
Autoregressive Language Modeling using Compressed Sequence Mixing

Jatin Prakash 1 Aahlad Puli 1 Rajesh Ranganath 1

Abstract
The transformer architecture is the default choice
for large language models (LLMs) but the atten-
tion layers incur computational costs that scale
quadratically with context length, which is pro-
hibitive. To reduce these costs, many works pro-
pose alternative low-cost sequence mixers that
approximate attention; for example, sparse or slid-
ing window attention limits the inputs to attention
and linear attention or convolutions limit the state
size by removing or approximating the softmax
transformation. These alternatives have limita-
tions; e.g to solve tasks like multi-query associate
recall, sparse-attention transformers need to be
deeper than vanilla transformers and linear atten-
tion needs to be composed with self-attention. To
build efficient LLMs without replacing the atten-
tion mechanism itself, we develop the Compress
and Attend Transformer (CAT). CAT is a sim-
ple transformer-based architecture that decodes
each token while only attending to compressed
chunks of the sequence so far. The chunk-size
limits the compressor cost and the compression
reduces the costs for the decoder by a factor of
the chunk size. It follows that CATs enjoy fast
and memory-efficient generation, with upto 3×
generation throughput and 7× less memory us-
age compared to a dense transformer. We show
that CATs match dense transformer on perplexity
and common language modeling evaluations. At
the same time, CATs outperform existing efficient
attention-alternatives on real-world recall bench-
marks, showcasing similar generation throughput
and memory usage.

1. Introduction
Transformers (Vaswani et al., 2017), due to their scalabil-
ity and handling of long-range dependencies, are now the

1New York University. Correspondence to: Jatin Prakash
<jp7467@nyu.edu>.

Proceedings of the 3rd Efficient Systems for Foundation Models
Workshop at the International Conference on Machine Learning,
Vancouver, Canada. PMLR 267, 2025. Copyright 2025 by the
author(s).

default architectures for large language models (LLMs).
To handle long-range dependencies, transformers rely on
the attention mechanism (Vaswani et al., 2017; Bahdanau
et al., 2014) to aggregate information over the entire se-
quence. When inferring a token given a context consisting
of the model input and some generated tokens, each layer
of self-attention computes the inner products between the
embeddings of the last token against every other token in the
context. Thus, Transformers excel in recalling information
from the context. However, the cost of computing attention,
both in terms of compute and memory, increases with the
size of the context.

Mitigating the inference cost requires avoiding computa-
tion of interactions between every pair of tokens. Broadly,
three popular approaches tackle the generation cost of trans-
formers by obtaining a summary of the context, called the
recurrent state, in different ways. One can think of standard
transformer having a recurrent state of the entire context.
The first class of approaches improve efficiency by restrict-
ing attention to specific strided positions or local sliding
window sizes (Child et al., 2019; Jiang et al., 2023). As
the set of important tokens is not known in advance, these
modifications strike a coarse trade-off between cost and
performance (Gu & Dao, 2023; Arora et al., 2024a).

The second line of work replaces attention with its linear
approximations or linear attention (Arora et al., 2024a;
Katharopoulos et al., 2020). But such layers, by them-
selves, cannot solve simple compare-and-copy tasks (also
called retrieval or recall tasks), and must be composed with
other sequence mixers, such as local sliding window atten-
tion (Arora et al., 2024a).

The third line of work focuses on state-space models
(SSMs), which keep a fixed length recurrent state that is
read from when generating and updated after; recurrent
neural networks and the recent MAMBA models Gu & Dao
(2023); Dao & Gu (2024); Yang et al. (2025) fall in this class.
Due to fixed recurrent state limiting the information that
can be in memory, these models can solve recall tasks only
upto fixed sequence lengths (Jelassi et al., 2024). Building
competitive state-space models typically involves hybrids,
which composes a state-space update layer with sliding win-
dow or dense attention layers. Choosing such a composition
trades-off computation costs for performance because the
attention layers that improve recall performance also come

1



Autoregressive Language Modeling using Compressed Sequence Mixing

with larger time and memory costs.

Overall, the existing efficient sequence mixers restrict the re-
current state in a way that can harm recall ability when used
without carefully composing them with computationally ex-
pensive attention layers (Arora et al., 2024a; Yang et al.,
2025). To move beyond such choices, we ask the following
question: Can we build simple and efficient architectures
without replacing or restricting the attention mechanism?

To answer this, we start with the fact that natural language
has redundancies (Shannon, 1951; Zipf, 2016; Mahowald
et al., 2013), and therefore can be compressed. A sequence
in natural language compressed into a shorter sequence
forms a smaller recurrent state. Building on this fact, we
propose a simple new architecture called the CAT. CAT
models chunks of tokens in the sequence given compressed
representations of past chunks. The two stages, compression
of the chunks in the context and the decoding of the next
chunk, are both parameterized with transformers, meaning
the self-attention mechanism is retained.

Choosing a chunk size then trades-off between quality and
efficiency: with a chunk size of C, the cost of inferring a
sequence of size N in the compressor and decoder become
O(NC) and O((N/C + C)

2
) respectively. Choosing C ap-

propriately makes CAT cost less than the O(N2) cost of
dense attention. The compressor itself is learned end-to-end
to avoid artificial restrictions on what information is kept in
the recurrent state. Powered by the learnable compression of
the context into a growing recurrent state, CAT outperforms
existing efficient architectures on recall tasks while showing
similar memory usage and generation speeds. Overall, this
paper makes the following contributions:

1. Introduces the Compress and Attend Transformer
(CAT) architecture, a simple and efficient alternative to
dense transformers that can be trained end-to-end via
the standard auto-regressive log-likelihood objective.

2. Elucidates how chunk size and compression size enable
interpolating between dense transformers and efficient
architectures, providing an alternative way to trade-off
accuracy for efficiency.

3. Shows that CAT is up to 3× faster with 7× smaller
memory footprint compared to dense transformers,
matching it on perplexity on FineWeb-Edu (Penedo
et al., 2024) and common language modeling and
common-sense reasoning evaluations.

4. Demonstrates that CATs achieve better recall on real-
world tasks1 compared to existing efficient alternatives
while showing similar memory usage and generation
speeds.

1Huggingface link to EVAPORATE.

Figure 1: The Compress and Attend Transformer (CAT) ar-
chitecture. The ith chunk (size 3 chunks shown) is decoded
auto-regressively given compressed past chunks until i− 1.
The length of the sequence to the decoder reduces from N
to N/C due to the compression, thus reducing the time and
memory costs in the decoder due to self-attention.

2. Compress and Attend Transformers
Consider the task of generating a sequence of N tokens with
a dense-attention transformer. In generating the token at
the ith position, a transformer attends to all tokens in the
history before the position i. However, human language
has redundancies (Shannon, 1951; Zipf, 2016; Mahowald
et al., 2013), meaning that one can compress the history
without destroying any information. However, the subset of
tokens to attend to is apriori unknown, and one needs to be
learn the compressor to extract sufficient information from
the history about the future. We instantiate this idea in the
Compress and Attend Transformer (CAT). A schematic is
given in fig. 1.

Given a sequence of N tokens {xi}i≤N ∈ RD, we split the
sequence into chunks of size C represented by {ci}i≤Nc ,
where Nc =

N
C is an integer,

x = {x1, x2, · · ·xN} → {c1, c2, · · · cNc}.

We produce a new sequence by compressing each chunk ci
into elements that live in a space of ambient dimension Dd:
fθ(ci) ∈ RDd .

{c1, c2, · · · cNc
} →fθ {fθ(c1), fθ(c2), · · · fθ(cNc

)}.

We propose to stack sequence mixers that aggregate infor-
mation across sequence elements, such as self-attention, on
top of the compressed sequence and then decode the original
sequence from the compressed one. Formally, the decoder
can be any model that takes in the compressed sequence as
the input and outputs a distribution over the tokens in the
sequence of tokens. For a sequence-to-sequence model, ϕθ,

2

https://huggingface.co/collections/hazyresearch/evaporate-suite-67e218d4175b4ffc0a870501


Autoregressive Language Modeling using Compressed Sequence Mixing

the predictive distribution for the ith chunk is

pθ(ci = {xCi · · ·xCi+C−1} | c1 · · · ci−1)

= ϕθ({xCi · · ·xCi+C−1} | fθ(c1) · · · fθ(ci−1))}

Mechanically, we parameterize fθ as a bidirectional trans-
former whose outputs are projected down with a linear layer
and ϕ as a causal transformer that decodes tokens within
each chunk auto-regressively while only attending to the
previous tokens via the compressed sequence. We term this
architecture the Compress and Attend Transformer (CAT).
Unlike encoder-decoder architectures that attend directly to
processed token-level embeddings of ci (Raffel et al., 2020;
Vaswani et al., 2017), ϕθ attends to the compressed fθ(ci).

2.1. Training CATs
To model language from a compressed context as well as
modeling it from the entire context, the compressed se-
quence {fθ(c1) · · · fθ(ci−1)} needs to retain the informa-
tion in the chunks c1 · · · ci−1 about the following chunks
f(ci) · · · f(cNc). Retaining all the necessary information
implies that the future chunks are all statistically indepen-
dent of the past chunks given the compressed history:

ci · · · cNc |= c1, · · · ci−1 | fθ(c1) · · · fθ(ci−1), (1)

In other words, sufficiency means that all the dependencies
between chunks are captured by the compressed represen-
tation. This allows one to model the entire sequence from
just the sequence of compressed representations. How can
we build such compressors? We show that the default auto-
regressive objective applied to the chunks guarantees the
sufficiency:
Theorem 2.1. Training CATs with auto-regressive log-
likelihood yields sufficient compressors.

The proof can is in appendix F. Theorem 2.1 shows that one
can learn the two components of CAT, ϕθ and fθ, together in
an end-to-end fashion with the established auto-regressive
cross-entropy loss. Next, we discuss how CATs is faster
and memory efficient during training and generation than
dense-attention transformer.

2.2. The cost of computing CATs
Here, we analyze CAT’s attention costs in the compressor
and the decoder with the chunk size is C and the projected
dimension is Dd.

Compressor: The compressor costs are less than that of a
dense transformer because each chunk is at most size C
and there are Nc = N

C chunks: thus, the time costs scale
as O

(
N
CC2D

)
= O(NCD) and memory costs scale as

O(NCC2) = O(NC) (here, D is the embedding size for the
compressor, which is different from Dd). Moreover, the
compressor for each chunk is fully independent of the rest

meaning that the compression stage is fully parallelizeable
across chunks during training. During generation, it takes
one transformer call to process the tokens within chunk in
parallel to compute the compressed sequence token. Thus,
the compressor is very efficient during training and genera-
tion compared to a dense transformer.

Decoder: The compressed sequence has at most N
C tokens,

and the decoding within each chunk looks at fewer than
Nc (or N

C ) compressed tokens (fθ(c1) · · · fθ(ci−1)) and
fewer than C tokens within the chunk. Thus, operating
on the compressed sequences leads to attention costs of
at most O

((
N
C + C

)2
Dd

)
in time across all chunks ci

and O
((

N
C + C

)2)
in attention memory during training.

During generation, the attention costs remain the same for
the decoder, however, the memory required for the recur-
rent state (or the KV-cache) scales as O(NCDd), which is
a factor O(C) times lower than a dense transformer. For
even a moderate chunk size of 4, this can result in consider-
able reductions in memory during generation. Section 3.3
empirically compares CAT against different architectures.

Choosing hyperparameters for CAT. Arbitrary choices
of chunk size C and projected dimension (decoder embed-
ding size) Dd may violate the assumption in theorem 2.1
that the CAT model achieves sufficiency. The flexibility, or
capacity, required to satisfy this assumption is in tension
with lower latency and memory requirements. To instantiate
CAT that matches the performance of a dense-attention trans-
former while requiring fewer computational resources, we
need to set the right chunk-size C and projected dimension
Dd. If C is too big (such as N ), the cost of compressing
may be comparable to that of dense attention; C being too
small (such as 1) makes the decoder cost prohibitive. On
the other hand, reducing Dd improves efficiency but can
hurt language modeling and recall performance. Refer to
section 3 and appendix C.3 for a discussion on this trade-off.

We experiment with different combinations of depth, embed-
ding sizes for the encoder and decoder sizes in appendix D
on the WikiText-103 dataset (Merity et al., 2016), which
informed our architecture choices. We find that the decoder
embedding size Dd and chunk size have the largest effect
on performance. When compared against a Transformer
of depth L and embedding size D, CAT models have an
encoder of depth L/2 and the same embedding size and
a decoder of depth L and an embedding size of 2D. We
experiment with different chunk sizes {4, 8, 16, 32} which
offer speedups and memory reductions that outpace the cost
increase due to the doubling of the dimension. Despite the
larger dimension, CAT models provide faster inference with
a smaller memory footprint compared to dense transformers,
at every chunk size we work with.

3



Autoregressive Language Modeling using Compressed Sequence Mixing

3. Experiments
This section compares CAT with the dense transformer and
existing efficient architectures, along with their hybrid vari-
ants, on both language modeling and recall tasks such as
question-answering and retrieval. Having pre-trained on the
FineWeb-Edu dataset (Penedo et al., 2024), we zero-shot
evaluate CAT and the other efficient architectures on a suite
of real-world recall tasks (Arora et al., 2024b). Finally, the
section demonstrates the gains in speed and reduction in the
memory footprint that CAT obtains compared to the other
architectures while modeling language similarly well.

Setting, baselines, and experimental details. We com-
pare CAT with the dense transformer (or Transformer++
(Touvron et al., 2023)), and three recently proposed com-
petitive efficient architectures: BASED (Arora et al., 2024a)
which composes a linearized self-attention layer and sliding
window attention layers, MAMBA2 (Dao & Gu, 2024) a
state-space model, the Gated Delta Net (GDN) (Yang et al.,
2025) which improves MAMBA2 with a new state-update
rule. All models use hidden size D = 1024, 12 layers with
the recommended hyper-parameters and layer-split in their
respective papers. All models except CAT have ≈ 270 mil-
lion parameters each. All models are trained for the same
number of steps on 5 billion tokens, with a max sequence
length of 1024. We train all models on the FineWeb-Edu
dataset (Penedo et al., 2024). More details about the setup
can be found in appendix E. We report results for differ-
ent chunk sizes C ∈ {8, 16} to show different trade-offs
between performance and efficiency. CAT models, due to
the 2D embedding size in the decoder, go up to ∼ 800M
parameters and yet are faster and use lesser memory during
inference. Ablations on the chunk size, compressor and
decoder depth can be found in appendix B along with imple-
mentation details for CAT regarding training and generation,
and the pseudo-code.

3.1. Language modeling evaluations
Table 1 reports perplexity on the held-out FineWeb-Edu data
on WikiText-103 and LAMBADA datasets. We addition-
ally evaluate pretrained models zero-shot on key language
modeling benchmarks (HellaSwag, ARC-C, ARC-E, PIQA,
WinoGrande, OpenbookQA). CAT models perform similar
to the dense transformer on the FineWeb data while being
among the best on all the other evaluations.

3.2. Language Recall and Question-Answering
We zero-shot evaluate all the models pretrained FineWeb-
Edu on a suite of real-world recall tasks (the EVAPORATE
suite which contains SWDE, DROP, SQUAD and Trivia
QA datasets). The average length of the query in SWDE is
≈ 1K while all the other datasets have query-length under
300. Due to relatively small scale of our models and pre-
training, we only evaluate on queries that are upto 1024

Method FineWeb ↓ Wiki ↓ LMBD ↓ LM Eval ↑
Dense 21.2 26.1 48.8 42.0

BASED 21.4 27.1 47.2 41.8
MAMBA2 19.9 24.9 46.3 42.5
GDN 21.6 26.6 48.6 41.6

CAT-8 20.7 24.8 46.1 42.9
CAT-16 21.1 25.2 46.0 42.8

Table 1: We measure perplexity on a held-out set of
FineWeb-Edu, and measure zero-shot perplexity on Wiki-
Text, LAMBADA (LMBD), and also zero-shot average ac-
curacies across benchmarks common language modeling
and common-sense reasoning. The tag ↓ means lower is
better and ↑ means higher is better. CAT models perform
as well or better than the dense transformer on held-out
FineWeb data and are among the best on all the others.

tokens. Appendix E gives additional details.

Table 2 shows the results; CATs outperform existing efficient
architectures. Notably, CAT-8 outperforms MAMBA2 or
GatedDeltaNet while having faster generation speeds and
similar memory usage at large batch sizes( fig. 2). When
compared to BASED, CAT-16 outperforms it while having
similar generation speeds and memory usage( fig. 2).

As attention improves recall abilities to long contexts, we
also compare CAT-8 against architectures that use restricted
self-attention layers. The first is sparse attention (Child
et al., 2019; Jiang et al., 2023), with the stride set to 8 and
with an embedding size 2D = 2048. The second is a hybrid
of GDN that uses sliding window attention of half the context
size at every other layer, called Gated Delta Net-H1 (GDN-
H1) (Yang et al., 2025). This comparison focuses on the
SWDE dataset which has the largest average query length
in the EVAPORATE datasets we consider (≈ 1K).

Table 3 reports the results along with the theoretical cost
reductions offered by the baselines, while we report the
empirical cost reductions achieved by CAT-8. CAT-8 outper-
forms GDN-H1 while being 1.4× faster using 3.4× lesser
memory than the dense transformer; GDN-H1 is actually
slower and only offers a 2.5× reduction in memory usage.
Further, CAT dramatically outperforms sparse attention, clos-
ing > 50% of the gap to the dense transformer, while being
just as fast and memory efficient.

3.3. Generation throughput and memory
In this section, we benchmark the generation throughput and
memory consumption of various architectures. We compare
dense transformer, BASED, MAMBA2 and CAT with chunk
size of 8 and 16. All architectures use the same configura-
tion as the language modeling experiments in section 3.1.
Appendix B.1 gives further details about the setup.

4



Autoregressive Language Modeling using Compressed Sequence Mixing

Model SWDE DROP SQuAD Triv Avg.

Dense 39.2 15.3 26.9 13.7 23.8

BASED 10.6 13.4 18.0 10.6 13.2
MAMBA2 10.6 15.0 20.5 12.7 14.7
GDN 12.0 13.9 18.3 12.1 14.1

CAT-8 30.5 15.7 21.3 11.8 19.8
CAT-16 13.5 15.2 14.6 12.6 14.0

Table 2: Zero-shot performance on real-world recall tasks.
CAT-8 outperforms MAMBA2 and Gated-DeltaNet (GDN),
while being similar or better in generation throughput and
memory consumption (see fig. 2). CAT-16 outperforms
BASED and is as efficient. Notably, CAT-8 closes 70% of the
gap between the performance of best baseline and that of
the dense transformer on SWDE, which that has the longest
average query length (∼ 1K) among the datasets (others
have an average query length ≤ 300 tokens (Arora et al.,
2024b)).

Model Speed Up Mem. Reduction SWDE

Dense 1.0× 1.0× 39.2

GDN-H1 0.7× 2.5× 28.0
Sparse* 1.4× 3.4× 19.7

CAT-8 1.4× 3.4× 30.5

Table 3: SWDE recall performance of different models
along with latency and memory usage at batch size 512 and
sequence length 1024. ∗ denote theoretical calculations,
not actual wall-clock time or hardware memory utilization,
which could be worse. CAT-8 outperforms both baselines
while being as efficient or better.

Scaling with batch size. Figure 2 compares different ar-
chitectures as one scales batch-size, given a fixed sequence
length of 1024, the same setting used in section 3.1. Here,
CAT outperforms both dense transformer (CAT is 1.4× faster,
3.5× cheaper) and MAMBA2 (CAT is 50% faster, similar in
memory usage) in generation speeds and memory usage.
Compared to BASED, CAT has similar generation speeds
and memory usage as one scales the batch size to 512
when chunk size is to C = 16. Interestingly, we note that
MAMBA2 scales poorly with batch-size, consuming even
more time than a dense transformer on 1K sequence length.
Refer to appendix C.6 on a ablation.

Scaling with sequence length. Figure 3 compares archi-
tectures as one scales the sequence length of generation,
given a fixed batch-size of 256. We observe that CAT
generates sequences upto 3× faster than the dense trans-
former while using upto 7× lesser memory. Compared to

Figure 2: Latency (in seconds) and memory requirements
(GB) of CATs with different chunk-size as the batch size
increases, at fixed sequence length 1024. At highest batch
size 512 and chunk size 8, CAT (or CAT-8) achieves upto
1.4× faster generation than the dense transformer and 1.5×
faster than MAMBA2. On the other hand, CATs reduce mem-
ory requirements by a factor of ≈ 3.4× when compared
to the dense transformer and are similar in memory usage
to MAMBA2. On the other hand, CAT-16 achieves gen-
eration speeds and memory similar to BASED. Refer to
appendix C.6 for poor scaling of latency of MAMBA2 w.r.t
batch size at 1K sequence length.

MAMBA2, CAT-8 is similarly fast in generation while con-
suming slightly more memory at higher sequence lengths
due to still a linear dependence on the sequence length, al-
beit it’s lower by a factor of O(C) (chunk size) compared to
dense transformer). Compared to BASED, CAT-16 is slower
and consumes more memory for the same reasons above.
That being said, modern language models that are trained on
longer sequence lengths usually use huge embedding dimen-
sion (D), for e.g. Llama3-70B uses D ∼ 8K, which can
be favorable to how memory scales in CAT with sequence
length. Interestingly, we observed that the official imple-
mentation for BASED (Arora et al., 2024a) uses a slightly
wrong implementation for sliding window KV-cache (i.e.
memory increases with the sequence length). The bench-
marks in fig. 3 are after we patched with an appropriate fix.
Appendix C.7 benchmarks the official implementation.

3.4. Additional results.
Appendix C provides further evaluations of the CAT models.
In appendix C.2, we evaluate CAT on the challenging multi-
query associative recall (MQAR) task (Arora et al., 2023a;
2024a), where it solves the task with similar or better mem-
ory requirements compared to efficient architectures. Sparse
attention does not solve the task without being deeper than
the Transformer, making it slower than CATs.

CATs provides a different way to trade-off recall for more
efficiency in terms of generation speeds and memory us-
age compared to existing architectures. To observe this
trade-off, we pretrained CAT models at different chunk sizes

5



Autoregressive Language Modeling using Compressed Sequence Mixing

Figure 3: Latency and memory requirements of CATs with
different chunk-size v/s the generation length. As generation
length increases to 4096, CATs achieves upto ≈ 3× faster
generation than the dense transformer, and reduce memory
requirements by a factor of ≈ 7×.

(following the setup in section 3.1 and section 3.2) and
evaluated their downstream zero-shot recall abilities. Thus,
CAT allows one to interpolate between dense attention and
compressed sequence attention, trading off accuracy for ef-
ficiency according to the task requirements. These results
can be found appendix C.3.

4. Related Work
Reducing the cost of self-attention enables scaling trans-
formers to large contexts and has been the focus of much
work Child et al. (2019); Parmar et al. (2018); Beltagy et al.
(2020); Jiang et al. (2023). Common techniques include
shrinking the set of tokens over which attention is computed;
e.g. striding patterns and sliding window attention make the
shrunken set include every kth token or the k tokens adja-
cent to the position being decoded (Child et al., 2019). More
recently, concurrent works like (Yuan et al., 2025) falls into
the same spirit as ours, trying to compress past tokens, how-
ever, a notable difference is the compression operation is
performed at every layer, unlike in our case, which happens
once. Works like (Arora et al., 2024a; Katharopoulos et al.,
2020) linearize attention to make a fixed-size recurrent state
that can be updated via simple averaging; the technique
is to approximate self-attention with linear operations of
query, key, and value vectors transformed through a feature
map. Alternatively, one can replace attention with linear or
pseudo-linear sequence mixers such as state-space models
(SSMs) (Gu et al., 2021; Sun et al., 2023), gated convolu-
tions (Fu et al., 2022; Poli et al., 2023) and input-dependent
recurrunces (Peng et al., 2023; Gu & Dao, 2023) and more
recently (Yang et al., 2025). Appendix A gives an extended
discussion.

5. Discussion
We propose a simple modification to the Transformer ar-
chitecture that first compresses chunks of tokens before
modeling them sequentially, called the Compress and At-

tend Transformer (CAT). CAT is able to model language
as well as dense attention from compressed sequences that
are upto 16x smaller than the original sequence; at this
compression, the CAT model is 3x faster with a 7x smaller
memory footprint than the dense transformer, demonstrating
the advantages of modeling language by mixing compressed
sequences. CATs outperform existing efficient architectures
like BASED (Arora et al., 2024a) MAMBA2 (Dao & Gu,
2024), and Gated Delta Net (Yang et al., 2025) on recall
tasks while offering a different trade-off, taking up to 70%
more time to achieve better recall while using similar mem-
ory. The CAT architectures demonstrates a performance-
efficiency trade-off with simple choices, demonstrating a
different approach to building efficient LLMs while ap-
proaching the recall abilities of dense transformers.

Future work Our current study is constrained by lim-
ited computational resources, which has prevented scaling
to larger models and datasets. CAT models still do scale
quadratically in time and memory meaning that, despite the
compression, efficient models outpace CATs in both time
and memory at large enough sequence lengths. Reducing
the compressor and decoder depths offer further speedups
and still outperforming existing efficient alternatives in Re-
call performance; appendix D shows these results. Due to
CAT being larger in parameter count compared to the dense
transformer, the training costs increase (≤ 2×); this is due
to the cost of the multi-layer perceptron (MLP) layer in
the transformer block. Appendix B.5 provides more detail.
Techniques such as the Mixture-of-Experts (MoEs) (Shazeer
et al., 2017) focus on reducing the MLP cost, which is
complementary to reducing the cost of self-attention. Tech-
niques like MoEs can be readily used in CATs because both
the compressor and the decoder components use the same
structure of the transformer block.

Our fast inference implementation for CAT was in-
spired by https://github.com/pytorch-labs/
gpt-fast; appendix B provides the pseudo-code. Our
simple PyTorch implementation, which is possible because
CAT retains the attention mechanism as is, performs com-
petitively with implementations that use custom specialized
kernels. New machinery developed to speed up any causal
transformer, such as (Kwon et al., 2023) can be directly used
for CATs, highlighting their simplicity and modularity.

This discussion also motivates the study of combining com-
pression with other efficient architectures. For example,
how well would a BASED model do at recall when built
jointly with a compressor that see 16-token chunks? A
separate direction of inquiry would involve benchmarks be-
yond recall-based tasks, especially on those where dense
transformers typically excel. Finally, other domains such
as vision, speech, and robotics that work with compressible
signals can benefit from CAT architectures.

6

https://github.com/pytorch-labs/gpt-fast
https://github.com/pytorch-labs/gpt-fast


Autoregressive Language Modeling using Compressed Sequence Mixing

6. Acknowledgments
This work was partly supported by the NIH/NHLBI Award
R01HL148248, NSF Award 1922658 NRT-HDR: FUTURE
Foundations, Translation, and Responsibility for Data Sci-
ence, NSF CAREER Award 2145542, ONR N00014-23-1-
2634, Optum, and Apple.

References
Arora, S., Eyuboglu, S., Timalsina, A., Johnson, I., Poli,

M., Zou, J., Rudra, A., and Ré, C. Zoology: Measuring
and improving recall in efficient language models. arXiv
preprint arXiv:2312.04927, 2023a.

Arora, S., Yang, B., Eyuboglu, S., Narayan, A., Hojel, A.,
Trummer, I., and Ré, C. Language models enable simple
systems for generating structured views of heterogeneous
data lakes. arXiv preprint arXiv:2304.09433, 2023b.

Arora, S., Eyuboglu, S., Zhang, M., Timalsina, A., Alberti,
S., Zinsley, D., Zou, J., Rudra, A., and Ré, C. Sim-
ple linear attention language models balance the recall-
throughput tradeoff. arXiv preprint arXiv:2402.18668,
2024a.

Arora, S., Timalsina, A., Singhal, A., Spector, B., Eyuboglu,
S., Zhao, X., Rao, A., Rudra, A., and Ré, C. Just read
twice: closing the recall gap for recurrent language mod-
els. arXiv preprint arXiv:2407.05483, 2024b.

Bahdanau, D., Cho, K., and Bengio, Y. Neural machine
translation by jointly learning to align and translate. arXiv
preprint arXiv:1409.0473, 2014.

Barrault, L., Duquenne, P.-A., Elbayad, M., Kozhevnikov,
A., Alastruey, B., Andrews, P., Coria, M., Couairon, G.,
Costa-jussà, M. R., Dale, D., et al. Large concept models:
Language modeling in a sentence representation space.
arXiv preprint arXiv:2412.08821, 2024.

Beltagy, I., Peters, M. E., and Cohan, A. Long-
former: The long-document transformer. arXiv preprint
arXiv:2004.05150, 2020.

Bisk, Y., Zellers, R., Gao, J., Choi, Y., et al. Piqa: Reasoning
about physical commonsense in natural language. In Pro-
ceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Child, R., Gray, S., Radford, A., and Sutskever, I. Gen-
erating long sequences with sparse transformers. arXiv
preprint arXiv:1904.10509, 2019.

Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal, A.,
Schoenick, C., and Tafjord, O. Think you have solved
question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Dao, T. and Gu, A. Transformers are ssms: Generalized
models and efficient algorithms through structured state
space duality. arXiv preprint arXiv:2405.21060, 2024.

Dao, T., Fu, D., Ermon, S., Rudra, A., and Ré, C. Flashat-
tention: Fast and memory-efficient exact attention with
io-awareness. Advances in neural information processing
systems, 35:16344–16359, 2022.

Dong, J., Feng, B., Guessous, D., Liang, Y., and He,
H. Flex attention: A programming model for gen-
erating optimized attention kernels. arXiv preprint
arXiv:2412.05496, 2024.

Dua, D., Wang, Y., Dasigi, P., Stanovsky, G., Singh, S.,
and Gardner, M. Drop: A reading comprehension bench-
mark requiring discrete reasoning over paragraphs. arXiv
preprint arXiv:1903.00161, 2019.

Fu, D. Y., Dao, T., Saab, K. K., Thomas, A. W., Rudra,
A., and Ré, C. Hungry hungry hippos: Towards lan-
guage modeling with state space models. arXiv preprint
arXiv:2212.14052, 2022.

Gu, A. and Dao, T. Mamba: Linear-time sequence
modeling with selective state spaces. arXiv preprint
arXiv:2312.00752, 2023.

Gu, A., Goel, K., and Ré, C. Efficiently modeling long
sequences with structured state spaces. arXiv preprint
arXiv:2111.00396, 2021.

Jelassi, S., Brandfonbrener, D., Kakade, S. M., and
Malach, E. Repeat after me: Transformers are bet-
ter than state space models at copying. arXiv preprint
arXiv:2402.01032, 2024.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., de las Casas, D., Bressand, F., Lengyel,
G., Lample, G., Saulnier, L., Lavaud, L. R., Lachaux, M.-
A., Stock, P., Scao, T. L., Lavril, T., Wang, T., Lacroix,
T., and Sayed, W. E. Mistral 7b, 2023. URL https:
//arxiv.org/abs/2310.06825.

Joshi, M., Choi, E., Weld, D. S., and Zettlemoyer, L.
Triviaqa: A large scale distantly supervised challenge
dataset for reading comprehension. arXiv preprint
arXiv:1705.03551, 2017.

Katharopoulos, A., Vyas, A., Pappas, N., and Fleuret, F.
Transformers are rnns: Fast autoregressive transformers
with linear attention. In International conference on ma-
chine learning, pp. 5156–5165. PMLR, 2020.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J., Zhang, H., and Stoica, I. Efficient
memory management for large language model serving

7

https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825


Autoregressive Language Modeling using Compressed Sequence Mixing

with pagedattention. In Proceedings of the 29th Sym-
posium on Operating Systems Principles, pp. 611–626,
2023.

Lockard, C., Shiralkar, P., and Dong, X. L. Openceres:
When open information extraction meets the semi-
structured web. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pp. 3047–3056, 2019.

Mahowald, K., Fedorenko, E., Piantadosi, S. T., and Gibson,
E. Info/information theory: Speakers choose shorter
words in predictive contexts. Cognition, 126(2):313–318,
2013.

Merity, S., Xiong, C., Bradbury, J., and Socher, R.
Pointer sentinel mixture models. arXiv preprint
arXiv:1609.07843, 2016.

Milakov, M. and Gimelshein, N. Online normalizer cal-
culation for softmax. arXiv preprint arXiv:1805.02867,
2018.

Paperno, D., Kruszewski, G., Lazaridou, A., Pham, Q. N.,
Bernardi, R., Pezzelle, S., Baroni, M., Boleda, G., and
Fernández, R. The lambada dataset: Word prediction
requiring a broad discourse context. arXiv preprint
arXiv:1606.06031, 2016.

Parmar, N., Vaswani, A., Uszkoreit, J., Kaiser, L., Shazeer,
N., Ku, A., and Tran, D. Image transformer. In Interna-
tional conference on machine learning, pp. 4055–4064.
PMLR, 2018.

Penedo, G., Kydlı́ček, H., Lozhkov, A., Mitchell, M., Raffel,
C. A., Von Werra, L., Wolf, T., et al. The fineweb datasets:
Decanting the web for the finest text data at scale. Ad-
vances in Neural Information Processing Systems, 37:
30811–30849, 2024.

Peng, B., Alcaide, E., Anthony, Q., Albalak, A., Arcadinho,
S., Biderman, S., Cao, H., Cheng, X., Chung, M., Grella,
M., et al. Rwkv: Reinventing rnns for the transformer era.
arXiv preprint arXiv:2305.13048, 2023.

Poli, M., Massaroli, S., Nguyen, E., Fu, D. Y., Dao, T.,
Baccus, S., Bengio, Y., Ermon, S., and Ré, C. Hyena
hierarchy: Towards larger convolutional language models.
In International Conference on Machine Learning, pp.
28043–28078. PMLR, 2023.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21
(140):1–67, 2020.

Rajpurkar, P., Jia, R., and Liang, P. Know what you don’t
know: Unanswerable questions for squad. arXiv preprint
arXiv:1806.03822, 2018.

Sakaguchi, K., Bras, R. L., Bhagavatula, C., and Choi, Y.
Winogrande: An adversarial winograd schema challenge
at scale. Communications of the ACM, 64(9):99–106,
2021.

Shannon, C. E. Prediction and entropy of printed english.
Bell system technical journal, 30(1):50–64, 1951.

Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le,
Q., Hinton, G., and Dean, J. Outrageously large neural
networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Sun, Y., Dong, L., Huang, S., Ma, S., Xia, Y., Xue, J.,
Wang, J., and Wei, F. Retentive network: A successor to
transformer for large language models. arXiv preprint
arXiv:2307.08621, 2023.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Yang, S., Kautz, J., and Hatamizadeh, A. Gated delta net-
works: Improving mamba2 with delta rule. In The Thir-
teenth International Conference on Learning Represen-
tations, 2025. URL https://openreview.net/
forum?id=r8H7xhYPwz.

Yuan, J., Gao, H., Dai, D., Luo, J., Zhao, L., Zhang, Z.,
Xie, Z., Wei, Y., Wang, L., Xiao, Z., et al. Native sparse
attention: Hardware-aligned and natively trainable sparse
attention. arXiv preprint arXiv:2502.11089, 2025.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi,
Y. Hellaswag: Can a machine really finish your sentence?
arXiv preprint arXiv:1905.07830, 2019.

Zipf, G. K. Human behavior and the principle of least effort:
An introduction to human ecology. Ravenio books, 2016.

8

https://openreview.net/forum?id=r8H7xhYPwz
https://openreview.net/forum?id=r8H7xhYPwz


Autoregressive Language Modeling using Compressed Sequence Mixing

A. Extended Related work
Reducing the cost of the self-attention helps scale Transformers to large contexts and much work pushes along this
direction Child et al. (2019); Parmar et al. (2018); Beltagy et al. (2020); Jiang et al. (2023). Common techniques include
shrinking the set of tokens over which attention is computed; e.g. striding patterns and sliding window attention make the
shrunken set include every kth token or the k tokens adjacent to the position being decoded (Child et al., 2019). The time
and memory costs of attention go down with the shrunken set along with the expressivity of the model built with these
modifications. In turn, to achieve performance similar to that of a dense-attention Transformers, the efficient models either
require big window sizes (making their KV cache large again) or more layers or larger dimension (in the case of sparse
transformers) (Arora et al., 2024a).

A different line of work reduces the generation cost of transformers by limiting the recurrent state, which is the vector
required to decode each token. Self-attention keeps track of the entire context meaning that the recurrent state increases
in size with each decoded token. Work like (Arora et al., 2024a; Katharopoulos et al., 2020) linearize attention to make
a fixed-size recurrent state that can be updated via simple averaging; the technique is to approximate self-attention with
linear operations of query, key, and value vectors transformed through a feature map. The choice of the feature map falls
to the user and approximating attention well requires the feature map to be large in size, which can counteract the gains
in computational costs achieved by the linearization. Alternatively, one can replace attention with linear or pseudo-linear
sequence mixers such as state-space models (SSMs) (Gu et al., 2021; Sun et al., 2023), gated convolutions (Fu et al., 2022;
Poli et al., 2023) and input-dependent recurrunces (Peng et al., 2023; Gu & Dao, 2023). Typical implementations of linear
attention do achieve impressive reductions in generation cost but restrict the expressivity of linearized attention to the extent
that these models do not solve simple recall tasks without large state sizes (Arora et al., 2024a; 2023a). Arora et al. (2024a)
show that many such state-space models are subsumed by Linearized attention and propose the BASED architecture that
composes a kernel-approximation of attention with convolutional sequence mixers and sliding-window attention, which
helps improve recall performance to an extent.

Unlike the work discussed above, the compressed sequence mixer requires no changes to the attention mechanism itself.
Instead, we rely on the fact that natural language is redundant and can be compressed, and attention on compressed sequences
is faster and requires lesser memory compared to attention on the full sequence.

Instead of approximating or replacing attention with low latency/memory layers, one can optimize the computation of
attention to reduce wall-clock time and memory by leveraging hardware advancements. For example, Dao et al. (2022)
compute attention in blockwise manner and exploit the nature of online softmax (Milakov & Gimelshein, 2018) which
removes the need to instantiate the entire QK matrix and reduce calls to slow-read part of the GPU memory. As we utilize
the attention mechanism as is, any reductions in cost due to hardware optimization that apply to the attention mechanism
also proportionally reduce the cost of CAT models.

Finally, (Barrault et al., 2024) suggest learning “concepts” instead of tokens by modeling the latent representation of
language produced by pushing the token sequence through a large sentence embedder. The focus of this work is to decouple
the modeling of the low-level details in each language, like tense and grammar, from the larger concept space that is shared
across languages. In contrast, the goal with the compressed sequence mixer is to reduce the cost of modeling sequences and
can be used as a plug-and-play replacement to the latent concept model.

9



Autoregressive Language Modeling using Compressed Sequence Mixing

B. Implementation details
B.1. Generation benchmark details
Both dense transformer and CAT use FlexAttention with a causal mask. We use the kernel provided in (Dao & Gu, 2024) for
MAMBA2, and BASED uses the causal dot product Fast Transformers CUDA kernel provided in (Arora et al., 2024a). We
directly use the scripts provided by (Arora et al., 2024a) and (Dao & Gu, 2024) for benchmarking BASED and MAMBA2. All
benchmarks used a prefill of 8 tokens. All benchmarks were run using a single NVIDIA A100 80GB PCIe, and use CUDA
cache graphs for the next-token prediction.

B.2. Implementing CAT
Training implementation: To implement parallel chunk training efficiently on PyTorch, we make use of torch.vmap
and the FlexAttention API (Dong et al., 2024). We compute fθ(ci) using torch.vmap due to fixed shapes of each
ci. To efficiently compute ϕθ({xCi · · ·xCi+C−1} | fθ(c1) · · · fθ(ci−1)) is not straight-forward due to varying number
past fθ(ci). Thus, we can’t apply torch.vmap directly like we did in computing fθ(ci). In order to get around
this, we directly pass all tokens {x} and fθ(ci) to ϕθ and mask at appropriate positions to emulate parallel training for
ϕθ({xCi · · ·xCi+C−1} | fθ(c1) · · · fθ(ci−1)). We make use of FlexAttention API to obtain a custom self-attention kernel
specifically for this masking scheme. This custom fused kernel gives us a significant boost in training throughput in
self-attention costs compared to using a naive PyTorch masked implementation.

That being said, an efficient training kernel can be developed using similar principles as described in (Yuan et al., 2025). In
our experiments, using FlexAttention did not give significant boosts compared to training speeds using Flash Attention on a
dense transformer. This could be due to the fact that speeding up the attention maps (that we use, described in the below
section) requires different principles than Flash Attention like optimization that Flex Attention might be using under the
hood; similarly discussed in (Yuan et al., 2025).

We provide a naive training step implementation in PyTorch style pseudo-code at appendix B.3.

Presently, to distinguish between different fθ(ci), current implementation of CAT passes the chunk input ids ci along
with a learnable position embedding pi (say) directly to fθ. One could use sinosuidal embeddings too for this purpose,
which can render CAT length extrapolation capability. This is left as a future work.

Generation implementation: We modify the implementation provided in gpt-fast2 repository that makes use of CUDA
graphs to reduce CPU overheads during generation using the torch.compile(mode="reduce-overhead") feature.
We declare a static KV-cache memory of O((C+ N

C )·2D). Whenever CAT finishes generating a chunk ci, we compute fθ(ci)
representation, and prefill fθ(ci) at position i in ϕθ, and start generating the next chunk tokens {xCi+1 · · ·xCi+1+C−1}
from that position autoregressively, and this process continues. Note that in this process, one can use a simple causal mask.

Despite being a simple, pure PyTorch implementation, it is competitive with implementations using custom CUDA kernels
(see section 3.3).

Refer to PyTorch style psuedo-code for generation at appendix B.3.

B.3. PyTorch style psuedo-code
B.3.1. TRAINING

1

2 def forward(input_ids, targets):
3

4 input_ids = einops.rearrange("b (k c) -> b k c", k=num_chunks, c=chunk_size)
5

6 # calculate f(x)
7 # shape of fx: (b, k, D_d)
8 fx = torch.vmap(f)(input_ids)
9

10 output_logits = list()
11 for i in range(num_chunks): # note that this loop is done in parallel with the

attention mask presented in below section
12 # use the previous i+1 fx to predict the current chunk
13 # shape of cur_chunk_logits: (b, 1, l, V)

2https://github.com/pytorch-labs/gpt-fast

10

https://github.com/pytorch-labs/gpt-fast


Autoregressive Language Modeling using Compressed Sequence Mixing

14 cur_chunk_logits = phi(input_ids[:, i, :], fx[:, :i+1, :])
15 output_logits.append(cur_chunk_logits)
16 output_logits = torch.cat(output_logits, dim=1) # shape: (b, k, c, V)
17 output_logits = einops.rearrange(output_logits, "b k c v -> b (k c) v") # arrange all

chunks logits together (or flatten)
18 return torch.nn.functional.cross_entropy(output_logits, targets) # return the loss

Listing 1: Pseudocode for training step

B.3.2. GENERATION
1

2 # https://github.com/pytorch-labs/gpt-fast/blob/7dd5661e2adf2edd6a1042a2732dcd3a94064ad8/
generate.py#L154

3 def generate_chunk_by_chunk(
4 input_ids
5 ):
6 # assume input_ids.shape == (batch_size, 1, chunk_size)
7

8 # declare/reset static KV cache, shape: [batch_size, num_chunks + chunk_size, 2, D_d]
9

10 input_pos = 0
11

12 # compress the first chunk (batch_size, 1, chunk_size) -> (batch_size, 1, D_d)
13 # get fx for the very first chunk
14 fx = f(input_ids) # shape of fx: (batch_size, 1, D_d)
15 next_token = prefill(fx, input_pos) # prefill at idx 0 with fx in phi
16

17 new_chunks = list()
18

19 for i in range(num_chunks - 1):
20

21 # generate entire chunk using fx that was prefilled earlier in phi
22 next_chunk = generate_chunk(next_token)
23 new_chunks.append(next_chunk.clone())
24

25 # get new fx
26 # compress the new obtained chunk
27 fx = f(next_chunk) # (batch_size, 1, chunk_size) -> (batch_size, 1, D_d)
28

29 # prefill again at input_pos
30 input_pos += 1
31 next_token = prefill(fx, input_pos) # prefill fx at idx ‘input_pos‘ in phi
32

33 new_chunks = torch.cat(new_chunks)
34 return new_chunks

Listing 2: Pseudocode for generation

B.4. FlexAttention Mask used during training
To efficiently compute ϕθ({xCi · · ·xCi+C−1} | fθ(c1) · · · fθ(ci−1)) during training in parallel, we make use of the
FlexAttention API with a custom attention mask as show below.

11



Autoregressive Language Modeling using Compressed Sequence Mixing

Figure 4: Sequence length is 128, and the chunk size that we use in this particular attention mask is C = 16.

Note that this looks very similar to a attention mask as defined in (Child et al., 2019), however, in our case (a) it is not
heuristic choice, and (b), tokens in a particular chunk attend to the past fθ(ci) embeddings obtained by the compressor,
rather than the past token embeddings at that position.

B.5. Training throughput and memory discussion and comparison
As mentioned above in the implementation details, due to the unavailability of an efficient training kernel, theoritical speed
ups that due to reduction in attention FLOPs in the CAT architecture don’t appear in training wall-clock times. Additionally,
MLPs in a transformer drive the majority of the FLOPs budget during training.

At a sequence length of 1024, CAT takes ≤ 2× to train compared to a dense transformer and takes ≤ 2× memory. However,
at higher sequence lengths, such as 4096, this reduces to ≤ 1.5× more time and memory, meaning even with an inefficient
attention kernel, we start to see the asymptotic behaviour of CAT’s attention FLOPs kick in. Note that this time takes into
account that CAT uses Dd = 2D.

Developing an efficient attention kernel for training CATs is left as future work.

12



Autoregressive Language Modeling using Compressed Sequence Mixing

C. More results
C.1. Results on WikiText-103
Setup and baselines: We compare CAT with dense transformer, local sliding window attention (Jiang et al., 2023), sparse
attention (Child et al., 2019), BASED (Arora et al., 2024a) and MAMBA2 (Dao & Gu, 2024). All models were trained for the
same steps, having max context length upto 512, with the default hyper-parameters. Sparse attention uses a chunk size of 4.
For more details regarding the setup, refer to appendix E.

Observations: We find that CAT models (across chunk sizes) performs competitively in terms of perplexity when compared
with efficient architectures like BASED and MAMBA2. Notably, we tried two variants for BASED: (i) following the paper’s
recommendation to use 20% sliding window and 20% linear attention layers (reported as BASED), and (ii) increasing sliding
window and linear attention layers by 2× (reported as BASED-2×). We find that BASED underperforms significantly, while
BASED-2× performs competitively, highlighting the complicated design process for modern efficient architectures.

Note that CAT is able to compress upto 64 tokens in WikiText-103 dataset, without losing significant perplexity. This might
point to a lot of redundancy in language in this dataset.

Architecture Perplexity

Dense Attention 16.7
Sliding Window 17.8
Sparse Attention 19.1
BASED 20.8
BASED-2× 17.2
MAMBA2 17.0
CAT-8 17.4
CAT-16 17.7
CAT-32 17.6
CAT-64 17.3

Table 4: Perplexity results on WikiText-103 for various models.

C.2. Synthetic multi-associate query recall
Setup: We additionally evaluate CAT models on the synthetic multi-associate query recall (MQAR) task, proposed in (Arora
et al., 2023a) and further popularized in (Arora et al., 2024a). All models use depth of 2 layers, and are trained and tested on
sequence lengths upto 256 having varying number of key-value pairs. CAT models use a 1 layer compressor, followed by a 2
layer decoder, with a chunk size of 4, both using model dimension of D = Dd = 64 in this case. Note that the state size for
CAT is N

C ·D = 4096 for this particular sequence length and model dimension. More details about the task can be found in
appendix E. Sparse attention uses a chunk size of 4; Sliding window uses a window size of 64.

Method Solves? State Size
Dense ✓ 16384
Sparse ✗ 4096
Sliding Window ✗ 4096
BASED ✓ 4096
CAT ✓ 4096

Table 5: For each method, we report the state size at which the particular method was trained for the MQAR task. Each
method was grid searched for best possible hyper-parameters. We use the state size calculations provided in (Arora et al.,
2024a; 2023a).

Observations: We find that CAT is able to solve the MQAR task using similar memory requirements as other efficient
architectures such as BASED. Notably, we find the sparse attention as well as sliding window attention fail to solve the task
at 2 layers, highlighting their dependence on depth.

13



Autoregressive Language Modeling using Compressed Sequence Mixing

C.3. Trading off language recall accuracy for efficiency in CAT
Here, we show how the language recall changes when one increases chunk size C. We clearly see a drop in performance
when we go to higher chunk sizes like C = 32.

We additionally show plots for latency/memory usage vs batch size/sequence length across different chunk sizes C for CAT
in the main text along with other efficient architectures (refer to section 3.3).

Figure 5: Latency/Memory usage across batch sizes for different CATs; fixed batch size of 512, and generation length is
1024.

More details about these recall evaluations can be found in appendix E.

Model SWDE DROP SQuAD TriviaQA Avg.

Dense 39.2 15.3 26.9 13.7 23.8
CAT-8 30.5 15.7 21.3 11.8 19.8
CAT-16 13.5 15.2 14.6 12.6 14.0
CAT-32 7.9 11.8 11.5 10.6 10.5

Table 6: Zero-shot evaluation of various CAT models on language recall tasks.

C.4. Additional results on language recall
More details about these experiments can be found in appendix E. Sparse attention (Child et al., 2019) uses a chunk size of
8, with model dimension of 2D, similar to CAT.

Model SWDE DROP SQuAD TriviaQA Avg.

Dense 39.2 15.3 26.9 13.7 23.8
GatedDeltaNet-H1 28.0 18.1 26.6 13.3 21.5
Sparse 2D 19.7 14.5 18.7 13.7 16.7
CAT-8 30.5 15.7 21.3 11.8 19.8

Table 7: Zero-shot evaluation of models on language recall tasks.

C.5. Results on common language modeling benchmarks
We evaluate all models on common LM evaluation benchmarks. More details about these evaluation experiments can be
found appendix E.

14



Autoregressive Language Modeling using Compressed Sequence Mixing

Model HS PIQA ARC-E ARC-C WG OpenbookQA Avg.

Dense 0.358 0.662 0.537 0.224 0.530 0.212 0.420
BASED 0.354 0.646 0.553 0.224 0.520 0.212 0.418
MAMBA2 0.372 0.645 0.560 0.237 0.520 0.216 0.425
DELTANET 0.370 0.635 0.541 0.230 0.500 0.220 0.416
DELTANET-H1 0.360 0.649 0.546 0.230 0.516 0.192 0.416
CAT-8 0.356 0.643 0.577 0.269 0.504 0.228 0.429
CAT-16 0.354 0.641 0.585 0.254 0.514 0.232 0.428

Table 8: Common langauge modeling and common-sense reasoning accuracy (HS: HellaSwag, WG: WinoGrande, OBQA:
OpenbookQA).

Model WikiText (PPL) LAMBADA (PPL) Avg.

Dense 26.13 48.87 37.50
BASED 27.19 47.26 37.23
MAMBA2 24.92 46.34 35.63
DELTANET 26.50 48.60 37.55
DELTANET-H1 25.27 47.40 36.34
CAT-8 24.79 46.15 35.47
CAT-16 25.23 45.96 35.60

Table 9: Language modeling perplexity (lower is better).

C.6. MAMBA2 benchmarks on different state sizes
We provide benchmarks for MAMBA2 using different dstate settings. We observe that as one increases dstate, MAMBA2
starts taking more time to perform generation than dense attention on larger batch sizes. This might not be true for all
sequence lengths, however, it is observed at relatively smaller sequence length of 1K that we experiment with. This
could be due to higher values of state sizes that increases the overall FLOPs per token for generation. Therefore a
higher constant, and thus, a higher slope when one scales the batch size. We use the official code provided here that
uses efficient CUDA graphs to benchmark generation throughput: https://github.com/state-spaces/mamba/
blob/main/benchmarks/benchmark_generation_mamba_simple.py

Figure 6: Comparison of state-size dstate vs latency of generation in MAMBA2. Benchmarks were conducted using 1K
sequence length, batch size of 512. MAMBA2 and dense transformer use the same configuration as defined in section 3.1.

15

https://github.com/state-spaces/mamba/blob/main/benchmarks/benchmark_generation_mamba_simple.py
https://github.com/state-spaces/mamba/blob/main/benchmarks/benchmark_generation_mamba_simple.py


Autoregressive Language Modeling using Compressed Sequence Mixing

C.7. BASED benchmarks using official code and our patched code
We use the official code provided in BASED: https://github.com/HazyResearch/based/blob/main/
train/benchmark/configs/01-29-forward-360m.py.

We observe that the official code uses more memory as sequence length increases. However, after patching the
KV-cache fix (which is supposed to happen here: https://github.com/HazyResearch/based/blob/
931f27a1c7bca842f4a703cf91ca8fc038dceba6/based/models/mixers/slide_attention.py#
L377), memory usage of BASED remains constant at all sequence lengths.

Figure 7: Latency of generation measured across different sequence length

Figure 8: Memory usage of generation measured across different sequence length

16

https://github.com/HazyResearch/based/blob/main/train/benchmark/configs/01-29-forward-360m.py
https://github.com/HazyResearch/based/blob/main/train/benchmark/configs/01-29-forward-360m.py
https://github.com/HazyResearch/based/blob/931f27a1c7bca842f4a703cf91ca8fc038dceba6/based/models/mixers/slide_attention.py#L377
https://github.com/HazyResearch/based/blob/931f27a1c7bca842f4a703cf91ca8fc038dceba6/based/models/mixers/slide_attention.py#L377
https://github.com/HazyResearch/based/blob/931f27a1c7bca842f4a703cf91ca8fc038dceba6/based/models/mixers/slide_attention.py#L377


Autoregressive Language Modeling using Compressed Sequence Mixing

D. Ablation results on choices for the architecture for CAT
D.1. Ablation on using D different from Dd

With this ablation, we show that the compressor fθ can use half the embedding size as compared to the decoder. We fix
Dd = 1536 for these experiments. For this ablation, we use WikiText-103. Both compressor and decoder use the depth
L = 6.

Chunk Size C Size of D Perplexity

16 768 17.6
1536 17.6

Table 10: Comparison of choices on D compared to Dd on WikiText-103 perplexity.

We observe that one can get away with using smaller value of D as compared to Dd. What matters is the size of Dd (decoder
embedding size, or the compressed embedding size), which we show in the next ablation.

D.2. Ablation on Dd

We ablate on different choices of Dd along with different chunk sizes in CAT . In this setup, we fix D in the compressor, and
only vary Dd or C (chunk size). We use WikiText-103 for these experiments. In this setup, D = 768. Both compressor and
decoder use the same depth of L = 6.

Chunk Size C Size of Dd Perplexity

4 D 19.8
2D 17.4

8 D 20.4
2D 17.7

16 D 20.2
2D 17.6

Table 11: Comparison on choices of chunk sizes and sizes of Dd on WikiText-103 perplexity.

We observe that we obtain the best perplexities when we Dd = 2D for the particular chunk size we are using. This goes
back to our discussion on compression as well as compute required to decode in section 2.2. Using this observation, we
used this as our default configuration for the FineWeb-Edu experiments. Note that, as pointed out in section 2.2, chunking
renders CAT substantial gains in speed and memory that one can increases Dd by 2× while still being significantly faster
than dense transformer and on par with other efficient architectures (see section 3.3).

D.3. Ablation on depth of the compressor Lfθ

We ablate on the depth Lfθ of the compressor fθ. For a fixed chunk-size, D = 768 (compressor embedding size), Dd = 2D
(compression size or the decoder embedding size), and a fixed depth of the decoder (Lϕθ

= 6), we vary the compressor
depth Lfθ .

Chunk Size C Depth of Compressor Lfθ Perplexity

8 6 17.4
3 17.4

16 6 17.8
3 17.7

Table 12: Comparison on choices of depth of the compressor across different chunk sizes C on WikiText-103.

17



Autoregressive Language Modeling using Compressed Sequence Mixing

We have an interesting observation that one can reduce the depth of the compressor without sacrificing on the downstream
perplexity. This could mean one can compress small chunks of tokens without a requiring high capacity. This pings back
to our discussion on different capacity requirements for the compressor and decoder in section 2.2. In our generation
benchmarks, we observed that compressor depth play less of a role in latency as compared to the decoder depth (since we
compress tokens in parallel using one transformer call). That being said, compressor depth does play a significant role in
training costs (due to the MLP training costs in the compressor). Therefore, reducing compressor depth goes into overall
advantage for the CAT architecture.

However, what is the limit, and can one go to even a 1 layer of compressor is an interesting question to ask. One might
require some lower threshold of compressor depth to start compressing chunks of tokens, but we leave this to future work.

D.4. Ablation on depth of the decoder
One more interesting avenue that we explore is: can we reduce the depth of the decoder too? since we operate on compressed
sequence of chunks, one could get away with lower depth of the decoder. Moreover, we decided to use Dd = 2D as
the decoder embedding size. This was initially done to increase compute for decoding from compressed chunks, but can
one still decode effectively from reduced decoder depth. For this experiment, we use the same setup in section 3.1 with
Dd = 2D = 2048. We use compressor depth of Lfθ = 4 and Lϕθ

= 8 for this experiment. We use chunk size of C = 8 for
this experiment.

Decoder Depth Perplexity Avg. Recall

12 20.7 19.8
8 21.8 18.6

Table 13: Performance across different decoder depths for FineWeb-Edu.

This means one could gain some efficiency in terms of generation speeds and memory usage by shaving of some layers off
of the decoder. Notably, this configuration of CAT outperforms on all other efficient architectures in generation throughput
(8 layer model takes ∼ 6600ms on 1024 sequence length, batch-size 128), memory usage (taking 3

4

th memory of CAT-8 12
layers) and closes 50% of the gap in average recall performance between the efficient alternatives and the dense transformer,
although with a 5% drop in language modeling performance.

18



Autoregressive Language Modeling using Compressed Sequence Mixing

E. Dataset details:
E.1. Language recall experiments
To measure real-world recall accuracy, we use datasets used in (Arora et al., 2024a;b). Namely these consists of SWDE
(Lockard et al., 2019) for structured HTML relation extraction and several question answering datasets including SQuAD
(Rajpurkar et al., 2018), TriviQA (Joshi et al., 2017) and DROP (Dua et al., 2019). We could not use FDA (Arora et al.,
2023b) since we only trained models upto 1K sequence length due to limited computation budget. Since our pretrained
models are small, we use the Cloze Completion Formatting prompts provided by (Arora et al., 2024b).

Due to relatively smaller scale of our models and pre-training, we only evaluate queries that are upto ≤ 1K tokens. We use
greedy decoding across all models to generate samples. We use the same evaluation metric as suggested in (Arora et al.,
2024b), where the model generates upto 48 tokens.

E.2. Language common-sense and reasoning experiments
Following common practices done in (Gu & Dao, 2023; Dao & Gu, 2024; Arora et al., 2024a; Yang et al., 2025), we
evaluate all models on multiple common sense reasoning benchmarks: PIQA (Bisk et al., 2020), HellaSwag (Zellers et al.,
2019), ARC-challenge (Clark et al., 2018), WinoGrande (Sakaguchi et al., 2021) and measure perplexity on WikiText-103
(Merity et al., 2016)and LAMBADA (Paperno et al., 2016). We source our datasets from: https://huggingface.
co/collections/DatologyAI/standard-llm-evals-67f58694230e7e2a3cad4e34.

E.3. FineWeb-Edu experiments
We use the dataset provided here: https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu.
We use the first 5B tokens from their 10B token processed split.

For all models, we use the LR as 8e-4 and cosine decay it to 8e-5 with a linear warm up for 250 gradient steps, with a global
batch-size of 256, and train it for 18K steps that amounts to around 5B training tokens. We use the GPT2 tokenizer. All
models were trained using bfloat16 mixed-precision training. We use the Adam optimizer with weight decay as 0.1, and
β1 = 0.9, β2 = 0.95 with a gradient clipping of 1.0.

1. Dense transformer (or Transformer++) (Vaswani et al., 2017; Touvron et al., 2023): This is a 12 layer model, that use
D = 1024. We use rotary position embeddings along with the FlashAttention kernel to perform self-attention. The
MLP is a SwiGLU MLP (Touvron et al., 2023). The model size comes around to be 257M parameters.

2. BASED (Arora et al., 2024a): The model is again 12 layers, where 20% layers are linear attention, 20% layers are local
sliding window with size of 128, and the rest are BaseConv layers according to (Arora et al., 2024a) recommendation
. The MLPs used in a block is a SwiGLU MLP. We use D = 1024, and the Taylor feature dimension d = 16 for linear
attention. For BaseConv, we use k = 3 and the expand proj to be 4. For sliding window attention, we utilize the
FlexAttention API. The model size comes around to be 267M parameters. We use the official codebase to implement
BASED for our experiments: https://github.com/HazyResearch/based and generation throughput and
memory benchmarking.

3. MAMBA2 (Dao & Gu, 2024): The model uses 24 layers with D = 1024. All layers use the MAMBA2 block without
any mixing any attention. The expand is set to 2, dstate = 128, and convolution k = 4. Activations used are SiLU.
The model size comes around 261M parameters. We use the official codebase for MAMBA2 generation throughput and
memory benchmarking: https://github.com/state-spaces/mamba and code from: https://github.
com/fla-org/flash-linear-attention for training.

4. Gated Delta Net (Yang et al., 2025): We use the implementation provided at https://github.com/fla-org/
flash-linear-attention for training. We use head dim as 128 (same as MAMBA2 above). For the hybrid
version, we use sliding window layers at every other layer with a sliding window size of 512.

5. CAT: The compressor uses D = 1024 with 6 layers of Transformer++ blocks. We project C tokens to a Dd sized
embedding using a simple linear layer. The decoder uses 12 layers of Transformer++, with Dd = 2048 i.e. Dd = 2D.
The total parameter count, due to compressor and decoder, comes around to be ∼ 800M . However, note that, even
with more parameters, CAT is still efficient in memory and generation.

E.4. WikiText-103 experiments
We use the dataset provided here: https://huggingface.co/datasets/Salesforce/wikitext

19

https://huggingface.co/collections/DatologyAI/standard-llm-evals-67f58694230e7e2a3cad4e34
https://huggingface.co/collections/DatologyAI/standard-llm-evals-67f58694230e7e2a3cad4e34
https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
https://github.com/HazyResearch/based
https://github.com/state-spaces/mamba
https://github.com/fla-org/flash-linear-attention
https://github.com/fla-org/flash-linear-attention
https://github.com/fla-org/flash-linear-attention
https://github.com/fla-org/flash-linear-attention
https://huggingface.co/datasets/Salesforce/wikitext


Autoregressive Language Modeling using Compressed Sequence Mixing

For all models, we use the LR as 6e-4 and cosine decay it to 1e-5 with a linear warm up for 500 gradient steps, with a global
batch-size of 128, and train it for 8K steps that amounts to around 0.53B training tokens. We use the Llama2 tokenizer for
these experiments. All models were trained using bfloat16 mixed-precision training. We use the Adam optimizer with
weight decay as 0.1, and β1 = 0.9, β2 = 0.95 with a gradient clipping of 1.0.

1. Dense transformer (or Transformer++): This is a 6 layer model, that use D = 768. Rest of the configuration is same as
FineWeb-Edu experiments.

2. Sparse transformer++ (Child et al., 2019): This is a 6 layer model, that use D = 768 that uses a sparse mask with a
chunk size of 4. We used FlexAttention API to create optimized Flash Attention like kernel for this.

3. Sliding Window transformer++ (Jiang et al., 2023): This is a 6 layer model, that use D = 768 that uses a sliding
window size of 64.

4. BASED: We use D = 768, and the Taylor feature dimension d = 16 for linear attention, with a local sliding window
size of 64. Rest of the configuration is same as FineWeb-Edu experiments. Note that, we used two configuration for
BASED in WikiText experiments. BASED-2× uses 2× the sliding window and linear attention layers.

5. MAMBA2: The model uses 12 layers with D = 768. Rest of the configuration is same as FineWeb-Edu experiments.

6. CAT : The compressor uses D = 768 with 3 layers of Transformer++ blocks. We project C tokens to a Dd sized
embedding using a simple linear layer. The decoder uses 6 layers of Transformer++, with Dd = 1536 i.e. Dd = 2D.

E.5. MQAR experiments
We use the scripts provided here: https://github.com/HazyResearch/zoology to create our datasets on
sequences upto 256 in length with varying key-value pairs.

All models use a batch-size of 128, with a embedding size D = 64.

F. Proofs
Proof. Assume that the CAT model achieved the optimum:

θ∗ = argmax
θ

E
c1,···cNc

∑
i≤Nc

log ϕθ({xCi · · ·xCi+C−1} | fθ(c1) · · · fθ(ci−1)).

At optimality, you have that the model’s auto-regressive conditional distribution matches that the of the true data-generating
process.

∀i p(ci · · · cNc
| fθ∗(c1) · · · fθ∗(ci−1)) = p(ci · · · cNc

| c1, · · · ci−1)

= p(ci · · · cNc
| c1, · · · ci−1, fθ∗(c1) · · · fθ∗(ci−1)),

where we use the fact that conditioned on c1, · · · ci−1, any deterministic functions of the chunks are independent of all other
random variables. The above equality implies eq. (1):

∀i, p(ci · · · cNc
| fθ∗(c1) · · · fθ∗(ci−1)) = p(ci · · · cNc

| c1, · · · ci−1, fθ∗(c1) · · · fθ∗(ci−1))

=⇒ ∀i, c1, · · · ci−1 |= ci · · · cNc
| fθ∗(c1) · · · fθ∗(ci−1).

20

https://github.com/HazyResearch/zoology

