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Abstract

Sparse inertial measurement units (IMUs) provide a portable, low-cost solution
for human motion tracking but struggle with error accumulation from drift and
sensor noise when estimating joint position through time-based linear acceleration
integration (i.e., indirect measurement). To address this, we propose ToF-IP, a novel
3D full-body pose estimation system that integrates Time-of-Flight (ToF) sensors
with sparse IMUs. The distinct advantage of our approach is that ToF sensors
provide direct distance measurements, effectively mitigating error accumulation
without relying on indirect time-based integration. From a hardware perspective,
we maintain the portability of existing solutions by attaching ToF sensors to selected
IMUs with a negligible volume increase of just 3%. On the software side, we
introduce two novel techniques to enhance multi-sensor integration: (i) a Node-
Centric Data Integration strategy that leverages a Transformer encoder to explicitly
model both intra-node and inter-node data integration by treating each sensing node
as a token; and (ii) a Dynamic Spatial Positional Encoding scheme that encodes the
continuously changing spatial positions of wearable nodes as motion-conditioned
functions, enabling the model to better capture human body dynamics in the
embedding space. Additionally, we contribute a 208-minute human motion dataset
from 10 participants, including synchronized IMU-ToF measurements and ground-
truth from optical tracking. Extensive experiments demonstrate that our method
outperforms state-of-the-art approaches such as PNP, achieving superior accuracy
in tracking complex and slow motions like Tai Chi, which remains challenging for
inertial-only methods.

1 Introduction

Sparse inertial measurement units (IMUs) have emerged as a promising solution for human motion
tracking due to their portability, low cost, and camera-free nature [8, 11, 20, 42]. However, despite
their potential, sparse IMUs face inherent numerical challenges due to their indirect method of
position estimation. Specifically, sparse IMUs estimate velocity and position by time-based linear
acceleration integration, a process highly prone to error accumulation from drift and sensor noise.
These errors are further amplified by the task’s reliance on human body forward kinematics, where
positional inaccuracies in intermediate joints propagate along the kinematic chain, leading to greater
errors at terminal joints. Consequently, accurately tracking subtle positional changes of key joints
during low-velocity motions (where the motion-signal-to-noise ratio is low) and enhancing the
long-term stability of sparse IMU systems remain persistent and critical challenges in this field [37].
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Figure 1: ToF-IP integrates distance maps from four Time-of-Flight (ToF) sensors to overcome the
drift and error accumulation inherent in inertial-only motion capture, enabling more accurate and
stable motion tracking even for challenging motions such as slow, controlled sequences (e.g., Tai
Chi) and rapid, complex actions (e.g., sideflips).

To date, most existing methods focus on providing software-based solutions to the aforementioned
challenge. For example, deep learning approaches, such as bidirectional RNNs, have been developed
to regress IMU data into pose sequences [8]. Subsequent RNN-based methods further improved
pose prediction accuracy and integrated global position estimation [36], with some incorporating
more precise dynamic models [37]. Beyond RNNs, alternative architectures have emerged, including
attention-based models for capturing physical motion during stationary phases [11]. Nevertheless,
software solutions are inherently limited, as they still rely on indirect pose estimation and can only
mitigate, rather than fully resolve, the problem of error accumulation.

In this paper, we present ToF-IP, a novel 3D full-body pose estimation system that addresses the
abovementioned challenge by integrating Time-of-Flight (ToF) distance sensors with sparse IMUs.
The distinct advantage of our approach is that ToF sensors provide direct distance measurements
without relying on indirect time-based integration, offering learnable solution space constraints for
the position of limb-end joints. A key innovation of our ToF-IP lies in its hardware design, which
maintains the lightweight and portable nature of existing sparse IMU systems. Specifically, without
altering the standard 6-IMU layout, we incorporate 4 highly integrated ToF sensors based on single-
photon avalanche diodes (SPAD) [26] directly onto the IMU circuit boards equipped at left forearm,
right forearm, left lower leg, and right lower leg of the human body, ensuring minimal impact on
wearability. On the software side, we fully harness the potential of ToF-inertial sensing by proposing
a unified Transformer-based framework with two key innovations. First, we introduce a Node-Centric
Data Integration strategy that explicitly captures the hierarchical structure of multi-sensor data. Unlike
prior methods that flatten all sensor inputs into a single vector-wise organization (discarding the
spatial and structural semantics of node), our approach represents each sensing node as an independent
token. This token is constructed through intra-node data integration of ToF depth, IMU acceleration
and orientation data. These node tokens are then contextually integrated using the self-attention
mechanism of a Transformer encoder, which naturally facilitates inter-node communication and
dynamic weighting based on task-relevant dependencies. Second, we propose a Dynamic Spatial
Positional Encoding (Dyn-PE) method tailored to the unique challenges of wearable sensing. Unlike
traditional positional encodings in NLP or vision tasks that assume static or grid-based positions, the
spatial configuration of wearable nodes evolves continuously with human motion. To capture this,
Dyn-PE models each node’s position as a learnable function of global motion signals, generating
time-varying encodings that reflect the node’s physical displacement in space. This dynamic encoding
enhances the model’s spatial awareness, allowing it to better resolve ambiguous interactions and
motion patterns across nodes. Extensive experimental results show that, compared to state-of-the-art
(SOTA) methods, our approach significantly improves joint position estimation, achieving superior
accuracy in tracking complex and slow movements like Tai Chi.

In summary, our contributions include:

• We design an in-situ enhanced bimodal wearable sensing platform for 3D full-body tracking,
retaining the conventional layout of 6 sensing nodes. The platform allows for the flexible use of
either single IMU sensing or IMU+ToF bimodal sensing, with only a 3% increase in volume.
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• We propose ToF-IP, a novel Transformer-based inertial-ToF motion capture framework that
introduces two key innovations on the software side: (i) a Node-Centric Data Integration strategy
that preserves the structural semantics of multi-sensor data by treating each sensing node as a
token and hierarchically integrating intra- and inter-node information via self-attention; and (ii)
a Dynamic Spatial Positional Encoding scheme that models the continuously evolving spatial
positions of wearable nodes as motion-conditioned functions, enhancing spatial awareness and
robustness to body movement variations. Our approach demonstrates substantial improvements
over state-of-the-art methods, delivering higher positional precision and more accurate joint
angle estimation, particularly in the upper limbs and legs.

• We propose ToF-IP-DB, a large dataset containing over 20 types of motion activities, 208 minutes
(749,000 frames) collected from 10 participants (3 male, 7 female), including dynamic motions
such as dances and aerobics, as well as slow-paced movements like Tai Chi and Baduanjin. This
dataset uniquely combines synchronized ToF distance maps, 6-DoF IMU signals, and SMPL
reference poses, with GT motion data.

2 Related Work

2.1 Pose Estimation Using Inertial Sensors

With the rapid advancement of MEMS technology [9], IMUs (Inertial Measurement Units) have
become smaller, more power-efficient, and affordable. This has led to numerous works leveraging
IMUs for human pose estimation. Despite their independence from external environments, the
working principle of IMUs—using accelerometers, gyroscopes, and magnetometers to compute
orientation—limits their accuracy. In the commercial market, motion capture systems employing
17–19 IMUs for human pose estimation exist [35, 23], but they require operation in uniform magnetic
field environments and have limited usage durations, as accumulated integration errors can lead to
model collapse.

The pursuit of lightweight solutions has spurred research into using sparse IMUs—typically six
sensors placed at limb extremities. The advent of the SMPL [18] and AMASS [19] datasets has
enabled the creation of large-scale mocap/IMU-aligned datasets. Synthetic continuous acceleration
and rotation data were generated by placing virtual IMUs on specific body parts in the AMASS
dataset, facilitating pose estimation in both offline [31] and real-time settings. Deep learning methods,
such as bidirectional RNNs, were designed to regress IMU data to pose sequences [8]. Building on
this, RNN-based approaches have improved pose prediction accuracy and incorporated global position
estimation [36], with some integrating more precise dynamic models, such as those in [37]. Other
methods explore alternative network architectures, including attention-based models for learning
physical motion during stationary points [11] and spatiotemporal modules for more accurate pose
estimation [34]. Efforts have also been made to enhance comfort and convenience. For example,
some methods use VR headsets, smartphones, and other wearable devices to estimate upper-body
poses and predict lower-body movements. Zuo et al. integrated IMUs into loose clothing [42],
effectively regressing upper-body poses while mitigating artifacts caused by fabric-induced jitter.

Despite such success, challenges remain in pose estimation using IMUs alone [22, 10, 14, 28]. These
include IMUs’ inability to directly measure velocity or position, accumulation of drift errors [15,
13], and reliance on forward kinematics models [25] composed of bones and joints. Sparse IMU
layouts—especially those at the extremities of limbs, such as hands and legs—face difficulties due to
the higher degrees of freedom and heavier prediction tasks borne by individual sensors.

2.2 Time-of-Flight Distance Sensors

To mitigate these issues, recent research has explored hybrid solutions that integrate additional sensor
modalities [1, 3, 17]. One common strategy is to incorporate global positioning or localization
techniques to provide absolute positional constraints [7]. For instance, Zihajehzadeh et al. [41]
combined IMUs with ultrawideband (UWB) localization to eliminate yaw angle drift in lower-body
tracking, leveraging UWB’s absolute position measurements to correct inertial estimates. Similarly,
Liu et al. [16] used a micro-flow sensor to estimate motion velocity, enabling accurate extraction of
gravitational acceleration from accelerometer data and improving posture tracking stability.
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Figure 2: Illustration of error accumulation in velocity and position. Even slight noise in IMU
acceleration leads to significant integration errors in velocity and position within just 4 seconds.
Acceleration signals are taken from the TIC dataset [43], with ground-truth provided for comparison.

Another class of methods exploits vision-based and depth sensors to compensate for inertial drift [30,
32, 5, 21, 38]. Depth sensors such as LiDAR and structured-light cameras have been explored for
markerless tracking. ToF sensors broadly refer to methods for precise distance measurement based on
the time taken by light pulses or continuous waves to travel [6, 12]. Unlike vision-based methods, ToF
sensors are resistant to variations in lighting and occlusions, providing robust depth measurements
even in challenging conditions [33, 24]. Some studies [27, 4] have integrated ToF sensors into
external environments for global pose estimation, but their application in wearable systems remains
underexplored.

By carefully balancing factors like power consumption and heat dissipation, we augment the con-
ventional six-IMU sparse layout with four low-resolution depth Time-of-Flight (ToF) sensors. This
hardware integration enhances inertial pose estimation by capturing inter-limb distances and contact
points with the environment, providing real-time, in-situ constraints that mitigate positional drift
while preserving the wearability and portability characteristic of traditional inertial tracking systems.

3 Inherent Limitation of Sparse Inertial-only Motion Capture

Under a sparse IMU configuration, only a subset of joint orientations can be directly measured. To
compensate for missing measurements, acceleration data is commonly used as an additional input [8],
as it carries implicit cues about joint positions that can aid in inferring unobserved joint orientations.
In principle, joint positions can be obtained by double-integrating the acceleration signals over time.
However, in practice, real-world acceleration measurements are prone to various sources of error,
such as sensor noise and signal drift, inevitably resulting in significant error accumulation over time:

Proposition 3.1 (Error Accumulation Analysis). Following standard statistical practice, we assume
that the acceleration measurement error at any timestamp τ ∈ (0, t) follows a normal distribution
ϵa(τ) ∼ N (µ, σ2). Then, we have:

• Distribution of joint velocity error: ϵv(t) ∼ N (µt, σ2t)

• Distribution of joint position error: ϵs(t) ∼ N ( 12µt
2, 1

2σ
2t2)

Proof. The proof is provided in Section 2 of the supplementary material.

Proposition 3.1 and Fig. 2 shows that the joint position error grows quadratically over time, highlight-
ing an inherent limitation of sparse inertial-only solutions.

4 Method

To address the inherent limitation of sparse inertial-only solutions discussed in Sec. 3, we propose
integrating Time-of-Flight (ToF) sensors, which provide direct distance measurements to mitigate
error accumulation from time-based integration.
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Figure 3: Illustration of Our ToF-Inertial Sensing Prototype and Motion Capture Method. Left: Our
ToF-Inertial sensing prototype comprises 6 IMU-attached sensing nodes, with 4 of them (located on
the left / right forearm and left / right lower-leg) additionally integrated with ToF sensors. Middle:
Our ToF-Inertial motion capture method comprises two novel techniques: (i) a node-centric data
integration strategy based on a Transformer encoder, encompassing intra-node and inter-node data
integration between ToF-Inertial sensor; (ii) a dynamic spatial positional encoding to adapt to the
dynamic changes in the spatial positions of sensing nodes during motion capture; Right: Three
sequentially connected LSTM networks (fv, fp, fϕ) serve as motion estimators to transform the
integrated sensing node data into human body movements.

4.1 ToF-Inertial Sensing Prototype

As shown in Fig. 3 (left), to maximize compatibility with existing inertial-only solutions and minimize
impact on wearability, i) we adopt the standard 6-node layout used in prior works [36, 37, 11, 39]
and place 6 IMUs on the left/right forearms, left/right lower legs, pelvis and head, respectively;
ii) we integrate 4 ToF sensors into the IMU nodes on the left/right forearms and left/right lower
legs. Specifically, we mount the ToF sensors on the inner wrists and rear ankles to capture distance
measurements from distal joint endpoints to nearby body parts and the ground. Note that we omit
ToF sensors from the head and pelvis nodes, as these positions seldom observe relevant surfaces.

4.2 ToF-Inertial Motion Capture

Overview. As shown in Fig. 3 (middle, right), our ToF-Inertial Motion Capture framework adopts a
Transformer-based architecture that incorporates two key innovations for integrating IMU and ToF
data: (i) Node-Centric Data Integration, which explicitly models intra- and inter-node interactions
through tokenized node representations; and (ii) Dynamic Spatial Positional Encoding, which encodes
the time-varying spatial positions of sensing nodes using motion-conditioned functions. Following
[36, 37, 39], we further employ a cascade of three LSTM networks as motion estimators.

4.2.1 Node-Centric Data Integration

Conditions for Effective ToF Integration. Although the direct distance measurements provided by
ToF establish a data foundation for improving joint position estimation, their effectiveness hinges on
two key data integration conditions:

• [Intra-node Integration] Each ToF sensor must integrate orientation and acceleration data from
its co-located inertial sensor within the sensing node to determine the viewing direction and
motion state information;

• [Inter-node Integration] Since both the motion of the sensing node itself and the captured object
can cause changes in the ToF distance map, integrating measurements from other sensing nodes
is required to distinguish absolute motion from relative motion.

Limitation of Existing Data Integration Method. Existing methods typically use fully-connected
networks (FCNs) for data integration. This approach directly flattens data from multiple nodes
into a single vector, losing the inherent data structure organized by sensing nodes and overlooking
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intra-node integration. Formally, consider an embedded feature fi from an FCN layer, we have:

fi = Flatten(x(1), . . . ,x(N)) ·Wi + bi (1)

where {x(1), . . . ,x(N)} are the data of the N nodes. In this formulation, the linear combination
of x(j), j = 1, ..., N inherently achieves inter-node integration, but overlooks the intra-node data
integration within each x(j).

Node-Centric Data Integration. To address this challenge, we propose replacing fully-connected
networks used in previous methods with a Transformer Encoder. In this scheme, each sensing node is
converted into an independent token, with all encoding performed at the token (node) level. Consider
the encoding process for an arbitrary output token z

(n)
T of node n, which unfolds in two structured

steps to explicitly perform intra-node and inter-node data integration:

• 1) Intra-node Data Integration via Tokenization. The multi-modal data of each node x(n) =

[d(n), a(n), R(n)] is encoded into an intra-node token z
(n)
intra ∈ Rdmodel as follow:

z
(n)
intra = fT (x

(n)) + PE(n) (2)

where fT is a tokenize function, dmodel is size of token. d ∈ R16, a ∈ R3, and R ∈ R3×3 are ToF
depth maps, IMU acceleration and orientation, respectively, PE(n) is positional encoding of the
n-th sensing node. For IMU-only sensing node (head and hip), d is set to zeros.

• 2) Inter-node Data Integration via Self-Attention. The intra-node tokens {z(1)intra, . . . , z
(N)
intra} are

then integrated via Transformer Encoder’s self-attention mechanism, which computes inter-node
interaction weights A ∈ RN×N applied to intra-node tokens:

z
(i)
inter = z

(i)
intra +

N∑
j=1

Aij(z
(j)
intra ·Wv) (3)

where Wv projects tokens into value space, and the z
(i)
intra is residual connection term. Then

each z
(i)
inter will go through layer norm (LN) and feed-forward network (FFN) in the Transformer

Encoder and concatenated to produce the final embedding vector ZNCI ∈ R(N×dmodel).

4.2.2 Dynamic Spatial Positional Encoding

Static Positional Encoding. As Eq. 2 shows, positional encoding PE is a fundamental process to
incorporating position information into tokens. Existing static positional encoding methods assign
static positional values ϕ to each token via an addition operation. For example, the static positional
encoding in the original Transformer [29] is as follows:

PE(n,2i,2i+1)
sta = [sin (ωi · ϕpos) , cos (ωi · ϕpos)], ϕpos = n, ωi = 10000−2i/dmodel (4)

where n is the index of the input token, dmodel is the dimension of the token, ϕpos is the static
positional value determined by the token index (sequential position). The n-th sensing node token
processed by static positional encoding can then be represented as z(n)intra = fT (x

(n)) + PE(n)
sta , where

PE(n)
sta is static positional encoding calculated by Eq. 4.

Our Dynamic Spatial Positional Encoding. However, unlike the static and discrete positions
in natural language processing and computer vision applications (such as word order or pixel grid
coordinates), the positions of sensing nodes are dynamic and continuous spatial positions that change
with human body movements. Considering these characteristic, we model the positions of sensing
nodes as continuous functions of motion signals and propose dynamic spatial positional encoding
(Dyn-PE) as follows:

PE(n,2i,2i+1)
dyn (t) = [sin (ωi · ϕn(t)) , cos (ωi · ϕn(t))], ϕn(t) = fn

ϕ (Xall(t)), ωi = 10000−2i/dmodel

(5)
where ϕn(t) are the dynamic positional value of sensing node n at time t (n = 1, 2, ..., 6), Xall(t) =
d1→6(t), a1→6(t), R1→6(t) are data of all six sensing nodes, serving as human motion signal. The
f1
ϕ, ..., f

n
ϕ are position estimation functions implemented with a 2-layer MLP. Then, our Dynamic

Spatial Positional Encoding can be integrated into Eq. 2 as: z(n)intra = fT (x
(n)) + PE(n)

dyn (t).
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4.2.3 Motion Estimators

Following [36, 37, 39], we feed the sensor data embedding zNCI as the shared input to three sequential
motion estimators for joint velocity v ∈ RJ×3, joint position p ∈ RJ×3 and joint rotation φ ∈ RJ×6:

v(t) = fv(ZNCI(t)) p(t) = fp(ZNCI(t),v(t)) φ(t) = fφ(ZNCI(t),p(t)) (6)

where J = 18 is the total number of tracked joints, fv, fp, fφ are RNN-based motion estimators.
These motion estimators are trained in a supervised manner using the following motion loss:

Lmotion = ||v(t)− vGT(t)||22 + ||p(t)− pGT(t)||22 + ||φ(t)−φGT(t)||22 (7)

where GT denotes the ground truth value.

4.2.4 Global Translation Tracking

The global translation tracking in this work is powered by velocity output of Motion Estimator
and SMPL kinematic model. Specifically, we first compute the estimated velocity of the four joint
endpoints (left and right forearms and lower legs) equipped with ToF-Inertial nodes and convert into
pseudo stationary label qs:

q(i)s (t) =


1 if ||v(i)(t)||2 < ϵ

1− ||v(i)(t)||2−ϵ
0.2 if ϵ ≤ ||v(i)(t)||2 < ϵ+ 0.2

0 otherwise
(8)

Where i denote endpoint index, the ϵ is a cut-off threshold to filter small jitter in ||v(i)(t)||2 (we use
ϵ = 0.05m/s in this work). Subsequently, based on φ(t) provided by the Motion Estimator, we
calculate the root translation relative to the endpoints is stationary, denoted as s

(i)
FK(t), using the

forward kinematics:

s
(1,2,3,4)
FK (t) = FK(φ(t−∆t))− FK(φ(t)) (9)

Where ∆t is time gap of 2 continuous captures. Then we define FK-based translation as follow:

sFK(t) =

∑4
i=1 q

(i)
s (t) · s(i)FK(t)∑4
i=1 q

(i)
s (t)

(10)

Similar to previous works[36], we fusion the sFK(t) with root velocity provide by Motion Estimator
to obtain the final translation estimation:

sNN (t) = vroot(t−∆t) ·∆t

s(t) = (1− qm) · sFK(t) + qm · sNN (t)
(11)

Where qm = min(q(1)s , ..., q
(4)
s ) denotes the pseudo label of full-body moving (e.g., jumping on the

air, sliding), and sNN denotes translation estimation base on neural network (Motion Estimators).

5 Experiment

5.1 Experimental Setup

Synthetic Dataset. We leverage the AMASS dataset [19] to synthesis a large-scale paired ToF-IMU-
Motion data for motion estimators pre-training, which includes both IMU and ToF data simulation.

• IMU Data Simulation: Similar to previous works [8, 36, 11, 40], the IMU orientation and
acceleration are calculated based on the global joint orientation of the SMPL [18] model and the
trajectory of the selected mesh vertices.

• ToF Data Simulation: ToF data simulation is implemented using Unity. We simulate the ToF
sensor with virtual depth cameras positioned on the rendered SMPL body, aligned with the
hardware wearing setup. The original depth maps are then down-sampled into 4× 4 to fit the
configuration of ToF. More detailed settings are provided in the supplementary materials.
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Table 1: Comparison of methods on DIP and our ToF-IP-DB datasets across multiple error metrics.
We evaluated our ToF-IP on DIP with additional ToF synthesis.

Method ToF-IP-DB DIP (with synthesis ToF)

SIP Err Ang Err Pos Err EndPos Err Jitter SIP Err Ang Err Pos Err EndPos Err Jitter

Transpose 20.73 14.51 7.58 13.58 0.18 17.06 8.86 6.03 8.73 1.11
TIP 20.37 14.58 7.63 13.97 0.17 16.90 9.07 5.63 8.27 1.56
PIP 20.22 13.85 7.32 12.77 0.12 15.33 8.78 5.12 7.78 0.17
DynaIP 19.04 13.33 7.26 13.05 0.16 13.78 7.07 4.98 7.44 0.18
PNP 18.52 13.23 6.86 12.39 0.12 13.71 8.75 4.97 7.49 0.17
ToF-IP(Ours) 17.26 12.09 6.31 11.41 0.12 13.62 6.75 4.59 6.65 0.17

ToF-IP-DB Dataset. We collected a full-body motion capture dataset, containing over 20 types of
movements, 208 minutes (749,000 frames) from 10 participants (3 male and 7 female) with heights
ranging from 170 cm to 185 cm. All participants were informed about the purpose of the experiment
and signed consent agreements. Participants were required to perform the following steps for data
collection:

• Simultaneously wears an optical motion capture suit (with multiple optical markers attached)
along with our 6-node ToF-Inertial motion capture prototypes.

• Performs a T-pose for IMU calibration.

During data collection, the participant is asked to perform diverse types of motion, e.g., dances,
aerobics, and daily social activities. Sensor data and motion data are collected synchronously at
60Hz. The motion data is captured using the NOKOV marker-based optical motion capture system,
including full-body pose and global translation. Each collection session lasts 6–10 minutes.

Training Settings. All our experiments run on a PC with an Intel(R) Core(TM) i7-13700KF CPU
and an NVIDIA RTX 4080 GPU. The model is implemented using PyTorch 1.12.1 with CUDA 11.3.
We use the Adam optimizer with a learning rate of lr = 1×10−3 and weight decay of lr = 1× 10−6

during n epochs training. The batch size was set to 512.

Metrics. We use the following five error metrics to evaluate the accuracy and quality of captured
motion: 1) Angular Error (°), which represents the global rotation error of all joints; 2) Positional
Error (cm), which is the joint position error of all joints; 3) SIP Error (°), defined as the global
rotation error of hips and shoulders; 4) Endpoints Positional Error (cm), positional errors of the four
ToF sensor attached joints (the left and right wrist and ankle); 5) Jitter (km/s3), denoting the jerk
(time derivative of acceleration) of all body joints in the global space.

5.2 Comparison with SOTAs

Quantitative Results. Table 1 shows the evaluation results on the ToF-IP-DB and DIP [8] dataset.
The results demonstrate that our method consistently outperforms existing approaches across all
metrics, particularly in SIP angular error and positional error. The reduction in SIP error signifies
more accurate tracking of upper arm movements and knee lifts, which is attributed to the ToF-enabled
improvement in joint position estimation as we expected.

Qualitative Results. As illustrated in Fig. 4, we selected Tai Chi and Baduanjin movements from
the ToF-IP-DB dataset, which are characterized by long durations and gentle velocities—conditions
where inertial-only position tracking inherently fails to measure accurate joint position. In contrast,
our method leverages ToF-derived direct distance measurements and introduce inter-joint distance
constraints, leading to marked improvements in overall pose estimation accuracy.

5.3 Ablation Study

Effectiveness of ToF Integration. As shown in Table. 2, removing ToF leads to a noticeable
decrease in all metrics, specifically in terms of EndPos Error, this validates our core motivation
that the direct distance measurements from ToF sensors can improve the estimation accuracy of
joint endpoints, thereby enhancing the estimation of non-sensor-attached measured joints (lower
SIP). Notably, introducing ToF without using the proposed Node-centric Data Integration (NCI)
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Figure 4: Qualitative comparisons with the state-of-the-art methods on our ToF-IP-DB dataset. We
highlight the joint-to-joint distances in the ToF’s line-of-sight direction.
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Figure 5: Qualitative comparison of results with and without ToF direct distance measurements. The
pose estimation samples are from Case 1 and Case 4 in Table 2.

fails to achieve the desired improvement (Case 1 vs. Case 2), demonstrating the necessity of
the proposed NCI for our ToF-Inertial motion capture framework. Qualitative results in Fig. 5
demonstrate how ToF integration significantly enhances inertial-only motion capture. The direct
distance measurements provided by ToF effectively reduce the estimation errors of joint positions,
thereby ensuring continuous and accurate pose estimation.

Table 2: Ablation study results on DIP and our ToF-IP-DB datasets (ToF integration).

Case ToF NCI ToF-IP-DB DIP (with synthesis ToF)

SIP Err Ang Err Pos Err EndPos Err Jitter SIP Err Ang Err Pos Err EndPos Err Jitter

1 × × 18.87 13.14 6.88 12.27 0.07 16.34 7.64 5.80 8.49 0.13
2 ✓ × 18.95 12.89 6.92 12.39 0.13 16.10 7.50 5.47 8.08 0.17
3 × ✓ 17.90 13.18 6.81 12.06 0.13 15.52 7.30 5.30 7.79 0.17
4 ✓ ✓ 17.26 12.09 6.31 11.41 0.12 13.62 6.75 4.59 6.65 0.17

Effectiveness of Dynamic Spatial Positional Encoding. As shown in Table 3, our proposed
Dynamic Spatial Positional Encoding consistently outperforms both the traditional static encoding
and its learnable variant (where parameters are optimized during training but remain fixed during
inference) [2], demonstrating the effectiveness of modeling position in positional encoding for
ToF-Inertial motion capture, Fig.6 further supporting the dynamic nature of our encoding scheme.
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Figure 6: Quantitative visualization of the temporal dynamics of ϕn(t) across different motion types.
Each curve represents the phase-based positional encoding of a specific sensing node over time.

Table 3: Ablation study results on DIP and our ToF-IP-DB datasets (positional encoding).

Positional Encoding ToF-IP-DB DIP

SIP Err Ang Err Pos Err EndPos Err Jitter SIP Err Ang Err Pos Err EndPos Err Jitter

Static 17.76 12.52 7.60 11.98 0.13 14.20 6.87 4.77 6.95 0.17
Static (Learnable) 17.56 12.20 7.36 11.56 0.14 13.95 6.85 4.62 6.73 0.18
Dynamic Spatial (Ours) 17.26 12.09 6.31 11.41 0.12 13.62 6.75 4.59 6.65 0.17

6 Limitations

Despite the superiority of our approach, several limitations highlight avenues for future research. The
performance of our method is contingent on the availability and reliability of ToF-based distance
measurements, which may be compromised in scenarios with occlusions, or limited field of view.
Additionally, the inherent noise in ToF sensors introduces jitter in pose estimation, as reflected in
our results. Furthermore, the current evaluation is conducted in controlled environments, and the
generalization of our approach to more diverse and dynamic real-world scenarios remains to be
validated. Future work could focus on improving robustness to ToF sensor limitations through hybrid
models, reducing noise with advanced filtering techniques.

7 Conclusion

We introduced ToF-IP, a novel ToF-inertial motion capture system that overcomes the inherent limita-
tions of sparse IMUs by integrating direct distance measurements from lightweight, body-mounted
ToF sensors. Through a hardware-efficient design and a unified Transformer-based framework,
ToF-IP achieves accurate joint position estimation while preserving the portability and wearability
of existing IMU systems. Our software contributions, including Node-Centric Data Integration and
Dynamic Spatial Positional Encoding, enable structured multi-sensor integration and dynamic spatial
awareness, which are critical for handling complex, low-velocity, and non-linear human motions.
Extensive experiments validate ToF-IP’s effectiveness across diverse movement scenarios, setting a
new standard for hybrid sensor-based human motion tracking.
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of the paper (regardless of whether the code and data are provided or not)?
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Justification: Our paper fully disclose all the information needed to reproduce the main ex-
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to make their results reproducible or verifiable.
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might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
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nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should
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the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).
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are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Yes, we will release the code/data later.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes, we specified all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: No, we did not do that.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of

the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes, For each experiment, we provided sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than

the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consider-

ation due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work does not have direct potential positive societal impacts and negative
societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper does not have such issues.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best faith
effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, all the creators or original owners of assets (e.g., code, data, models), used
in the paper, are properly credited and are the license and terms of use explicitly mentioned
and properly respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
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• If assets are released, the license, copyright information, and terms of use in the
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asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
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Answer: [NA]
Justification: We do not have such issues in this paper.
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their
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limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
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or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: This research involving human participants was reviewed and approved by the
Institutional Review Board (IRB). All participants provided informed consent after being
fully informed of the potential risks and procedures.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This work does not involve the use of large language models (LLMs) as an
important, original, or non-standard component of the core methodology.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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