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ABSTRACT

Despite advances, video diffusion transformers still struggle to generalize beyond
their training length, a challenge we term video length extrapolation. We iden-
tify two failure modes: model-specific periodic content repetition and a universal
quality degradation. Prior works attempt to solve repetition via positional encod-
ings, overlooking quality degradation and achieving only limited extrapolation.
In this paper, we revisit this challenge from a more fundamental view—attention
maps, which directly govern how context influences outputs. We identify that
both failure modes arise from a unified cause: attention dispersion, where to-
kens beyond the training window dilute learned attention patterns. This leads to
quality degradation and repetition emerges as a special case when this dispersion
becomes structured into periodic attention patterns, induced by harmonic prop-
erties of positional encodings. Building on this insight, we propose UltraViCo,
a training-free, plug-and-play method that suppresses attention for tokens beyond
the training window via a constant decay factor. By jointly addressing both failure
modes, we outperform a broad set of baselines largely across models and extrap-
olation ratios, pushing the extrapolation limit from 2× to 4×. Remarkably, it
improves Dynamic Degree and Imaging Quality by 233% and 40.5% over the
previous best method at 4× extrapolation. Furthermore, our method generalizes
seamlessly to downstream tasks such as controllable video synthesis and editing.

1 INTRODUCTION

Building upon the expressive power of diffusion transformers (DiTs) (Bao et al., 2023; Peebles
& Xie, 2023), recent advances in text-to-video (T2V) generation Bao et al. (2024); Zheng et al.
(2024b); Brooks et al. (2024); Wan et al. (2025); Kong et al. (2024); Hong et al. (2022) have en-
abled models to synthesize high-fidelity videos. However, these models are typically trained on a
fixed maximum sequence length (e.g., 5 seconds Wan et al. (2025); Kong et al. (2024); Hong et al.
(2022)) and struggle to generate videos beyond their training length, a task we term video length
extrapolation, which is critical for practical applications.

To investigate the core challenges of this task, we conduct experiments on a range of models and
identify two failure modes: (i) a model-specific periodic content repetition, where short clips loop
indefinitely in certain models; and (ii) a universal quality degradation, manifested as blurred spatial
details and frozen temporal dynamics across all models. Both failures become increasingly severe
as the extrapolation length grows. Prior work, such as RIFLEx (Zhao et al., 2025), tackles repetition
from the perspective of positional encodings, while overlooking quality degradation and therefore
achieving limited extrapolation. We contend, however, that positional encodings play only an indi-
rect role by perturbing queries and keys to influence attention. In contrast, attention itself—directly
aggregating contextual information to generate outputs—offers a more fundamental view.

Therefore, we revisit extrapolation failures through the lens of attention maps. Our systematic anal-
ysis of attention maps shows that both failure modes arise from a unified mechanism: attention
dispersion. This occurs when new tokens beyond the training length dilute the learned attention
patterns. This leads to quality degradation and repetition arises as a special case when dispersion
becomes organized into periodic attention patterns. Specifically, this happens when positional en-
coding frequencies form harmonics, enabling the largest-amplitude frequency and its harmonics to
accumulate amplitude and contribute substantially to the overall amplitude.
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3× extrapolation: Ours (top) vs. RIFLEx (bottom)

4× extrapolation: Ours (top) vs. RIFLEx (bottom)

(a) Extending T2V models up to 4×, where existing method yields nearly static, low-quality videos.

Masked video-to-video editing

Controllable video generation

(b) Generalization to downstream tasks at 3×. See more tasks in Appendix C.4.

Figure 1: Visual results. UltraViCo achieves significant extrapolation improvement on (a) T2V
models and (b) downstream tasks. See prompts and videos in supplementary materials.

Building on this unified view, we propose Ultra-extrapolated Video via Attention Concentration (Ul-
traViCo), a plug-and-play method that suppresses attention for tokens beyond the training window
with a constant decay factor. This adjustment reallocates attention to reliable in-window context
while naturally breaking periodic patterns, thus simultaneously addressing both failure modes. No-
tably, standard attention implementations encounter out-of-memory errors when modifying logits
for long video sequences. We therefore develop a memory-efficient CUDA kernel that enables scal-
able applications on large video models.

To validate our approach, we conduct comprehensive evaluations on various T2V models (Kong
et al., 2024; Yang et al., 2024; Wan et al., 2025) and extrapolation ratios, against a large family
of baselines (Chen et al., 2023b; bloc97, 2023; Zhuo et al., 2024; Peng et al., 2023; Zhao et al.,
2025). Experiments demonstrate that our method consistently surpasses all baselines in all settings
by simultaneously addressing both failure modes. Notably, while prior methods collapse beyond 3×
extrapolation and yield static videos, ours maintains fluid motion, effectively extending the practical
limit from 2× to 4×. Remarkably, it improves Dynamic Degree and Imaging Quality by 233% and
40.5% over the previous best method at 4× extrapolation. Beyond this, our method also generalizes
seamlessly to downstream tasks such as various controllable video synthesis and editing.

2 PRELIMINARY

Attention mechanism with rotary position embedding. Modern video diffusion models are
largely built on DiTs whose core is the attention mechanism (Vaswani et al., 2017). The input

2
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(c) Both quality and repetition worsen as the extrapolation grows from 1× to 5×.

Figure 2: Failure modes of video length extrapolation. Some models exhibit periodic content
repetition, while quality degradation occurs universally. Both failure modes intensify with longer
extrapolations. extra. denotes extrapolation. See Appendix C.1 for additional models.

video is patched into L tokens, each projected into queries, keys, and values. To encode the position
information, DiTs mainly adopt Rotary Position Embedding (RoPE) (Su et al., 2024), which injects
position into queries and keys through complex rotations. Concretely, for each query or key vector
x ∈ RD at position t, RoPE maps it to RD as

fRoPE(x, t)i = Ri(t)

[
x2i

x2i+1

]
, Ri(t) =

[
cos(ϕit) − sin(ϕit)
sin(ϕit) cos(ϕit)

]
, i ∈ {0, . . . , D/2− 1}. (1)

Here, each frequency ϕi depends exponentially on i and is used to encode the (2i, 2i+1) components
of x. After RoPE, the queries and keys form matrices Q ∈ RL×D and K ∈ RL×D. Their interaction
yields the attention logits S ∈ RL×L, which are normalized by the softmax function to obtain the
attention scores P ∈ RL×L. These scores are then applied to the value matrix V ∈ RL×D′

to
produce the output O ∈ RL×D′

:

S = QK⊤, P = softmax(
S√
D
), O = PV . (2)

For videos with temporal and spatial axes, Multimodal RoPE (M-RoPE) (Wang et al., 2024a) parti-
tions the dimension D = dT + dH + dW and encodes each subspace separately. Since we focus on
temporal extrapolation, we consider only the temporal axis and denote dT as d for simplicity (see
details in Appendix B.2).

Problem setting: video length extrapolation. Despite advances, DiT-based video generation mod-
els struggle to produce videos longer than their training duration. This task, known as video length
extrapolation (Zhao et al., 2025), aims to adapt a pre-trained model to generate high-quality videos
of a sequence length L′ that exceeds its training length L, with the extrapolation ratio defined as
s = L′/L > 1. Notably, video length extrapolation targets the model’s intrinsic ability to gen-
erate longer sequences in a single forward generation, which is orthogonal to prior methods (Qiu
et al., 2023; Wang et al., 2023; Kim et al., 2024; Wang et al., 2024c; Lu et al., 2024) that rely on
inference-time modifications. See Appendix A for more related work.

3 METHOD

3.1 FAILURE MODES OF VIDEO LENGTH EXTRAPOLATION

In this section, we investigate the core challenges of video length extrapolation on a range of SOTA
video diffusion transformers, including Wan (Wan et al., 2025), HunyuanVideo (Kong et al., 2024),
and CogVideoX (Yang et al., 2024).
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Qualitative results in Fig.2a and Fig.2b reveal two distinct failure modes. The first is a periodic
content repetition, which occurs in certain models such as HunyuanVideo and CogVideoX. The
second is a universal quality degradation, characterized by compromised spatial fidelity and tem-
poral dynamics across all models. To further investigate their trends across extrapolation lengths,
we perform a quantitative analysis on 10 prompts using metrics including Imaging Quality (Huang
et al., 2024), Dynamic Degree (Huang et al., 2024), and Repetition Count. Fig. 2c confirms that both
failures become more severe as the extrapolation factor increases.

These findings raise three critical questions: First, why does periodic content repetition only manifest
in specific models? Second, what is the underlying cause of the universal quality degradation? Most
importantly, is there a unified cause behind these two seemingly independent failure modes?

Existing work such as RIFLEx addresses only content repetition, neglecting quality degradation,
which limits both model generalization and extrapolation capacity. While RIFLEx attributes repeti-
tion to positional encoding periodicity, we argue that positional encodings play only an indirect role
by modulating queries and keys. Instead, as Eq. (2) shows, the attention map itself is fundamental,
since it directly determines how context is aggregated. This motivates us to revisit extrapolation
failures through attention analysis.

3.2 ATTENTION ANALYSIS OF THE CAUSE

In this section, we first focus on the specific issue of periodic content repetition (Sec. 3.2.1). Through
an in-depth attention analysis of its underlying mechanism, we find, surprisingly, that the solution
designed to resolve repetition also improves video quality. This key finding then allows us to un-
derstand the cause of the more universal problem of quality degradation (Sec. 3.2.2), and ultimately
reveals the intrinsic connection between the two failure modes.

3.2.1 THE CAUSE OF CONTENT REPETITION: PERIODIC ATTENTION PATTERNS

Periodic attention induces output repetition. We analyze the cause of content repetition by in-
specting the attention map P ∈ RL′×L′

during 4× extrapolation, where L′ is the extrapolated
sequence length (i.e., video features flattened into a 1D sequence). The entry at row i, column j of
P , denoted Pij , is the attention score from query i to key j. As shown in Fig. 3a, the attention map
of HunyuanVideo reveals two properties that jointly induce periodic outputs.

First, the map exhibits a distinct row-wise periodicity. Specifically, for any query at position i, its at-
tention scores to key positions j and j+T are nearly identical: Pi,j ≈ Pi,j+T , where T corresponds
to the observed repetition period in Sec. 3.1. As indicated in Fig. 3a, the blue and purple circles high-
light nearly equal scores. Second, the map shows relative positional invariance: query–key pairs
with the same relative displacement p yield approximately equal scores, Pi,j ≈ Pi+p,j+p. This
RoPE-induced property appears as uniform values along diagonals and subdiagonals; for example,
when p = T , the scores marked by the blue and green circles are nearly identical.

Combining these properties, we can derive that entire query rows also repeat periodically: Pi+T,j ≈
Pi,j , as shown by the green and purple circles. Thus, rows i and i + T retrieve nearly the same
weighted information from the value V , leading to periodic outputs (see Appendix B.1 for details):

Oi+T =

L′−1∑
j=0

Pi+T,jVj ≈
L′−1∑
j=0

Pi,jVj = Oi. (3)

This periodicity is directly reflected in repeated content in pixel space. Larger extrapolation ratios
traverse more periods, thus increasing repetition counts, which is consistent with our observations in
Sec. 3.1. By contrast, the attention map of Wan (Fig. 3c) does not display such row-wise periodicity,
and accordingly its outputs remain free of repetition.

Origin of periodic attention patterns. Next, we show that such model-specific row-wise period-
icity originates from the RoPE frequencies. To reveal the core row-wise attention structure from
noise, we construct a statistical row attention pattern S̄(∆t), which captures the relation between
a query and keys at the same spatial location but ∆t latent frames apart. This is achieved by tak-
ing the expectation of the pre-softmax attention logits across all layers, heads, and query positions.
As derived in Appendix B.3 (based on Eq. (2)), this quantity admits the following trigonometric
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Model Attention maps Statistical row-wise attention analysis
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(a) Periodic attention: (b) Harmonic RoPE frequencies (ϕi/ϕN−1 ∈ N+) amplify the largest-amplitude
Pi,j ≈ Pi,j+T frequency and its harmonics (dashed line), inducing periodic composite attention.
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(c) Non-periodic attention: (d) Inharmonic RoPE frequencies (ϕi/ϕN−1 /∈ N+) disperse spectrum (dashed
Pi,j ̸= Pi,j+T line), yielding non-periodicity in the final composite attention.

Figure 3: Periodic attention patterns as cause of content repetition. Left: unlike Wan, Hun-
yuanVideo exhibits row-wise periodic attention during 4× extrapolation, causing repeated outputs.
Right: statistical row-wise attention can be expressed as a linear combination of trigonometric func-
tions of RoPE frequencies, whose properties govern this periodicity. Hun. denotes HunyuanVideo.

decomposition:

S̄(∆t) =

d/2−1∑
i=0

ai cos(ϕi∆t+ bi) + C, (4)

where {ϕi}d/2−1
i=0 are the RoPE frequencies defined in Sec. 2, and {ai}d/2−1

i=0 , {bi}d/2−1
i=0 , C are con-

stants determined by the statistics of queries and keys from models, with bi typically close to zero.
Visualizations of these frequency components for HunyuanVideo and Wan highlight a crucial dif-
ference (Fig. 3b,d, left). The periodicity of such a superposition is decided by the frequency rela-
tionships, as formalized in Proposition 1.

Proposition 1 (Period and Amplitude of Harmonics). For a function f(∆t) =
∑N−1

i=0 ai cos(ϕi∆t),
where ai > 0, ϕi > 0 and mini ϕi = ϕN−1, if and only if ∀i, ϕi/ϕN−1 ∈ N+ (i.e., they form
a set of harmonics), f(∆t) is periodic with period TN−1 = 2π

ϕN−1
. In this case, max∆t f(∆t) =∑N−1

i=0 ai, whenever ∆t = mTN−1, m ∈ Z (i.e., whenever ∆t is at harmonic alignment positions).

We find that HunyuanVideo’s frequencies satisfy this harmonic condition in Proposition 1, allowing
amplitude accumulation of the largest-amplitude frequency ϕ3 and its harmonics (i < 3) at harmonic
alignment positions mT (dashed line in Fig. 3b), where m ∈ Z. This yields a dominant component
that contributes 79.6% of the total amplitude, producing a strongly periodic composite attention pat-
tern (Fig. 3b, right). A similar harmonic alignment is also observed in CogVideoX (Appendix B.6).
In contrast, Wan’s frequencies are not harmonically aligned, resulting in a dispersed spectrum where
no frequency dominates (largest 31.6%), and thus no clear periodicity emerges (Fig. 3d). Notably,
while the strict periodicity of HunyuanVideo is determined by the lowest frequency, its small am-
plitude and long period make it negligible; the observed periodicity T is effectively governed by the
dominant frequency (see Appendix B.6).

In summary, our analysis establishes the causal chain: RoPE-induced frequency harmonics lead to
periodic attention patterns, which in turn produce periodic output features and ultimately mani-
fest as content repetition. To validate this, we mask tokens at harmonic alignment positions mT .
Breaking these constructive interference points disrupts periodic attention and, as shown in Fig. 4a,
effectively mitigates repetition.
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Model Generated videos: baseline vs. intervention Attention maps: baseline vs. intervention

Hun.
……

(a) Non-repetition and improved video quality after intervention (b) Attention focused centrally after intervention

Wan
… …

(c) Improved video quality after intervention (d) Attention focused centrally after intervention

Figure 4: Fixing repetition reveals attention dispersion as the fundamental cause. Left: our
intervention, initially targeting repetition, surprisingly enhances video quality in both models. Right:
the shared mechanism is revealed, where the intervention refocuses diffuse baseline attention toward
the central training window. This suggests attention dispersion as the unified cause.

3.2.2 THE CAUSE OF QUALITY DEGRADATION: ATTENTION DISPERSION

Surprisingly, we find the above repetition-resolving intervention also improves video quality across
both models (Fig. 4a, c). This finding suggests a more profound hypothesis: content repetition and
quality degradation may arise from a shared, fundamental underlying mechanism.

A comparison of attention maps shows our intervention consistently concentrates the initially dif-
fuse attention (Fig. 4b, d). This occurs because masking the harmonic peaks forces a softmax re-
normalization, which sharpens the attention distribution by proportionally increasing the remaining
scores. To further identify where this sharpened focus is most beneficial, we systematically masked
different attention regions and found that concentrating attention within the original central training
window yielded the strongest improvements (see details in Appendix B.7). This leads us to hypoth-
esize that attention dispersion is the underlying issue. New tokens during extrapolation dilute the
learned attention patterns within the original training window. This dispersion has two detrimental
effects. Spatially, the model needs to consider far-away extrapolated frames, which makes it diffi-
cult to focus on fine details and results in visual blurriness. Temporally, taking these distant frames
into account mixes local motion with unrelated movements, causing the video to appear static and
unnatural. These effects are consistent with the quality degradation observed in Sec. 3.1.

To validate this hypothesis, we conduct a controlled experiment where we progressively mask at-
tention scores for tokens outside the training window, thereby forcing the attention to concentrate
centrally. The results, presented in Fig. 5, demonstrate a clear positive correlation: more concen-
trated attention (i.e., by increasing the proportion of masked out-of-window scores) consistently
improves both the visual quality and motion dynamics of the generated video. This provides strong
evidence that attention dispersion is the cause of quality degradation. Consequently, as the extrap-
olation ratio increases, attention becomes more dispersed, leading to worse quality, consistent with
the observations in Sec. 3.1.

A unified view: periodic attention as a case of attention dispersion. Building upon the above
analysis, we can unify both failure modes under a single perspective: attention dispersion is the
fundamental cause of extrapolation failure, with periodic attention patterns representing a special
case. Specifically, when a RoPE frequency contributes substantially to the overall amplitude (e.g.,
due to harmonic alignment), it induces a strongly periodic attention pattern; otherwise, the model
exhibits generic, non-periodic dispersion.

3.3 ULTRAVICO

Building on the above unified view, we propose Ultra-extrapolated Video via Attention
Concentration (UltraViCo), a simple yet effective method that suppresses attention for tokens be-
yond the training window via a decay factor, thereby restoring the model’s focusing ability. To

6
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Figure 5: Validation of attention dispersion as the cause of quality degradation. Both (a) quan-
titative and (b) qualitative results show that video quality improves monotonically as the degree of
attention central focusing (i.e., the masking ratio of out-of-window scores) increases.

achieve this, we introduce a position-dependent decay factor λij applied to the original attention
logits Sij , yielding the corrected attention S′

ij :

S′
ij = λij · Sij , where λij =

{
1, if |i− j| ≤ L/2 or Sij < 0,

α, otherwise,
(5)

where α < 1 is a constant decay hyperparameter and L is the training length. Here, λij is set to be 1
for all pairs within the training window, preserving the model’s core learned dynamics. For out-of-
window tokens, only positive logits (Sij ≥ 0) are down-scaled because multiplying negative logits
Sij < 0 by α < 1 can undesirably increase its value, while multiplying α > 1 or 1 for negative
logits has a negligible effect. We also experimented with various decay strategies, such as linear
decay, but found the constant form is sufficient, indicating that the key is distinguishing in-window
from out-of-window tokens rather than the decay shape itself (see Sec. 4.2 for details).

However, in models showing periodic repetition (Sec. 3.2.1), harmonic alignment positions mT
attract disproportionately high attention. Applying a uniform small decay α would overly suppress
all out-of-window context, harming temporal consistency. To address this, we apply a stronger decay
β < α specifically to these risky positions mT , while keeping α for other out-of-window tokens:

λij =


1, if |i− j| ≤ L/2 or Sij < 0,

β, else if (i, j) ∈ Prisk,

α, otherwise,
(6)

where Prisk = { (i, j)| mT − γ ≤ i− j ≤ mT + γ, m ∈ Z, γ ∈ N+ } denotes the set of positions
within γ frames around the harmonic alignment positions mT and β < α < 1. This targeted
adjustment reallocates attention to reliable in-window context while eliminating spurious periodic
patterns, allowing UltraViCo to mitigate both failure modes simultaneously.

Efficient CUDA implementation. UltraViCo requires modifying attention logits, but standard Py-
Torch attention is infeasible for long sequences. At a 3× extrapolation (∼200K tokens for Hunyuan-
Video), for instance, materializing a 200K × 200K attention mask consumes over 80GB of mem-
ory in bf16, causing an immediate out-of-memory error. To address this, we integrate UltraViCo
into Triton-based FlashAttention (Dao et al., 2022) and SageAttention (Zhang et al., 2024), where
the online-softmax formulation avoids explicit mask construction. This yields scalable, memory-
efficient computation, enabling UltraViCo on large video models.

7
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Table 1: Quantitative illustrative results on VBench for HunyuanVideo and Wan. For Wan,
which does not exhibit content repetition, we omit the NoRepeat Score. Additional results for more
extrapolation ratios and models are provided in Appendix C.3. Consist., Dyn., Qual., Over. and
NoRe. denote Consistency, Dynamics, Quality, Overall and NoRepeat Score respectively. Normal.
indicates the training length for reference.

Method
Wan2.1-1.3B HunyuanVideo

Consist.↑ Dyn.↑ Qual.↑ Over.↑ User↓ Consist.↑ NoRe.↑ Dyn.↑ Qual.↑ Over.↑ User↓
Normal. 0.9554 51 70.34 24.25 – 0.9786 – 71 69.31 26.81 –

3× extrapolation

PE 0.9419 6 56.28 18.53 3.82 0.9795 53.17 16 51.85 21.62 3.96
PI 0.9667 7 52.16 17.48 4.69 0.9787 90.23 1 46.30 21.29 4.91
NTK 0.9437 3 57.73 18.50 4.40 0.9802 84.80 24 53.11 22.14 3.74
YaRN 0.9676 5 53.46 17.53 4.71 0.9790 88.74 0 47.05 21.42 5.05
TASR 0.9434 6 57.41 18.48 4.47 0.9807 80.74 22 51.95 22.02 4.65
RIFLEx 0.9431 5 53.79 17.54 4.90 0.9823 73.97 17 50.57 21.22 4.67
Ours 0.944 46 62.43 23.21 1.01 0.9465 100.0 62 65.00 26.45 1.02

4× extrapolation

PE 0.9415 11 55.25 16.65 3.75 0.9891 31.41 14 47.12 17.61 3.70
PI 0.9711 12 50.44 16.34 4.87 0.9885 70.93 0 42.19 17.83 4.82
NTK 0.9477 11 55.37 16.09 4.24 0.9915 72.39 10 50.01 18.92 4.23
YaRN 0.9729 7 51.16 16.69 4.57 0.9877 62.87 1 41.37 18.53 5.03
TASR 0.9495 9 55.18 16.16 4.72 0.9911 51.28 14 46.81 18.47 4.51
RIFLEx 0.9453 10 51.05 15.83 4.84 0.9906 52.84 11 41.02 16.47 4.69
Ours 0.9484 47 59.36 21.61 1.01 0.9468 99.87 42 66.54 24.52 1.02

4 EXPERIMENTS

4.1 SETUP

Evaluation. We evaluate methods on three video diffusion models, including HunyuanVideo,
Wan2.1-1.3B and CogVideoX-5B. Following RIFLEx, we use 100 prompts sampled from
VBench (Huang et al., 2024). For quantitative evaluation, following RIFLEx, we adopt Imaging
Quality (Quality), Dynamic Degree (Dynamics), and Overall Consistency (Overall) from VBench,
along with the NoRepeat Score for models prone to content repetition. Notably, our NoRepeat Score
is a variant of that in RIFLEx, tailored for multiple-repetition (see Appendix C.2 for details). Fi-
nally, we conduct a user study with 10 participants on 10 prompts, where users rank (User) the
overall quality of videos across all methods. More details are provided in Appendix C.2.

Implementation Details. The decay factor α is set to 0.9 for Wan and HunyuanVideo at 3× and
4× extrapolation. For HunyuanVideo, we set γ = 4 for all ratios, and β = 0.6 at 3× and 0.8 at 4×.
Our baseline configurations follow RIFLEx. Further details are provided in Appendix C.2.

4.2 RESULTS

Performance comparison. We compare a wide range of length extrapolation baselines on three
SOTA models (Kong et al., 2024; Yang et al., 2024; Wan et al., 2025) across various extrapolation
ratios, including PE (Zhao et al., 2025), PI (Chen et al., 2023b), NTK (bloc97, 2023), TASR (Zhuo
et al., 2024), YaRN (Peng et al., 2023), and RIFLEx. Tab. 1 reports 3× and 4× results on Hunyuan-
Video and Wan, while Fig. 6 shows qualitative samples on HunyuanVideo. Results for additional
ratios and models are provided in the Appendix C.3.

As shown in Tab. 1, our method consistently outperforms all baselines across models and extrap-
olation ratios, simultaneously improving video quality and eliminating content repetition. Specifi-
cally, PE suffers from severe repetition, reflected in low NoRepeat Scores. In contrast, our method
achieves substantially higher scores, effectively removing repetition. Beyond repetition, unlike RI-
FLEx which targets only this issue, our method delivers broader gains in both visual quality and
motion quality. For instance, it improves Dynamic Degree and Imaging Quality on HunyuanVideo
by 233% and 40.5% over the previous best method at 4× extrapolation, respectively. Notably, on
Wan beyond 3× extrapolation, while prior methods collapse and yield static videos (Dynamic De-
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gree ≤ 12), our method restores fluid motion. By addressing both core failure modes, our method
extends the extrapolation limit from 2× to 4×. These improvements are further corroborated by
user rankings (Tab. 1) and qualitative visualizations (Fig. 6), which consistently confirm the supe-
rior quality of our generated videos over baselines.

(a) 3× extrapolation (b) 4× extrapolation

PE ··· ···

PI ··· ···

NTK ··· ···

YaRN ··· ···

TASR ··· ···

RIFLEx ··· ···

Ours ··· ···

Figure 6: Qualitative results on HunyuanVideo. The baselines produce nearly static videos with
poor visual quality, whereas our method achieves significantly better quality by addressing extrapo-
lation failure modes. Additional qualitative results for other models are in Appendix C.4.

constantlinearparabolic

Figure 7: Ablation studies. Top row: different decay strategies have minor impact, suggesting
simple constant decay suffices. Bottom row: small α harms consistency while large α offers limited
gains. An intermediate value (α = 0.9) enhances quality while preserving consistency.

Ablation studies. We ablate the decay strategy and the decay factor α on Wan at 3× extrapolation.
As shown in Fig. 7 (top), different decay strategies yield minor differences, indicating that simple
constant decay suffices. As shown in Fig. 7 (bottom), strong decay harms consistency (i.e., the spare
tire of the car disappears) while weak decay offers limited gains. An intermediate value (α = 0.9)
enhances quality while preserving consistency. Further details are provided in Appendix C.2. A
sensitivity analysis for α and β (Fig. 8) shows a stable trend: α ≥ 0.9 and β ≥ 0.6 improve
visual quality and motion dynamics while keeping temporal consistency near baseline. We adopt
α = 0.9 and β = 0.6 as robust defaults, with small adjustments possible (e.g., β = 0.8 for stronger
consistency, α = 0.85 for better quality). Although larger α and β may introduce a mild reduction
in consistency, values above 0.94 remain visually stable, aligning with common long-video settings
(e.g., Wan’s training-horizon consistency ≈ 0.95). See more metrics of α, β in Tab. 4, 5, 6, and
Fig. 18.

Connection with other long-video generation methods. UltraViCo aims to extend the effective
training window of video diffusion transformers and is therefore orthogonal to existing long-video
generation techniques such as FreeNoise (Qiu et al., 2023), FIFO-Diffusion (Kim et al., 2024), and
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sliding-window. As demonstrated in Table 2, enlarging the context window via UltraViCo consis-
tently improves the long-term temporal consistency of these methods, without negatively affecting
other performance. In Table 2, all methods follow the same evaluation setup (6× extrapolation for
30-second videos on Wan), where UltraViCo extends the base model’s training window by 3×.

Generalization to downstream tasks. Our method enhances the model’s inherent ability to handle
longer sequences, making it naturally applicable to downstream tasks. As shown in Fig. 1, based
on VACE (Jiang et al., 2025b), UltraViCo enables 3× extrapolation in controllable generation and
video editing. See Appendix C.4 for additional results.

(a) Illustration of the α sensitivity curve. (b) Illustration of the β sensitivity curve.

Figure 8: Illustration of the hyperparameter sensitivity curve. (a) When α ≥ 0.9, motion dynam-
ics improve while consistency stays stable; below 0.9, consistency drops sharply. (b) When β ≥ 0.6,
dynamics remain high with comparable consistency; below 0.6, consistency degrades significantly.

Table 2: Application of UltraViCo on existing long-video methods.

Method Consistency↑ Dynamics↑ Quality↑ Overall↑
Sliding Window 0.8478 56 62.94 23.57
+ UltraViCo 0.9183 54 62.85 23.95

FreeNoise 0.9243 38 63.09 23.75
+ UltraViCo 0.9431 41 62.12 23.92

FIFO-Diffusion 0.9131 53 61.31 23.81
+ UltraViCo 0.9319 51 63.09 24.24

(a) Performance of the video-continuation baseline alone.

(b) Illustration of combining UltraViCo with the video-continuation method.

Figure 9: Application of UltraViCo to segment-wise long-video generation. (a) Wan2.2-TI2V
uses only a few ending frames, causing identity drift; (b) UltraViCo alleviates this issue.

5 CONCLUSION

In this paper, we identify attention dispersion as the unified cause behind video length extrapolation
failures. Based on this insight, we propose a training-free method that suppresses attention scores
for tokens beyond training length. Experiments show that it significantly improves video quality,
extending the practical extrapolation limit from 2× to 4×.
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ETHICS STATEMENT

This paper advances the field of video generation, while emphasizing the importance of responsi-
ble use to avoid potential negative societal impacts, such as the creation of misleading or harmful
content.

REPRODUCIBILITY STATEMENT

Our code and the prompts in the paper are included in the supplementary material, and the imple-
mentation details are described in Sec. 4.1.
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USE OF LARGE LANGUAGE MODELS

We used a large language model solely to assist in polishing English writing and improving clarity.
All research ideas, experiments, results, and interpretations are entirely our own.

A RELATED WORK

Text-to-video Diffusion Transformers. The recent advances in text-to-video generation have
been primarily driven by diffusion models (Ho et al., 2020; Song et al., 2020; Ho et al., 2022;
He et al., 2022; Zhao et al., 2022; 2023; Blattmann et al., 2023; Xing et al., 2023; Chen et al., 2023a;
Zhao et al., 2024; Polyak et al., 2024; Zhou et al., 2024; Team, 2024; Chen et al., 2024b). With the
development of diffusion transformers (DiTs) (Bao et al., 2023; Peebles & Xie, 2023), DiT-based
text-to-video diffusion models have achieved remarkable performance, such as Sora (Brooks et al.,
2024), Vidu (Bao et al., 2024), CogVideoX (Yang et al., 2024) and Open-Sora (Zheng et al., 2024a).
Although achieving high quality, leading models are trained only on a fixed maximum sequence
length, limiting long-term capacity. During video length extrapolation, they suffer from repetition
or quality degradation, underscoring the need for length extrapolation.

Length Extrapolation in Transformers. The goal of length extrapolation is to enable trans-
formers to generate sequences longer than those seen during training in a single forward (Press
et al., 2021). This is typically achieved by modifying positional encodings. For example, position
interpolation (PI) (Chen et al., 2023b) improves performance by interpolating the frequencies in
RoPE so that they remain within the training range even under extrapolation. NTK (bloc97, 2023),
YaRN (Peng et al., 2023), and Time-aware Scaled RoPE (TASR) (Zhuo et al., 2024) combine inter-
polation with direct extrapolation, incorporating adjustments along the token dimension, denoising
timesteps, and other factors to achieve better results. However, these methods perform poorly on
image and video DiTs, often leading to content collapse or repetition. RIFLEx (Zhao et al., 2025)
mitigates repetition by identifying and attenuating the intrinsic RoPE frequency, yet it still suffers
from degraded visual quality. In contrast, our method effectively addresses both content repetition
and quality degradation.

Long Video Generation. There also exist many approaches to long video generation (Qiu et al.,
2023; Wang et al., 2023; Henschel et al., 2025; Kim et al., 2024; Tan et al., 2024; Yin et al., 2025;
Wang et al., 2024c; Cai et al., 2025; Li et al., 2025; Lu et al., 2024; Tan et al., 2025; Jiang et al.,
2025a; Gao et al., 2025; Gu et al., 2025), most of which intervene in the diffusion inference pro-
cess. For instance, FreeNoise (Qiu et al., 2023) enhances temporal consistency via noise initial-
ization, FIFO-Diffusion (Kim et al., 2024) feeds frames sequentially into a denoising window of
training length, and Video-Infinity (Tan et al., 2024) exploits distributed computation to scale up
video length. While effective for generating long videos, these methods are orthogonal to our length
extrapolation strategy, which extends the intrinsic capacity of DiTs to longer sequences and can be
readily integrated with them.

In addition to diffusion-based approaches to long video generation, alternative modeling paradigms
such as autoregressive methods (Wu et al., 2021; Yan et al., 2021; Hong et al., 2022; Wu et al.,
2022; Kondratyuk et al., 2023; Wu et al., 2024; Sun et al., 2024; Wang et al., 2024b) and diffusion
forcing (Chen et al., 2024a; Huang et al., 2025; Teng et al., 2025) are also capable of generating
long videos. Although our method is designed for diffusion models, it may also offer insights into
length extrapolation for these alternative paradigms.
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B MORE DETAILS OF OUR METHOD

B.1 DERIVATION OF THE PERIODIC OUTPUTS

In this section, we present a formal derivation of Eq. (3). Specifically, the attention score matrix
P ∈ RL′×L′

satisfies the following properties up to negligible error:

Prop.1 (Row-wise periodicity): Pi,j = Pi,j+T , ∀i ∈ {0, . . . , L′ − 1}, j ∈ {0, . . . , L′ − T − 1},
where T ∈ N+ corresponds to the observed repetition period in Sec. 3.1.

Prop.2 (Relative positional invariance): Pi,j = Pi+p,j+p, ∀i ∈ {0, . . . , L′−p−1}, j ∈ {0, . . . , L′−
p−1}, where p ∈ N+ is the relative displacement. In the ffollowing derivation we instantiate p = T .

On basis of the above properties, we derive the periodicity of the attention scores and outputs as
follows. ∀i ∈ {0, . . . , L′ − T − 1},

Oi+T =
∑L′−1

j=0
Pi+T,jVj (7)

=
∑L′−T−1

j=0
Pi+T,jVj +

∑L′−1

j=L′−T
Pi+T,jVj (8)

Prop.1
=

∑L′−T−1

j=0
Pi+T,j+TVj +

∑L′−1

j=L′−T
Pi+T,jVj (9)

Prop.2
=

∑L′−T−1

j=0
Pi,jVj +

∑L′−1

j=L′−T
Pi,j−TVj (10)

Prop.1
=

∑L′−T−1

j=0
Pi,jVj +

∑L′−1

j=L′−T
Pi,jVj (11)

=
∑L′−1

j=0
Pi,jVj (12)

= Oi. (13)

B.2 DETAILS OF THE MULTIMODAL ROTARY POSITION EMBEDDING

In this section, we provide the details of the Multimodal RoPE (M-RoPE) (Wang et al., 2024a)
introduced in Sec. 2. Specifically, for a token at position (t, h, w), the input vector x ∈
RD is divided into three subspaces of dimensions dT , dH, dW , respectively assigned to tem-
poral, height, and width encodings. Each subspace is modulated by its own frequency series
{ϕT

i }
dT −1
i=0 , {ϕH

i }dT +dH−1
i=dT

, {ϕW
i }D−1

i=dT +dH
. Concretely, we define

fRoPE(x, t, h, w)i = Rα
i (pα)

[
x2i

x2i+1

]
, Rα

i (pα) =

[
cos(ϕα

i pα) − sin(ϕα
i pα)

sin(ϕα
i pα) cos(ϕα

i pα)

]
, (14)

where α ∈ {T ,H,W} indexes the temporal, height, and width dimensions with corresponding
positions pα ∈ {t, h, w} and frequency components {ϕα

i }. The index ranges are

i ∈


{0, . . . , dT /2− 1}, α = T ,

{dt/2, . . . , dT /2 + dH/2− 1}, α = H,

{dT /2 + dH/2, . . . , D/2− 1}, α = W.

(15)

After M-RoPE encoding, the queries and keys form Q ∈ RL′×D and K ∈ RL′×D. As in Eq. (2),
they produce the attention logits matrix S ∈ RL′×L′

, where the attention logit between the query at
(t, h, w), denoted q(t,h,w), and the key at (t+∆t, h+∆h,w+∆w), denoted k(t+∆t,h+∆h,w+∆w),
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expands explicitly as:

S(t,h,w),(t+∆t,h+∆h,w+∆w) =

dT /2−1∑
i=0

q
(2i:2i+1)⊤
(t,h,w) RT

i (∆t)k
(2i:2i+1)
(t+∆t,h+∆h,w+∆w)+

dT /2+dH/2−1∑
i=dT /2

q
(2i:2i+1)⊤
(t,h,w) RH

i (∆h)k
(2i:2i+1)
(t+∆t,h+∆h,w+∆w)+

D/2−1∑
i=dT /2+dH/2

q
(2i:2i+1)⊤
(t,h,w) RW

i (∆w)k
(2i:2i+1)
(t+∆t,h+∆h,w+∆w) (16)

=

dT /2−1∑
i=0

[
λ
(i)
1 cos(ϕT

i ∆t) + λ
(i)
2 sin(ϕT

i ∆t)
]
+

dT /2+dH/2−1∑
i=dT /2

[
λ
(i)
1 cos(ϕH

i ∆h) + λ
(i)
2 sin(ϕH

i ∆h)
]
+

D/2−1∑
i=dT /2+dH/2

[
λ
(i)
1 cos(ϕW

i ∆w) + λ
(i)
2 sin(ϕW

i ∆w)
]
, (17)

where

λ
(i)
1 = q

(2i)
(t,h,w)k

(2i)
(t+∆t,h+∆h,w+∆w) + q

(2i+1)
(t,h,w)k

(2i+1)
(t+∆t,h+∆h,w+∆w), (18)

λ
(i)
2 = q

(2i+1)
(t,h,w)k

(2i)
(t+∆t,h+∆h,w+∆w) − q

(2i)
(t,h,w)k

(2i+1)
(t+∆t,h+∆h,w+∆w). (19)

B.3 DERIVATION OF THE STATISTICAL ATTENTION PATTERN S̄(∆t)

In this section, we present the derivation of Eq. (4) in Sec. 3.2.1. We investigate the row-wise
pattern of attention logits by examining the expectation of the attention logits between queries and
keys at relative temporal distance ∆t (i.e., E

[
S(t,h,w),(t+∆t,h,w)

]
)1. This expectation is taken across

attention layers, heads, and query positions. In Appendix B.4, we further show that when the true
variance is taken into account, the actual attention logits still follow the same patterns as indicated
by this expectation.

Specifically, on basis of the formula of M-RoPE (i.e., Eq. (16)), the target expectation is given by2

Et,h,w

[
S(t,h,w),(t+∆t,h,w)

]
= Et,h,w

[ dT /2−1∑
i=0

q
(2i:2i+1)⊤
(t,h,w) RT

i (∆t)k
(2i:2i+1)
(t+∆t,h,w)+

dT /2+dH/2−1∑
i=dT /2

q
(2i:2i+1)⊤
(t,h,w) RH

i (0)k
(2i:2i+1)
(t+∆t,h,w) +

D/2−1∑
i=dT /2+dH/2

q
(2i:2i+1)⊤
(t,h,w) RW

i (0)k
(2i:2i+1)
(t+∆t,h,w)

]
(20)

=

dT /2−1∑
i=0

[
E

(i)
1 cos

(
ϕT
i ∆t

)
+ E

(i)
2 sin

(
ϕT
i ∆t

)]
+

D/2−1∑
i=dT /2

E
(i)
1 , (21)

where

E
(i)
1 = Et,h,w

[
q
(2i)
(t,h,w)k

(2i)
(t+∆t,h,w) + q

(2i+1)
(t,h,w)k

(2i+1)
(t+∆t,h,w)

]
, (22)

E
(i)
2 = Et,h,w

[
q
(2i+1)
(t,h,w)k

(2i)
(t+∆t,h,w) − q

(2i)
(t,h,w)k

(2i+1)
(t+∆t,h,w)

]
. (23)

1Strictly speaking, the analysis should target S(t,h,w),(t+∆t,h+∆h,w+∆w) for all ∆h,∆w, but as the phe-
nomena are similar across ∆h,∆w, we focus on S(t,h,w),(t+∆t,h,w) for simplicity.

2For brevity, we omit layer and head indices in the expectation notation.
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In practice, though the integrands of these expectations are actually functions of ∆t, the empirical
statistics in Fig. 10 (col. 1) indicate that their variances with respect to ∆t are negligible. Hence, we
approximate E

(i)
1 and E

(i)
2 as constants up to negligible error, which is defined by

E
(i)
1 ≈ Et,h,w,∆t

[
q
(2i)
(t,h,w)k

(2i)
(t+∆t,h,w) + q

(2i+1)
(t,h,w)k

(2i+1)
(t+∆t,h,w)

]
=: Ê

(i)
1 , (24)

E
(i)
2 ≈ Et,h,w,∆t

[
q
(2i+1)
(t,h,w)k

(2i)
(t+∆t,h,w) − q

(2i)
(t,h,w)k

(2i+1)
(t+∆t,h,w)

]
=: Ê

(i)
2 . (25)

By substituting these two expressions into Eq. (22) and Eq. (23), the expected attention logits can
be well approximated as S̄(∆t), where

S̄(∆t) =

dT /2−1∑
i=0

[
Ê

(i)
1 cos

(
ϕT
i ∆t

)
+ Ê

(i)
2 sin

(
ϕT
i ∆t

)]
+

D/2−1∑
i=dT /2

Ê
(i)
1 . (26)

To simplify the expression, we employ the auxiliary angle formula to rewrite the two trigonometric
functions as one, i.e.,

S̄(∆t) =

dT /2−1∑
i=0

[
ai cos(ϕi∆t+ bi)

]
+ C, (27)

where ai =

√[
Ê

(i)
1

]2
+
[
Ê

(i)
2

]2
, bi = atan2(−Ê

(i)
2 , Ê

(i)
1 ). Interestingly, as shown in Fig. 10

(col. 2), Ê(i)
2 remains consistently close to zero, which in turn makes bi nearly vanish (for example,

b0 is 0.039 for HunyuanVideo). This observation allows us to apply Proposition 1 in Sec. 3.2.1 up to
an error of negligible magnitude. Detailed statistical data for Ê(i)

1 , Ê
(i)
2 , ai, bi are shown in Fig. 10

(col. 2, 3, 4).

(a) Statistics of HunyuanVideo.

(b) Statistics of Wan.

Figure 10: Statistics of attention logits in HunyuanVideo and Wan. The variances of E(i)
1 , E

(i)
2

with respect to ∆t (col. 1) are negligible compared to their expectations (col. 2), making the approx-
imation in Eq. (24), Eq. (25) accurate. The bias angles bi (col. 4) are close to zero, except for b9 and
b15 in Wan whose impact is negligible since the corresponding a9, a15 are near zero (col. 3).

B.4 CONSISTENCY OF ACTUAL ATTENTION PATTERN WITH S̄(∆t)

In this section, we investigate the actual attention scores under the true variance, demonstrating that
they preserve the same characteristics as the averaged values described in Sec. 3.2.1. As shown in
Fig. 11, when the standard deviation over attention layers, heads, and query positions is incorporated
into the mean, the attention logits of HunyuanVideo still exhibit clear periodicity at their peaks,
whereas those of Wan2.1 remain non-periodic. Therefore, the conclusions drawn in Sec. 3.2.1 from
the mean-based analysis hold with strong generality in practice.
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Figure 11: Attention logits under actual variance. Even with standard deviation across layers,
heads, and query positions, HunyuanVideo retains clear periodic peaks while Wan 2.1 remains non-
periodic, confirming the general validity of the mean-based analysis in Sec. 3.2.1.

B.5 PROOF OF PROPOSITION 1

Proposition 1 is well-known in harmonic analysis and signal processing, and we provide the proof
here only for completeness.

Proof. Sufficiency. If ϕi/ϕN−1 ∈ N+ for all i, write ϕi = kiϕN−1 with ki ∈ N+. Let TN−1 =
2π/ϕN−1. Then for each i,

cos
(
ϕi(∆t+ TN−1)

)
= cos

(
kiϕN−1∆t+ 2πki

)
= cos(ϕi∆t), ∀∆t ∈ R, (28)

so f(∆t+ TN−1) = f(∆t), ∀∆t ∈ R. Hence TN−1 is a period of f .

Necessity. Suppose TN−1 = 2π/ϕN−1 is a period of f . Then for all ∆t,

0 = f(∆t+ TN−1)− f(∆t) =

N−1∑
i=0

ai
[
cos(ϕi∆t+ ϕiTN−1)− cos(ϕi∆t)

]
. (29)

Using cos(x+ y)− cosx = (cos y − 1) cosx− sin y sinx,

0 =

N−1∑
i=0

ai

[
(cos(ϕiTN−1)− 1) cos(ϕi∆t)− sin(ϕiTN−1) sin(ϕi∆t)

]
, ∀∆t ∈ R. (30)

The family {cos(ϕi·), sin(ϕi·)}i with distinct positive ϕi is linearly independent over R (e.g., via
independence of e±iϕit). Hence for each i,

cos(ϕiTN−1)− 1 = 0, sin(ϕiTN−1) = 0, (31)

so ϕiTN−1 ∈ 2πZ. Substituting TN−1 = 2π/ϕN−1 yields

ϕi

ϕN−1
∈ N+, (32)

as all ϕi > 0.

B.6 REMARKS ON PROPOSITION 1

Relaxed conditions under which the proposition holds approximately. Although the strict con-
dition for forming harmonics in Proposition 1 is ϕi/ϕN−1 ∈ N+, in this section we highlight ap-
proximate conditions that can likewise induce a dominant frequency leading to content repetition in
videos. Specifically, if ϕi/ϕN−1 is sufficiently close to an integer, constructive amplification can
still occur for small |t| (e.g., |t| ≤ 2TN−1). For example, for CogVideoX, the ratio of the first two
frequencies is ϕ0/ϕ1 = 3.16, which is close to the integer 3, thereby producing a dominant compo-
nent that accounts for 50.80% of the total amplitude. This gives rise to an approximately periodic
composite attention pattern (Fig. 12), which in turn leads to content repetition (Fig. 14, right).
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Model Attention maps Statistical row attention analysis

Hun.
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Temporal distance Δt
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Δt
+
b i

)

Individual frequencies

ϕ0 ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7
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Temporal distance Δt

0

5

10

S̄(
Δt

)

Final composite attention

(a) Periodic attention: (b) Approximately harmonic RoPE frequencies (ϕ0/ϕ1 ≈ N+) amplify the largest
Pi,j ≈ Pi,j+T amplitude ϕ1 (dashed line), inducing approximately periodic composite attention.

Figure 12: Periodic attention patterns of CogVideoX. The RoPE frequencies of CogVideoX ap-
proximately satisfy the harmonic condition, which amplifies the largest-amplitude component and
thereby induces periodic attention patterns.

Remarks on the strict period of HunyuanVideo. We herein examine the strict periodicity of
HunyuanVideo. Strictly speaking, its fundamental frequency is ϕ7, with ratios ϕi/ϕ7 = 27−i, i ∈
{0, . . . , 7}. According to Proposition 1, the theoretical period of S̄(∆t) is T7 = 2π

ϕ7
. However, as

shown in Fig. 10a (col. 3), the amplification contributed by ϕ7 is very small, accounting for only
6.677%, which makes its impact negligible. Moreover, its period of 804 is far larger than the extrapo-
lation length (e.g., 132 at 4× extrapolation), rendering the variation of the corresponding component
almost imperceptible within this range. The same reasoning applies to ϕi for i ∈ {4, 5, 6}. Conse-
quently, our analysis focuses on ϕi with i ∈ {0, 1, 2, 3}, whose single-frequency contributions are
both large enough in amplitude and sufficiently oscillatory to shape S̄(∆t).

B.7 NECESSITY OF CONCENTRATING ON THE TRAINING WINDOW

In this section, we provide detailed experimental evidence supporting the discussion in Sec. 3.2.2
on where sharpened attention focus is most beneficial. Specifically, on Wan with extrapolation ratio
s = 3, we test four strategies for sharpening attention: concentrating on the leading 1

s of each
row, the trailing 1

s , the training window, and the top–1
s tokens according to the original attention

scores. As shown in Fig. 13, concentrating on the leading or trailing 1
s of each row causes the

video to collapse, while top– 1
s yields poor visual quality with little dynamics. In contrast, restricting

attention to the training window leads to the most significant improvement in video quality.

concentrating on the leading segment concentrating on the trailing segment

concentrating on top - tokens concentrating on the training window

Figure 13: Comparison of attention concentration strategies on Wan at s = 3. Concentrating
on the leading or trailing 1

s of each row collapses the video, and top– 1
s yields poor quality with little

dynamics. Restricting attention to the training window proves most effective.
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C MORE DETAILS OF EXPERIMENTS

C.1 FAILURE MODES OF COGVIDEOX

In this section, we present the manifestation of the failure modes of video length extrapolation as
discussed in Sec. 3.1 on an additional model, CogVideoX. As shown in Fig. 14, when extrapolated to
three times the normal training length, the generated videos exhibit a sharp decline in both dynamic
degree and visual quality, along with noticeable content repetition.

… …

normal length 3× extrapolation

Figure 14: Failure modes of CogVideoX under 3× extrapolation. The generated videos show
degraded visual quality, reduced dynamics, and clear content repetition, consistent with the failure
modes discussed in Sec. 3.1.

C.2 MORE IMPLEMENTATION DETAILS

In this section, we provide further details of Sec. 4.2.

The implementation of NoRepeat Score. The NoRepeat Score implemented in RIFLEx (Zhao
et al., 2025) is only applicable when the content repeats once, which makes it unsuitable for longer
extrapolation tasks. We therefore modify it accordingly. Specifically, the computation of the NoRe-
peat Score consists of two steps: static-video filtering and repeated-frame ratio calculation. In the
first step, we uniformly sample 8 frames across the video; if the mean pairwise L2 distance among
them falls below a threshold, the video is considered static and discarded. This prevents completely
static videos from interfering with subsequent repetition detection. In the second step, we measure
the ratio of repeated frames to the total frame count, which defines the NoRepeat Score. Following
RIFLEx, we first search around the dominant-frequency period for the frame with the minimal L2

distance to the first frame. This frame is then taken as the start of a candidate repeated sequence. We
then compare each frame in this candidate sequence with the corresponding frame at the beginning
of the video; frames whose L2 distance is below the threshold are counted as repetitions. Empir-
ically, a threshold of 55 was found to align better with human perception and was consequently
applied to both steps. Finally, we report the mean NoRepeat Score across all videos as the final
result. The detailed implementation code is included in the supplementary material.

The implementation of RIFLEx and UltraViCo on Wan. Since Wan does not exhibit content
repetition, it is not applicable to determine the dominant frequency from the repetition period as per-
formed in Zhao et al. (2025). Instead, following Sec. 3.2.1, we take the largest-amplitude frequency
ϕ0 as the dominant frequency.

For UltraViCo, the first frame’s decay factor is set negative to fix its blurring. We hypothesize that
this is caused by the causal design of the video VAE, where the first frame is encoded indepen-
dently and without temporal compression. As a result, it exhibits different statistical properties from
subsequent frames and becomes more sensitive to perturbations.

Details of the ablation study. Herein, we detail the setup of the ablation study in Sec. 4.2. Specif-
ically, as shown in Fig. 7 (top), we compare three decay strategies—parabolic, linear, and constant.
The parabolic strategy takes the following form:

S′
ij = λij ·Sij , where λij =

{
1, if |i− j| ≤ L/2 or Sij < 0,

α1(|i− j|/L′)2 + α2(1− (|i− j|/L′)2), otherwise,
(33)

whereas the linear strategy takes the following form:

S′
ij = λij · Sij , where λij =

{
1, if |i− j| ≤ L/2 or Sij < 0,

α1|i− j|/L′ + α2(1− |i− j|/L′), otherwise,
(34)
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and the constant strategy is

S′
ij = λij · Sij , where λij =

{
1, if |i− j| ≤ L/2 or Sij < 0,

α, otherwise.
(35)

We set α = 0.9 for the constant strategy, and α1 = 0.85, α2 = 0.95 for the parabolic and the
linear strategies. As shown in Fig. 7 (top), parabolic, linear, and constant decay yield only minor
differences, indicating that the key is distinguishing in-window from out-of-window tokens rather
than the decay shape.

C.3 ADDITIONAL EXPERIMENTS OF DIFFERENT EXTRAPOLATION RATIOS AND MODELS

Settings. In this section, we provide some additional extrapolation ratios from s = 2 to 5 and
models based on 25 prompts from VBench (Huang et al., 2024). To evaluate the generality of
UltraViCo, we test 2× extrapolation on HunyuanVideo, Wan, and CogVideoX, as well as 3× and
4× extrapolation on CogVideoX. In addition, we assess 5× extrapolation on HunyuanVideo. For
Wan, we set α = 0.9. For HunyuanVideo, we use γ = 4 across all ratios, with α = 0.95, β = 0.6
at 2× and α = 0.9, β = 0.8 at 5×. For CogVideoX, we use γ = 1 and β = 0.6 for all ratios, with
α = 0.9 at 2× and 3×, and α = 0.85 at 4×. The configurations of other baselines follow Sec. 4.1.

Results. We compare UltraViCo with the baselines in Sec. 4.2. As shown in Tab. 3, UltraViCo
achieves the best performance across all models and extrapolation ratios, not only avoiding content
repetition but also substantially improving video quality. For example, CogVideoX exhibits nearly
static videos at 4× extrapolation (Dynamic Degree ≤ 16) with poor visual quality (Imaging Quality
≤ 56), whereas our method significantly enhances both temporal dynamics and visual quality, with
Dynamic Degree and Imaging Quality improving by 200% and 13.48%, respectively. Furthermore,
at 5× extrapolation, UltraViCo also demonstrates strong performance, surpassing the best baseline
scores by 350% in Dynamic Degree and 47.59% in Imaging Quality, indicating the potential of our
method to extend to larger extrapolation ratios.

C.4 MORE QUALITATIVE RESULTS OF OUR METHOD

In this section, we provide additional qualitive results for the experiments in Sec. 4.2. As shown in
Fig. 15 and Fig. 16, whether under 3× or 4× extrapolation ratios, and across Wan and CogVideoX,
our method consistently achieves substantially superior visual quality and temporal dynamics com-
pared to the baselines. For example, as shown in Fig. 15, the videos generated by various baselines
for 3× and 4× extrapolation on Wan are nearly completely static, whereas our method produces
highly fluid and natural large-scale motion. Similarly, as shown in Fig. 16, the videos from the base-
lines are very blurry with dull colors, while our method generates realistic, natural results with rich
details.

Moreover, we present another downstream task in Fig. 17, where generation is performed based on
a given pose. Our method achieves high quality and dynamic results while closely following the
given conditions.

D FURTHER DETAILS OF ULTRAVICO

D.1 ULTRAVICO WITH EFFIEIENT ONLINE ATTENTION

UltraViCo does not require materializing the full attention matrix and can be seamlessly integrated
into efficient online attention kernels. Herein, we present its implementation based on FlashAtten-
tion, as illustrated by Algorithm 1.

D.2 ABLATION ON HYPERPARAMETERS

In this section, we present more detailed illustrative ablation results for the hyperparameters α and β.
The detailed sensitivity curve is shown in Fig. 18, while the illustrative ablations on the independent
effects of α and β in the main experiments are reported in Tab. 6.
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(a) 3× extrapolation (b) 4× extrapolation

PE ··· ···

PI ··· ···

NTK ··· ···

YaRN ··· ···

TASR ··· ···

RIFLEx ··· ···

Ours ··· ···

Figure 15: Qualitative results on Wan. The baselines produce nearly static videos with poor visual
quality, whereas our method achieves significantly better quality and much more motion.

(a) 3× extrapolation (b) 4× extrapolation

PE ··· ···

PI ··· ···

NTK ··· ···

YaRN ··· ···

TASR ··· ···

RIFLEx ··· ···

Ours ··· ···

Figure 16: Qualitative results on CogVideoX. The baselines produce nearly static videos with poor
visual quality, whereas our method generates realistic results with rich details and fluid motion.
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Table 3: Quantitative results on VBench for more models and extrapolation. Note that NoRepeat
Score is essentially a binary indicator: red entries indicate visually obvious repetitions, while others
show no noticeable repetition.

Method Wan with 2× extrapolation CogVideoX with 3× extrapolation

NoRepeat↑ Dynamic↑ Quality↑ Overall↑ NoRepeat↑ Dynamic↑ Quality↑ Overall↑
PE N/A 32 58.13 23.22 82.52 16 57.91 19.59
PI N/A 32 54.23 21.52 99.07 4 54.27 18.17
NTK N/A 44 59.59 23.52 86.07 4 55.24 19.33
YaRN N/A 24 55.14 21.57 97.47 0 53.96 18.05
TASR N/A 36 59.97 23.70 97.93 8 55.75 19.24
RIFLEx N/A 16 48.15 20.34 97.86 8 55.31 19.03
Ours N/A 68 66.88 25.28 99.38 32 60.09 24.77

Method HunyuanVideo with 2× extrapolation CogVideoX with 4× extrapolation

NoRepeat↑ Dynamic↑ Quality↑ Overall↑ NoRepeat↑ Dynamic↑ Quality↑ Overall↑
PE 80.43 40 62.67 24.36 76.57 16 55.25 17.27
PI 98.87 4 52.35 23.55 88.53 4 46.82 16.63
NTK 94.97 32 65.47 24.62 78.89 2 52.74 18.14
YaRN 97.99 4 52.87 23.26 94.75 4 47.36 16.90
TASR 94.85 36 64.55 24.59 99.13 16 46.75 17.28
RIFLEx 97.27 36 65.19 24.52 97.00 12 50.59 16.66
Ours 97.53 44 66.50 24.82 96.79 48 62.70 25.39

Method CogVideoX with 2× extrapolation HunyuanVideo with 5× extrapolation

NoRepeat↑ Dynamic↑ Quality↑ Overall↑ NoRepeat↑ Dynamic↑ Quality↑ Overall↑
PE 92.31 28 64.28 22.83 30.78 4 39.04 15.64
PI 98.85 8 57.11 21.88 81.58 0 36.63 16.76
NTK 94.66 16 63.04 23.55 71.54 8 43.43 17.78
YaRN 98.81 8 58.83 21.81 77.70 0 37.88 17.85
TASR 95.91 16 62.17 23.44 35.31 8 42.88 17.88
RIFLEx 99.42 16 60.30 23.28 53.65 4 40.55 15.71
Ours 98.92 32 64.39 25.36 99.44 36 64.10 24.16

Figure 17: Our method for pose-guided video generation. Our method closely aligns with the
given pose conditions, while ensuring high dynamic range and excellent visual quality.

Algorithm 1 UltraViCo FlashAttention Kernel

Require: Matrices Q,K, V ∈ RN×d, block size bq, bkv .
1: Divide Q into Tm = N/bq blocks {Qm}, and divide K, V into Tn = N/bkv blocks {Kn} and {Vn};
2: for m in [1, Tm] do
3: for n in [1, Tn] do
4: i⃗ = m× bq + range(0, bq), j⃗ = n× bkv + range(0, bkv), i⃗ ∈ R1×bq , j⃗ ∈ R1×bkv ;
5: Initialize λ ∈ Rbq×bkv to 0 ;
6: λ = Eq. 6(⃗i, j⃗) ;
7: Sn

m = λQmKT
n ;

8: pnm = max(pn−1
m , rowmax(Sn

m)) ;
9: P̃n

m = exp(Sn
m − pnm) ;

10: lnm = ep
n−1
m −pnm ln−1

m + rowsum(P̃ j
i ) ;

11: On
m = diag(ep

n−1
m −pnm)On−1

m + P̃n
mVn ;

12: end for
13: Om = diag(lTn

m )−1OTn
m ;

14: end for
15: return O = {Om};
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(a) Schematic diagram of the α sensitivity curve.

(b) Schematic diagram of the β sensitivity curve.

Figure 18: Illustration of the hyperparameter sensitivity curve.

Table 4: Illustrative sensitivity analysis of α on Hunyuan at 3× extrapolation. We set β equal
to α, i.e., a single decay factor is shared globally.

α Consistency↑ Dynamics↑ Quality↑ Overall↑ NoRepeat↑
1.0 0.9795 16 51.85 21.62 53.17
0.95 0.9663 25 54.92 24.07 100
0.9 0.9647 32 57.53 26.25 93.34
0.85 0.9298 68 69.93 26.89 99.53
0.8 0.9231 73 70.35 26.96 100

Table 5: Illustrative sensitivity analysis of β on Hunyuan at 3× extrapolation. We set α = 0.9
across all settings.

β Consistency↑ Dynamics↑ Quality↑ Overall↑ NoRepeat↑
1.0 0.9716 28 55.23 24.52 57.42
0.9 0.9647 32 57.53 26.25 93.34
0.8 0.9510 45 59.35 26.42 97.25
0.75 0.9496 51 62.11 26.98 95.77
0.6 0.9465 62 65.00 26.45 100
0.45 0.9349 65 68.34 26.99 100
0.3 0.9318 66 70.45 26.98 100

Table 6: Illustrative ablation experiments that independently examine the individual effects of
α and β.

Method Consistency↑ Dynamics↑ Quality↑ Overall↑ NoRepeat↑
HunyuanVideo with 3× extrapolation

α = 1, β = 1 0.9795 16 51.85 21.62 53.17
α = 0.9, β = 1 0.9716 28 55.23 24.52 57.42
α = 1, β = 0.6 0.9784 25 55.13 23.13 93.52
α = 0.9, β = 0.6 0.9465 62 65.00 26.45 100

Wan2.1-1.3B with 3× extrapolation

α = 1 0.9419 6 56.28 18.53 –
α = 0.9 0.9444 46 62.43 23.21 –
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