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ABSTRACT
The advent of foundation models have revolutionized various fields, enabling unprecedented task accuracy and
flexibility in computational linguistics, computer vision and other domains. Attention mechanism has become an
essential component of foundation models, due to their superb capability of capturing correlations in a sequence.
However, attention results in quadratic complexity in memory and compute as the context length grows. Although
many fusion-based exact attention acceleration algorithms have been developed for datacenter-grade GPUs and
accelerators leveraging multi-core parallelism and data locality, yet it remains a significant challenge to accelerate
attention on resource-constrained edge neural accelerators with limited compute units and stringent on-chip
caches. In this paper, we propose a scheme for exact attention inference acceleration on memory-constrained
edge accelerators, by parallelizing the utilization of heterogeneous compute units, i.e., vector processing units
and matrix processing units. Our method involves scheduling workloads onto these different compute units in a
multi-tiered tiling scheme to process tiled vector workloads and matrix workloads in attention as two streams,
respecting the workload dependencies. We search for tiling factors to maximize the parallelization of both compute
units while considering I/O overhead, and propose a proactive cache overwrite strategy to avoid undesirable cache
spills in reality. Extensive results based on open-sourced simulation frameworks show up to 2.75 x speedup and
54% reduction in energy consumption as compared to the state-of-the-art attention fusion method (FLAT) in the
edge computing scenario. Further experiments on a real-world edge neural processing unit demonstrate speedup

of up to 1.76x for attention as compared to FLAT, without affecting model output accuracy.

1 INTRODUCTION

Foundation models (Vaswani et al., 2017; Kitaev et al., 2020;
Kaplan et al., 2020; Peebles & Xie, 2023; Li et al., 2024a)
have driven recent advancements in generative Al on edge
devices such as smartphones, especially in Al agents (Zhang
et al., 2023; Wang et al., 2024; Fan et al., 2025), large lan-
guage models (LLMs) (Radford et al., 2018; Ouyang et al.,
2022; Glaese et al., 2022; Mehta et al., 2024) and text-to-
image diffusion models (Poole et al., 2022; Esser et al.,
2024). Central to these models is the attention mechanism,
which captures long-range dependencies between tokens,
but incurs quadratic memory and computational complexity
due to pairwise token interactions. Deploying these mod-
els is challenging, especially on resource-constrained edge
devices with limited on-chip cache and processing power.

Significant efforts have been made to accelerate atten-
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tion computation through software fusion techniques on
datacenter-grade hardware. For cloud servers, multi-core
parallelism (Shoeybi et al., 2019; Rasley et al., 2020;
Narayanan et al., 2021; Kwon et al., 2023; Liu et al., 2023;
Cho et al., 2024) and efficient utilization of on-chip SRAM
in GPUs (Kirk et al., 2007) are employed to enhance per-
formance. FlashAttention (Dao et al., 2022; Dao, 2023;
Shah et al., 2024; dao; Hong et al., 2023) related meth-
ods design I/O-aware exact attention speedup algorithms,
leveraging GPU CUDA cores and on-chip SRAM to min-
imize access to High Bandwidth Memory (HBM), saving
memory and reducing runtime. FuseMax (Nayak et al.,
2024) uses Einsums and a spatial array accelerator, employ-
ing ping-pong scheduling to overlap MatMul and softmax
operations. While FlashAttention-3 (Shah et al., 2024) par-
allelizes MatMul and softmax on multi-core architectures,
these cloud-based acceleration methods do not directly ap-
ply to resource-constrained edge accelerators, where there
are limited number of processing units and on-chip memory.

To speed up attention inference on edge devices, current
methods mainly leverage graph fusion (Ivanov et al., 2021;
Niu et al., 2021; Aminabadi et al., 2022; Mei et al., 2023) to
restrict or reduce data transfers between off-chip and on-chip
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memory. TVM (Chen et al., 2018a) utilizes an automated
schedule optimizer to improve execution for a given neural
network. Although TVM'’s auto-scheduler is designed for
general purposes, the limitation is that it does not fuse Mat-
Mul and softmax operators in the attention block. oneDNN
(Li et al., 2024b) tackles the fusion of MatMul and softmax
with graph fusion templates and microkernels to accelerate
attention on Intel CPUs, while FLAT (Kao et al., 2023) uses
row-granularity tiling and on-chip cache to alleviate the
bandwidth bottleneck to access off-chip memory, achieving
speedup and energy savings. Similarly, proprietary tech-
nologies like NVIDIA TensorRT (Nvi) and Apple CoreML
(app, b;c;a) claim to leverage graph fusion for attention
acceleration.

Although these advancements promote fusion and data lo-
cality on edge devices, to the best of our knowledge, most
existing works in the public domain (e.g., FLAT) still ex-
ecute the workloads including matrix multiplication (Mat-
Mul) and softmax sequentially, which achieves suboptimal
latency. It remains a significant challenge to execute het-
erogeneous workloads, including MatMul workloads that
typically run on the multiplier accumulator (MAC) com-
pute unit and softmax workloads that typically rely on the
vector (VEC) unit, in parallel on edge accelerators with
limited cores and thus limited or no multi-core parallelism
opportunities. Furthermore, the limited on-chip memory
demands careful memory management schemes to prevent
cache overflow and redundant computation.

In this paper, we introduce Memory Aware Stream Pro-
cessing Attention (MAS-Attention) to accelerate attention
computation on resource-constrained edge devices. MAS-
Attention employs a semi-synchronous parallelization strat-
egy to simultaneously utilize the heterogeneous MAC com-
pute unit and vector compute unit on a neural accelerator in a
pipelined parallel fashion, minimizing bubbles and optimiz-
ing the cachce management to improve attention inference
efficiency. Our contributions can be summarized as follows:

* We propose a novel stream processing scheme that par-
allelizes tiled MatMul and softmax workloads through
a semi-synchronous pipelining process. Prior works
only parallelize the computing and I/O processes while
still executing operators sequentially. In contrast, we
aim to schedule all operators in the attention mech-
anism onto the heterogeneous computing units, to
achieve parallel execution by scheduling the stream
of MatMul workloads on the MAC unit and stream of
softmax workloads on the VEC unit while satisfying
data dependencies between tiled workloads.

* We employ a multi-tiered tiling scheme for MAS-
Attention dataflow, that accommodates key hardware
constraints and software parameters. This scheme em-
ploys fine-grained sub-matrix tiling for MatMul and

row-granularity tiling for softmax operations. Using
search strategies, we identify optimal tensor tiling fac-
tors to balance workloads efficiently within the stream
processing scheme through offline auto-tuning across
different attention workloads and hardware configura-
tions.

* A proactive buffer overwrite strategy is further in-
troduced to maintain efficiency with limited on-chip
buffer capacity, especially for longer input sequences.
This approach selectively overwrites specific MAC unit
data to prioritize softmax completion with fine-grained
control, minimizing data reloading. It ensures data de-
pendencies, maintains operand integrity, and prevents
pipeline stalls or reverting to prior rounds.

We extensively evaluate MAS-Attention across attention
layers in transformer-based models, including different vari-
ants of BERT (Devlin et al., 2018), Llama3-8B (Touvron
et al., 2023), TS5 (Raffel et al., 2020), ViT (Dosovitskiy et al.,
2020) and XLM (Lample & Conneau, 2019). For simula-
tions, we utilize a modified TileFlow (Zheng et al., 2023)
to define the edge spatial accelerator architecture, software
mapping, and search space exploration, while Timeloop
(Parashar et al., 2019) and Accelergy (Wu et al., 2019) are
used to estimate latency and energy consumption. Addi-
tionally, we test MAS-Attention on real hardware, using
a Huawei MatePad Pro 13.2 with a DaVinci (Liao et al.,
2019) NPU. On the simulated edge device, MAS-Attention
achieves up to 2.75 speedup and 54% reduction in energy
consumption compared to the state-of-the-art FLAT algo-
rithm. Similar improvements in speedup and energy savings
are also observed on the actual edge NPU hardware, further
validating MAS-Attention’s effectiveness.

2 RELATED WORK

Sequential Attention Execution: The Layer-Wise atten-
tion computation processes operations sequentially. This
method relies on transferring intermediate results between
off-chip and on-chip memory, creating a memory-bound
workflow that poses significant deployment challenges on
edge devices with limited memory bandwidth.

Approximate Attention Acceleration Methods: For ap-
proximate acceleration methods of transformer-based foun-
dation models, methods like palletization (Cho et al., 2021;
Tabani et al., 2021; Wang et al., 2020a; app, b), quantization
(Liu et al., 2021; Lin et al., 2021; Wang et al., 2022; Li et al.,
2022; Piao et al., 2022; Yao et al., 2022; Li & Gu, 2023; Yu
et al., 2023), pruning (Mao et al., 2021; Peng et al., 2021;
Yu et al., 2022b;a), and knowledge distillation (Sun et al.,
2019; Wang et al., 2020c;b; Ganesh et al., 2021; Huang
et al., 2024; Gupta et al., 2024) compress model size by
reducing parameters or transferring knowledge from larger
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models, achieving memory efficiency and faster inference.

Exact Attention Acceleration Methods: In cloud envi-
ronments, exact acceleration methods (Dao et al., 2022;
Dao, 2023; Shah et al., 2024; dao; Hong et al., 2023; Pa-
tel et al., 2023) leverage parallel computation on multi-
core architectures to speed up attention mechanism. For
instance, FlashAttention and FlashAttention-2 optimize
dataflow for attention computation on NVIDIA A100 GPUs
by dividing query, key and value inputs into smaller tiles
and loading them from high-bandwidth memory (HBM) to
on-chip SRAM, reducing data movement for large interme-
diate outputs and exploiting GPU CUDA core parallelism.
FlashAttention-3 further enhances parallelism using ping-
pong scheduling to overlap MatMul and softmax operations
within warp groups on NVIDIA H100 GPUs. FuseMax
(Nayak et al., 2024) leverages Einsums to implement fused
attention computation on a spatial array accelerator, over-
lapping MatMul and softmax operations to enhance spatial
PE array utilization.

Due to limited computing cores, resource-constrained edge
devices rely on graph-fusion-based kernels (Gao et al., 1993;
Kjolstad et al., 2017; Chen et al., 2018b; Baghdadi et al.,
2019; goo; Zhou & Yang, 2022)—such as oneDNN (Li
et al., 2024b) for CPUs and FLAT (Kao et al., 2023)—to
accelerate attention computations by fusing operators and re-
taining intermediate results on-chip, which reduces DRAM
and off-chip memory access overhead. FLAT employs a
row-based attention fusion strategy for TPUs (Jouppi et al.,
2017; 2020) and spatial accelerators (Kwon et al., 2018;
Chen et al., 2019), including edge devices. By loading rows
of query into on-chip memory, FLAT performs correspond-
ing MatMul and softmax row-wise computations on-chip
and writes the output rows directly to off-chip memory, thus
mitigating memory-bound limitations by minimizing large
data transfers. However, previous attention acceleration
methods overlook the heterogeneous computing characteris-
tics between MatMul and softmax, which run on MAC and
VEC units, missing an opportunity for parallelization that
could further reduce latency and energy consumption.

3 MAS-ATTENTION OVERVIEW

While prior exact attention acceleration methods for
resource-constrained edge devices, such as oneDNN (Li
et al., 2024b) and FLAT (Kao et al., 2023), enhance data lo-
cality and reduce memory access overhead through operator
fusion, they still execute tiled MatMul and softmax opera-
tors sequentially, missing the chance for parallel execution
within the attention mechanism. In our work, we leverage
the heterogeneous computing capabilities of edge devices to
achieve parallel execution of tiled MatMul and softmax for
the exact attention acceleration. Our method further min-
imizes the latency with this parallelization scheme while

reducing I/O and redundant memory access with a novel
multi-tiered tiling scheme and a proactive memory-aware
buffer management, making it advantageous even for single
inference requests in Al scenarios on resource-constrained
edge devices.

Heterogeneous Workloads of Attention Mechanism: On
resource-constrained edge devices, heterogeneous comput-
ing is often used to perform computation and memory access
concurrently. However, prior edge-based attention accelera-
tion methods have not explored the heterogeneous nature of
MatMul and softmax workloads within the attention mech-
anism. Given their distinct computational characteristics,
the compute-intensive MatMul operation runs on the MAC
unit, while the element-wise softmax operation is processed
on the VEC unit. Leveraging this heterogeneity, enables
parallel execution of MatMul and softmax computations,
providing further acceleration of the attention mechanism.

Hardware-Software Co-design Scheduling on Resource-
Constrained Edge Devices: Given the limited comput-
ing cores and on-chip memory, efficiently scheduling tiled
MatMul and softmax operators with parallel execution in
the attention workload requires consideration of both hard-
ware parameters (e.g., L1 and LO memory sizes, MAC and
VEC core counts) and software parameters (e.g., MatMul
and softmax workload shapes). To address this challeng-
ing hardware-software co-design scheduling problem, we
propose a novel multi-tiered tiling scheme that accommo-
dates both short and long sequence lengths while enhancing
the utilization of on-chip processing units. Specifically,
we introduce sub-matrix tiling granularity for MatMul and
row-wise tiling granularity for softmax workloads. This
approach creates distinct tiling search spaces for different
workloads, allowing for higher search efficiency. We employ
advanced search algorithms like MCTS to conduct offline
searches for obtaining optimal tiling parameters across vari-
ous attention workloads and hardware configurations. Our
tiling scheme and search algorithm aim to balance MAC
and VEC operations in a fused, pipelined, semi-synchronous
attention computation, maximizing processing unit utiliza-
tion, minimizing idle time, and reducing I/O and redundant
memory access to ultimately optimize inference latency and
energy consumption.

Memory-aware Optimizations for the Limited Shared
On-chip Memory: While our multi-tiered tiling scheme
allocates search budgets for different workloads within the
attention mechanism and enhances the efficiency of the
search algorithm, limited search budgets can lead to locally
optimal tiling parameters, particularly for long input se-
quences with extensive search spaces. Additionally, the
constrained shared on-chip memory in edge devices com-
plicates the scheduling of parallelized MatMul and softmax
workloads. To address the potential for sub-optimal tiling
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parameters and better utilize limited on-chip memory, we
introduce an innovative proactive buffer overwrite strategy.
This memory-aware optimization features guardian mecha-
nisms that proactively overwrite selected on-chip buffered
data, balancing data refetching and redundant computation
against cache overflow. It prioritizes critical operators for
timely completion while ensuring correct data dependencies
within the pipelined dataflow.

4 METHODOLOGY

Given the query, key and value matrices, Q, K,V €
REXHXNXE \where B is the batch size, H is the number
of heads, IV is the sequence length and E' is the embed-
ding size, the attention output O is computed through the
following steps:

C:QKTGRBXHXNXN, (])
P = softmax(C) € REXHXNXN/ 2
O=PVe RB><H><N><E7 (3)

where softmax is applied to every row of QK.

To efficiently perform these computations on resource-
limited spatial accelerators, we propose a semi-synchronous
MAC-VEC parallel execution scheme. Our method is ap-
plicable to a wide range of spatial accelerators that have at
least one MAC unit for matrix multiplications and one VEC
unit for element-wise operations. Our scheme is achieved
through the strategic scheduling and pipelining of two Mat-
Mul operations alongside a single Softmax operation, as
illustrated in Figure 1. This approach allows the three oper-
ators to concurrently process different tiles within the same
computation round, thereby accelerating the attention mech-
anism. Additionally, we leverage advanced heuristic search
algorithms to optimize the tiling sizes across all memory
levels within our dataflow. These algorithms adaptively tune
the tiling parameters based on input dimensions, workload
characteristics, and pipelining criteria to ensure a balanced
distribution of workloads across compute units. We also
implement an on-chip memory management strategy that
selectively overwrites non-essential data to free up mem-
ory resources, prioritizing Softmax computation for longer
sequences while ensuring the subsequent recovery of inter-
rupted MatMul operations. Detailed descriptions of these
strategies are provided in the following.

4.1 Stream Processing Mechanism

We propose a stream processing scheme to handle continu-
ous streams of tiled MatMul and Softmax workloads. There
are two streams of tiled tasks: one for tiled MatMul com-
putation (defined in Algorithms 2 and 4) and another for
tiled Softmax computation defined in Algorithm 3. These
streams are scheduled in a pipelined fashion to overlap tiled

MatMul-Softmax computations, as illustrated in Figure 1.

Our approach operates at a row granularity, where the input
matrix () is divided into smaller chunks along the batch,
head, and sequence dimensions, resulting in row-wise sub-
matrices denoted as ();. This granularity is driven by the
inherently row-wise nature of the Softmax operation, align-
ing the processing scheme with Softmax’s requirements.
Iterations thus proceed based on the segmented sequence
dimension of the query, allowing for efficient parallelism.
The detailed stream processing scheme is outlined in Al-
gorithm 1, where there are warm-up, regular, and finalize
computation rounds.

Algorithm 1 MAS-Attention
1: Require: Q, K,V ¢ REXHXNXE jn DRAM; Param-
eters By, H,, Ng, Nkv € R

. . . o B H N

: Divide Q into T}, = E—‘ X {H—h—‘ X [N—Q—‘ blocks
Q1> . Qr c RBbeh,xNQxE

: Divide O into T}, = B—‘ X {Hi—‘ X [NA—‘ blocks

h Q

[\

|95}

B,
Oy, ..., 0, € RB*HrxNoxB

4: Allocate (B, H, N, E) for O in DRAM

5: Call Alg. 2: Cy + QKT

6: 14 2

7: while i < T,. do

8 if i = 2 then

9 Parallel Execution:

10: Call Alg. 2: Cp + QKT

11: Call Alg. 3: Py « Softmax(Cy)

12:  else

13: Parallel Execution:

14: Call Alg. 4: Oj_3 < P;_2V

15: Call Alg. 3: P;_; < Softmax(C;_1)
16: Wait for completion of Alg. 4 then:
17: Call Alg. 2: C; + Q;KT

18:  end if

19: 1+ 1+1

20: end while

21: Finalize:

22:  Parallel Execution:

23: Call Alg. 4: Oj_2 + P;_oV

24: Call Alg. 3: P;_1 < Softmax(C;_1)
25:  Wait for completion of Alg. 3 then:
26: Call Alg. 4: O5_1 < P;i_1V

27: return O

In the warm-up computation round, we use the MAC unit
to compute the first tile for the first MatMul operator as
C1 = Q1 KT, Then, we use the VEC unit to compute the
first tile for the Softmax operator as P; = Softmax(C)
and use the MAC unit to compute the second tile for the
first MatMul operator as Cy = Q2 K7 in parallel. Then we
enter the regular computation rounds, as shown in lines
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Core

Utilization Time

MAC Ln = & 0, =P1V | Cy3 = QKT 0, =P,V | €3 = Q3KT

MAC Unit C1= Q1K 1 1 2 =Q2 nSlp 3=0Q3

FLAT _

Vector Unit Py = Softmax(C,) Py = Softmax(Cy) P3 = Softmax(C3)
MAS-Attention

MAGUNt | €3 = @1KT | €z = @K 0, =PV | C3=Q3K" | 0y = PRV | Cy = Q4K"
MAS-Attenti

Vemreu"n:f" P, = Softmax(C,) | Pz = Softmax(Cy) | P3; = Softmax(C3) |

Figure 1. Dataflow comparison between FLAT and MAS-Attention: FLAT executes tiled stages sequentially, while MAS-Attention
performs MatMul and softmax operations semi-synchronously in parallel, maximizing compute utilization and significantly enhancing

overall performance.

13-17 of Algorithm 1. For iterations ¢ > 3, the MAC
unit computes the tile for the final MatMul operator as
O,_s = P;_5V. Meanwhile, the VEC unit computes the
tile for the Softmax operator as P;_; = Softmax(C;_1).
While the tiled Softmax task is being processed, the MAC
unit computes the tile for the first MatMul operator as C; =
Q; KT upon completion of O; 5. Lastly, in the finalize
computation round, the MAC unit computes the last tile
for the final MatMul operator as O;_1; = P;_1V after the
VEC unit computes the last tile of the Softmax operator as
P;_1 = Softmax(C;_1).

Our pipelined attention mechanism operates in a semi-
synchronous manner. During a regular computation round,
there is no data dependency among workloads, allowing the
two tiled MatMuls and Softmax to be executed in parallel
by the MAC and VEC units, respectively. However, within
each computation round, data dependencies must be care-
fully managed to ensure the correctness of the computation.
This semi-synchronous MAC-VEC parallelism for MatMul-
Softmax computations significantly reduces the latency of
the attention mechanism.

4.2 MAS-Attention Tiling Scheme

We introduce a multi-tiered tiling strategy for MAS-
Attention dataflow. For matrices K, P and V, used in
the MatMul operations in Equation 1 and Equation 3, a
fine-grained sub-matrix tiling is applied. This approach is
crucial, especially when the sequence length is significantly
longer than the embedding dimension (N > FE), as it helps
address the constraints of limited on-chip memory. Without
such tiling, handling the matrix K in C; = Q;K* and the
matrices P; and V in O; = P;V becomes problematic due
to excessive memory demands. For intermediate tensors
C; and P; used in the Softmax operation in Equation 2, a
row-granularity tiling is employed, aligning with the inher-
ent row-wise nature of Softmax to maintain computational
correctness.

We establish a comprehensive search space for tiling param-
eters across the memory hierarchy of the targeted hardware,
focusing on dimensions such as batch size (B), number
of attention heads (H), query sequence length (Ng), and
key/value sequence lengths (Vg ). The search for opti-
mal tiling parameters is influenced by three key factors:
the detailed workload of attention mechanism, the specific
scheduling of MAS-Attention, and the input size. These
parameters are defined at each memory level to ensure effi-
cient off-chip and on-chip memory operations while consid-
ering the interaction between computation and memory us-
age. This approach aims to identify optimal or near-optimal
tiling configurations that maintain computational efficiency
throughout the stream processing of MAS-Attention. To
effectively navigate this search space, we use Genetic Al-
gorithms and Monte Carlo Tree Search (MCTS) for the
simulated edge device, and Grid Search for the edge device
with a DaVinci DNN Accelerator.

We use MCTS to optimize tiling factors. At each step,
MCTS selects a loop and assigns a tiling factor based on
the number of iterations the loop will execute, updating con-
straints and passing them to the next untiled loop. Once all
tiling factors are determined, a complete fusion mapping is
produced as an analysis tree where each node corresponds
to a tile, which is then evaluated. The results of each evalua-
tion are fed back to MCTS to update the upper confidence
bounds (UCB), guiding subsequent searches. Genetic algo-
rithm (GA) then aims to find optimal compute ordering in
the analysis tree based on the found tiling factors, refining
performance across different analysis trees. GA generates a
population of analysis trees, applies crossover and mutation,
and evaluates each tree using the tiling factors. Through
repeated iterations, the best analysis tree is selected as the
optimal fusion dataflow.

On the DaVinci DNN Accelerator, Grid Search systemat-
ically evaluates all possible configurations, leveraging its
compatibility with the hardware’s structured memory model.
These algorithms iteratively assess various tiling configura-
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tions, simulating different tile shapes and sizes to determine
those that optimize execution cycles and minimize power
consumption.

After retrieving the optimal tiling parameters from the
search, Algorithm 2 performs the tiled MatMul computation
of C;, using sub-matrices (); and finer-grained sub-tiles of
K. The algorithm reads blocks of @); and sub-blocks of K
from DRAM to on-chip memory, where the MatMul opera-
tion Q; K7 is executed to generate C;. The resulting C; is
retained on-chip for subsequent operations.

Algorithm 2 Produce C; + Q; KT

1: Require: Q; € RB*HrxNoxE K ¢ REXHXNXE
in DRAM; Bb,Hh,NQ,NK7V eR;1 = [bb : be,hb :

he,np : )
2: Select i*" set of batch and head from K as K; =
K[i[0],i[1],:,:] € RBoxHnxNxE

3: Divide Kj into T, =
RBbXH},,XNK7v><E

4: Allocate (Bb, Hy, NQ, N) for C;, (Bb, Hy, NQ, E)
for Q;, and (By, Hy, Nk,v, E) for K;; in on-chip
memory
Load Q; from DRAM to on-chip memory
for1 <j<T.do
Load Kj j from DRAM to on-chip memory
On-chip compute C; = QiK?;j €
RBbethQxNK)V

[L—‘ blocks K;1,...,Kjc €

Nk, v

PR

9:  Write C; j to on-chip memory as j* block of C;
10: end for

Algorithm 3 handles the tiled softmax computation. It pro-
cesses the on-chip C; matrix by dividing it into smaller
row-wise blocks, aligned with the row-wise nature of the
softmax operation. Each block undergoes the softmax steps:
identifying the maximum value, subtracting it, exponenti-
ating, summing, and normalizing to produce P;. The P;
blocks are kept on-chip to ensure efficient data access for
final Matmul computation.

Algorithm 3 Produce P; «+ C;
RBbXHhXNQXN

1: Require: C; € in on-chip memory;
By, Hp,Ng € Ry i = [by : be, hp : he,np : 1]

2: Divide C; into 7} = Ng blocks Ciq,...,Ci1 €
RBbehxlxN

3: Allocate (By, Hp,, Ng, N) for P; in on-chip memory

4: for1 <53 <7T;do

5:  On-chip compute P;; = Softmax(C;;) €
RBb XHpX1xN

6:  Write P; j to on-chip memory as ;' block of P;

7: end for

Algorithm 4 handles the tiled MatMul computation of O;.

Both P; and V; are divided into finer-grained blocks to man-
age large sequence lengths. In each iteration, a block of V; is
loaded from DRAM to on-chip memory, while a correspond-
ing block of P is already available on-chip. The block-wise
multiplication F; ;V; ; is performed iteratively, accumulat-
ing results into O;. Once all iterations are complete, O; is
written back to off-chip memory.

Algorithm 4 Produce O; < P,V
1: Require: P; € RB¥HrnXNoXN jn on-chip memory;
V € RBXHXNXE O € RBXHXNXE in DRAM:
By, Hp, N, Nk,v € Rii = [by : be, hy = he,np @ ne)
2: Select i*" set batch and head from V as V; =
VIi[0] (1] -] € RBXHuxNxE
3: Divide V; into T, — [WNV] blocks Vi1,..., Vie €
RBbe;LxNK,VxE ,
4: Divide P; into T, — [%W blocks Pi1,...,Pic €
RBbXHhXNQXN}QV Y
5: Allocate  (By, Hp,Ng,E) for O, and
(Bp, Hp, Ngv, E) for Vj j in on-chip memory
6: On-chip initialize O; = (0)B,xH,xNoxE €
RBbXH;LXNQXE
7: for1 < j <T.do
8:  Load Vj; from DRAM to on-chip memory
9:  On-chip compute O; = O; + P;;V;; ¢
RBbethQxE
10: end for
11: Write Oj to off-chip memory as i** block of O

4.3 Proactive Overwrite Strategy for Optimized
Memory Utilization

The tiling parameters obtained from heuristic search algo-
rithms, such as Genetic Algorithm and Monte Carlo Tree
Search, may not always yield optimal results. Due to the
complexity of the search space and the heuristic nature of
these algorithms, there is a possibility of suboptimal config-
urations, which can impact the efficiency and correctness of
stream processing. To mitigate these potential inefficiencies
and ensure robust performance across a variety of workloads
and scenarios, we introduce a selective overwrite strategy.
This proactive approach enables the system to adaptively
manage on-chip memory by selectively overwriting specific
non-essential data when memory constraints arise.

During the computation of P;, if the on-chip memory
reaches capacity, impeding further calculations, two cases
may arise. First, as shown in Figure 2, if the MAC unit is en-
gaged in processing P;_1V, P; will overwrite the V' matrix
on chip and stop the MAC from continuing its operation,
resulting in no more writes from the MAC unit to on-chip
buffer. Second, as shown in Figure 3, if the MAC unit is
occupied with Q; 11 KT, P; will overwrite the K matrix
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Figure 3. Selective Overwriting of K Matrix to Halt MatMul Op-
eration in MAS-Attention’s Memory Strategy.

on chip, thereby interrupting the MAC unit’s process and
preventing any further writes to the on-chip memory. Once
the final result of P is fully calculated and stored on chip,
the MAC unit can resume its process by reloading either the
V or K matrix from DRAM to on-chip memory if it was
overwritten and redoing the MatMul calculation.

The rationale is that maintaining the integrity of critical
operands is essential to the efficiency of the pipeline. Pre-
serving and finishing P; = softmax(C;) is crucial as the
softmax operation stores its results only on chip and depends
on C; = Q; K™ which was obtained from on-chip memory,
hence overwriting P; cannot be remedied by reloading it
from DRAM. In contrast, this is not the case for X and V'
matrices, overwriting of which can be remedied by reload-
ing the over-written tensors from DRAM without stalling
the pipeline computation rounds.

This strategy ensures efficient use of on-chip memory and
computational resources, and our careful data overwrite
method makes the impact of the increased number of DRAM
reads on our overall latency and energy savings unnoticeable.
By carefully managing memory overwrites and reloading
only essential data, we strike a balance between maximiz-
ing parallelism and maintaining computational efficiency,
ultimately leading to improved performance and energy
efficiency.
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Figure 4. Simulated Edge Architecture Design

5 EXPERIMENTS
5.1 Experimental Setup

This section provides details on the simulation and modeling
tools utilized, describes the hardware specifications, and
outlines the experimental workloads and baseline algorithms
used for analysis. We conduct a comprehensive evaluation
of the proposed method, comparing it against state-of-the-
art attention fusion and acceleration techniques tailored for
spatial accelerators in edge environments. This includes an
assessment of performance on foundation model workloads
suited for edge deployment.

Simulation and Modeling Tools: To simulate our experi-
ments, we employed Timeloop (Parashar et al., 2019) and
Accelergy (Wu et al., 2019) to measure the latency and en-
ergy consumption, also we modified TileFlow (Zheng et al.,
2023) to define the edge spatial accelerator, software map-
ping for attention inference, and search space exploration.
During the tiling and loop parameters search, MCTS gener-
ated tiling factors and GA refined compute orderings, with
each candidate evaluated using Timeloop/Accelergy. The
custom edge hardware architecture designed for simulation
operates at a frequency of 3.75GHz and features 16nm tech-
nology, two cores each containing a MAC and a VEC unit,
and a hierarchical memory system as depicted in Figure 4.
The designed DRAM has a bandwidth of 30GB/sec and a
total size of 6GB. The L1 cache has connection to DRAM
and LO register file and has a storage of SMB . The Process-
ing Elements (PEs) in MAC and VEC units, organized in
16x16 and 256 mesh respectively, have access to L0 register
file. These parameters for the hardware architecture were
determined after various stress tests of the hardware. Our
simulations were conducted on a system equipped with an
Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz, utilizing a
single thread in execution. Additionally, we evaluated our
algorithm on a real hardware, Huawei MatePad Pro 13.2, to
validate its practical applicability and performance. More
specifically, this device is equipped with the Kirin 990 5G
SoC featuring Da Vinci NPU architecture, which consists
of three cores—each with a MAC unit, a Vector Unit, and
dedicated on-chip memory. The NPU includes 2x Ascend
Lite cores and 1x Ascend Tiny core.

Workloads: The workload for our experiments focuses
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on the inference of attention layers in various transformer-
based networks, including different variants of BERT (De-
vlin et al., 2018), Llama (Touvron et al., 2023), T5 (Raf-
fel et al., 2020), ViT (Dosovitskiy et al., 2020), and XLM
(Lample & Conneau, 2019), as detailed in Table 1. We also
provide end-to-end results from deploying MAS-Attention
in a real-world Al workload based on Stable Diffusion 1.5
UNet discussed further in 5.2.2. We selected a diverse set of
networks with varying attention layer dimensions to ensure
a comprehensive evaluation. Additionally, each workload
in our experiments undergoes a rigorous golden data check
for all methods, including our proposed approach, ensuring
that all methods pass this validation.

Layer-Wise: This approach represents the unfused baseline
for attention inference. In this method, C' = QK7 is fully
computed first, followed by the the softmax function on the
entire matrix C' to yield P = Softmax(C). Once P is fully
computed, the final output of the attention unit, O = PV,
is then calculated. All these operations occur sequentially
and without fusion.

Soft-Pipe: For comparison, we also design a baseline algo-
rithm that only pipelines the first MatMul and the softmax.
It divides ) and K into smaller chunks, fuses and pipelines
MatMul of C = QKT with Softmax (C'). In each iteration,
rows of @ (Q);) are loaded into on-chip memory to compute
the corresponding rows of C, where C; = Q; K T Then,
the corresponding rows of P are computed on-chip with
P, = Softmax(C;). While P, is being calculated, C; 1 can
be computed simultaneously. The resulting P values are
stored back to DRAM, and once the computation of P is
complete, the final output of the attention unit, O = PV, is
calculated sequentially.

FLAT: @, K, and V matrices are divided into smaller
chunks, and all attention operations are fused on-chip and
computed sequentially. In each iteration, rows of @ (Q);) are
loaded into on-chip memory to compute the corresponding
rows of C, where C; = Q; KT. Then, the corresponding
rows of P are computed on-chip with P, = Softmax(C;).
Finally, the corresponding rows of O, where O; = P;V/, are
computed on-chip and written back to off-chip memory.

TileFlow: In this approach, @, K, and V are divided into
smaller chunks, and all operations in the attention unit are
fused and pipelined (Zheng et al., 2023). However, since
(Zheng et al., 2023) does not provide further implementa-
tion details, we implemented the algorithm to the best of our
knowledge based on the available information. Specifically,
we replicated TileFlow’s tiling and pipelining approach by
dividing matrices into sub-tiles that fit within on-chip mem-
ory, fusing MatMul and softmax operations with pipeline
execution. This implementation approximates TileFlow’s
behavior, ensuring our evaluation aligns with its intended
operational characteristics.

FuseMax (scaled down to edge device): The computa-
tion is decomposed into a sequence of 12 primitive oper-
ators based on extended einsum notation, which are exe-
cuted using pipelining. The attention scores are computed
as C = QK7, and the Softmax function is implemented
through a series of sub-operations, where MAC and VEC
are processed in parallel. The weighted sum with V' is fused
into the Softmax pipeline itself. All computations are fused
and executed in a single pass.

Table 1. Network Configuration and Hyper-Parameters

Network Name #Heads | #Seq Hidden size Embg v
BERT-Base & T5-Base 12 512 768 64
BERT-Large & T5-Large 16 512 1024 64
BERT-Small 8 512 512 64
Llama3-8B & T5-3B (T5-XL) 32 512 4096 128
T5-Mini & TS5-Small 8 512 256 32
ViT-B/14 12 196 768 64
ViT-L/14 16 196 1024 64
ViT-H/14 16 196 1280 80
ViT-B/16 12 256 768 64
VIiT-L/16 16 256 1024 64
ViT-H/16 16 256 1280 80
XLM 8 512 1024 128

5.2 Execution Time Analysis
5.2.1 Analysis on Simulated Hardware

Table 2 presents a detailed analysis of execution cycles and
speedup ratios for MAS-Attention compared to other meth-
ods across all tested networks. The data highlights that
MAS-Attention consistently achieves superior performance,
with speedup factors up to 8.50x over Layer-Wise, 4.5 X
over Soft-Pipe, 2.75x over FLAT, 1.75x over TileFlow,
and 1.47x over FuseMax methods. The geometric means of
these speedup values—>5.09x, 2.78x, 1.70x, 1.31x, and
1.27x respectively—demonstrate MAS-Attention’s over-
all efficiency in reducing execution time. This substantial
performance improvement underscores MAS-Attention’s
effectiveness as an advanced solution for optimizing com-
putational efficiency in attention mechanisms.

5.2.2  Analysis on Real Hardware

Figure 5 shows the analysis of normalized execution time for
Layer-Wise, Soft-Pipe, FLAT, and MAS-Attention methods
on Huawei MatePad Pro 13.2 with DaVinci DNN Accel-
erator. MAS-Attention achieves substantial performance
improvements, with speedups ranging from 1.94 x to 3.50 %
over Layer-Wise, 1.35x to 2.87x over Soft-Pipe, and
1.30x to 1.76 x over FLAT. The geometric mean speedups
are 2.33x, 1.73x, and 1.42x, respectively. It is worth not-
ing that TileFlow was not included in this analysis as its
implementation details were not fully described in (Zheng
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Table 2. Cycles and Speedup Comparisons Across Networks for Different Methods

Network Name Cycles (10°%) Speedup (MAS-Attention vs. Others)
Layer-Wise | Soft-Pipe | FLAT | TileFlow | FuseMax | MAS-Attention | Layer-Wise | Soft-Pipe | FLAT | TileFlow | FuseMax
BERT-Base & T5-Base 3.637 2.064 1.573 0.799 0.992 0.786 4.63 2.63 2.00 1.02 1.26
BERT-Large & T5-Large 5.505 2.753 1.835 1.311 1.323 1.049 5.25 2.63 1.75 1.25 1.26
BERT-Small 2.753 1.376 0.918 0.655 0.661 0.524 5.25 2.63 1.75 1.25 1.26
Llama3-8B & T5-3B (T5-XL) 12.845 8.389 4.719 5.243 4.864 4.194 3.06 2.00 1.13 1.25 1.16
T5-Mini & T5-Small 2.228 1.180 0.721 0.328 0.384 0.262 8.50 4.50 2.75 1.25 1.47
ViT-B/14 0.612 0.381 0.266 0.263 0.196 0.151 4.06 2.53 1.77 1.75 1.30
ViT-L/14 1.242 0.508 0.354 0.351 0.262 0.201 6.19 2.53 1.77 1.75 1.30
ViT-H/14 1.355 0.558 0.405 0.439 0.318 0.251 5.40 2.23 1.61 1.75 1.27
ViT-B/16 1.081 0.590 0.426 0.249 0.259 0.197 5.50 3.00 2.17 1.27 1.32
ViT-L/16 1.311 0.786 0.524 0.332 0.346 0.262 5.00 3.00 2.00 1.27 1.32
ViT-H/16 1.376 0.852 0.590 0.414 0.419 0.328 4.20 2.60 1.80 1.26 1.28
XLM 4.194 2.097 1.180 1.311 1.216 1.049 4.00 2.00 1.13 1.25 1.16
\ Geometric Mean [ - [ - [ - ] - [ [ - [ 5.09x | 278x [ 170x [ 131x | 1.27x |
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Figure 5. Normalized Execution Time Comparison Across Net-
works for Different Methods on Huawei MatePad Pro 13.2 with
DaVinci DNN Accelerator

et al., 2023), which limited us from deploying it on this
edge device. Overall, the data validates MAS-Attention’s
effectiveness in enhancing computational efficiency on real
hardware.

Additionally, to provide end-to-end experimental results,
we evaluated MAS-Attention on a real-world generative Al
workload, specifically a reduced UNet module of Stable
Diffusion 1.5 running directly on the mobile device. This
UNet contains 15 attention units, with the largest attention
layer featuring 2 heads, a sequence length of 4096, and an
embedding size of 64. Compared to the Layer-Wise method,
MAS-Attention achieved a 29.4% runtime reduction for the
largest attention unit and a 6% overall reduction in end-
to-end model inference latency, further demonstrating the
practical effectiveness of our proposed algorithm.

5.3 Power and Energy Analysis

Table 3 presents a comprehensive analysis of energy con-
sumption and savings achieved by MAS-Attention com-
pared to other methods across various networks. The
data reveals that MAS-Attention consistently demonstrates

significant energy consumption reductions over Layer-
Wise, Soft-Pipe, FLAT, and TileFlow, with savings rang-
ing from 39.16% to 66.67%, 39.61% to 75.00%, 0.02%
to 54.03%, and 36.83% to 65.05%, respectively. The geo-
metric mean of these savings—52.97%, 63.07%, 18.55%,
and 53.16%—highlights MAS-Attention’s overall effective-
ness in reducing energy consumption. When compared
to FuseMax, MAS-Attention achieves lower energy con-
sumption for ViT-B/14, ViT-L/14, ViT-H/14, ViT-L/16, and
ViT-H/16 but exhibits higher energy usage in other cases.
The reason is that our objective in the search framework
was to minimize latency rather than energy, although MAS-
Attention can be revised to optimize other objectives. Never-
theless, MAS-Attention remains competitive in these results
by maintaining a strong balance between energy efficiency
and overall computational cycles.

In addition, we provide an energy consumption breakdown
for each network on all algorithms as shown in Figure 6,
focusing on Off-Chip (DRAM) and On-Chip (L1, LO) mem-
ories, and PEs in MAC and Vector units.

5.3.1 Off-Chip Memory Energy Consumption

Compared to Layer-Wise and Soft-Pipe methods, MAS-
Attention significantly reduces off-chip energy consump-
tion by minimizing DRAM accesses and eliminating the
need to store intermediate C' and P matrices off-chip. How-
ever, MAS-Attention’s off-chip energy consumption in some
cases is slightly higher than FLAT due to the need of reload-
ing K and V' matrices in the case of them being overwritten
by the selective overwriting mechanism during pipelining.
Soft-Pipe consumes more energy than MAS-Attention as
it stores the P matrix back to DRAM, but less than Layer-
Wise as it does not store the C' matrix to DRAM.

5.3.2  On-Chip Memory Energy Consumption

Layer-Wise, Soft-Pipe and TileFlow usually consumes
much more on-chip energy compared to MAS-Attention,
indicating less efficient on-chip memory utilization. FLAT
also show higher energy consumption than MAS-Attention
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Table 3. Energy Consumption and Savings Comparisons Across Networks for Different Methods.

Network Name Energy C ption (10 pJ) Energy Savings (MAS-Attention vs. Others)

Layer-Wise | Soft-Pipe | FLAT | TileFlow | FuseMax | MAS-Attention | Layer-Wise | Soft-Pipe FLAT TileFlow | FuseMax

BERT-base & T5-Base 37.208 49.607 12.656 | 27.598 10.217 12.405 66.67% 75.00% 1.98% 55.05% | -21.42%
BERT-large & T5-Large 28.105 65.672 | 21.112 | 38.065 13.623 16.944 39.69% 74.20% 19.75% | 55.49% | -24.38%
BERT-small 20.218 24.336 10.556 | 19.032 6.811 8.359 58.65% 65.64% | 20.80% | 56.08% | -22.73%
Llama3-8B & T5-3B (T5-XL) 179.309 186.463 | 63.252 | 147.502 53.401 63.241 64.73% 66.08% 0.02% 57.12% | -18.43%
T5-Mini & T5-Small 12.434 11.269 8.744 7.512 3.542 4.746 61.83% 57.90% | 45.71% | 36.83% | -33.99%

ViT-B/14 3.720 7.376 2.803 4.136 2.104 1.903 48.87% 7421% | 32.11% | 54.00% 9.56%

ViT-L/14 5.539 7.335 5.648 7.428 2.805 2.596 53.13% 64.61% | 54.03% | 65.05% 7.45%

ViT-H/14 6.585 9.120 4.741 6.783 3.487 3.162 51.98% 65.34% | 33.27% | 53.38% 9.31%

ViT-B/16 5.323 5.828 3.350 7.119 3.187 3.239 39.16% 44.42% 3.34% 54.49% -1.63%

ViT-L/16 9.403 6.984 6.316 9.402 4.249 4218 55.14% 39.61% | 33.21% | 55.14% 0.73%

ViT-H/16 11.160 15.414 6.803 11.475 5278 5.156 53.81% 66.55% | 24.22% | 55.09% 2.31%
XLM-Base 35.786 46.485 15.813 | 36.876 13.350 15.584 56.45% 66.47% 1.45% 57.74% | -16.77%

\ Geometric Mean [ - [ - [ - [ - [ - [ - [ 5297% [ 63.07% | 18.55% | 53.16% | -11.94% |

Note: Based on some literature studies, “p.

J” (picojoule) is used as the unit for energy consumption reported by Accelergy. Negative

savings indicate higher energy consumption compared to the baseline.

but generally lower than Layer-Wise, Soft-Pipe and Tile-
Flow.

5.3.3 PEs Energy Consumption

Energy consumption in PEs remains constant across differ-
ent algorithms for each network, as the actual computation
required by different algorithms is the same, with differ-
ences only in the scheduling process.
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Figure 6. Energy Consumption Breakdown for DDR, L1, LO mem-
ories and PEs within MAC and VEC units Across Networks using
Different Methods

5.4 DRAM Access Analysis

Since the FLAT method is most comparable to MAS-
Attention in terms of both cycle and energy performance,
we will focus on comparing the DRAM access between
these two algorithms.

5.4.1 DRAM Write Operations

Both MAS-Attention and FLAT algorithms exhibit an iden-
tical number of write operations to DRAM. This uniformity
arises because both algorithms confine their DRAM write
operations to the final result of the attention block (O), es-
chewing the need to write intermediate results to DRAM.
Instead, these intermediate results are processed entirely
on-chip, thereby minimizing off-chip memory accesses and
enhancing overall efficiency.

5.4.2 DRAM Read Operations

Across the tested workloads, MAS-Attention matches FLAT
in DRAM read operations but surpasses it for specific
networks. Notably, for BERT-Base & T5-Base (1.5x),
BERT-Large & T5-Large (1.5x), and Llama3-8B & T5-3B
(1.49x), MAS-Attention shows increased DRAM read op-
erations. This phenomenon arises because MAS-Attention
requires reloading specific data chunks, particularly K and
V' matrices, which may have been overwritten during the
pipelining stages on-chip. These matrices are reloaded from
DRAM to resume the halted MAC operations, allowing the
attention mechanism to maintain data dependencies and con-
tinue processing seamlessly. While this incurs additional
DRAM reads, the proactive buffer overwriting mechanism
maintains efficient on-chip memory usage and pipelined
execution integrity, with total cycle counts and energy con-
sumption still outperforming all other baselines.

5.5 Impact of Search Algorithms on Tiling
Optimization

Figure 7 illustrates the impact of employing MCTS and
GA search algorithms in optimizing tile configurations for
attention workloads. For clarity, the plot proportionally
reduces the number of plotted lines to approximately 2K.
It becomes evident that after around 10K iterations, each
algorithm consistently converges toward optimal tiling pa-
rameters. Detailed final cycle counts and corresponding
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Figure 7. Execution cycles vs. search time (both log scale) for
different attention acceleration methods, demonstrating the impact
of Genetic Algorithm (GA) and Monte Carlo Tree Search (MCTS)

on each algorithm’s efficiency

energy consumption metrics upon completion of the search
are comprehensively listed in Tables 2 and 3. FuseMax
results in these tables and its original work were obtained
via its manually selected tiling sizes for tensors on differ-
ent memory levels, thus excluded from Figure 7 on search
convergence.

To further underscore the efficacy of the proposed search
scheme with MAS-Attention, notable cycle improvements
include a 64.5x reduction for BERT-Base and T5-Base
(from 50.33M to 0.78M), a 16.1x reduction for BERT-Large
and T5-Large (from 16.77M to 1.04M), and a similar 16.1x
improvement for BERT-Small (from 8.38M to 0.52M) as
well as T5-Mini and T5-Small (from 4.19M to 0.26M).
Furthermore, Vision transformer workloads demonstrate sig-
nificant benefits with up to 66.2x speedup—ViT-B,L,H/14
see  49.7x/24.5x/24.6x  (from 7.45M/4.91M/6.14M
to 0.15M/0.20M/0.25M), ViT-B,L,H/16 show
66.2%x/32.2%/32.8%x (from 12.58M/8.38M/10.48M to
0.19M/0.26M/0.32M). Lastly, XLM sees a 32.2x drop
(from 33.55M to 1.04M), further validating the broad appli-
cability and robustness of the search-based optimization
approach.

5.6 Limitations

On the simulated edge hardware, MAS-Attention can handle
a maximum sequence length of approximately 1 million
tokens in half precision (FP16), which is half the maximum
sequence length that FLAT can handle. The computation
of P; happens in parallel with either O;_; or C;41. Since
Softmax operates row-wise, at least one row is used in the
computation of P;. In the case of P; computed in parallel
with O;_1 = P,_1V, O;_1 requires at least one entire row
of P;_1 to be calculated. Also, in the case of P; computed
in parallel with C; 11 = Q; 11 K T one entire row of Cit1
is computed and written on-chip. In both scenarios, on-
chip memory should have the capacity for either P; and
P;_1 or P; and C;;. In the case of half precision with
a sequence length of 1M, one row of P;, P;_1, and C; 1
consumes 2MB each on-chip, which fits within the SMB
on-chip cache size in either scenario. Since FLAT does not
employ such a pipelining scheme and operates sequentially,
it can handle a sequence length of 2 million tokens. In this
condition, one row of P; consumes 4MB on-chip, which can
be managed by the SMB on-chip cache size in the simulated
edge device.

Furthermore, MAS-Attention’s stream processing efficiency
relies on the availability of separate compute engines for
MatMul and Softmax operations, leveraging dedicated MAC
and VEC units for parallel execution. Therefore, MAS-
Attention remains particularly effective on architectures
with distinct heterogeneous compute resources—a design
choice becoming increasingly common in modern edge ac-
celerators to optimize for energy efficiency.

6 CONCLUSION & FUTURE WORK

In this paper, we propose MAS-Attention dataflow to ac-
celerate attention mechanism on resource-constrained edge
devices. Our approach uses a stream processing scheme to
execute tiled MatMul and Softmax workloads in a pipelined
manner, with MAC and VEC units operating in parallel. A
multi-tiered tiling strategy ensures balanced workloads for
efficient pipelined attention execution. Additionally, our
proactive buffer overwrite strategy enhances on-chip mem-
ory utilization by freeing up buffer space when it runs out
of memory, such as with longer input sequences. While this
strategy increases off-chip memory reads, MAS-Attention
achieves superior speedup and energy savings over previous
methods like Layer-wise, Soft-Pipe, FLAT, and TileFlow,
on both simulated and real edge devices.

Future work will extend MAS-Attention to support training,
which adds complexity in backpropagation that challenges
efficient workload management on resource-constrained
edge devices.
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