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MISE: Meta-knowledge Inheritance for Social Media-Based
Stressor Estimation

Anonymous Author(s)∗

ABSTRACT
Stress haunts people in modern society, which may cause severe
health issues if left unattended. With social media becoming an
integral part of daily life, leveraging social media to detect stress
has gained increasing attention. While the majority of the work
focuses on classifying stress states and stress categories, this study
introduce a new task aimed at estimating more specific stressors
(like exam, writing paper, etc.) through users’ posts on social media.
Unfortunately, the diversity of stressors with many different classes
but a few examples per class, combined with the consistent arising
of new stressors over time, hinders the machine understanding
of stressors. To this end, we cast the stressor estimation problem
within a practical scenario few-shot learning setting, and propose
a novel meta-learning based stressor estimation framework that is
enhanced by ameta-knowledge inheritance mechanism. This model
can not only learn generic stressor context through meta-learning,
but also has a good generalization ability to estimate new stres-
sors with little labeled data. A fundamental breakthrough in our
approach lies in the inclusion of the meta-knowledge inheritance
mechanism, which equips our model with the ability to prevent
catastrophic forgetting when adapting to new stressors. The ex-
perimental results show that our model achieves state-of-the-art
performance compared with the baselines. Additionally, we con-
struct a social media-based stressor estimation dataset that can help
train web mining models to facilitate human well-being.

CCS CONCEPTS
• Human-centered computing→ Social media; • Applied com-
puting→ Psychology.
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Figure 1: Two posts. The first user’s stress is caused by exams.
The second user’s stress is caused by writing paper. While
prior studies may classify both posts as belonging to the
broader category of school-related stress, our work aims to
estimate the specific causes of stress (i.e., exams and writing
paper), in order to provide more targeted support for stress
relief.

1 INTRODUCTION
With the rapid development of economy and society, people are
under unprecedented psychological stress, coming from various
aspects of life. As excessive stress without timely relief can nega-
tively affect people’s thoughts, feelings, behaviors, and physical and
mental health [10], estimating and managing stress have become a
big issue in the contemporary society.

Beyond traditional counseling and questionnaires based stress
detection methods [3, 6, 12, 17], leveraging social media for stress
detection has gained considerably increased attention in recent
years. Through analyzing people’s free-styled linguistic expressions
and social behaviors, it is feasible to automatically and timely detect
stress.

So far, the majority of social media-based stress detection work
focuses on classifying user’s stress state (i.e., stressed or non-
stressed) [13, 14, 48, 50] and stress category (i.e., stress is classified
into several broader categories, such as school, work, financial state,
etc.) [22, 25, 56].

The aim of this study is to go further and identify users’ specific
stressors. We argue that in order to provide effective treatment for
stress relief, it is necessary to have a thorough understanding of the
specific causes of stress. Psychological research has demonstrated
that stress arises from stressors [27]. Figure 1 shows two posts, from
which we can know that the first user’s stress comes from exams,
and the second user’s stress comes from writing paper. Accurately
identifying stressors such as exams and writing paper is crucial in
offering targeted support for stress relief.

Nevertheless, building an effective stressor estimation frame-
work is non-trivial, facing two typical challenges. 1) First, users’
stressors are quite diverse. Data for model’s training exhibits the
characteristic of having many different classes but a few examples
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per class. 2) Second, new stressors incessantly appear as time pro-
gresses (e.g., covid-19 is a stressor appearing after 2019). The model
must have the ability to learn the latest stressors quickly.

As traditional supervised learningmethods require a large amount
of data for supervised training to recognize each stressor, they
are not suitable for new stressors and long-tailed stressors with
scarce data. Hereby, we cast the problem of social media-based
stressor estimation within a few-shot learning setting. Few-shot
learning intends to train a deep learning model to recognize new
classes with only a few labeled training examples, given prior ex-
perience with very similar tasks for which we have large training
examples available [45, 47]. Previous work has suggested an ef-
fective way to acquire knowledge from a few examples via meta-
learning [18, 38, 53, 58]. Meta-learning (often described as “learning
to learn”) advocates to learn at two levels, each associated with
different time scales. The first is to quickly acquire task-specific
knowledge within each separate task, and the second is to slowly
summarize different task-specific knowledge to get the generic
knowledge across the tasks. With the internal representation that
is broadly suitable for many tasks, the obtained meta-model can
thus quickly adapt to new environments through fine-tuning with
a few labeled samples when facing an unseen task.

This motivates us to build a meta-learning based stressor estima-
tion framework that is trained with past data, and can effectively
be adopted to estimate new stressors with only a small number
of training examples. Inspired by human’s fast learning ability
of entering the task with a large amount of prior knowledge en-
coded in the brains and DNA [37], we enhance meta-learning with
a meta-knowledge inheritance mechanism, which defines a
novel meta-knowledge inheritance loss and revised overall training
objective to inherit knowledge from the prior meta-model without
catastrophic forgetting for better model adaption.

In summary, the paper makes the following three contributions.
• From the task perspective, we propose a new task aimed at

enhancing human well-being: social media-based practical
scenario few-shot stressor estimation task. Unlike previous
stress classification tasks, this task focuses on estimating
specific causes of stress, enabling us to provide more tar-
geted support for stress relief. We define this task with
challenges that are practical.

• From the method perspective, we introduce a novel meta-
learning-based stressor estimation framework, which in-
corporates a specially designed meta-knowledge inheritance
mechanism. Our model exhibits strong generalization abil-
ity, enabling it to estimate new stressors with a little labeled
data and avoid the problem of catastrophic forgetting.

• From the data perspective, we create a stressor-oriented
dataset that contains 4,254 manually annotated posts. Our
publicly available data would enable future research facili-
tating human well-being in different fields. The dataset and
code will be released on publication 1.

The performance study on the constructed dataset shows that
the proposed stressor estimation framework can achieve over 74.2%
F1-score, which significantly outperforms both traditional and few-
shot sequence labeling baselines.

1anonymous (Note that applicants need to sign an agreement about ethics)

As stress-causing health problems have continued to increase
all over the world, we hope this work could stimulate further in-
terests in leveraging social media as data sources and web mining
approaches to help address this critical issue.

2 RELATEDWORK
2.1 Stress Detection on Social Media
Stress State Classification These studies aim to classify whether
an individual is stressed or not and the level of stress [26, 39].
Xue et al. [61] proposed a framework for chronic stress detection
by aggregating individual tweet’s stress detection results. Saha
and Choudhury [39] presented machine learning techniques to
assess how the stress of campus population changes following
an incident of gun violence. TensiStrength [48] employed a lexical
approach and a set of rules to classify direct and indirect expressions
of stress or relaxation. Based on this, Gopalakrishna et al. [13]
introduced word sense disambiguation by word sense vectors to
improve the performance of TensiStrength. Guntuku et al. [14]
explored multiple domain adaptation algorithms to adapt user-level
Facebook models to Twitter language. Wang et al. [57] studied
personalized stress classification step by step from the generic mass
level, group level, to final individual level. Turcan et al. [50] explored
multi-task learning to co-train stress classification with emotion
classification. Alghamdi et al. [1] instructed the large language
model to classify stress state based on post content summary.

Stress Category Classification These studies aim to classify
individual’s stressful states in a preset stress category, e.g., study,
work, and financial state [65]. Xue et al. [60] investigated a num-
ber of features and employed Gaussian Process to classify stress
in different categories. Based on this, Lin et al. [23] further in-
troduced image feature and social interaction feature to improve
performance. Zhao et al. [65] considered content, posting, inter-
action, and comment-response features to detect stress category
with support vector machine. Lin et al. [25] proposed a multi-task
convolutional neural networks model to classify stress category and
subject. Li et al. [22] built five stress-related lexicons corresponding
to the five stress categories and employed a Chinese natural lan-
guage processing tool to analyze stress. Cao et al. [4] pre-trained
BERT with a stress post classification task and proposed a multi-
attention model to detect chronic stress in each category. Wang et
al. [56] proposed to classify rarely appeared stress categories with
GCN and Mixture of Experts mechanism.

Although these studies have explored states and categories of
stress, they have not estimated specific causes of stress, which are
critical to subsequent stress relief. Therefore, we further propose
to leverage social media for stressor estimation. Moreover, prior
studies are scarcely feasible in real world with incessantly emerging
new stressors. They rely on a predefined set of categories, being
unable to adapt to latest stressors. In this paper, we propose a meta-
learning stressor estimation framework. Specifically, The meta-
learning process allows the framework to be trained on the past
time periods and quickly applied to the latest time period with a
few labeled samples.

2
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2.2 Sequence Labeling
Sequence labeling (SL) [41] is the process of efficiently assigning
labels to each individual words within a given sequence. A common
labeling formats used in this context is BIOES [62], where ‘B’ sig-
nifies ‘Begin’, ‘I’ denotes ‘Intermediate’, ‘O’ represents ‘Other’, ‘E’
corresponds to ‘End’, and ‘S’ indicates ‘Single’. In the early stages of
research, this task heavily relied on manually engineered features
and conditional random fields [20]. However, recent advancements
in deep learning have ushered in a revolution in sequence labeling.
Modern models like Bidirectional LSTMs [19], Transformers [52],
and BERT-based architectures [51] have consistently achieved state-
of-the-art performance, transforming the landscape of sequence
labeling and extending its applicability to various natural language
processing tasks.

Named Entity Recognition (NER) [34] is a common sequence
labeling task, aimed at identifying and categorizing entities, such
as names of persons, organizations, and locations, within text [33,
35, 42, 43]. However, NER tasks typically involve the identification
and further classification of named entities, which differs from the
objectives of our application-oriented stressor estimation. Our focus
lies in pinpointing the specific causes of stress to enable targeted
stress relief, obviating the need for further classification.

Our work focuses on the real-world stressor estimation task,
which presents unique challenges beyond traditional SL or NER
tasks. 1) In the context of social media, stressors are more diverse,
casual, and personalized, encompassing not only named entities but
also gerunds (e.g., partying) and phrases (e.g., working overtime).
The lack of strict structure and diverse linguistic expressions in
social media posts necessitates the exploration of robust and adapt-
able natural language processing techniques. 2) Furthermore, our
primary concern is to address the issue of catastrophic forgetting
that arises when new stressors are learned over time. Handling
this continual learning scenario is non-trivial and requires careful
consideration in designing our method. This stands in contrast to
most few-shot SL or NER tasks, which typically concentrate solely
on performance improvements on new classes.

2.3 Meta-learning
In the literature, meta-learning has demonstrated good strength
in dealing with few-shot learning problems. It learns the common
parts of different tasks, and then adapts the obtained meta-model to
new tasks rapidly with a few training examples [58]. Meta-learning
approaches generally fall into three categories: model-based, metric-
based, and optimization-based.

(1) Model-based meta-learning intends to design a meta-learner
model that can update the parameters rapidly with a few training
steps [36, 40]. For instance, Santoro et al. [40] trained a Memory-
Augmented Neural Network as a meta-learner, which accumulated
knowledge about previous tasks in an external memory that can
fastly adapt to new tasks. (2) Metric-based meta-learning learn a
generalized metric to measure the distance between samples in
a feature embedding space [45, 47, 54]. For instance, Prototypical
Network [45] averaged the embeddings of the labeled examples
as the prototype for every class, and then measured the distance

LatestPast

Training data Testing dataAdaption data

…

Figure 2: Schematic diagram of our practical scenario few-
shot stressor estimation task, which focuses on the practical
scenario that new stressors continue to emerge over time
and some long-tailed stressor has scarce labeled data. Specif-
ically, this scenario needs to train models with past data and
effectively estimate latest stressor with a few adaption data.

between each test instance and each prototype. (3) Optimization-
based meta-learning strives to learn well-initialized model param-
eters that can generalize better to similar tasks [8, 9, 37, 38]. For
instance, MAML [8] trained model’s parameters through double
gradient updates, so that several gradient steps with a few labeled
samples can achieve good results on new tasks. Among these three
approaches, the optimization-based approach is more suitable for
our problem. This is because the optimization-based approach is
model structure-independent. Unlike the model-based and distance-
based approaches, it does not require an additional memory module
to store historical knowledge or a specialized relational module to
compare the query set with the support set.

In this study, we build a meta-learning-based stressor estima-
tion framework. To avoid catastrophic forgetting [63] when learn-
ing new stressors, we expand upon the optimization-based meta-
learning by introducing a meta-knowledge inheritance mechanism.
Our approach exhibits significant differences from prior meta-
learning studies, as we define a novel meta-knowledge inheritance
loss and a revised overall training objective for better meta-model
adaption.

3 PROBLEM DEFINITION
Given a post 𝑋 = {𝑥1, 𝑥2, · · · , 𝑥𝑛}, where 𝑥𝑖 denotes the 𝑖-th word
in the post. Targeting to identify specific stressors that cause user
stress, stressor estimation can be generalized as a sequence labeling
problem. To achieve this, our framework needs to learn a mapping
function 𝐹 (𝜙) : 𝑋 → 𝑌 that takes 𝑋 = {𝑥1, 𝑥2, · · · , 𝑥𝑛} as the input
and output the corresponding label sequence 𝑌 = {𝑦1, 𝑦2, · · · , 𝑦𝑛}
encoded with BIOES (B-Begin, I-Intermediate, O-Other, E-End, S-
Single). For instance, given the input sequence “The dual stress of
losing job and buying a house make me almost vomit blood!”, we
can obtain stressors “losing job” and “buying a house” from the
corresponding label sequence “O,O,O,O,B,E,O,B,I,E,O,O,O,O,O,O”.

In this paper, we focus on the practical scenario that new stres-
sors continue to emerge over time and some long-tailed stressor
has scarce labeled data. This requires the capability of learning to
identify such stressors with just a few labeled samples. We repre-
sent the posts from past time periods with 𝐷𝑝 = {𝑑1, 𝑑2, · · · , 𝑑𝑚}
and the posts from the latest time period with 𝐷𝑙 = {𝑑𝑚+1}. Here,
𝑑𝑖 = {𝑋1, 𝑋2, · · · , 𝑋𝑎} represents the post set within the 𝑖-th time
period, and we define a half-year as a time period2.

2The selection of the half-year time period was based on its unique ability to strike a
balance between capturing both historical stressors and new stressors. By choosing a
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Figure 3: Overview of our proposed framework. (a) The basic estimator. (b) The meta-training process. (c) The meta-testing
process with meta-knowledge inheritance mechanism.

The aim of our work is to build a stressor estimation framework,
which is trained on past time periods 𝐷𝑝 and able to quickly adapt
to estimate new stressors on latest time period 𝐷𝑙 . However, due
to the limited labeled support set in 𝐷𝑙 , optimizing a satisfactory
supervised learning framework is challenging. To address this, we
perform meta-learning on 𝐷𝑝 to estimate generic knowledge that
can be applied to perform better few-shot learning. To facilitate
this process, we design a meta-knowledge Inheritance mechanism
that inherit prior knowledge to prevent catastrophic forgetting.

4 METHODOLOGY
Figure 3 illustrates the overall framework of our meta-learning
based stressor estimation enhanced with meta-knowledge inheri-
tance mechanism. Our framework contains three parts: basic esti-
mator, meta-training process, and meta-testing process. The basic
estimator is employed to estimate stressors on social media. The
meta-training process is designed to get a meta-model which learns
the generic stressor contexts. The meta-testing process is designed
to test our model for identifying new and unseen stressors with a
few labeled samples. In this process, we propose a meta-knowledge
inheritance mechanism to avoid catastrophic forgetting through
inheriting knowledge from the prior meta-model.

4.1 Basic Estimator
The basic estimator (Figure 3.(a)) is responsible for post encod-
ing and stressor estimation. Since pre-trained language models
(PLMs) have strong semantic and context learning capabilities, we
employ an effective pre-trained languagemodel RoBERTa [28] to en-
code our post. Specifically, we input post 𝑋 = {𝑥1, 𝑥2, · · · , 𝑥𝑛} into
RoBERTa to obtain the text representation 𝐻 = {ℎ1, ℎ2, · · · , ℎ𝑛}.

half-year time period, we ensure that each interval contains a significant amount of
historical stressor data, allowing us to analyze the ability of learning common stressor.
Simultaneously, it also incorporats recent stressors, which are vital in assessing the
system’s ability to adapt and learn from new stressors.

Constraints are needed to ensure that the predicted label se-
quences are reasonable, such as ensuring that there will be no
prediction of “...B,B...” (i.e., two begin labels are connected in the
prediction label sequence). Since Conditional Random Field (CRF)
[20] is effective to learn these constraints of the label sequences,
we employ CRF to decode:

𝑝 (𝑌 | 𝐻 ) =
exp

(∑𝛼
𝑖=0𝑈 (𝑦𝑖 , ℎ𝑖 ) +

∑𝛼−1
𝑖=0 𝑇 (𝑦𝑖 , 𝑦𝑖+1)

)
∑

𝑦′∈Y(𝐻 ) exp
(∑𝛼

𝑖=0𝑈
(
𝑦′
𝑖
, ℎ𝑖

)
+∑𝛼−1

𝑖=0 𝑇
(
𝑦′
𝑖
, 𝑦′

𝑖+1

)) ,
(1)

where𝑈 denotes the emission function that represents the proba-
bility of predicting𝑦𝑖 .𝑇 is the transitionmatrixwhich represents the
probability that a transition from 𝑦𝑖 to 𝑦𝑖+1 occurs. Y(𝐻 ) denotes
the set of all possible label sequences for 𝐻 . 𝑌 is the corresponding
label sequence to post 𝑋 . The loss function is defined as:

L = − log𝑝 (𝑌 | 𝐻 ), (2)

4.2 Meta-learning Enhanced with
Meta-knowledge Inheritance Mechanism

Since new stressors emerge as time progress and their labeled data
are always limited, our model is expected to learn to estimate new
stressors with a few labeled samples. Therefore, a meta-learning
process (Figure 3.(b) and (c)) with our specially designed meta-
knowledge inheritance mechanism is deployed.

4.2.1 Meta-Training. The meta-training is deployed on past time
periods 𝐷𝑝 with relatively large number of labeled data. For each
training epoch, a meta-task 𝜏𝑝 is constructed by randomly sampling
a time period 𝑑𝑖 from the training set𝐷𝑝 , and the𝐾 labeled samples
in 𝑑𝑖 are chosen to serve as the support set 𝑆 , as well as a part of
remainder of 𝑑𝑖 are chosen to act as the validation set 𝑉 .

Inspired by MAML [8], the two-level learning are applied to train
a meta-model that can be quickly adapted to unseen new tasks. Let

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

MISE: Meta-knowledge Inheritance for Social Media-Based Stressor Estimation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

𝜃 denote the model parameter. For each meta task 𝜏𝑝 , we first feed
support set 𝑆 to the model and calculate the loss L𝜏 (𝜃 ) on 𝑆 to
update 𝜃 through gradient descent:

𝜃 ′𝜏 = 𝜃 − 𝛼∇𝜃L𝜏 (𝜃 ), (3)

where 𝛼 is the learning rate of first level meta-learning. 𝜃 ′𝜏 denotes
the updated model parameter. This first process is to update the
task-specific model, which quickly acquires task-specific knowl-
edge (such as remembering the specific stressors and their context)
through minimizing the loss on 𝑆 . Secondly, we update the meta-
model through the loss L𝜏

(
𝜃 ′𝜏
)
on validation set 𝑉 ,

𝜃 ← 𝜃 − 𝛽∇𝜃
∑︁
𝜏∈T
L𝜏

(
𝜃 ′𝜏
)
, (4)

where 𝛽 is the learning rate of the second level meta-learning. This
second process is to get the meta-model, which slowly summarizes
task-specific knowledge as generic knowledge (such as summariz-
ing generic stressor context) through minimizing the loss on 𝑉 .
After sufficient training over meta-training tasks, the meta-model
can be quickly adapted for stressor estimation over meta-testing
tasks.

4.2.2 Meta-Testing. The meta-testing is performed on the latest
time period𝐷𝑙 with a few labeled samples. we apply the same epoch-
constructed mechanism to test whether our model can indeed adapt
quickly to estimate the latest stressor. For each testing epoch, we
construct a meta-task 𝜏𝑙 by randomly sampling the support set 𝑆
and query set 𝑄 from 𝐷𝑙 . The support set is employed to optimize
the meta-model for adapting the new task. The query set is to test
the optimized meta-model. The result is defined as the average
performance across all testing epochs.

Meta-knowledge Inheritance Mechanism.When adapting
the meta-model to a new testing task with a few labeled samples,
it will suffer from the problem of catastrophic forgetting [11],
i.e., the learning of a new task may cause the model to forget the
knowledge learned from previous tasks. We argue that prior knowl-
edge is important for estimating stressors in the latest time periods.
Because in addition to new stressors and rare stressors, there are
also some common stressors (e.g., exam) in the latest time period.
Knowledge from previous tasks can help our model effectively esti-
mate these common stressors, so it is essential to avoid catastrophic
forgetting.

We propose a meta-knowledge inheritance mechanism to gener-
ate a inheritor-model, which consolidates the knowledge from the
meta-model when adapting to new testing tasks. Specifically, we
define a knowledge inheritance loss for meta-knowledge consolidat-
ing. The core idea of the knowledge inheritance loss is to make the
inheritor-model imitate the prediction results of the meta-model
on the query set𝑄 . These prediction results are represented by soft
labels [16], which are formulated as the predicted stressor label
probability:

𝑃𝑀
𝑏
(𝑒𝑖 , 𝑡) =

exp [𝑓𝑏 (𝑒𝑖/𝑡)]∑4
𝑐=0 exp [𝑓𝑐 (𝑒𝑖/𝑡)]

, (5)

where 𝑒𝑖 denotes the representation of word 𝑥𝑖 in post 𝑋 𝑗 from
query set𝑄 for meta-testing task 𝜏𝑙 . 𝑡 is the temperature parameter
to soften the peaky softmax distribution. 𝑓𝑐 (𝑒𝑖 ) represents the logit

Algorithm 1 Meta-learning Enhanced with meta-knowledge In-
heritance Mechanism
Require: 𝛼 , 𝛽 : the learning rates.

while not done the meta-training do
Sample batch of meta-task 𝜏𝑝 from 𝐷𝑝

for Each 𝜏𝑝 do
Sample a support set 𝑆 and a validation set𝑉
Evaluate L𝜏 (𝜃 ) with data 𝑆
Compute task-specific parameters with gradient descent: 𝜃 ′𝜏 = 𝜃 −
𝛼∇𝜃 L𝜏 (𝜃 )

end for
Updating meta-model’s parameters with data𝑉 from each meta-task:
𝜃 ← 𝜃 − 𝛽∇𝜃 ∑

𝜏 ∈T L𝜏
(
𝜃 ′𝜏

)
end while
while not done the meta-testing do

Sample batch of meta-task 𝜏𝑙 from 𝐷𝑙

for Each 𝜏𝑙 do
Sample the support set 𝑆 and the query set𝑄
Evaluate L(𝜃 ) with data 𝑆
Inherit knowledge from the meta-model with meta-knowledge In-
heritance loss:
𝑃𝑀
𝑏
(𝑒𝑖 , 𝑡 ) =

exp[ 𝑓𝑏 (𝑒𝑖 /𝑡 ) ]∑4
𝑐=0 exp[𝑓𝑐 (𝑒𝑖 /𝑡 ) ]

,

L𝑘𝑖 (𝜃 ) = 𝑡2
∑

𝑋 𝑗

∑
𝑒𝑖

∑4
𝑐=0 𝑃

𝑀
𝑐 (𝑒𝑖 , 𝑡 ) log

(
𝑃𝑀
𝑐 (𝑒𝑖 ,𝑡 )
𝑃𝑇𝑐 (𝑒𝑖 ,𝑡 )

)
Calculate the overall loss: Ltotal (𝜃 ) = (1 − 𝜆)L(𝜃 ) + 𝜆L𝑘𝑖 (𝜃 )
Update the inheritor-model’s parameters via optimizing Equation:
𝜃∗ = 𝜃 − 𝛼∇𝜃 Ltotal (𝜃 )

end for
end while

score that 𝑒𝑖 achieves on label 𝑐 . The knowledge inheritance loss is
defined as follows:

L𝑘𝑖 (𝜃 ) = 𝑡2
∑︁
𝑋 𝑗

∑︁
𝑒𝑖

4∑︁
𝑐=0

𝑃𝑀𝑐 (𝑒𝑖 , 𝑡) log
(
𝑃𝑀𝑐 (𝑒𝑖 , 𝑡)
𝑃𝑇𝑐 (𝑒𝑖 , 𝑡)

)
, (6)

where 𝑃𝑀𝑐 and 𝑃𝑇𝑐 denote the predicted distributions of meta-
model and inheritor-model, respectively. At the same time, we em-
ploy the CRF loss on support set 𝑆 to make inheritor-model learn
task-specific knowledge. Then, we provide the overall learning ob-
jective Ltotal (𝜃 ), which is a summation of knowledge inheritance
loss L𝑘𝑖 (𝜃 ) on query set and the CRF loss on support set as follows:

Ltotal (𝜃 ) = (1 − 𝜆)L(𝜃 ) + 𝜆L𝑘𝑖 (𝜃 ), (7)

where 𝜆 denotes a trade-off parameter for the two losses. The
inheritor-model for meta-testing tasks is initialized with the meta-
model obtained by meta-training, and further updated as follows:

𝜃∗ = 𝜃 − 𝛼∇𝜃Ltotal (𝜃 ), (8)

where 𝛼 denotes the learning rate. Finally, the inheritor-model
is deployed to estimate stressors in the query set of meta-testing
tasks. We summarize the meta-training and meta-testing process
as shown in Algorithm 1.

Summary.Our approach exhibits significant differences from ex-
isting meta-learning studies, as we define a novel meta-knowledge
inherit loss and a revised overall training objective for better meta-
model adaption. In other words, equations (5)(6)(7)(8) in our ap-
proach are core innovations and differences compared with existing
meta-learning approaches.
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5 EXPERIMENT
5.1 Dataset Construction and Statistics
One significant challenge for this new task is the lack of avail-
able dataset. The most relevant datasets we discovered, such as
Dreaddit [49] for stress state detection and Plscd [56] for stress
category classification, only provide labels indicating whether a
post expresses stress and its broad category (e.g., work, study, finan-
cial state). Unfortunately, these datasets do not include the specific
stressor labels that are necessary for our stressor estimation task.
To overcome this challenge, we build a social media-based stressor
estimation dataset. In order to facilitate web mining research for
human well-being, we will release our dataset on publication3.

The dataset is crawled from Weibo. Since Weibo is one of the
most popular social media platforms worldwide, with 249 million
daily active users [44]. Specifically, the data labeling process is
carried out as follows:

Firstly, we employ the retrieval function to get the stressful posts.
The retrieval term is user’s self-report, such as “I, stressed”. This
self-report ensures that the posts contain stress expression [24].

Then, we hire six master students who major in psychology
and are active on social media to annotate the stressor. Annotators
are asked to read posts carefully and understand the semantics of
posts to label stressors. We pay annotators $0.15 per post. There are
situations in which the user only expresses that he/she is stressed
without mentioning the source of the stress. In this case, no annota-
tion is made. Note that the annotators are asked to further remove
the following types of noise data:

• Others feel stressed, e.g., “Is it really stressful to chat with
me? Why are they so easily nervous?”

• Advertise, e.g., “#Loan# #Internet Loan# #Universal Gold#
Can’t pay your monthly bills? Repayment stress? Poke me to
get the universal gold”

• Stress of the past, e.g., “Every time I pass by here, I think of
the time when I was preparing for the postgraduate entrance
examination. At that time, I was so stressed.”

• Future plan, e.g., “I hope that in the future I will never get
married because of age and stress!”

• Lyrics or verses, e.g., “Some days, I just wanna leave the
negativity in my head. I just want relief from my stress (Song
Lyrics)”

Each post is analyzed by three different annotators. Only if their
annotated stressors are consistent, the stressor is used as the an-
notation result. If their annotated stressors are inconsistent, all
different stressors are kept pending further annotation.

Finally, the annotation progress is completed by a psychology
expert from the Department of Psychology. The main work of the
expert can be summarized in two parts: 1) checking the posts with
consistent annotation results and 2) giving an expert opinion as the
final annotation for those posts with inconsistent annotation.

In total, we obtain 4,254 labeled posts from June 2018 to June
2022. The average inner-agreement (i.e., Cohen’s Kappa) between
annotators is 0.71, indicating good agreement. The data set is di-
vided into different time periods based on half-year intervals. We
have seven past time periods, labeled as 𝐷𝑝 , spanning from June

3Our dataset could be requested on https://github.com/anonymous

2018 to December 2021. Additionally, we have one latest time period,
denoted as 𝐷𝑙 , covering January 2022 to June 2022.

5.2 Baselines
We compare our method with the following traditional sequence
labeling baselines:

• LSTM-CRF [19]. A classical sequence labeling method with
bidirectional LSTM and Conditional Random Field.

• CNN-CRF [32]. Another classical sequence labeling with
bidirectional LSTM, CNN, and CRF.

• SED [2]. It employs attention mechanism to get text repre-
sentation and LSTM to decode the representation.

• DetIE [51]. It freezes part of BERT and trains the rest part
combined with fully connected layer.

• CRUP [29]. It enhances the representations through con-
trastive learning for sequence labeling.

These traditional baselines are not specifically designed for few-
shot learning. For fair comparison with our meta-learning model,
all these baselines also only take 𝐾 samples (i.e., support set in
meta-task) to learn to estimate stressors in the latest time period.
Specifically, we utilize all the past time periods data 𝐷𝑝 in the
training stage. Then the trained model is fine-tuned with𝐾 samples
from 𝐷𝑙 . Lastly, we test the fine-tuned model on the latest time
period 𝐷𝑙 (except the 𝐾 samples).

We consider a practical scenario that new stressors continue to
emerge over time and some long-tailed stressor has scarce labeled
data. Thus we employ the following few-shot sequence labeling
baselines to further verify the effectiveness:

• SimBERT [7]. It employs BERT to get token representation
and predict labels through finding the most similar labeled
token in the support set.

• Ma21 [31]. It casts sequence labeling as machine reading
comprehension problem and generates the labeling types
as questions.

• ConVEx [15]. It proposes a pairwise cloze task to pre-training
model with Reddit data and then fine-tune the pre-trained
model with a few labeled samples.

• ESD [55]. It formulates the sequence labeling problem as
classification of each span and combines the idea of Proto-
typical Network [45] for classification.

• BDCP [59]. It introduces entity boundary discriminative
module to provide a highly distinguishing boundary repre-
sentation space for labeling.

5.3 Experiment Details
For each meta-task of meta-learning, we sample 3, 5, or 10 posts as
the support set (i.e., 3-shot, 5-shot, or 10-shot) and 15 posts as the
validation or query set. The first level learning rate 𝛼 is set to 2e-5.
The second level learning rate 𝛽 is 5e-5. The max training epoch is
set to 5000. We report the average performance from 50 random
testing epochs. AdamW [30] is adopted as our optimizer. 10% drop
out [46] is deployed to avoid overfitting. The temperature parameter
𝑡 is set to 5 and the trade-off parameter 𝜆 is set to 0.2. Experiments
are run on a Linux server with RTX 2080 GPUs. Pytorch 1.71 is
used to construct the models. We employ transformers 4.18 to
load RoBERTa [28] without pooling layer as PLM. Our model has
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Table 1: Main Results. The first part lists the performance of traditional sequence labeling baselines. The second part shows the
performance of few-shot baselines. MISE denotes our method.

Method 3-shot 5-shot 10-shot

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

LSTM-CRF [19] 0.5684 0.5870 0.5775 0.5674 0.6081 0.5829 0.5778 0.6298 0.5986
CNN-CRF [32] 0.5643 0.6126 0.5862 0.5752 0.6134 0.5958 0.5895 0.6330 0.6014
SED [2] 0.5761 0.6310 0.6023 0.5891 0.6385 0.6056 0.5982 0.6507 0.6311
DEtIE [51] 0.5996 0.6333 0.6164 0.6055 0.6503 0.6238 0.6126 0.6854 0.6538
CRUP [29] 0.6007 0.6364 0.6196 0.6120 0.6528 0.6263 0.6230 0.6925 0.6563

SimBERT [7] 0.6086 0.6417 0.6248 0.6359 0.6791 0.6543 0.6538 0.6910 0.6766
Ma21 [31] 0.6274 0.6204 0.6239 0.6463 0.6310 0.6384 0.6742 0.6601 0.6671
ConVEx [15] 0.6216 0.6422 0.6317 0.6457 0.6673 0.6562 0.6731 0.6956 0.6881
ESD [55] 0.6413 0.6612 0.6509 0.6582 0.6897 0.6745 0.6814 0.7020 0.6902
BDCP [59] 0.6360 0.6573 0.6459 0.6498 0.6759 0.6627 0.6734 0.6948 0.6855

MISE (Ours) 0.6825 0.7029 0.6914 0.7053 0.7366 0.7212 0.7332 0.7541 0.7420

Table 2: Ablation Study. M denotes the entire meta-learning process. I denotes the meta-knowledge inheritance mechanism.

Method 3-shot 5-shot 10-shot

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

MISE 0.6825 0.7029 0.6914 0.7053 0.7366 0.7212 0.7332 0.7541 0.7420

w/o M 0.6178 0.6403 0.6289 0.6419 0.6743 0.6570 0.6689 0.6843 0.6785
w/o I 0.6392 0.6713 0.6596 0.6628 0.6954 0.6807 0.6975 0.7182 0.7068

101.77M parameters. The total computational time is 2.2 hours. As
we want to estimate the specific stressor with clear boundaries, we
employ token-level precision, token-level recall, and token-level F1
score to measure the performance.

5.4 Main Results
Table 1 reports the performance of all methods. The first part shows
the performance of traditional sequence labeling methods. The
average performance of these methods is lower than 63%, which
indicates that these methods are not good at estimating new stressor
with a few labeled samples.

The second part lists the performance of few-shot baselines. We
can see that they outperform traditional methods with 5% average
improvement, which suggests that the meta-learning or few-shot
learning process can significantly enhance the estimation perfor-
mance in the latest time period.

Our method MISE achieves over 74.2% in F1-score, with over
4.0-5.1% improvement compared with the best baseline. It illustrates
that our meta-learning method is effective in estimating new stres-
sor with a few labeled samples. We attribute the improvements to
the fact that our method is well-designed with the meta-learning
process and meta-knowledge inheritance mechanism. Furthermore,
our model’s standard deviation is 0.012, 0.013, and 0.019 for 3-shot,
5-shot, and 10-shot settings, indicating good robustness.

There is a general trend of improvement in performance as we
move from traditional baselines to few-shot baselines, and then to
our MISE method. The improvement in F1-scores from 3-shot to
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Figure 4: Parameter Study on 𝜆 and 𝑡 .

10-shot learning scenarios suggests that having more support set
examples improves the model’s performance, which is a common
trend in few-shot problem.

5.5 Ablation Study
To analyze the effect of different components in MISE, we construct
ablation experiments as shown in Table 2. The performance of MISE
will drop over 6.2% without the entire meta-learning process, which
verifies that meta-learning can effectively make our model learn
to identify new stressors with a few labeled samples. The average
decline in performance will be 3.5% without the meta-knowledge
inheritance mechanism. This demonstrates that meta-knowledge
inheritance enables our model to effectively avoid catastrophic
forgetting and enhance model performance.
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Table 3: Catastrophic Forgetting Study. Allmethods are tested
on the past timeperiods after adaptation to latest time period.

Method Precision Recall F1-score

LSTM-CRF [19] 0.6674 0.6643 0.6665
CNN-CRF [32] 0.6740 0.6628 0.6687
SED [2] 0.6921 0.6747 0.6854
DelIE [51] 0.7137 0.7141 0.7139
CRUP [29] 0.7110 0.7163 0.7135
SimBERT [7] 0.6942 0.6748 0.6836
Ma21 [31] 0.7039 0.6902 0.6965
ConVEx [15] 0.7217 0.7089 0.7141
ESD [55] 0.7175 0.7055 0.7106
BDCP [59] 0.7146 0.7074 0.7113

MISE (ours) 0.7952 0.8015 0.7983

Table 4: Past Time Periods Performance Study. All methods
are tested under traditional supervised scenario.

Method Precision Recall F1-score

LSTM-CRF [19] 0.7652 0.7578 0.7615
CNN-CRF [32] 0.7719 0.7616 0.7667
SED [2] 0.7835 0.7573 0.7702
DelIE [51] 0.8016 0.8034 0.8023
CRUP [29] 0.8028 0.8069 0.8054
SimBERT [7] 0.7904 0.7752 0.7781
Ma21 [31] 0.7761 0.7894 0.7827
ConVEx [15] 0.7993 0.8018 0.8006
ESD [55] 0.8025 0.8065 0.8047
BDCP [59] 0.8021 0.8053 0.8040

MISE (ours) 0.8182 0.8235 0.8206

5.6 Catastrophic Forgetting Study
To evaluate the effectiveness of MISE in addressing the catastrophic
forgetting problem, we conduct an experiment that tests model’s
performance on previous tasks after it learns a new task. Firstly,
we randomly select 20% of the data from past time periods 𝐷𝑝 and
utilize 80% of the remaining data to train the model. Next, we adapt
the model using a few labeled samples from latest time period 𝐷𝑙 .
Finally, we test the adapted model using the 20% isolated data. This
process is repeated five times to calculate the average performance.
As shown in Table 3, MISE outperforms the best baseline over
8.4% in F1-score. It verifies that our proposed meta-knowledge
inheritance mechanism can effectively resolve the catastrophic
forgetting problem when learning a new task.

5.7 Past Time Periods Performance Study
To verify MISE’s effectiveness in estimating stressors from past time
periods (supervised scenario), we design an experiment that trains
and tests the models on the past time periods’ data. Specifically, we
conduct five-fold cross-validation on data from past time periods
𝐷𝑝 . The results are shown in Table 4. MISE achieves over 81.8%
performance, with over 1.5% improvement compared with the best

Table 5: Case Study. There are two real-world posts. MISE
successfully estimate a new stressor and a forgettable stres-
sor.

Post:
I feel stressed most of the time. Monkeypox has made life not
go well for anyone lately.

MISE output: Monkeypox
Post:
I want to buy an iPad Pro... but I have to save money for the
decoration of my new home. I am very stressed.

MISE output: decoration

baseline. It illustrates that our framework can not only work better
on the estimating latest stressors with a few labeled data but also
be effective on estimating stressors from past time periods.

5.8 Parameter Study
To analyze the sensitivity of MISE, we report the performance with
a variety of hyperparameters. Specifically, we analyze parameters
𝜆 and 𝑡 , corresponding to the trade-off for the overall loss and
the re-scaling temperature for the meta-knowledge inheritance
mechanism, respectively. As shown in Figure 4, 𝜆 = 0.2 and 𝑡 = 5 are
the best parameter settings. In addition, the performance of MISE
keeps good with different 𝜆 and 𝑡 , which illustrates that MISE is
relatively insensitive and robust to the changes of the settings.

5.9 Case Study
We provide insights based on real-world cases, as demonstrated in
Table 5. In the first example, our framework correctly identified the
user’s stressor as “monkeypox”. It is worth noting that “monkey-
pox” is a new stressor for the framework. This demonstrates that
our meta-learning framework is capable of estimating the latest
stressors with few samples. In the second example, our framework
correctly identified the stressor as “decoration”, which is an infre-
quently appeared stressor in the training data. In contrast, few-shot
baselines fail to estimate the stressor “decoration”, because these
models forget the stressor “decoration” when adapting to the latest
time period with few samples. This highlights the importance of
our proposed meta-knowledge inheritance mechanism.

6 CONCLUSION
In this paper, we discover and propose a new social media-based
stress-related task, i.e., stressor estimation. To address the practical
problem of estimating the latest stressor with limited data, we
propose a meta-learning framework that is trained on past data
and can be adapted to the latest stressor estimation. We expand
upon optimization-based meta-learning by introducing a meta-
knowledge inheritance mechanism to avoid catastrophic forgetting
when learning new stressors. Our approach defines a novel meta-
knowledge inheritance loss and a revised training objective, which
distinguishes it from prior meta-learning studies. Experimental
results demonstrate that our framework is significantly effective
when compared to all state-of-the-art baselines. In addition, a well-
labeled social media stressor estimation dataset is proposed.

8



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

MISE: Meta-knowledge Inheritance for Social Media-Based Stressor Estimation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Zeyad Alghamdi, Tharindu Kumarage, Garima Agrawal, Huan Liu, and H Russell

Bernard. 2024. Less is More: Stress Detection through Condensed Social Media
Contents. In European Conference on Social Media, Vol. 11. 13–22.

[2] Giannis Bekoulis, Johannes Deleu, Thomas Demeester, and Chris Develder. 2019.
Sub-event detection from twitter streams as a sequence labeling problem. In
NAACL. Association for Computational Linguistics, Minneapolis, Minnesota,
745–750. https://doi.org/10.18653/v1/N19-1081

[3] Edward S Bordin. 1955. Psychological counseling. (1955).
[4] Lei Cao, Huijun Zhang, Ningyun Li, Xin Wang, Wisong Ri, and Ling Feng.

2021. Category-Aware Chronic Stress Detection on Microblogs. IEEE Journal of
Biomedical and Health Informatics (2021).

[5] Stevie Chancellor, Michael L Birnbaum, Eric D Caine, Vincent MB Silenzio,
and Munmun De Choudhury. 2019. A taxonomy of ethical tensions in inferring
mental health states from social media. In Proceedings of the conference on fairness,
accountability, and transparency. 79–88.

[6] Sheldon Cohen, Tom Kamarck, and Robin Mermelstein. 1983. A global measure
of perceived stress. Journal of health and social behavior (1983), 385–396.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
In Proceedings of the 2019 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers). Association for Computational Linguistics, Minneapolis,
Minnesota, 4171–4186. https://doi.org/10.18653/v1/N19-1423

[8] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-
learning for fast adaptation of deep networks. In International conference on
machine learning. PMLR, 1126–1135.

[9] Chelsea Finn, Kelvin Xu, and Sergey Levine. 2018. Probabilistic model-agnostic
meta-learning. Advances in neural information processing systems 31 (2018).

[10] Mental Health Foundation. 2022. Stress: are we coping? https://www.
mentalhealth.org.uk/publications/stress-are-we-coping.

[11] Robert French. 1993. Catastrophic interference in connectionist networks:
Can It Be predicted, can It be prevented?. In Advances in Neural Infor-
mation Processing Systems, J. Cowan, G. Tesauro, and J. Alspector (Eds.),
Vol. 6. Morgan-Kaufmann. https://proceedings.neurips.cc/paper/1993/file/
28267ab848bcf807b2ed53c3a8f8fc8a-Paper.pdf

[12] Sherryl H Goodman, Daniel R Sewell, and Ruth C Jampol. 1984. On going to the
counselor: Contributions of life stress and social supports to the decision to seek
psychological counseling. Journal of Counseling Psychology 31, 3 (1984), 306.

[13] Reshmi Gopalakrishna Pillai, Mike Thelwall, and Constantin Orasan. 2018. De-
tection of stress and relaxation magnitudes for tweets. InWWW. 1677–1684.

[14] Sharath Chandra Guntuku, Anneke Buffone, and Kokil Jaidka. 2019. Understand-
ing and measuring psychological stress using social media. In AAAI. 214–225.

[15] Matthew Henderson, Ivan Vulić, and et al. 2021. ConVEx: Data-Efficient and
Few-Shot Slot Labeling. In NAACL. Association for Computational Linguistics,
Online, 3375–3389. https://doi.org/10.18653/v1/2021.naacl-main.264

[16] Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. 2014. Distilling the knowledge
in a neural network. In Deep Learning and Representation Learning Workshop.
NIPS.

[17] Thomas H Holmes and Richard H Rahe. 1967. The social readjustment rating
scale. Journal of psychosomatic research (1967).

[18] Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. 2021.
Meta-learning in neural networks: A survey. IEEE transactions on pattern analysis
and machine intelligence 44, 9 (2021), 5149–5169.

[19] Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirectional LSTM-CRF models for
sequence tagging. arXiv preprint arXiv:1508.01991 (2015).

[20] John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. 2001. Con-
ditional Random Fields: Probabilistic Models for Segmenting and Labeling Se-
quence Data. In Proceedings of the Eighteenth International Conference on Machine
Learning (ICML 2001), Williams College, Williamstown, MA, USA, June 28 - July 1,
2001, Carla E. Brodley and Andrea Pohoreckyj Danyluk (Eds.). Morgan Kaufmann,
282–289.

[21] Richard S Lazarus. 1966. Psychological stress and the coping process. (1966).
[22] Qi Li, Yuanyuan Xue, Liang Zhao, Jia Jia, et al. 2016. Analyzing and identifying

teens’ stressful periods and stressor events from a microblog. JBHI 21, 5 (2016),
1434–1448.

[23] Huijie Lin, Jia Jia, Quan Guo, et al. 2014. Psychological stress detection from
cross-media microblog data using deep sparse neural network. In ICME. IEEE,
1–6.

[24] Huijie Lin, Jia Jia, Quan Guo, Yuanyuan Xue, Qi Li, Jie Huang, Lianhong Cai, and
Ling Feng. 2014. User-level psychological stress detection from social media using
deep neural network. In Proceedings of the 22nd ACM international conference on
Multimedia. 507–516.

[25] Huijie Lin, Jia Jia, Liqiang Nie, and Guangyao Shen. 2016. What Does Social
Media Say about Your Stress?.. In IJCAI. 3775–3781.

[26] Huijie Lin, Jia Jia, Jiezhong Qiu, Yongfeng Zhang, Guangyao Shen, Lexing Xie,
Jie Tang, Ling Feng, and Tat-Seng Chua. 2017. Detecting stress based on so-
cial interactions in social networks. IEEE Transactions on Knowledge and Data
Engineering 29, 9 (2017), 1820–1833.

[27] Nan Lin andWalter M Ensel. 1989. Life stress and health: Stressors and resources.
American sociological review (1989), 382–399.

[28] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen,
Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta:
A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

[29] Yanhe Liu, Peng Wang, Wenjun Ke, Guozheng Li, Xiye Chen, Jiteng Zhao, and
Ziyu Shang. 2024. Unify Named Entity Recognition Scenarios via Contrastive
Real-Time Updating Prototype. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 38. 14035–14043.

[30] Ilya Loshchilov and Frank Hutter. 2018. Fixing Weight Decay Regularization in
Adam. https://openreview.net/forum?id=rk6qdGgCZ

[31] Jianqiang Ma, Zeyu Yan, Chang Li, and Yang Zhang. 2021. Frustratingly simple
few-shot slot tagging. In Findings of the Association for Computational Linguistics:
ACL-IJCNLP 2021. 1028–1033.

[32] Xuezhe Ma and Eduard Hovy. 2016. End-to-end Sequence Labeling via Bi-
directional LSTM-CNNs-CRF. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers). Association
for Computational Linguistics, Berlin, Germany, 1064–1074. https://doi.org/10.
18653/v1/P16-1101

[33] Alireza Mansouri, Lilly Suriani Affendey, and Ali Mamat. 2008. Named entity
recognition approaches. International Journal of Computer Science and Network
Security 8, 2 (2008), 339–344.

[34] Mónica Marrero, Julián Urbano, Sonia Sánchez-Cuadrado, Jorge Morato, and
Juan Miguel Gómez-Berbís. 2013. Named entity recognition: fallacies, challenges
and opportunities. Computer Standards & Interfaces 35, 5 (2013), 482–489.

[35] SudhaMorwal, Nusrat Jahan, and Deepti Chopra. 2012. Named entity recognition
using hidden Markov model (HMM). International Journal on Natural Language
Computing (IJNLC) Vol 1 (2012).

[36] Tsendsuren Munkhdalai and Hong Yu. 2017. Meta networks. In International
Conference on Machine Learning. PMLR, 2554–2563.

[37] Alex Nichol, Joshua Achiam, and John Schulman. 2018. On first-order meta-
learning algorithms. arXiv preprint arXiv:1803.02999 (2018).

[38] Sachin Ravi and Hugo Larochelle. 2016. Optimization as a model for few-shot
learning. (2016).

[39] Koustuv Saha and Munmun De Choudhury. 2017. Modeling stress with social
media around incidents of gun violence on college campuses. HCI 1, CSCW
(2017), 1–27.

[40] Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timo-
thy Lillicrap. 2016. Meta-learning with memory-augmented neural networks. In
International conference on machine learning. PMLR, 1842–1850.

[41] Burr Settles and Mark Craven. 2008. An analysis of active learning strategies
for sequence labeling tasks. In proceedings of the 2008 conference on empirical
methods in natural language processing. 1070–1079.

[42] Khaled Shaalan and Hafsa Raza. 2007. Person name entity recognition for
Arabic. In Proceedings of the 2007 workshop on computational approaches to semitic
languages: common issues and resources. 17–24.

[43] Khaled Shaalan and Hafsa Raza. 2008. Arabic named entity recognition from
diverse text types. In Advances in Natural Language Processing: 6th International
Conference, GoTAL 2008 Gothenburg, Sweden, August 25-27, 2008 Proceedings.
Springer, 440–451.

[44] Sina. 2021. Annual Report 2021. http://ir.weibo.com/financial-information/
annual-reports.

[45] Jake Snell, Kevin Swersky, and Richard Zemel. 2017. Prototypical networks for
few-shot learning. Advances in neural information processing systems 30 (2017).

[46] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from
overfitting. The journal of machine learning research 15, 1 (2014), 1929–1958.

[47] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and Timothy M
Hospedales. 2018. Learning to compare: Relation network for few-shot learning.
In Proceedings of the IEEE conference on computer vision and pattern recognition.
1199–1208.

[48] Mike Thelwall. 2017. TensiStrength: Stress and relaxation magnitude detection
for social media texts. Information Processing & Management (2017), 106–121.

[49] Elsbeth Turcan and Kathleen McKeown. 2019. Dreaddit: A Reddit Dataset for
Stress Analysis in Social Media. EMNLP-IJCNLP 2019 (2019), 97.

[50] Elsbeth Turcan, Smaranda Muresan, et al. 2021. Emotion-Infused Models for
Explainable Psychological Stress Detection. In NAACL. 2895–2909.

[51] Michael Vasilkovsky, Anton Alekseev, Valentin Malykh, Ilya Shenbin, Elena
Tutubalina, Dmitriy Salikhov, Mikhail Stepnov, Andrey Chertok, and Sergey
Nikolenko. 2022. DetIE: Multilingual Open Information Extraction Inspired
by Object Detection. In Proceedings of the 36th AAAI Conference on Artificial
Intelligence.

9

https://doi.org/10.18653/v1/N19-1081
https://doi.org/10.18653/v1/N19-1423
https://www.mentalhealth.org.uk/publications/stress-are-we-coping
https://www.mentalhealth.org.uk/publications/stress-are-we-coping
https://proceedings.neurips.cc/paper/1993/file/28267ab848bcf807b2ed53c3a8f8fc8a-Paper.pdf
https://proceedings.neurips.cc/paper/1993/file/28267ab848bcf807b2ed53c3a8f8fc8a-Paper.pdf
https://doi.org/10.18653/v1/2021.naacl-main.264
https://openreview.net/forum?id=rk6qdGgCZ
https://doi.org/10.18653/v1/P16-1101
https://doi.org/10.18653/v1/P16-1101
http://ir.weibo.com/financial-information/annual-reports
http://ir.weibo.com/financial-information/annual-reports


1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[52] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[53] Ricardo Vilalta and Youssef Drissi. 2002. A perspective view and survey of
meta-learning. Artificial intelligence review 18, 2 (2002), 77–95.

[54] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. 2016.
Matching networks for one shot learning. Advances in neural information pro-
cessing systems 29 (2016).

[55] Peiyi Wang, Runxin Xu, Tianyu Liu, Qingyu Zhou, Yunbo Cao, Baobao Chang,
and Zhifang Sui. 2022. An Enhanced Span-based Decomposition Method for Few-
Shot Sequence Labeling. In NAACL. Association for Computational Linguistics,
Seattle, United States, 5012–5024. https://doi.org/10.18653/v1/2022.naacl-main.
369

[56] Xin Wang, Lei Cao, Huijun Zhang, Ling Feng, Yang Ding, and Ningyun Li. 2022.
A Meta-learning based Stress Category Detection Framework on Social Media.
In Proceedings of the ACM Web Conference 2022. 2925–2935.

[57] Xin Wang, Huijun Zhang, Lei Cao, and Ling Feng. 2020. Leverage Social Media
for Personalized Stress Detection. In ACM MM. 2710–2718.

[58] Lilian Weng. 2018. Meta-Learning: Learning to Learn Fast. https://lilianweng.
github.io/lil-log/2018/11/30/meta-learning.html.

[59] Xiaojun Xue, Chunxia Zhang, Tianxiang Xu, and Zhendong Niu. 2024. Robust
Few-Shot Named Entity Recognition with Boundary Discrimination and Correla-
tion Purification. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 38. 19341–19349.

[60] Yuanyuan Xue, Qi Li, Li Jin, Ling Feng, David A Clifton, and Gari D Clifford.
2014. Detecting adolescent psychological pressures from micro-blog. In HIS.
Springer, 83–94.

[61] Yuanyuan Xue, Qi Li, Liang Zhao, Jia Jia, Ling Feng, Feng Yu, and David A Clifton.
2016. Analysis of teens’ chronic stress on micro-blog. In International Conference
on Web Information Systems Engineering. Springer, 121–136.

[62] Jie Yang, Shuailong Liang, and Yue Zhang. 2018. Design Challenges and Miscon-
ceptions in Neural Sequence Labeling. In Proceedings of the 27th International
Conference on Computational Linguistics. 3879–3889.

[63] Pauching Yap, Hippolyt Ritter, and David Barber. 2021. Addressing catastrophic
forgetting in few-shot problems. In International Conference on Machine Learning.
PMLR, 11909–11919.

[64] Reza Zafarani, Mohammad Ali Abbasi, and Huan Liu. 2014. Social media mining:
an introduction. Cambridge University Press.

[65] Liang Zhao, Qi Li, Yuanyuan Xue, Jia Jia, and Ling Feng. 2016. A systematic
exploration of the micro-blog feature space for teens stress detection. Health
information science and systems 4, 1 (2016), 1–12.

10

https://doi.org/10.18653/v1/2022.naacl-main.369
https://doi.org/10.18653/v1/2022.naacl-main.369
https://lilianweng.github.io/lil-log/2018/11/30/meta-learning.html
https://lilianweng.github.io/lil-log/2018/11/30/meta-learning.html


1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

MISE: Meta-knowledge Inheritance for Social Media-Based Stressor Estimation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

A LIMITATION
While much of the existing social media-related research assumes
that users’ expressions on social media are proactive and authentic
[64], it is important to acknowledge that there are situations where
users’ posts may not accurately represent their innermost thoughts.
For instance, a user’s real stressor is “interview”, but he/she might
post: “This bad weather makes me stressed.” and not mention about
“interview”. In such cases, the effectiveness of our framework may
be compromised.

B ETHICAL CONSIDERATIONS
Since this work is an intersection study of human psychology and
data mining, the ethical issues must be carefully deliberated.

Privacy. All the data used in this paper is publicly available on
social media. We acknowledge that the psychological experiments
may potentially impact subjects [5], but our work is just an obser-
vation on public posts and there are no subjects.

Data protection. The dataset will be anonymized before being
shared.We only provide post text without any personal information.

Applicants must sign an agreement before they get the dataset. This
agreement guarantees: 1) they will never attempt to identify or
contact any user in the dataset; 2) they will never make or use the
dataset for commercial purposes; etc.

C APPLICATIONS
Our work has the potential to make a significant impact on society
by improving the well-being of individuals.

1. Our work has potential applications in the field of psycholog-
ical diagnosis. For instance, if a teenager experiences prolonged
stress, they may be at an increased risk of self-harm or suicide. In
such cases, our work can identify their stressor and alert their par-
ents, enabling them to provide target care and support to prevent
potential harm.

2. Our work provides new ideas and support for psychological
research. Traditional psychology experiments and conclusions are
often based on tens of hired subjects [21], with very low population
sampling rates. Our social media-based approach can help them
study psychology on a larger population scale. As a foundation, it
can advance the field of psychology.
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