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Abstract001

Retrieval-Augmented Code Generation002
(RACG) is a critical technique for enhancing003
code generation by retrieving relevant infor-004
mation. In this work, we conduct an in-depth005
analysis of code retrieval by systematically006
masking specific features while preserving007
code functionality. Our discoveries include:008
(1) although trained on code, current retrievers009
heavily rely on surface-level textual features010
(e.g., docstrings, identifier names), and (2) they011
exhibit a strong bias towards well-documented012
code, even if the documentation is irrelevant.013
Based on our discoveries, we propose SACL,014
a framework that enriches textual information015
and reduces bias by augmenting code or016
structural knowledge with semantic informa-017
tion. Extensive experiments show that SACL018
substantially improves code retrieval (e.g., by019
12.8% / 9.4% / 7.0% Recall@1 on HumanEval020
/ MBPP / SWE-Bench-Lite), which also leads021
to better code generation performance (e.g., by022
4.88% Pass@1 on HumanEval).023

1 Introduction024

Retrieval-augmented code generation (RACG) is025

the technique of generating code based on rele-026

vant documents retrieved from a corpus (Koziolek027

et al., 2024; Lu et al., 2022). RACG is shown028

to be beneficial in script-level code generation,029

which provides background knowledge or function-030

ally relevant snippets, and is particularly important031

for repository-level (repo-level) code generation,032

where models must be aware of other files within033

the repository (Wang et al., 2025). However, recent034

work has shown that retrieval quality remains a sig-035

nificant bottleneck for RACG performance (e.g.,036

Agentless (Xia et al., 2024) only achieves 35.3%037

line localization accuracy on SWE-Bench).038

While extensive analysis has been conducted on039

the capabilities and challenges of text retrievers040

(Dai et al., 2024; Karpukhin et al., 2020; Thakur041

et al., 2021), a systematic investigation of code042
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Figure 1: Summaries of our discoveries from the anal-
yses. Our analyses reveal code retrievers’ heavy de-
pendence on textual features rather than functional se-
mantics, leading to bias favoring well-documented code
regardless of relevance.

retrievers remains relatively underexplored. The 043

nature of code corpora differs fundamentally from 044

text corpora due to their highly structured nature, 045

with strict syntax rules and structures (Husain et al., 046

2019; Allamanis et al., 2018). Unlike text docu- 047

ments, the semantic meaning of a code snippet can 048

be completely altered by small syntactic changes, 049

making traditional retrieval analysis less effective 050

for code search tasks. Such fundamental differ- 051

ences suggest that code retrievers may have sig- 052

nificantly different behaviors from text retrievers, 053

highlighting the need for more focused analysis. 054

In this work, to develop a deeper understanding 055

of code retrieval, we conduct empirical analyses on 056

both code retrievers and in-context rerankers to an- 057

swer two critical research questions: (RQ1) What 058

features are code retrievers primarily based on? 059

and (RQ2) Do retrievers exhibit bias? Specifi- 060
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cally, we introduce a normalization-based analysis061

framework, where we systematically mask textual062

features such as docstrings, function names, and063

variable names or replace them with placeholders.064

Such transformations preserve the code’s function-065

ality but eliminate textual cues, allowing us to eval-066

uate the dependence and bias of textual features.067

We illustrate our discoveries in Figure 1. We068

observe that [Discovery 1] although trained on069

code, current code retrievers exhibit strong de-070

pendency on textual features (e.g., docstrings and071

function or variable names) and under-utilize the072

functionality of code. Specifically, when all textual073

features are normalized, we observe significant per-074

formance degradation on both embedding-based075

code retrieval and in-context code reranking. For076

instance, with normalization, the Recall@1 perfor-077

mance of GIST-large degrades from 98.6% to 9.0%078

on MBPP (Austin et al., 2021).079

As shown in Figure 1, our analyses also re-080

veal that [Discovery 2] Retrievers consistently as-081

sign higher relevance scores to well-documented082

code, even when the documentation is function-083

ally irrelevant. Particularly, compared to Discov-084

ery 1’s setting, where all the code documents are085

normalized, only normalizing the positive docu-086

ments leads to even worse retrieval and reranking087

performances. The results indicate the bias towards088

well-documented code with meaningful identifier089

names, which may lead to preferring irrelevant090

but well-documented code over relevant but poorly091

documented code.092

Based on these discoveries, we present SACL,093

which improves code retrieval with Semantic-094

Augmented Code Reranking and in-context095

Localization. Based on our discoveries that re-096

trievers are more sensitive to textual features, in097

the reranking stage, we first generate textual de-098

scriptions for the retrieved code documents, and099

then aggregate the retrieval scores for the original100

code documents and textual descriptions for final101

re-ranking. Such design bridges the code and text102

modalities and mitigates the bias between well-103

documented and sparsely documented code. Based104

on the empirical discovery that in-context rerank-105

ing also exhibits similar textual bias, for repo-level106

code generation, we further introduce semantic-107

augmented in-context localization, where we gen-108

erate supplementary file descriptions for the repos-109

itory structure to augment the context for file local-110

ization. Empirical results show that such methods111

are the most effective when the file names do not112

contain rich semantic information. 113

Our experimental results demonstrate significant 114

improvements across three public benchmarks: Hu- 115

manEval (Chen et al., 2021), MBPP (Austin et al., 116

2021), and SWE-Bench-Lite (Jimenez et al., 2023). 117

For instance, SACL achieves 12.8%/9.4% code re- 118

trieval Recall@1 gain on HumanEval/MBPP under 119

the full normalization setting and achieves 7.0% 120

file localization Recall@1 on SWE-Bench-Lite 121

with the Agentless pipeline (Xia et al., 2024). Our 122

improvements on code retrieval and localization 123

also leads to performance gain on code genera- 124

tion (e.g., 4.88% Pass@1 gain on HumanEval and 125

1.67% on SWE-Bench-Lite). These results high- 126

light the effectiveness of our approaches in enhanc- 127

ing the semantic understanding capabilities of code 128

retrievers and mitigating lexical bias. 129

2 Analysis: Textual Bias in Code 130

Retrieval 131

This section answers our two research questions 132

through two controlled experiments: (RQ1) What 133

features are code retrievers primarily based on? 134

and (RQ2) Do retrievers exhibit lexical-level bias? 135

These experiments aim to identify whether code re- 136

trievers favor textual characteristics over functional 137

semantics when matching queries to code. 138

2.1 RQ1: What Features are Code Retrievers 139

Based on? 140

Setup. We quantify the importance of various 141

features through a controlled study, where we pro- 142

gressively replace surface-level code features with 143

dummy placeholders (e.g., “func_0”, “var_0”). We 144

call the process “normalization”. Specifically, 145

we compare the Recall@1 performance of various 146

code retrievers in five normalization settings: 147

1⃝ no normalization (i.e., the original code). 2⃝ 148

removing docstrings and comments, 3⃝ renaming 149

function names, along with removing docstrings, 150

4⃝ renaming variable names, along with remov- 151

ing docstrings, and 5⃝ renaming both function 152

names and variable names, along with removing 153

docstrings (i.e., the combination of 2⃝~ 4⃝). 154

Note that this study preserves functional equiva- 155

lence while enabling controlled ablation of specific 156

features with rich textual information. 157

We study two categories of methods using four 158

models: embedding-based retrievers (GIST-large, 159

TE3-small), which rank the code documents based 160

on the cosine similarity with the query, and LLM- 161
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Figure 2: Impact of code normalization techniques on retrieval performance (Recall@1) across datasets with
different embedding-based retrievers (left) and in-context rerankers (right). The results consistently show that all
normalization techniques reduce retrieval effectiveness, with function name normalization and full normalization
having the most significant negative impact.

based rerankers (GPT-4o, 4o-mini), where we pro-162

vide the ground truth (GT) document and the top-163

50 documents retrieved under the “no normaliza-164

tion” setting in the context, and then prompt the165

LLM to identify the most relevant document.166

Results. As shown in Figure 2, results on Hu-167

manEval and MBPP reveal that both embedding-168

based retrievers and LLM-based rerankers have169

significant performance degradation under the nor-170

malization settings, especially the full normaliza-171

tion setting. This indicates that they heavily rely172

on textual features in retrieval or reranking.173

We also observe that different models exhibit dis-174

tinct sensitivities to different normalization meth-175

ods. For instance, GIST-large shows more severe176

performance degradation with function name nor-177

malization (54.3% to 18.9%), while TE3-small suf-178

fers greater relative impact when variable names179

are normalized. Notably, docstring removal im-180

pacts MBPP significantly more than HumanEval181

(37% drop in MBPP versus minimal decrease in182

HumanEval). This difference stems from Hu-183

manEval’s natural language descriptions contain-184

ing function signatures that exactly match corpus185

signatures, providing strong retrieval signals even186

without docstrings, while MBPP’s queries have187

fewer direct lexical matches.188

The main discovery of this analysis is that [Dis-189

covery 1] retrievers heavily rely on textual fea-190

tures, including docstrings and identifier names,191

rather than deeper semantic information such192

as the functionality of the code. One possible ex-193

planation is that among the contrastive pairs used194

for retriever training (e.g., docstring-function pairs195

and StackOverflow QA pairs) (Husain et al., 2019),196

the textual queries have a high degree of lexical197

overlap with docstrings, function names, variable198

names, etc., and such correlation is captured by the199

retriever model.200

Embedding Model: GIST-large

Normalization Type (S1) Norm GT &
Norm Others

(S2) Norm GT &
Orig OthersDocstring Var Func

✗ ✗ ✗ 1.00 1.00
✓ ✗ ✗ 1.01 1.07
✓ ✓ ✗ 1.35 5.18
✓ ✗ ✓ 8.05 20.29
✓ ✓ ✓ 87.18 288.27

Embedding Model: OpenAI/text-embedding-3-small

Normalization Type (S1) Norm GT &
Norm Others

(S2) Norm GT &
Orig OthersDocstring Var Func

✗ ✗ ✗ 1.00 1.00
✓ ✗ ✗ 1.01 1.04
✓ ✓ ✗ 2.23 22.48
✓ ✗ ✓ 1.74 1.95
✓ ✓ ✓ 25.92 96.98

Table 1: Average Rank of the GT document (↓) on
the HumanEval dataset. The results demonstrate that
when only the ground truth document is normalized
(S2) while others remain in their original form, the GT
document’s rank deteriorates dramatically compared to
when all documents are normalized (S1). Such results
reveal a strong bias toward textual features over seman-
tic relevance.

2.2 RQ2: Do retrievers exhibit bias? 201

Setup. Following §2.1, we further investigate 202

whether code retrievers have a bias towards code 203

containing more or fewer textual features (e.g., doc- 204

strings and function/variable names). Towards this 205

goal, unlike the setting in §2.1 (S1), where all the 206

documents are normalized, we introduce an asym- 207

metric normalization setting (S2), where only the 208

ground truth (GT) document for each query is nor- 209

malized, while the remainder of the corpus is left 210

in its original form. The comparison of the retriev- 211

ers’ performances under S1 and S2 allows us to 212

assess whether models penalize stylistic deviations 213

in semantically equivalent code. 214

Results. As shown in Table 1, the retrievers’ per- 215

formance further decreases when the irrelevant 216

code documents are more well-documented than 217

the ground truth one. For instance, in the most ex- 218
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treme case where all the identifiers and docstrings219

are normalized, the rank of the GT document jumps220

from 87.18 to 288.27 for GIST-large retrieval (and221

from 25.92 to 96.98 for TE3-small).222

This degradation reveals a clear inductive bias223

in current retrieval models: in many cases, the224

retriever assigns a higher rank to irrelevant but225

well-documented code over the semantically cor-226

rect, normalized gold document. In other words,227

we observe that [Discovery 2] retrievers tend to228

assign higher scores for well-documented code229

with meaningful identifier names, even if the230

documentation is irrelevant to the query.231

3 Methodology232

Both [Discovery 1] and [Discovery 2] reveal that233

code retrievers heavily rely on textual information234

(e.g., documentation and identifier names) rather235

than understanding of code structure. To com-236

bat this issue, SACL introduces two techniques:237

semantic-augmented code reranking and semantic-238

augmented in-context localization. Both methods239

augment the retrieved code or structure with tex-240

tual descriptions to improve the encapsulation of241

semantic information.242

3.1 Semantic-Augmented Code Reranking243

Traditional retrieval systems often struggle with244

the semantic gap between natural language queries245

and code documents.246

To bridge this gap, we enhance the re-ranking247

process with semantically rich descriptions. Af-248

ter retrieving the initial top-k code documents, we249

prompt an LLM to generate concise natural lan-250

guage descriptions of each code snippet’s function-251

ality and purpose. These descriptions provide an252

alternative representation of the code that empha-253

sizes semantic content over syntactic structure.254

Then we combine the relevance scores between255

(1) the original code documents and the queries,256

and (2) the textual descriptions and the queries:257

Scorefinal = (1−α) ·Scorecode +α ·Scoredesc
(1)258

where α ∈ [0, 1] is a tunable hyperparameter259

controlling the influence of each score component.260

This approach transforms the cross-modal261

comparison problem (text-to-code) into a more262

tractable text-to-text comparison, enabling more se-263

mantically meaningful ranking of code documents264

based on natural language queries.265
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Figure 3: Flowchart illustrating our two main ap-
proaches. (left) Documents are retrieved based on query
similarity, then augmented with generated descriptions.
The final ranking score combines both code-query and
description-query similarity scores to improve retrieval
performance. (right) Repository structure is enhanced
with descriptive summaries for each file (shown in
green italics). This augmented structure significantly
improves the LLM’s ability to localize relevant files for
code modification tasks.

3.2 Semantic-Augmented in-context 266

Localization 267

Repository-level code generation required compre- 268

hensive understanding of code repository structure 269

to effectively navigate and modify complex code- 270

bases (Xia et al., 2024). When previous works such 271

as (Xia et al., 2024) uses repository structures to 272

localize code that needs editing, they present the 273

structure in a hierarchical format that represents 274

the directory and file organization, as illustrated in 275

Figure 3. 276

Building on our discoveries that retrievers tend 277

to focus on textual information rather than func- 278

tional semantics, we aim to augment structural 279

representations with rich textual descriptions to im- 280

prove localization performance. We enhance the 281

standard repository structure by generating brief 282

semantic descriptions for each file’s contents in 283

the repository. The descriptions are generated by 284

prompting an LLM to analyze each file individu- 285

ally and summarize its contents (classes, functions, 286

etc.), purpose and functionality in a couple sen- 287

tences. The augmented repository structure serves 288

as input to an LLM tasked with identifying po- 289

tentially suspicious files related to a reported bug 290

or issue. These semantic descriptions allow the 291
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model to better understand file functionality and292

relationships, improving subsequent localization293

steps by reducing noise. To improve efficiency in294

inference, we generate descriptions using a small295

(Llama-3.1-8B-based) file summarization model,296

which already shows significant performance gain297

in file localization.298

4 Experiments299

With our experiments, we aim to answer the fol-300

lowing research questions: (RQ1) What impact301

does SACL have on Code retrieval performance?302

(RQ2) Given this code retrieval performance, what303

is the downstream code generation performance304

improvement? (RQ3) Why does semantic aug-305

mentation benefit code retrieval? (RQ4) Which306

hyper-parameters are optimal?307

4.1 Experiment Setup308

Datasets. We evaluate our approach on three309

widely used benchmarks: HumanEval (Chen et al.,310

2021) and MBPP (Austin et al., 2021) are script-311

level algorithm problem datasets and SWE-Bench-312

Lite (Jimenez et al., 2023) is a repo-level issue-313

solving dataset. For HumanEval and MBPP, we314

evaluate under various “normalization” settings (as315

introduced in §2), which preserve the functionali-316

ties of the code documents but are more challeng-317

ing to retriever models.318

Evaluation Metrics. We follow existing319

work (Wang et al., 2025) and report Recall@k320

(k=1,5,10) for code retrieval and report Pass@1321

for code generation. We additionally evaluate file322

and line localization accuracy (Xia et al., 2024)323

for SWE-Bench-Lite, which checks whether the324

corresponding generated patch edits a superset of325

all locations in the ground truth patch.326

Implementation Details. For scalability concerns,327

we only generate a short description (under 100328

words) for the code documents using a small model329

(Llama-3.1-8B-Instruct). For SWE-Bench Lite, we330

integrate our approach into the file localization step331

of the Agentless pipeline (Xia et al., 2024), which332

prompts an LLM to identify relevant files based on333

the repository structure in the format of a tree.334

We provide more experimental details in A.1.335

4.2 Code Retrieval Results336

Script-level Code Generation Results. Table 2337

presents code retrieval results under HumanEval338

and MBPP across different normalization settings,339

helping us answer (RQ1). We observe that SACL 340

demonstrates significant improvements over the 341

baseline (e.g., improving Recall@1 for up to 15.2% 342

on HumanEval and 14.8% on MBPP). Particularly, 343

under the most challenging setting where all tex- 344

tual features are normalized, SACL still obtains 345

substantial performance gain, which indicates that 346

LLMs can still effectively summarize the function- 347

alities even if all textual features are normalized. 348

Our approach leverages LLM’s strong code under- 349

standing property to compensate code retriever’s 350

bias toward textual features and hence effectively 351

capture the semantic meaning of code. 352

Repo-level Issue-Solving Results. As shown in 353

Table 3, SACL achieves significant performance 354

gain on fault localization on SWE-Bench-Lite. For 355

instance, we improve the file localization accu- 356

racy by 8.0%/7.0% for 4o-mini/GPT-4o. The con- 357

sistent performance gain across different models 358

highlights the effectiveness of augmenting reposi- 359

tory structures with richer contextual information 360

for fault localization. Specifically, as shown in 361

later analysis (§4.4), the file descriptions may con- 362

tain high-level descriptions of the file’s purpose, 363

its relationship to other files, or its utility to the 364

whole repository, which are neglected in the repos- 365

itory tree structure. Such information reveals the 366

high-level role and interconnections of files in the 367

repository, which are relevant to the issues. 368

4.3 Code Generation Results 369

Script-level Code Generation Results. Results 370

in Table 4 demonstrate that our performance gain 371

in retrieval also translates to the improvement in 372

code generation for various code generation mod- 373

els, highlighting the robustness of our method, tack- 374

ling our (RQ2). On MBPP, which presents a more 375

challenging scenario due to lower lexical overlap 376

between queries and relevant code (as shown in 377

Figure 4), we observe improvements across all 378

normalization settings. Note that under the most 379

challenging setting of full normalization, where 380

even providing the normalized GT documents in 381

the context only gives marginal code generation 382

performance gain, SACL still delivers an improve- 383

ment of 2.2 Pass@1. These results demonstrate 384

that better retrieval directly translates to improved 385

generation performance, with the benefits being 386

most pronounced in scenarios where code lacks 387

rich textual features. 388

Repo-level Issue-Solving Results. As shown in 389
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Norm.
Type

HumanEval MBPP
Recall@1 Recall@5 Recall@10 Recall@1 Recall@5 Recall@10

Base SACL ∆ Base SACL ∆ Base SACL ∆ Base SACL ∆ Base SACL ∆ Base SACL ∆

Docstring 98.8 98.8 0.0 100.0 100.0 0.0 100.0 100.0 0.0 62.4 70.2 ↑7.8 87.0 89.2 ↑2.2 91.4 93.2 ↑1.8
Func Name 54.3 69.5 ↑15.2 77.4 86.0 ↑8.6 83.5 89.6 ↑6.1 22.0 36.8 ↑14.8 39.8 51.0 ↑11.2 49.0 55.0 ↑6.0
All 18.9 31.7 ↑12.8 34.1 43.3 ↑9.2 42.7 46.3 ↑3.6 9.0 18.4 ↑9.4 18.6 29.0 ↑10.4 23.6 31.4 ↑7.8

Table 2: The Recall@k retrieval performance of the baseline and SACL under different normalization settings.
We use GIST-large as the retriever and Llama-3.1-8B-Instruct for generating descriptions. We highlight results
showing SACL > Base with green (darker green when having 5%+ increases or perfect results).

Method Localization Accuracy
Line File (∆)

Agentless (GPT-4o-mini) 32.7 70.0
+ SACL 34.7 (↑2.0) 78.0 (↑8.0)

Agentless (GPT-4o) 40.0 79.0
+ SACL 42.3 (↑2.3) 86.0 (↑7.0)

Table 3: Fault Localization results on SWE-Bench-
Lite. We compute the % of instances where the
retrieved/LLM-localized files/lines contain the fault lo-
cation. File-level localization is computed using the list
of potential files identified by agentless at the end of the
localization phase. Line-level localization is computed
using final patches after testing and re-ranking.

Table 5, our semantic-augmented approach also390

improves issue-solving rates on SWE-Bench-Lite391

(e.g., by 1.7% Pass@1 over Agentless (GPT-4o)).392

This is consistent with previous work’s observation393

that fault localization accuracy is a bottleneck for394

repo-level code generation (Xia et al., 2024). The395

improvement in resolved issues is particularly cru-396

cial as it further validates our approach’s effective-397

ness in practical software engineering scenarios.398

4.4 Performance Analysis399

SACL Improves Query-Doc Lexical Overlap.400

To investigate (RQ3), we hypothesize that seman-401

tic descriptions enhance code retrievers by improv-402

ing lexical overlap between the query and docu-403

ments, especially when the surface-level features404

in code are normalized. To test our hypothesis,405

we compare the ROUGE scores between the query406

and the positive and negative examples.407

Results in Figure 4 reveal that the lexical overlap408

between positive and negative descriptions is larger409

than that of code documents. Particularly, on the410

challenging MBPP dataset, the positive document’s411

lexical overlap with the query is on average lower412

than that of the best negative document under the413

normalization settings, while descriptions maintain414

a clear separation between positive and negative415

examples even under full normalization.416

SACL Enriches Context with File Semantics.417
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Figure 4: Lexical overlap (ROUGE-1 scores) between
the query and the positive/negative code/descriptions in
HumanEval and MBPP. We show the negative example
with the highest overlap with the query. While under
the normalization conditions, the negative code has sim-
ilar or even higher lexical overlap with the query than
the positive one, the positive descriptions always have
higher ROUGE-1 scores.

To help understand why our in-context localization 418

method is effective for repo-level code generation, 419

we analyze the contents of generated descriptions 420

for the GT files in SWE-Bench-Lite. Particularly, 421

we define three categories for the descriptions’ con- 422

tent: (1) Functional Purpose - the file’s overall func- 423

tionality; (2) Core Components - specific functions, 424

classes, or data structures; and (3) File Relation- 425

ships - connections to other repository files. Then 426

we use GPT-4o-mini to categorize each description 427

of the GT files. 428

Answering (RQ3), our analysis shows that file 429

descriptions serve multiple purposes simultane- 430

ously. As shown in Table 6 all descriptions (100%) 431

cover Functional Purpose, 80.67% describe Core 432

Components, and 14.00% mention File Relation- 433

ships. This semantic enrichment contributes to the 434

overall 8% gain in file-level localization, demon- 435

strating how augmented context helps models bet- 436
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Normalization
Type

HumanEval Pass@1 MBPP Pass@1
Qwen2.5-Coder-7B Deepseek-coder-7b Qwen2.5-Coder-7B Deepseek-coder-7b

Base SACL ∆ Base SACL ∆ Base SACL ∆ Base SACL ∆

Docstring 99.39 99.39 0.00 99.39 99.39 0.00 57.40 61.60 ↑4.20 57.40 61.60 ↑4.20
Func Name 99.39 99.39 0.00 99.39 99.39 0.00 19.00 24.40 ↑5.40 19.00 24.40 ↑5.40
All 93.29 98.17 ↑4.88 93.29 98.17 ↑4.88 6.80 9.00 ↑2.20 6.80 9.00 ↑2.20

Table 4: The Pass@1 performance of the baseline and SACL on HumanEval and MBPP.

Method % Non-Empty (∆) % Resolved (∆)

Agentless (GPT-4o-mini) 93.3 14.7
+ SACL 94.3 (↑1.0) 16.0 (↑1.3)

Agentless (GPT-4o) 97.0 24.3
+ SACL 98.0 (↑1.0) 26.0 (↑1.7)

Table 5: Code generation results on SWE-Bench-Lite.

Category Frequency (%) Gain (%)

Functional Purpose 300 (100.00%) ↑24 (8.00%)
Core Components 242 (80.67%) ↑20 (8.26%)
File Relations 42 (14.00%) ↑4 (9.52%)

Table 6: Analysis of the file descriptions used by SACL.
We manually design the categories based on the descrip-
tions’ content and use 4o-mini for categorization.

ter understand file purposes and interrelationships437

within repositories. Within the core components438

and file relations categories, we observe a respec-439

tive 8.26% and 9.52% gain. Both are slightly440

higher than the overall gain.441

Hyper-Parameter Analysis. To answer (RQ4),442

we illustrate the impact of the weighting param-443

eter α across different normalization approaches.444

As shown in Figure 5, for all Recall@k values445

(k=1, 5, 10), the performance consistently peaks at446

α=0.7, except in the case of docstring normaliza-447

tion, where all methods perform nearly perfectly.448

In contrast, pure-description retrieval (α=1) and449

pure-code retrieval (the baseline, with α=0) both450

show lower performance. This result indicates that451

SACL achieves a balance between retrieval based452

on code snippets and descriptions, where code pre-453

serves full information and descriptions capture454

the semantics that may be challenging to encode455

from the code.456

4.5 Case Studies457

We present two representative case studies to illus-458

trate how SACL effectively bridges the semantic459

gap between natural language queries and code,460

especially under normalization settings.461

Semantic-Augmented Reranking Example. As462

shown in Figure 6, for a query asking to gener-463

0 0.4 0.7 1

99

100

Re
ca

ll

Docstring

0 0.4 0.7 1
55

73

90
Fn Name

0 0.4 0.7 1

20

33

45

Both

Recall@1 Recall@5 Recall@10

Figure 5: Impact of normalization parameter α on Re-
call performance. The three plots show performance
across different normalization approaches: Docstring
(left), Function Name (middle), and Both - Functions
and Variables (right).

ate space-separated integers, the baseline mistak- 464

enly prioritizes an unrelated function analyzing se- 465

quence linearity. In contrast, when reranking based 466

on generated descriptions, the correct function re- 467

ceives a higher relevance score. The combined 468

score in SACL still correctly prioritizes the rele- 469

vant code, lifting it from rank 18 to the top. This 470

improvement arises because the descriptions cap- 471

ture high-level functional intent—e.g., “generates 472

a string of integers”—which is lost when identi- 473

fiers and docstrings are normalized. The reranker 474

can thus discriminate relevance based on semantic 475

meaning rather than textual overlap, correcting the 476

baseline’s lexical bias. 477

In-Context Localization Example. Similarly, 478

Table 8 presents two cases where our semantic- 479

augmented localization method correctly identifies 480

the source files for real-world GitHub issues but 481

the Agentless baseline does not. For instance, in 482

the first issue, the baseline misattributes the issue 483

to the field accessor logic in (’__init__.py’). In 484

comparison, with the file description that mentions 485

the “Choices” class, SACL locates the correct file, 486

“enums.py”, where the faulty “enum” string rep- 487

resentation is actually defined. Similarly, for the 488

second issue, our method accurately links the is- 489

sue to the sign function in complexes.py, rather 490

than applying a generic patch to the core function 491

class. We hypothesize that these successes stem 492

from our file-level descriptions, which often in- 493

7



def func_0(var_0):
  var_0 = [var_0[x] - var_0[x - 1] 
  for x in range(1, len(var_0))]:
      return 'Linear Sequence' if len(set(var_0)) == 1 
          else 'Non Linear Sequence'

Sim(Neg_Code, Query) = 0.5404

This function determines whether a given sequence is linear or non-
linear. It calculates the differences between consecutive elements in the 
sequence and checks if all differences are equal, indicating a linear 
sequence. If the differences are not all equal, the sequence is considered 
non-linear. The function returns a string indicating the type.
Sim(Neg_Desc, Query) = 0.5592

Negative Code & Description

Query: Return a string containing space-delimited numbers starting from 0 up to n inclusive.

Final_Neg_Score (α=0.7) = 0.5536Final_Pos_Score (α=0.7) = 0.6539

def func_0(var_0: int) -> str:
    return ' '.join([str(x) 
    for x in range(var_0 + 1)])
Sim(Pos_Code, Query) = 0.4861

This function generates a string of space-
separated integers from 0 to a given input 
number. It uses a list comprehension to 
create a list of strings representing the 
integers, and then joins them together with 
spaces. The function takes an integer as 
input and returns a string.
Sim(Pos_Desc, Query) = 0.7259

Positive Code & Description

Figure 6: Case Study 1 (HumanEval/15): The baseline incorrectly ranks a function that checks for linear sequences
higher based on code similarity alone, but semantic-augmented reranking correctly identifies the ground truth
solution by leveraging description similarity.

clude module-level purposes and inter-file relation-494

ships—semantic signals absent in raw filenames or495

directory trees.496

5 Related Work497

Code Retrieval and Retrieval-Augmented Code498

Generation. Retrieval-augmented code genera-499

tion (RACG) incorporates external retrieved snip-500

pets into the generation pipeline to improve perfor-501

mance. Recent works such as ReACC (Lu et al.,502

2022) and Repocoder (Zhang et al., 2023) demon-503

strate gains by supplying functionally relevant ex-504

amples during generation. Similarly, Code-RAG505

Bench (Wang et al., 2025) offers a standardized506

benchmark for evaluating RACG systems across507

programming tasks, retrieval quality, and compu-508

tational efficiency. Other efforts extend RACG to509

novel applications such as universal information510

extraction to generate task-specific-extractors (Guo511

et al., 2023). While these methods highlight the512

promise of RACG, they implicitly assume effec-513

tive retrievers, which is not practical. Our work514

contributes to this area by revealing and combating515

a core limitation in current retrievers: a strong bias516

toward superficial lexical signals.517

LLM-Based Fault Localization. Recent work518

has shifted towards complex, real-world scenarios519

through benchmarks like SWE-Bench (Jimenez520

et al., 2023), featuring actual GitHub issues re-521

quiring codebase comprehension and bug-fixing.522

In parallel, LLM capabilities have enabled signif-523

icant advances in fault localization (FL). FlexFL524

(Xu et al., 2025) incorporates open-source LLMs525

in a two-stage process to leverage bug-related in- 526

formation to identify and refine buggy locations. 527

AgentFL (Qin et al., 2025) models FL as a human- 528

like process with specialized agents for comprehen- 529

sion, navigation, and confirmation steps. Agentless 530

(Xia et al., 2024) utilize a simplistic three-phase 531

approach to narrow down fault locations from file- 532

level locations to line-level. Unlike previous ap- 533

proaches focused on improving agent architectures 534

or specialized tools, SACL tackles a fundamental 535

limitation in code retrievers themselves: their re- 536

liance on surface-level textual features rather than 537

functional semantics. 538

6 Conclusion 539

We conduct systematic normalization experiments 540

and uncover two key biases for current code re- 541

trieval systems: (1) heavy dependence on textual 542

cues over semantic understanding, and (2) consis- 543

tent preference for well-documented code, even if 544

the documentation is irrelevant. To address these 545

issues, we propose SACL, a framework that aug- 546

ments code retrieval and localization with semantic 547

information through natural language descriptions. 548

Experiments demonstrate SACL’s effectiveness in 549

both code retrieval and code generation on three 550

widely used benchmarks: HumanEval, MBPP, and 551

SWE-Bench-Lite. For instance, SACL improves 552

code retrieval by up to 12.8% Recall@1 on Hu- 553

manEval and up to 8.0% file localization accuracy 554

on SWE-Bench-Lite. These gains translate directly 555

into better downstream code generation quality 556

(e.g., up to 4.88% Pass@1 gain on HumanEval). 557
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Limitations558

Some of our method’s limitations are: (1) We do559

not attempt to apply our semantic augmentation560

techniques to agentic methods for code generation,561

(2) We do not explore the performance of SACL562

on other Repo-level coding benchmarks, Lastly, (3)563

We focus primarily on function retrieval when an-564

alyzing lexical-level bias in current code retrieval565

techniques.566
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A Appendix659

A.1 Experimental Details660

Datasets. We evaluate our approach on three661

widely-used code benchmarks: Humaneval (Chen662

et al., 2021) consisting of 164 hand-written pro-663

gramming problems with function signatures and664

test cases; MBPP (Austin et al., 2021) containing665

974 Python programming tasks with natural lan-666

guage descriptions and test cases; and SWE-Bench667

Lite (Jimenez et al., 2023) with 300 real-world668

GitHub tasks representing realistic software engi-669

neering scenarios.670

Implementation Details. For our code rerank-671

ing approach, we use GIST-large (Solatorio, 2024)672

as the base embedding model for code retrieval.673

We employ Llama-3.1-8B-Instruct to generate con-674

cise descriptions (under 100 words) for each code675

snippet, focusing on functionality, algorithm, and676

purpose. The prompt template instructs the model677

to analyze the code and provide a clear description678

of what it does. For reranking, we combine the679

embedding similarity scores from both code and680

descriptions using Equation 1 with α = 0.7.681

As for code generation experiments, for Hu-682

manEval for MBPP, we experiment with state-of-683

the-art coding models: Qwen2.5-Coder-7B (Hui684

et al., 2024) and Deepseek-coder-7b (Guo et al.,685

2024). For SWE-Bench Lite, we integrate our686

approach with the Agentless pipeline (Xia et al.,687

2024), using both GPT-4o-mini and GPT-4o for688

both issue solving and the file summarization step689

in SACL. More specifically, we augment the local-690

ization steps for relevant and irrelevant file identifi-691

cation.692
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Query: Given an array with non-negative integer nodes, pluck the smallest even integer. If multiple
found, return the smallest. If none found, return [].

Positive Code Positive Code Description

def func_0(var_0):
if len(var_0) == 0:

return []
var_1 = list(filter(lambda x:

x % 2 == 0, var_0))
if var_1 == []:

return []
return [min(var_1),

var_0.index(min(var_1))]

Code Score: 0.4713

This function takes a list of integers as input
and returns a list containing the smallest even
number in the input list and its index. If the
input list is empty or contains no even numbers,
the function returns an empty list. The function
uses list comprehension and the built-in filter
function to find even numbers, and then finds the
minimum and its index using the min and index
methods.

Description Score: 0.6383

Negative Code Negative Code Description

def func_0(self, value, list_num, index):
self.value = value
self.list_num = list_num
self.index = index

def func_1(self, other):
return self.value < other.value

Code Score: 0.5446

This code implements a binary search algorithm
to find the maximum subarray sum within a
given list of arrays. It uses a priority queue to
efficiently find the maximum and minimum val-
ues in the subarrays. The algorithm iteratively
selects the subarray with the maximum sum, up-
dates the maximum and minimum values, and
repeats until the end of the subarray is reached.

Description Score: 0.5057

Combined Retriever Scores (α=0.7): Positive Example: 0.5882, Negative Example: 0.5174

Table 7: Case Study 2 (HumanEval/68): The baseline incorrectly ranks code for binary search higher than the
correct solution for finding the smallest even number. Despite lower code similarity, semantic-augmented reranking
correctly prioritizes the ground truth by leveraging description similarity.
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Table 8: Case studies showing how semantic-augmented localization helps identify the correct files for modification
which leads to correct patches being generated.

django-11964: "The value of a TextChoices / IntegerChoices field has a differing type"

Repository Structure Localized Files Patch Snippet

Baseline:
django/
| . . .
| db/
| | . . .
| | models/
| | | . . .
| | | enums.py

SACL method:
django/
| . . .
| db/
| | . . .
| | models/
| | | . . .
| | | enums.py
- This Python file provides
a custom implementation of
enums with additional features
such as ...

Baseline:
django/contrib/admin/options.py
django/.../templates.py
django/db/models/fields/__init__.py

SACL method:
django/db/models/fields/__init__.py
django/db/models/enums.py
django/db/models/base.py

Baseline (wrong file):
# in django/db/models/fields/__init__.py
- return getattr(obj, self.attname)
+ value = getattr(obj, self.attname)
+ if isinstance(value, enum.Enum):
+ return value.value
+ return value

SACL method (correct file):
# in django/db/models/enums.py
class Choices(enum.Enum, metaclass=...):
- pass
+ def __str__(self):
+ return str(self.value)

sympy-19487: "Rewrite the sign function in terms of Abs in SymPy"

Repository Structure Localized Files Patch Snippet

Baseline:
sympy/
| . . .
| functions/
| | . . .
| | elementary/
| | | . . .
| | | complexes.py

SACL method:
sympy/
| . . .
| functions/
| | . . .
| | elementary/
| | | . . .
| | | complexes.py
- This Python file defines several
mathematical functions for
symbolic computation using the
SymPy library ...

Baseline:
sympy/core/expr.py
sympy/core/function.py
sympy/.../miscellaneous.py
...

SACL method:
sympy/core/function.py
sympy/.../complexes.py
sympy/.../miscellaneous.py
...

Baseline (wrong file):
# in sympy/core/function.py
+ def _eval_rewrite_as_Abs(self, *args, **):
+ from sympy import Abs
+ if len(args) == 1:
+ arg = args[0]
+ if arg.is_zero:
+ return 0
+ return arg / Abs(arg)

SACL method (correct file):
# in sympy/.../complexes.py
class sign(Function):
+ def evalrewrite_as_Abs(self, arg, **):
+ if arg.is_zero:
+ return S.NaN
+ return arg / Abs(arg)
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