a wide 638
range of domains. 639
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6 Limitations640

While ZERA demonstrates strong performance across641
diverse tasks and models, it has several limitations. First,642
our score reporting on summarization tasks such as CN-643
N/DailyMail relies entirely on automatic metrics (e.g.,644
ROUGE-L) without human judgment, which may over-645
look nuances like coherence or factuality. Second, al-646
though ZERA operates with minimal supervision, it still647
requires a small number of training samples (typically648
5–20) for each task. Fully zero-shot refinement remains649
an open challenge. Third, as prompts evolve over iter-650
ations, they often become longer to encode structural651
or reasoning constraints. While this improves accuracy,652
it may lead to increased inference latency or context653
overflow in constrained environments. Lastly, ZERA de-654
pends on an internal LLM to provide multi-level criteria655
feedback. Although effective in practice, its reliability656
under ambiguous or adversarial outputs has not been657
fully analyzed and may introduce bias in certain edge658
cases.659
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A Appendix778

A.1 Detailed Criteria of Eight Principles779

Table 10 presents the detailed criteria of principles em-780
ployed in peval. The subsequent guidelines elaborate781
on each principle, and the PCG framework generates782
critiques based on these criteria.783

A.2 Optimized Prompt for SAMsum784

Table 11 shows the prompt, identified by ZERA from785
the experiment in Section 4.2.1. The system and user786
prompts are adapted by including task input context.787

A.3 Optimized Prompt for Epstemic Task in BBH788

Table 12 shows the prompt, identified by ZERA from789
the experiment in Section 4.2.1. The system and user790
prompts are adapted by including task input context.791

A.4 Primary Prompts of Benchmarks792

Table 13 shows the primary prompts of Benchmarks.793
The baseline performance used over the main paper indi-794
cate the task performance utilizing the primary prompts.795

A.5 Prompt Evolution Examples of ZERA 796

Table 14 and 15 show another examples of prompt eva- 797
lution. They start zero initialization but improve the 798
instruction and guidelines by observing task samples in 799
the lens of the principles. 800
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Table 10: Detailed Criteria of Eight Principles

principle description

completeness Does the output include all key elements present in the expected output?
Are any core ideas, steps, or facts missing compared to the expected answer?

conciseness Does the output maintain a similar level of brevity as the expected output?
Are there unnecessary additions or repeated content beyond what is expected
If visible reasoning is expected or allowed by the task, do not penalize the
output for justified length due to reasoning steps. Only penalize verbosity that is
unrelated to the task objective or that repeats content unnecessarily.

correctness Does the final output match the correct result, based strictly on factual or logical
correctness?
Do not consider the reasoning or explanation here—only whether the final output
is correct and aligned with task constraints.
For fixed-format tasks or tasks requiring structured answers, the final answer
must match the expected output exactly in format, content, and position (e.g., on
a separate line if required)

expression style Does the output follow the format, tone, and structure shown in the expected
output?
Are there unnecessary differences in sentence style, layout, or tone?

faithfulness Does the output avoid adding content not present in the expected output?
Are all statements supported by the original question and context?

meaning accuracy Does the output convey the same intended meaning as the expected output?
Is the reasoning process logically consistent with the way the expected output
addresses the task?

reasoning quality Is the reasoning process logically valid, step-by-step, and aligned with the task
intent?
Are intermediate steps necessary, accurate, and well-structured?
If the prompt expects visible reasoning, ensure it is included in the output and
forms a logically coherent path to the answer.

structural alignment Does the output follow the expected structural organization (e.g., headline-body
separation, bullet points, code block structure)?
Are the sections, hierarchy, or formatting explicitly aligned with the expected
style?
If the task expects visible reasoning followed by a final answer, check that the
reasoning precedes the final answer and that the final answer is clearly isolated
(e.g., on a separate line and in the required format). The final answer must appear
in the same structure and format as shown in the expected output.
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Table 11: Optimized Prompt on SAMSum Task. In this optimization, LLaMA-3.1-70B-Instruct is used for PCG and
MPR. The same model is utilized as a task LLM. The reported performance in Table 3 can be easily reproducible
with the following prompt.

Prompt Type Content

System Prompt You are an expert in crafting structured summaries from
conversational text. Your task is to distill the conversation into
a single, clear sentence, highlighting crucial factual elements
like who, what, where, and when. Avoid adding interpretations or
including emotional content unless it is directly stated.

User Prompt Carefully read the given conversation. Extract the core facts
into a single concise sentence summary, ensuring you include who,
what, where, and when. Stick to information explicitly stated
and refrain from adding personal emotions or relationships unless
directly mentioned. TASK HINTS Focus on clear and directly stated
facts. Do not infer or fill in gaps unless explicitly prompted
by the conversation. Use a single sentence format to convey all
necessary details. FEW SHOT EXAMPLES Example 1 Question Dorothy
Happy anniversary to you and Sarah!! conversation continues...
Answer Damian and Sarah are celebrating their 17th anniversary
in Zakopane. Example 2 Question Madelene pizza 5 o’clock?
conversation continues... Answer Madelene and John will meet
for pizza and prosecco at their usual place at 5 pm. Example 3
Question Tory guys, I need your help conversation continues...
Answer Tim will borrow 3 books for Tory. Ensure your summary is
succinct and captures all critical factual details to match the
example structure.

Table 12: Optimized Prompt on BBH - epistemic Task. In this optimization, LLaMA-3.1-70B-Instruct is used for
PCG and MPR. The same model is utilized as a task LLM. The reported performance in Table 3 can be easily
reproducible with the following prompt.

Prompt Type Content

System Prompt You are an expert at solving logical deduction puzzles related
to truth-tellers and liars. Reason naturally and freely through
each puzzle, exploring logical relationships step-by-step without
constraints. Only after fully completing your logical analysis,
clearly and succinctly state your conclusion in the exact format:
Final Answer: Yes or Final Answer: No

User Prompt Analyze the given statements carefully and determine if
the indicated individual tells the truth. Clearly reason
step-by-step, explicitly stating after each deduction whether
each individual ẗells the truthör l̈ies.̈ Conclude clearly. Example
1: Question: Alejandro lies. Amberly says Alejandro tells
the truth. Osvaldo says Amberly lies. Vernell says Osvaldo
lies. Shenna says Vernell lies. Does Shenna tell the truth?
Reasoning:1. Alejandro lies (given); Alejandro lies.2. Amberly
claims Alejandro tells the truth; thus, Amberly lies.3. Osvaldo
says Amberly lies, which is accurate; therefore, Osvaldo tells
the truth.4. Vernell claims Osvaldo lies, but this is false;
Vernell lies.5. Shenna correctly says Vernell lies; Shenna tells
the truth.Final Answer: Yes Example 2: Question: Delbert tells
the truth. Delfina says Delbert lies. Antwan says Delfina tells
the truth. Helene says Antwan lies. Sima says Helene lies.
Does Sima tell the truth?Reasoning:1. Delbert tells the truth
(given); Delbert tells the truth.2. Delfina claims Delbert lies,
making Delfina’s claim false; therefore, Delfina lies.3. Antwan
says Delfina tells the truth, but Delfina lies; thus, Antwan
lies.4. Helene says Antwan lies, which is accurate; Helene tells
the truth.5. Sima claims Helene lies, but Helene is truthful;
therefore, Sima lies.Final Answer: No
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Table 13: Minimal baseline prompts used for each dataset. These prompts are deliberately simple, designed only
to meet standard evaluation criteria such as format compliance, without optimization or handcrafted instruction
engineering.

Dataset Baseline Prompt

GSM8K Provide the final answer prefixed with "####". Do not include any explanation.
MMLU / MMLU-Pro Choose the best answer from the options A–D. Answer using only the option

letter in parentheses.
BBH Choose the correct option from A–J. Return only the final answer enclosed in

parentheses.
CNN/DailyMail / SAM-
Sum

Summarize the passage below in 3–5 sentences. Be concise.

MBPP Complete the function definition to pass all test cases. Output only the completed
function code.

HumanEval Implement the function as described. Return only executable Python code.
HellaSwag Select the most plausible ending (A–D). Return only the correct letter.

Table 14: Prompt Structure Evolution Across Iterations (Example: GSM8K)

Iteration System Prompt User Prompt

1 You are a helpful assistant. Hello! I’m here to help you.
2 You are an expert problem solver who

provides clear and concise reasoning be-
fore stating the final answer.

For each math problem, carefully walk through
the reasoning step-by-step to solve it. At each
calculation step, make sure to show your work
using inline explanations with calculations in
the format «operation=result». Once the rea-
soning is complete, present the final answer on
a separate line, formatted with #́###b́efore the
number to match the expected output structure.
[ZERA-generated reasoning exemplar, 2-shot]
By following this guide, focus on allowing natu-
ral reasoning while ensuring the output format
meets the needed structure.

10 You are an expert math problem
solver specialized in breaking down
complex problems through clear and
detailed step-by-step reasoning.
Ensure logical coherence and
mathematical precision in every
explanation. Emphasize transparency
and clarity in your reasoning to
maintain focus on deriving correct
conclusions.

For each math problem, walk through the
solution process step-by-step, detailing each
calculation and logical inference. Use inline
explanations in angle brackets (e.g., ‘«opera-
tion=result»‘) to clarify each operation and
intermediate result. Conclude your solution
with the final answer presented on a new
line starting with #́###t́o highlight the an-
swer distinctly. Maintain clarity and con-
ciseness throughout the explanation.[ZERA-
generated reasoning exemplar, 1-shot] By fol-
lowing this guide, maintain natural reasoning
while ensuring the final output aligns with
the required structure. Focus on logical flow
and seamless progression toward deriving the
proper conclusion.

Shown: GSM8K dataset. Prompt refinement progresses toward structured, evaluation-aligned formats. At later stages, ZERA
introduces self-generated reasoning exemplars (e.g., 1-shot) tailored to task feedback.
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Table 15: Prompt Structure Evolution Across Iterations (Example: SAMSum)

Iteration System Prompt User Prompt

1 You are a helpful assistant. Hello! I’m here to help you.
2 You are an AI assistant skilled at produc-

ing concise, factual summaries of con-
versations. Summarize accurately using
only explicit details, avoiding specula-
tion and inference about unstated moti-
vations or beliefs.

Summarize the following conversation in a sin-
gle concise paragraph, clearly stating only the
explicitly mentioned facts and key details. Do
not speculate about unmentioned reasons, emo-
tions, or motivations. [ZERA-generated reason-
ing exemplar, 2-shot] Now summarize this con-
versation:

6 You are an AI assistant adept at
accurately summarizing short
conversations. Focus solely on
explicitly mentioned factual details
such as people’s names, specific items,
tasks to perform, exact locations,
precise time references, and explicit
instructions. Strictly avoid
speculation, inference, humor, or
assumptions about unstated
motivations or implicit meanings.
Provide summaries that are concise,
factual, and explicitly reflect only the
provided conversation.

Summarize the following conversation explic-
itly, accurately, and concisely. Clearly state
only explicitly mentioned information and
include specific people, items, explicit tasks
requested, exact locations, and precise in-
structions or timelines. Do not speculate
or infer unstated emotions, motivations, or
beliefs. [ZERA-generated reasoning exem-
plar, 3-shot] Now summarize this conversa-
tion explicitly and concisely. Explicitly iden-
tify people, clearly stated locations, explic-
itly requested items or tasks, and timelines.
Avoid speculation, inference, humor, or emo-
tional interpretation not explicitly mentioned.
Double-check exact locations explicitly stated
to avoid confusion or misreporting. Preserve
explicit ordering of requested tasks and in-
structions.

Shown: GSM8K dataset. Prompt refinement progresses toward structured, evaluation-aligned formats. At later stages, ZERA
introduces self-generated reasoning exemplars (e.g., 1-shot) tailored to task feedback.
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