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Abstract

Retrieval-Augmented Code  Generation
(RACQG) is a critical technique for enhancing
code generation by retrieving relevant infor-
mation. In this work, we conduct an in-depth
analysis of code retrieval by systematically
masking specific features while preserving
code functionality. Our discoveries include:
(1) although trained on code, current retrievers
heavily rely on surface-level textual features
(e.g., docstrings, identifier names), and (2) they
exhibit a strong bias towards well-documented
code, even if the documentation is irrelevant.
Based on our discoveries, we propose SACL,
a framework that enriches textual information
and reduces bias by augmenting code or
structural knowledge with semantic informa-
tion. Extensive experiments show that SACL
substantially improves code retrieval (e.g., by
12.8% 1 9.4% / 7.0% Recall@1 on HumanEval
/ MBPP / SWE-Bench-Lite), which also leads
to better code generation performance (e.g., by
4.88% Pass@1 on HumanEval).

1 Introduction

Retrieval-augmented code generation (RACG) is
the technique of generating code based on rele-
vant documents retrieved from a corpus (Koziolek
et al., 2024; Lu et al., 2022). RACG is shown
to be beneficial in script-level code generation,
which provides background knowledge or function-
ally relevant snippets, and is particularly important
for repository-level (repo-level) code generation,
where models must be aware of other files within
the repository (Wang et al., 2025). However, recent
work has shown that retrieval quality remains a sig-
nificant bottleneck for RACG performance (e.g.,
Agentless (Xia et al., 2024) only achieves 35.3%
line localization accuracy on SWE-Bench).

While extensive analysis has been conducted on
the capabilities and challenges of text retrievers
(Dai et al., 2024; Karpukhin et al., 2020; Thakur
et al., 2021), a systematic investigation of code
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Figure 1: Summaries of our discoveries from the anal-
yses. Our analyses reveal code retrievers’ heavy de-
pendence on textual features rather than functional se-
mantics, leading to bias favoring well-documented code
regardless of relevance.

retrievers remains relatively underexplored. The
nature of code corpora differs fundamentally from
text corpora due to their highly structured nature,
with strict syntax rules and structures (Husain et al.,
2019; Allamanis et al., 2018). Unlike text docu-
ments, the semantic meaning of a code snippet can
be completely altered by small syntactic changes,
making traditional retrieval analysis less effective
for code search tasks. Such fundamental differ-
ences suggest that code retrievers may have sig-
nificantly different behaviors from text retrievers,
highlighting the need for more focused analysis.
In this work, to develop a deeper understanding
of code retrieval, we conduct empirical analyses on
both code retrievers and in-context rerankers to an-
swer two critical research questions: (RQ1) What
features are code retrievers primarily based on?
and (RQ2) Do retrievers exhibit bias? Specifi-



cally, we introduce a normalization-based analysis
framework, where we systematically mask textual
features such as docstrings, function names, and
variable names or replace them with placeholders.
Such transformations preserve the code’s function-
ality but eliminate textual cues, allowing us to eval-
uate the dependence and bias of textual features.

We illustrate our discoveries in Figure 1. We
observe that [Discovery 1] although trained on
code, current code retrievers exhibit strong de-
pendency on textual features (e.g., docstrings and
function or variable names) and under-utilize the
functionality of code. Specifically, when all textual
features are normalized, we observe significant per-
formance degradation on both embedding-based
code retrieval and in-context code reranking. For
instance, with normalization, the Recall@1 perfor-
mance of GIST-large degrades from 98.6% to 9.0%
on MBPP (Austin et al., 2021).

As shown in Figure 1, our analyses also re-
veal that [Discovery 2] Retrievers consistently as-
sign higher relevance scores to well-documented
code, even when the documentation is function-
ally irrelevant. Particularly, compared to Discov-
ery 1’s setting, where all the code documents are
normalized, only normalizing the positive docu-
ments leads to even worse retrieval and reranking
performances. The results indicate the bias towards
well-documented code with meaningful identifier
names, which may lead to preferring irrelevant
but well-documented code over relevant but poorly
documented code.

Based on these discoveries, we present SACL,
which improves code retrieval with Semantic-
Augmented Code Reranking and in-context
Localization. Based on our discoveries that re-
trievers are more sensitive to textual features, in
the reranking stage, we first generate textual de-
scriptions for the retrieved code documents, and
then aggregate the retrieval scores for the original
code documents and textual descriptions for final
re-ranking. Such design bridges the code and text
modalities and mitigates the bias between well-
documented and sparsely documented code. Based
on the empirical discovery that in-context rerank-
ing also exhibits similar textual bias, for repo-level
code generation, we further introduce semantic-
augmented in-context localization, where we gen-
erate supplementary file descriptions for the repos-
itory structure to augment the context for file local-
ization. Empirical results show that such methods
are the most effective when the file names do not

contain rich semantic information.

Our experimental results demonstrate significant
improvements across three public benchmarks: Hu-
manEval (Chen et al., 2021), MBPP (Austin et al.,
2021), and SWE-Bench-Lite (Jimenez et al., 2023).
For instance, SACL achieves 12.8%/9.4% code re-
trieval Recall@1 gain on HumanEval/MBPP under
the full normalization setting and achieves 7.0%
file localization Recall@1 on SWE-Bench-Lite
with the Agentless pipeline (Xia et al., 2024). Our
improvements on code retrieval and localization
also leads to performance gain on code genera-
tion (e.g., 4.88% Pass@1 gain on HumanEval and
1.67% on SWE-Bench-Lite). These results high-
light the effectiveness of our approaches in enhanc-
ing the semantic understanding capabilities of code
retrievers and mitigating lexical bias.

2 Analysis: Textual Bias in Code
Retrieval

This section answers our two research questions
through two controlled experiments: (RQ1) What
features are code retrievers primarily based on?
and (RQ2) Do retrievers exhibit lexical-level bias?
These experiments aim to identify whether code re-
trievers favor textual characteristics over functional
semantics when matching queries to code.

2.1 RQI1: What Features are Code Retrievers
Based on?

Setup. We quantify the importance of various
features through a controlled study, where we pro-
gressively replace surface-level code features with
dummy placeholders (e.g., “func_0", “var_0"). We
call the process “normalization”. Specifically,
we compare the Recall@1 performance of various
code retrievers in five normalization settings:

(D no normalization (i.e., the original code). 2)
removing docstrings and comments, Q) renaming
function names, along with removing docstrings,
@ renaming variable names, along with remov-
ing docstrings, and (3) renaming both function
names and variable names, along with removing
docstrings (i.e., the combination of @)~@).

Note that this study preserves functional equiva-
lence while enabling controlled ablation of specific
features with rich textual information.

We study two categories of methods using four
models: embedding-based retrievers (GIST-large,
TE3-small), which rank the code documents based
on the cosine similarity with the query, and LLM-
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Figure 2: Impact of code normalization techniques on retrieval performance (Recall@1) across datasets with
different embedding-based retrievers (left) and in-context rerankers (right). The results consistently show that all
normalization techniques reduce retrieval effectiveness, with function name normalization and full normalization

having the most significant negative impact.

based rerankers (GPT-40, 40-mini), where we pro-
vide the ground truth (GT) document and the top-
50 documents retrieved under the “no normaliza-
tion” setting in the context, and then prompt the
LLM to identify the most relevant document.

Results. As shown in Figure 2, results on Hu-
manEval and MBPP reveal that both embedding-
based retrievers and LLM-based rerankers have
significant performance degradation under the nor-
malization settings, especially the full normaliza-
tion setting. This indicates that they heavily rely
on textual features in retrieval or reranking.

We also observe that different models exhibit dis-
tinct sensitivities to different normalization meth-
ods. For instance, GIST-large shows more severe
performance degradation with function name nor-
malization (54.3% to 18.9%), while TE3-small suf-
fers greater relative impact when variable names
are normalized. Notably, docstring removal im-
pacts MBPP significantly more than HumanEval
(37% drop in MBPP versus minimal decrease in
HumanEval). This difference stems from Hu-
manEval’s natural language descriptions contain-
ing function signatures that exactly match corpus
signatures, providing strong retrieval signals even
without docstrings, while MBPP’s queries have
fewer direct lexical matches.

The main discovery of this analysis is that [Dis-
covery 1] retrievers heavily rely on textual fea-
tures, including docstrings and identifier names,
rather than deeper semantic information such
as the functionality of the code. One possible ex-
planation is that among the contrastive pairs used
for retriever training (e.g., docstring-function pairs
and StackOverflow QA pairs) (Husain et al., 2019),
the textual queries have a high degree of lexical
overlap with docstrings, function names, variable
names, etc., and such correlation is captured by the
retriever model.

Embedding Model: GIST-large

Normalization Type (S1) Norm GT & (S2) Norm GT &
Docstring  Var  Func Norm Others Orig Others
X X X 1.00 1.00
4 X X 1.01 1.07
v v X 1.35 5.18
4 X 4 8.05 20.29
4 4 4 87.18 288.27
Embedding Model: OpenAl/text-embedding-3-small
Normalization Type (S1) Norm GT & (S2) Norm GT &
Docstring  Var  Func Norm Others Orig Others
X X X 1.00 1.00
4 X X 1.01 1.04
v v X 223 22.48
v X v 1.74 1.95
4 4 4 25.92 96.98

Table 1: Average Rank of the GT document (}) on
the HumanEval dataset. The results demonstrate that
when only the ground truth document is normalized
(S2) while others remain in their original form, the GT
document’s rank deteriorates dramatically compared to
when all documents are normalized (S1). Such results
reveal a strong bias toward textual features over seman-
tic relevance.

2.2 RQ2: Do retrievers exhibit bias?

Setup. Following §2.1, we further investigate
whether code retrievers have a bias towards code
containing more or fewer textual features (e.g., doc-
strings and function/variable names). Towards this
goal, unlike the setting in §2.1 (S1), where all the
documents are normalized, we introduce an asym-
metric normalization setting (S2), where only the
ground truth (GT) document for each query is nor-
malized, while the remainder of the corpus is left
in its original form. The comparison of the retriev-
ers’ performances under S1 and S2 allows us to
assess whether models penalize stylistic deviations
in semantically equivalent code.

Results. As shown in Table 1, the retrievers’ per-
formance further decreases when the irrelevant
code documents are more well-documented than
the ground truth one. For instance, in the most ex-



treme case where all the identifiers and docstrings
are normalized, the rank of the GT document jumps
from 87.18 to 288.27 for GIST-large retrieval (and
from 25.92 to 96.98 for TE3-small).

This degradation reveals a clear inductive bias
in current retrieval models: in many cases, the
retriever assigns a higher rank to irrelevant but
well-documented code over the semantically cor-
rect, normalized gold document. In other words,
we observe that [Discovery 2] retrievers tend to
assign higher scores for well-documented code
with meaningful identifier names, even if the
documentation is irrelevant to the query.

3 Methodology

Both [Discovery 1] and [Discovery 2] reveal that
code retrievers heavily rely on textual information
(e.g., documentation and identifier names) rather
than understanding of code structure. To com-
bat this issue, SACL introduces two techniques:
semantic-augmented code reranking and semantic-
augmented in-context localization. Both methods
augment the retrieved code or structure with tex-
tual descriptions to improve the encapsulation of
semantic information.

3.1 Semantic-Augmented Code Reranking

Traditional retrieval systems often struggle with
the semantic gap between natural language queries
and code documents.

To bridge this gap, we enhance the re-ranking
process with semantically rich descriptions. Af-
ter retrieving the initial top-k code documents, we
prompt an LLM to generate concise natural lan-
guage descriptions of each code snippet’s function-
ality and purpose. These descriptions provide an
alternative representation of the code that empha-
sizes semantic content over syntactic structure.

Then we combine the relevance scores between
(1) the original code documents and the queries,
and (2) the textual descriptions and the queries:

Scorefina = (1 — ) - Scorecoge + a - Scoregese
)
where a € [0, 1] is a tunable hyperparameter
controlling the influence of each score component.
This approach transforms the cross-modal
comparison problem (text-to-code) into a more
tractable text-to-text comparison, enabling more se-
mantically meaningful ranking of code documents
based on natural language queries.
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Figure 3: Flowchart illustrating our two main ap-
proaches. (left) Documents are retrieved based on query
similarity, then augmented with generated descriptions.
The final ranking score combines both code-query and
description-query similarity scores to improve retrieval
performance. (right) Repository structure is enhanced
with descriptive summaries for each file (shown in
green italics). This augmented structure significantly
improves the LLM’s ability to localize relevant files for
code modification tasks.

3.2 Semantic-Augmented in-context
Localization

Repository-level code generation required compre-
hensive understanding of code repository structure
to effectively navigate and modify complex code-
bases (Xia et al., 2024). When previous works such
as (Xia et al., 2024) uses repository structures to
localize code that needs editing, they present the
structure in a hierarchical format that represents
the directory and file organization, as illustrated in
Figure 3.

Building on our discoveries that retrievers tend
to focus on textual information rather than func-
tional semantics, we aim to augment structural
representations with rich textual descriptions to im-
prove localization performance. We enhance the
standard repository structure by generating brief
semantic descriptions for each file’s contents in
the repository. The descriptions are generated by
prompting an LLLM to analyze each file individu-
ally and summarize its contents (classes, functions,
etc.), purpose and functionality in a couple sen-
tences. The augmented repository structure serves
as input to an LLLM tasked with identifying po-
tentially suspicious files related to a reported bug
or issue. These semantic descriptions allow the



model to better understand file functionality and
relationships, improving subsequent localization
steps by reducing noise. To improve efficiency in
inference, we generate descriptions using a small
(Llama-3.1-8B-based) file summarization model,
which already shows significant performance gain
in file localization.

4 Experiments

With our experiments, we aim to answer the fol-
lowing research questions: (RQ1) What impact
does SACL have on Code retrieval performance?
(RQ2) Given this code retrieval performance, what
is the downstream code generation performance
improvement? (RQ3) Why does semantic aug-
mentation benefit code retrieval? (RQ4) Which
hyper-parameters are optimal?

4.1 Experiment Setup

Datasets. We evaluate our approach on three
widely used benchmarks: HumanEval (Chen et al.,
2021) and MBPP (Austin et al., 2021) are script-
level algorithm problem datasets and SWE-Bench-
Lite (Jimenez et al., 2023) is a repo-level issue-
solving dataset. For HumanEval and MBPP, we
evaluate under various “normalization” settings (as
introduced in §2), which preserve the functionali-
ties of the code documents but are more challeng-
ing to retriever models.
Evaluation Metrics. We follow existing
work (Wang et al., 2025) and report Recall@k
(k=1,5,10) for code retrieval and report Pass@1
for code generation. We additionally evaluate file
and line localization accuracy (Xia et al., 2024)
for SWE-Bench-Lite, which checks whether the
corresponding generated patch edits a superset of
all locations in the ground truth patch.
Implementation Details. For scalability concerns,
we only generate a short description (under 100
words) for the code documents using a small model
(Llama-3.1-8B-Instruct). For SWE-Bench Lite, we
integrate our approach into the file localization step
of the Agentless pipeline (Xia et al., 2024), which
prompts an LLM to identify relevant files based on
the repository structure in the format of a tree.

We provide more experimental details in A.1.

4.2 Code Retrieval Results

Script-level Code Generation Results. Table 2
presents code retrieval results under HumanEval
and MBPP across different normalization settings,

helping us answer (RQ1). We observe that SACL
demonstrates significant improvements over the
baseline (e.g., improving Recall@1 for up to 15.2%
on HumanEval and 14.8% on MBPP). Particularly,
under the most challenging setting where all tex-
tual features are normalized, SACL still obtains
substantial performance gain, which indicates that
LLMs can still effectively summarize the function-
alities even if all textual features are normalized.
Our approach leverages LLM’s strong code under-
standing property to compensate code retriever’s
bias toward textual features and hence effectively
capture the semantic meaning of code.

Repo-level Issue-Solving Results. As shown in
Table 3, SACL achieves significant performance
gain on fault localization on SWE-Bench-Lite. For
instance, we improve the file localization accu-
racy by 8.0%/7.0% for 40-mini/GPT-40. The con-
sistent performance gain across different models
highlights the effectiveness of augmenting reposi-
tory structures with richer contextual information
for fault localization. Specifically, as shown in
later analysis (§4.4), the file descriptions may con-
tain high-level descriptions of the file’s purpose,
its relationship to other files, or its utility to the
whole repository, which are neglected in the repos-
itory tree structure. Such information reveals the
high-level role and interconnections of files in the
repository, which are relevant to the issues.

4.3 Code Generation Results

Script-level Code Generation Results. Results
in Table 4 demonstrate that our performance gain
in retrieval also translates to the improvement in
code generation for various code generation mod-
els, highlighting the robustness of our method, tack-
ling our (RQ2). On MBPP, which presents a more
challenging scenario due to lower lexical overlap
between queries and relevant code (as shown in
Figure 4), we observe improvements across all
normalization settings. Note that under the most
challenging setting of full normalization, where
even providing the normalized GT documents in
the context only gives marginal code generation
performance gain, SACL still delivers an improve-
ment of 2.2 Pass@1. These results demonstrate
that better retrieval directly translates to improved
generation performance, with the benefits being
most pronounced in scenarios where code lacks
rich textual features.

Repo-level Issue-Solving Results. As shown in



N HumanEval MBPP
T;’;:“‘ Recall @1 Recall @5 Recall @10 Recall@1 Recall@5 Recall @10
Base SACL A Base SACL A Base SACL A | Base SACL A Base SACL A Base SACL A
Docstring 988 988 0.0 1000 1000 0.0 1000 1000 00 | 624 702 178 870 892 122 914 932 418
FuncName 543 695 1152 774 860 18.6 835 89.6 16.1|220 368 1148 398 510 1112 490 550 16.0
All 189 317 1128 341 433 192 427 463 13.6| 90 184 194 186 290 1104 236 314 178

Table 2: The Recall@F retrieval performance of the baseline and SACL under different normalization settings.
We use GIST-large as the retriever and Llama-3.1-8B-Instruct for generating descriptions. We highlight results
showing SACL > Base with green (darker green when having 5%+ increases or perfect results).

Localization Accuracy

Method Line File (A)
Agentless (GPT-40-mini) 32.7 70.0

+ SACL 34.7 (12.0) 78.0 (18.0)
Agentless (GPT-40) 40.0 79.0

+ SACL 42.3 (12.3) 86.0(17.0)

Table 3: Fault Localization results on SWE-Bench-
Lite. We compute the % of instances where the
retrieved/LLM-localized files/lines contain the fault lo-
cation. File-level localization is computed using the list
of potential files identified by agentless at the end of the
localization phase. Line-level localization is computed
using final patches after testing and re-ranking.

Table 5, our semantic-augmented approach also
improves issue-solving rates on SWE-Bench-Lite
(e.g., by 1.7% Pass@1 over Agentless (GPT-40)).
This is consistent with previous work’s observation
that fault localization accuracy is a bottleneck for
repo-level code generation (Xia et al., 2024). The
improvement in resolved issues is particularly cru-
cial as it further validates our approach’s effective-
ness in practical software engineering scenarios.

4.4 Performance Analysis

SACL Improves Query-Doc Lexical Overlap.
To investigate (RQ3), we hypothesize that seman-
tic descriptions enhance code retrievers by improv-
ing lexical overlap between the query and docu-
ments, especially when the surface-level features
in code are normalized. To test our hypothesis,
we compare the ROUGE scores between the query
and the positive and negative examples.

Results in Figure 4 reveal that the lexical overlap
between positive and negative descriptions is larger
than that of code documents. Particularly, on the
challenging MBPP dataset, the positive document’s
lexical overlap with the query is on average lower
than that of the best negative document under the
normalization settings, while descriptions maintain
a clear separation between positive and negative
examples even under full normalization.

SACL Enriches Context with File Semantics.
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Figure 4: Lexical overlap (ROUGE-1 scores) between
the query and the positive/negative code/descriptions in
HumanEval and MBPP. We show the negative example
with the highest overlap with the query. While under
the normalization conditions, the negative code has sim-
ilar or even higher lexical overlap with the query than
the positive one, the positive descriptions always have
higher ROUGE-1 scores.

To help understand why our in-context localization
method is effective for repo-level code generation,
we analyze the contents of generated descriptions
for the GT files in SWE-Bench-Lite. Particularly,
we define three categories for the descriptions’ con-
tent: (1) Functional Purpose - the file’s overall func-
tionality; (2) Core Components - specific functions,
classes, or data structures; and (3) File Relation-
ships - connections to other repository files. Then
we use GPT-40-mini to categorize each description
of the GT files.

Answering (RQ3), our analysis shows that file
descriptions serve multiple purposes simultane-
ously. As shown in Table 6 all descriptions (100%)
cover Functional Purpose, 80.67% describe Core
Components, and 14.00% mention File Relation-
ships. This semantic enrichment contributes to the
overall 8% gain in file-level localization, demon-
strating how augmented context helps models bet-



Normalization HumanEval Pass@1 MBPP Pass@1
Type Qwen2.5-Coder-7B Deepseek-coder-7b Qwen2.5-Coder-7B Deepseek-coder-7b
Base SACL A Base SACL A Base SACL A Base SACL A
Docstring 99.39  99.39  0.00 99.39 99.39 0.00 5740 61.60 1420 57.40 61.60 14.20
Func Name 99.39  99.39  0.00 9939 99.39 0.00 19.00 2440 1540 19.00 2440 1540
All 9329 98.17 14.88 9329 98.17 1488 6.80 9.00 1220 6.80 9.00 12.20

Table 4: The Pass@1 performance of the baseline and SACL on HumanEval and MBPP.

Method % Non-Empty (A) % Resolved (A)
Agentless (GPT-40-mini) 93.3 14.7

+ SACL 94.3 (11.0) 16.0 (11.3)
Agentless (GPT-40) 97.0 24.3

+ SACL 98.0 (11.0) 26.0 (11.7)

Table 5: Code generation results on SWE-Bench-Lite.

Category Frequency (%) Gain (%)

Functional Purpose 300 (100.00%) 124 (8.00%)
Core Components 242 (80.67%) 120 (8.26%)
File Relations 42 (14.00%) 14 (9.52%)

Table 6: Analysis of the file descriptions used by SACL.
We manually design the categories based on the descrip-
tions’ content and use 40-mini for categorization.

ter understand file purposes and interrelationships
within repositories. Within the core components
and file relations categories, we observe a respec-
tive 8.26% and 9.52% gain. Both are slightly
higher than the overall gain.

Hyper-Parameter Analysis. To answer (RQ4),
we illustrate the impact of the weighting param-
eter « across different normalization approaches.
As shown in Figure 5, for all Recall@k values
(k=1, 5, 10), the performance consistently peaks at
a=0.7, except in the case of docstring normaliza-
tion, where all methods perform nearly perfectly.
In contrast, pure-description retrieval (a=1) and
pure-code retrieval (the baseline, with a=0) both
show lower performance. This result indicates that
SACL achieves a balance between retrieval based
on code snippets and descriptions, where code pre-
serves full information and descriptions capture
the semantics that may be challenging to encode
from the code.

4.5 Case Studies

We present two representative case studies to illus-
trate how SACL effectively bridges the semantic
gap between natural language queries and code,
especially under normalization settings.

Semantic-Augmented Reranking Example. As
shown in Figure 6, for a query asking to gener-

Docstring Fn Name Both
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S 73 33
@
3
99
| 55 20
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a a a
—— Recall@1 Recall@5 —— Recall@10

Figure 5: Impact of normalization parameter o on Re-
call performance. The three plots show performance
across different normalization approaches: Docstring
(left), Function Name (middle), and Both - Functions
and Variables (right).

ate space-separated integers, the baseline mistak-
enly prioritizes an unrelated function analyzing se-
quence linearity. In contrast, when reranking based
on generated descriptions, the correct function re-
ceives a higher relevance score. The combined
score in SACL still correctly prioritizes the rele-
vant code, lifting it from rank 18 to the top. This
improvement arises because the descriptions cap-
ture high-level functional intent—e.g., “generates
a string of integers”—which is lost when identi-
fiers and docstrings are normalized. The reranker
can thus discriminate relevance based on semantic
meaning rather than textual overlap, correcting the
baseline’s lexical bias.

In-Context Localization Example. Similarly,
Table 8 presents two cases where our semantic-
augmented localization method correctly identifies
the source files for real-world GitHub issues but
the Agentless baseline does not. For instance, in
the first issue, the baseline misattributes the issue
to the field accessor logic in (’__init__.py’). In
comparison, with the file description that mentions
the “Choices” class, SACL locates the correct file,
“enums.py”’, where the faulty “enum” string rep-
resentation is actually defined. Similarly, for the
second issue, our method accurately links the is-
sue to the sign function in complexes.py, rather
than applying a generic patch to the core function
class. We hypothesize that these successes stem
from our file-level descriptions, which often in-



Query: Return a string containing space-delimited numbers starting from 0 up to n inclusive.

Positive Code & Description

Negative Code & Description

def func_@(var_@: int) —> str:
return ' '.join([str(x)
for x in range(var_0 + 1)1)

Sim(Pos_Code, Query) = 0.4861

This function generates a string of space-
separated integers from 0 to a given input
number. It uses a list comprehension to
create a list of strings representing the
integers, and then joins them together with
spaces. The function takes an integer as

def func_0(var_0):
var_0 = [var_0[x] - var_0[x - 1]
for x in range(1, len(var_0))]:
return 'Linear Sequence' if len(set(var_0)) ==
else 'Non Linear Sequence'

Sim(Neg_Code, Query) = 0.5404 @

This function determines whether a given sequence is linear or non-
linear. It calculates the differences between consecutive elements in the
sequence and checks if all differences are equal, indicating a linear
sequence. If the differences are not all equal, the sequence is considered

input and returns a string.
Sim(Pos_Desc, Query) = 0.7259 @

non-linear. The function returns a string indicating the type.
Sim(Neg_Desc, Query) = 0.5592

Final_Pos_Score (a=0.7) = 0.6539 @

Final_Neg Score (¢=0.7) = 0.5536

Figure 6: Case Study 1 (HumanEval/15): The baseline incorrectly ranks a function that checks for linear sequences
higher based on code similarity alone, but semantic-augmented reranking correctly identifies the ground truth

solution by leveraging description similarity.

clude module-level purposes and inter-file relation-
ships—semantic signals absent in raw filenames or
directory trees.

5 Related Work

Code Retrieval and Retrieval-Augmented Code
Generation. Retrieval-augmented code genera-
tion (RACG) incorporates external retrieved snip-
pets into the generation pipeline to improve perfor-
mance. Recent works such as ReACC (Lu et al.,
2022) and Repocoder (Zhang et al., 2023) demon-
strate gains by supplying functionally relevant ex-
amples during generation. Similarly, Code-RAG
Bench (Wang et al., 2025) offers a standardized
benchmark for evaluating RACG systems across
programming tasks, retrieval quality, and compu-
tational efficiency. Other efforts extend RACG to
novel applications such as universal information
extraction to generate task-specific-extractors (Guo
et al., 2023). While these methods highlight the
promise of RACG, they implicitly assume effec-
tive retrievers, which is not practical. Our work
contributes to this area by revealing and combating
a core limitation in current retrievers: a strong bias
toward superficial lexical signals.

LLM-Based Fault Localization. Recent work
has shifted towards complex, real-world scenarios
through benchmarks like SWE-Bench (Jimenez
et al., 2023), featuring actual GitHub issues re-
quiring codebase comprehension and bug-fixing.
In parallel, LLLM capabilities have enabled signif-
icant advances in fault localization (FL). FlexFL
(Xu et al., 2025) incorporates open-source LLMs

in a two-stage process to leverage bug-related in-
formation to identify and refine buggy locations.
AgentFL (Qin et al., 2025) models FL as a human-
like process with specialized agents for comprehen-
sion, navigation, and confirmation steps. Agentless
(Xia et al., 2024) utilize a simplistic three-phase
approach to narrow down fault locations from file-
level locations to line-level. Unlike previous ap-
proaches focused on improving agent architectures
or specialized tools, SACL tackles a fundamental
limitation in code retrievers themselves: their re-
liance on surface-level textual features rather than
functional semantics.

6 Conclusion

We conduct systematic normalization experiments
and uncover two key biases for current code re-
trieval systems: (1) heavy dependence on textual
cues over semantic understanding, and (2) consis-
tent preference for well-documented code, even if
the documentation is irrelevant. To address these
issues, we propose SACL, a framework that aug-
ments code retrieval and localization with semantic
information through natural language descriptions.
Experiments demonstrate SACL’s effectiveness in
both code retrieval and code generation on three
widely used benchmarks: HumanEval, MBPP, and
SWE-Bench-Lite. For instance, SACL improves
code retrieval by up to 12.8% Recall@1 on Hu-
manEval and up to 8.0% file localization accuracy
on SWE-Bench-Lite. These gains translate directly
into better downstream code generation quality
(e.g., up to 4.88% Pass@1 gain on HumanEval).



Limitations

Some of our method’s limitations are: (1) We do
not attempt to apply our semantic augmentation
techniques to agentic methods for code generation,
(2) We do not explore the performance of SACL
on other Repo-level coding benchmarks, Lastly, (3)
We focus primarily on function retrieval when an-
alyzing lexical-level bias in current code retrieval
techniques.
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A Appendix

A.1 Experimental Details

Datasets. We evaluate our approach on three
widely-used code benchmarks: Humaneval (Chen
et al., 2021) consisting of 164 hand-written pro-
gramming problems with function signatures and
test cases; MBPP (Austin et al., 2021) containing
974 Python programming tasks with natural lan-
guage descriptions and test cases; and SWE-Bench
Lite (Jimenez et al., 2023) with 300 real-world
GitHub tasks representing realistic software engi-
neering scenarios.

Implementation Details. For our code rerank-
ing approach, we use GIST-large (Solatorio, 2024)
as the base embedding model for code retrieval.
We employ Llama-3.1-8B-Instruct to generate con-
cise descriptions (under 100 words) for each code
snippet, focusing on functionality, algorithm, and
purpose. The prompt template instructs the model
to analyze the code and provide a clear description
of what it does. For reranking, we combine the
embedding similarity scores from both code and
descriptions using Equation 1 with o = 0.7.

As for code generation experiments, for Hu-
manEval for MBPP, we experiment with state-of-
the-art coding models: Qwen2.5-Coder-7B (Hui
et al., 2024) and Deepseek-coder-7b (Guo et al.,
2024). For SWE-Bench Lite, we integrate our
approach with the Agentless pipeline (Xia et al.,
2024), using both GPT-40-mini and GPT-40 for
both issue solving and the file summarization step
in SACL. More specifically, we augment the local-
ization steps for relevant and irrelevant file identifi-
cation.
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Query: Given an array with non-negative integer nodes, pluck the smallest even integer. If multiple

found, return the smallest. If none found, return [].

Positive Code

Positive Code Description

def func_0(var_0):
if len(var_0) == 0:
return []
var_1 = list(filter(lambda x:
X % 2 ==10, var_0))
if var_1 [1:
return []
return [min(var_1),
var_0.index(min(var_1))]

Code Score: 0.4713

This function takes a list of integers as input
and returns a list containing the smallest even
number in the input list and its index. If the
input list is empty or contains no even numbers,
the function returns an empty list. The function
uses list comprehension and the built-in filter
function to find even numbers, and then finds the
minimum and its index using the min and index
methods.

Negative Code

Negative Code Description

def func_0(self, value, list_num, index)

self.value = value
self.list_num = list_num
self.index = index

def func_1(self, other):

return self.value < other.value

This code implements a binary search algorithm
to find the maximum subarray sum within a
given list of arrays. It uses a priority queue to
efficiently find the maximum and minimum val-
ues in the subarrays. The algorithm iteratively
selects the subarray with the maximum sum, up-
dates the maximum and minimum values, and
repeats until the end of the subarray is reached.

Description Score: 0.5057

Combined Retriever Scores (a=0.7):

, Negative Example: 0.5174

Table 7: Case Study 2 (HumanEval/68): The baseline incorrectly ranks code for binary search higher than the
correct solution for finding the smallest even number. Despite lower code similarity, semantic-augmented reranking

correctly prioritizes the ground truth by leveraging description similarity.
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Table 8: Case studies showing how semantic-augmented localization helps identify the correct files for modification
which leads to correct patches being generated.

django-11964: "The value of a TextChoices / IntegerChoices field has a differing type"

Repository Structure

Localized Files

Patch Snippet

Baseline: Baseline:
django/ django/contrib/admin/options.py
. django/.../templates.py
| db/ django/db/models/fields/__init__.py
| | models/ SACL method:
N Y django/db/models/fields/__init__.py
| | | enums.py
django/db/models/base.py
SACL method:
django/
| db/
| | models/
-
| | | enums.py

Baseline (wrong file):

# in django/db/models/fields/__init__.py
- return getattr(obj, self.attname)

+ value = getattr(obj, self.attname)
+ if isinstance(value, enum.Enum):

+  return value.value

+ return value

SACL method (correct file):
# in django/db/models/enums.py

class Choices(enum.Enum, metaclass=...):
- pass

+ def __str__(self):

+ return str(self.value)

- This Python file provides
a custom implementation of
enums with additional features

such as

sympy-19487: "Rewrite the sign function in terms of Abs in SymPy"

Repository Structure

Localized Files

Patch Snippet

Baseline: Baseline:
sympy/ sympy/core/expr.py
| ... sympy/core/function.py
|  functions/ sympy/.../miscellaneous.py
| | elementary/
[ N SACL method:
| | | complexes.py sympy/core/function.py
SACL method: sympy/.../miscellaneous.py
sympy/
functions/
elementary/

| complexes.py

- This Python file defines several

mathematical

symboli

functions  for
¢ computation using the

SymPy library ...

Baseline (wrong file):

# in sympy/core/function.py

+ def _eval_rewrite_as_Abs(self, *args, x*):
+ from sympy import Abs

+ if len(args) == 1:

+ arg = args[0]

+ if arg.is_zero:

+ return @

+ return arg / Abs(arg)

SACL method (correct file):

# in sympy/.../complexes.py

class sign(Function):

+ def evalrewrite_as_Abs(self, arg, *x*):
+ if arg.is_zero:

+ return S.NaN

+ return arg / Abs(arg)
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