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ABSTRACT

Tasks on complex systems require high-precision numerical computation to sup-
port decisions, but current large language models (LLMs) cannot integrate such
computations as an intrinsic and interpretable capability with existing architec-
tures. Multi-agent approaches can leverage external experts, but inevitably intro-
duce communication overhead and suffer from inefficiency caused by limited scal-
ability. To this end, we propose Physically-isolated Experts Routing Network
(PiERN), an architecture for integrating computation and reasoning. Instead of the
tool-use workflows or function-calling, PIERN endogenously integrates computa-
tional capabilities into neural networks after separately training experts, a text-to-
computation module, and a router. At inference, the router directs computation
and reasoning at the token level, thereby enabling iterative alternation within a
single chain of thought. We evaluate PAIERN on representative linear and non-
linear computation-reasoning tasks against LLM finetuning and the multi-agent
system approaches. Results show that the PIERN architecture achieves not only
higher accuracy than directly finetuning LLMs but also significant improvements
in response latency, token usage, and GPU energy consumption compared with
mainstream multi-agent approaches. PIERN offers an efficient, interpretable, and
scalable paradigm for interfacing language models with scientific systems.

1 INTRODUCTION

In scientific research and engineering practice, decisions often rely on high-precision numerical
computation (Kennedy & O’Hagan| 2002; Hennig et al.l [2015). Although large language mod-
els (LLMs) have recently achieved breakthrough progress in language understanding and logical
reasoning, they still exhibit significant shortcomings in their intrinsic ability for high-precision nu-
merical computation (Yang et al.| [2025)). LLMs can generate seemingly reasonable chains of logic
during reasoning, but once high-precision floating-point operations, multi-step calculations, or par-
tial differential equation (PDE) solving are involved, they often arrive at wrong or inaccurate results
(Huang et al.| 2025} Jiang et al., 2025b). This deficiency severely constrains the application potential
of LLMs in scientific computation and engineering decision-making (Alampara et al., [2025).

To compensate for this deficiency, researchers have mainly adopted two approaches. The first is
to perform end-to-end finetuning of LLMs, enabling them to directly learn numerical computation
capabilities. However, this approach does not fundamentally resolve the accuracy issue: when multi-
step calculations or PDE solving for complex systems are involved, the model still deviates from
the true solution due to error accumulation (Qian et al., [2022; [Feng et al.| 2024)), failing to meet
the requirements of high-precision computation and solution stability in scientific and engineering
applications. The second approach is based on multi-agent systems that invoke external experts:
LLMs act as the central decision-making brain (Schick et al., 2023} 'Wu et al., 2023} |Li et al.| |2025),
responsible for functions such as task understanding and scheduling, while external experts are
responsible for executing specific high-precision computations. Although this approach ensures
the accuracy of numerical computation results, it inevitably introduces additional communication
and coordination overhead, leading to low reasoning efficiency, high response latency (Chen et al.,
2024b), and limited scalability in large-scale deployments.

Recent work has explored directly integrating high-precision numerical computation capabilities
into language modeling. |Wu et al.|(2024)) employs a binary encoding approach for joint pre-training
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of text and large-scale numerical experimental data, while Abacus Embedding enhances the general-
ization performance of Transformers on arithmetic tasks (McLeish et al.,|2024). These explorations
demonstrate potential in specific tasks, but can be difficult to extend to complex multi-step reasoning
and high-precision scenarios, due to insufficient and inflexible computation-reasoning integration.

Overall, in  high-precision = computa-
tion-reasoning tasks for complex systems, 003
current LLMs still face two key challenges:
first, the lack of intrinsic high-precision
numerical computation mechanisms (Qian
et al., 2022 Dziri et al., 2023)), making LLMs
difficult to ensure the accuracy and stability
required by scientific computation and indus-
trial applications; second, although relying
on multi-agent systems to invoke external
experts can enhance computational precision,
the communication overhead and resource
consumption are excessive. This high cost 0.00
limits efficiency and scalability (Foerster et al.| 0 2000 4000 6000 8000 10000
2016}, [Dafoe et al, [2020; [Yang et al., 2024), Mult-Agent System Token Usage
especially in edge computing scenarios and
offline device deployments, further amplifying
the demand for efficient computation-reasoning
mechanisms. Therefore, how to efficiently
and deeply integrate numerical computation
with language reasoning while maintaining
high precision has become the core scientific
problem in advancing next-generation scientific intelligence systems.
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Figure 1: PiERN achieves high precision with low
token usage. The horizontal axis represents the to-
ken usage of multi-agent systems with LLMs, and
the vertical axis represents the precision of LLMs
after finetuning.

To address this issue, we propose Physically-isolated Experts Routing Network (PiERN), and
we compare the token usage and precision across representative open-source LLMs to further high-
light the limitations of existing LLMs in high-precision computation-reasoning tasks. As shown in
Figure |1} the two paradigms reveal complementary limitations when viewed along different axes.
Along the x-axis, multi-agent systems can reach relatively high precision but only at the cost of
extremely large token consumption, raising scalability concerns. Along the y-axis, fine-tuned LLMs
consume fewer tokens but fail to achieve sufficient precision, showing poor stability. In contrast,
PiERN simultaneously overcomes both drawbacks, achieving the highest precision with the fewest
tokens and demonstrating clear advantages in efficiency and robustness.

As shown in Figure [2} the key idea of PiERN is to couple high-precision scientific computation
with LLMs reasoning at the token level. Different from multi-agent approaches that rely on external
function calls, PIERN internalizes expert invocation into a single reasoning chain, thereby ensur-
ing both the high-precision of numerical computation and the efficiency and stability of reasoning-
computation tasks. PIERN consists of three components: physically-isolated scientific computation
experts, a text-to-computation module, and a token router, enabling dynamic expert switching and
efficient coordination between high-precision computation and reasoning during inference (Sec. [2)).
We conducted systematic evaluations of PIERN on representative linear and nonlinear scientific
computation—reasoning tasks (Sec. [3). The results show that PIERN significantly outperforms fine-
tuned LLMs in prediction accuracy, and multi-agent baselines in inference cost. Our contributions
are summarized as follows:

* We introduce PiERN, an architecture that natively integrates physically-isolated scientific compu-
tation neural network models as high-precision experts, and is equipped with a text-to-computation
module to align inputs of language-computation task with expert input. This design, while main-
taining expert independence and stability, enables flexible invocation through a token router and
supports dynamic scalability of experts.

* We propose a stepwise training method that decouples the training processes of the high-precision
scientific computation experts, the text-to-computation module, and the token router in PiERN,
thereby avoiding mutual interference between language optimization objectives and computation
optimization objectives, achieving controllable training with high convergence stability.
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Figure 2: (a): Training of Expert Model for specific tasks. (b): Training the Text-to-Computation
Module for text-computation alignment (c¢): Training the Token Router to determine experts for each
token. Middle: The overall architecture of PIERN.

* We present an inference paradigm of alternating invocation of different experts at the token level.
For each token, the token router alternates between high-precision scientific computation experts,
LLMs, and other experts, so that the subsequent reasoning, planning, and decision-making of the
LLMs are built upon high-precision scientific computation results, achieving the unity of accuracy
and interpretability. Meanwhile, runtime dynamic invocation at the token granularity keeps the
inference of PIERN efficient.

2 PIERN METHODOLOGY

In this section, we detail the methodology of PIERN. The PiERN architecture integrates high-
precision scientific computation experts and LLMs as modules in the same model. The expert
integration is interpretable and controlable, supporting efficient training and inference and allowing
for dynamic expansion of experts. We first give an overview of the overall architecture of PIERN,
then introduce the stepwise training method for each component module, and finally present the
inference paradigm of alternating invocation of different experts at the token granularity.

2.1 ARCHITECTURE OVERVIEW

As shown in Figure |2 the PIERN architecture consists of three core components: (i) a set of high-
precision scientific computation experts, which are trained on domain-specific data; (ii) a text-to-
computation module, which aligns the inputs of language computation task inputs with expert input
representations; and (iii) a token router, which dynamically decides whether to invoke an expert or
the LLM for each token.

2.2  STEPWISE TRAINING

We propose a stepwise training method that decouples the training processes of different modules
in PiIERN, reduces the interference between heterogeneous optimization objectives of numerical
computation and natural language, thereby improving training convergence stability, and ensures
high-precision, interpretability, and dynamic scalability of experts.

Stage 1: Expert Model Pre-training. As shown in Figure 2{a), in the first stage, we train the
high-precision scientific computation experts based on fixed numerical input—output pairs, where
the data come from a scientific or industrial domain. Let the training data be (x,y) € Dexp, Where x
denotes the input conditions or parameters and y denotes the corresponding ground-truth numerical
computation results. The expert model fy approximates the true mapping by minimizing the mean
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squared error (MSE):
exp ZHfG Xv 7H2 (1)

After convergence, the parameters of the expert model are frozen to maintain its high-precision
scientific computation capability during subsequent PIERN training and inference.

Stage 2: Text-to-Computation Module Training. In the second stage, we optimize the text-to-
computation module so that it can align inputs of language-computation task with the inputs of
high-precision scientific computation experts. The training data are (s,x) € Diextocomps Where s
denotes the natural language computation task inputs and x denotes the structured numerical inputs
required by the experts. The mapping function g, learns to project text inputs into numerical input
representations compatible with the experts, as shown in Figure [Jb), by minimizing the MSE loss:

N
1
Elethcomp = N E ||g¢(sl) - Xi”Q' 2)
=1

To further strengthen the alignment between semantics and numerical values, we optionally intro-
duce a contrastive loss (van den Oord et al., 2018)), inspired by its successful application in cross-
modal representation learning such as CLIP for vision—language alignment (Radford et al., 2021):

Econtrdstlve = - 1 P Slm(gd)( ) Xi)/T) ’ (3)
Z Z] 1 exp(sim(gy(si), x;)/7)

where sim(-, -) denotes the similarity function (e.g., cosine similarity), and 7 denotes the temperature
coefficient. The final training objective is defined as the weighted sum of equation[2Jand equation[3}

EstageZ = £text2comp +A Econtrastivw (4)

where )\ is the balancing coefficient. This joint training objective can distinguish correct and incor-
rect language—expert pairs, improve training efficiency, and promote the text-to-computation module
to accurately regress language tasks to expert required numerical inputs.

Stage 3: Token Router Training. In the final stage, we train the token router to dynamically decide
at each time step whether to invoke a high-precision scientific computation expert or the LLM.
Its input is the hidden representation h; of all tokens at the current time step, and its output is a
probability distribution p(e | h¢) over the set of experts and the LLM &, which indicates which
expert model or the LLM should be selected in the next-token prediction process. The training data
are (hy, e;) € Dyouer, Where e; denotes the corresponding token-level invocation label, as shown in
Figure[2{c). The router is optimized using a cross-entropy (CE) loss:

ACrouter = - Z Z Yt,e Ing(e | ht)a (5)

t ec&

where y; . is a one-hot vector. In particular, when £ contains only one expert and the LLM, this
objective naturally degenerates into the binary cross-entropy (BCE) loss.

2.3 INFERENCE PARADIGM

During the inference paradigm shown in Figure [3] PiERN integrates the pre-trained expert model,
text-to-computation module, and token router into a LLM via neural network connections. This
integrated model is then used to execute computational tasks, and subsequent inference and planning
are carried out based on the high-precision computation results. Since both the LLM and the text-to-
computation module are based on Qwen2.5-0.5B, and the token router as well as the expert model
are implemented as lightweight custom neural networks, the total parameter count of the current
PiERN is approximately 1.0B, denoted as PIERN-1.0B.

Building on this architecture, PIERN-1.0B dynamically switches between standard language reason-
ing and high-precision computation of expert model. For example, given inputs ‘“The battery health”,
the token router detects no computation requirement (as the next token is likely to be is”) and for-
wards the sequence to the LLM for ordinary next-token prediction. In contrast, given “The battery
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Figure 3: Token routing for reasoning-computation inference paradigm in PIERN. Left: Token
Router decides to send tokenized inputs into LLM for generating the next token. Middle:Token
Router decides to send tokenized inputs into the expert model for high-precision computation.
Right: Token Router decides to send tokenized inputs with computation results to LLM for sub-
sequent reasoning and planning.

health is” when a concrete numeric value is required, the router invokes the text-to-computation
module to transform the sequence into expert inputs; then the expert model returns a high-precision
value (e.g., 0.95), which is appended to the sequence as “The battery health is 0.95.” The computed
value is seamlessly incorporated into the context, enabling the LLLM to continue reasoning (e.g., ,
which is in a relatively good state for daily use.”). In this way, PIERN-1.0B preserves numerical
accuracy while maintaining coherent language reasoning, planning, and decision making.

3 EXPERIMENTS

To verify the effectiveness of our proposed PIERN Methodology in computation-reasoning tasks,
we perform extensive experiments on two main tasks. One is a non-linear time series prediction task
derived from multiphysics simulation, and the other is a relatively simple linear task. Overall, PIERN
consistently outperforms contemporary state-of-the-art models in terms of computation accuracy
and inference costs such as latency, token usage, and GPU energy consumption.

3.1 TASK AND DATA

3.1.1 BATTERY CAPACITY PREDICTION TASK (NON-LINEAR TASK)

The main objective of this task is to predict the remaining state of health of a battery based on
time-series data of current. Battery health is a core indicator for measuring battery performance
degradation, typically defined as the ratio of the current remaining capacity to the initial capacity
of the battery. The battery degradation is a complex non-linear process. It is affected by multiple
coupled physicochemical reactions and mechanisms such as electrode material aging, electrolyte
decomposition, and solid electrolyte interphase growth, usually modelled with PDEs. The specific
data synthesis methods and descriptions are provided in Appendix

3.1.2 BATTERY PROFIT CALCULATION TASK (LINEAR TASK)

The core of this task is to calculate the battery profit from arbitrage in electricity markets or electric-
ity bill saving. Among these, the key parameters are defined as follows. «: Battery degradation coef-
ficient; Ap: Price difference between charging and discharging; P : Battery charge-discharge power;
¢q: Marginal degradation cost. This calculation can be formulated as R = Ap- P — « - ¢, - 1200, a
simple linear calculation task. The specific data synthesis methods and descriptions are provided in

the Appendix
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3.1.3 LANGUAGE TEMPLATES

To better train the text-to-computation module, we have designed multiple language templates
specifically for the above two tasks. These templates are combined with the numeric data for each
task for model training, enabling the text-to-computation module to better understand semantics and
generate numbers accurately across various scenarios. The specific language templates and data
combination methods are detailed in the Appendix[A.T.3]

3.2 PERFORMANCE OVER LLM FINETUNING

Setups. Finetuning is a common solution to bring domain knowledge into LLMs, thereby it can
also be used to enhance LLMs with high-precision computation capabilities. We compare the MSE
among the finetuned LLMs and PIERN-1.0B on the test data of both Non-Linear Task and Linear
Task. For fair comparison, LLMs are finetuned by the same training data used in the training of
expert models. Meanwhile, only one language template is used to generate training data to let
LLMs focus on computation. On the selection of LLMs, we used open-source models of various
sizes, including Qwen and LLama series.

Table 1: Comparison of MSE among finetuned LLMs of different sizes and PIERN

Methods PiERN-1.0B Qwen2.5 Llama
(Ours) 0.5B-Instruct  1.5B-Instruct 7B-Instruct | 3.2-1B-Instruct 3.1-8B-Instruct
Non-Linear Task 0.000104 0.0159 0.0116 0.00847 0.00601 0.0224
Linear Task 0.000126 0.0712 0.0178 0.00238 0.129 0.000203

Results. Table [I] shows the accuracy of PIERN-1.0B on these two tasks is consistently better than
all finetuned LLMs. Our method has the lowest MSE in all cases. The MSE of PIERN-1.0B can be
one or two orders of magnitude lower, even compared with models whose parameter sizes are more
than six times larger.

Due to the pre-training data (Longpre et al.| 2024), LLMs are better at text understanding and gen-
eration than computational tasks. Therefore, LLMs usually cannot achieve high accuracy in com-
putation tasks even after finetuning. Moreover, because the training of LLMs is an end-to-end,
data-driven process, the models have very low interpretability. By comparison, our method inte-
grates a pre-trained expert model, which greatly enhances the model interpretability and stability.
In summary, our method has demonstrated its advantages over other LLMs even with finetuning in
terms of accuracy and interpretability in computation-reasoning tasks.

3.3 PERFORMANCE OVER MULTI-AGENT SYSTEM

Setups. We build multi-agent systems based on Qwen series and Llama series LLMs of different
sizes, combined with two high-precision scientific computation experts: the battery capacity pre-
diction expert and the battery profit calculationexpert (Schick et al., 2023 [Patil et al.l 2025; [Yao
et al.l 2023), on two Nvidia A800 GPUs with 80GB memory under the vLLM inference accel-
eration framework (Kwon et al., [2023). In these multi-agent systems, different agents undertake
specialized roles: LLMs are responsible for routing and dialogue interaction, while external experts
are responsible for executing the corresponding tasks of high-precision numerical computation, and
the agents collaborate through explicit communication. To highlight the performance advantages
of the PiIERN architecture, we design a series of comparative experiments to compare PIERN-1.0B
with these multi-agent systems on the two tasks.

Evaluation Metrics. We compare performance along four dimensions, which directly reflect the
core differences between PIERN and the multi-agent systems: (i) Latency: determines the response
speed of the system in interactive scenarios, directly affecting user experience and the feasibility
of real-time decision-making tasks; (ii) Token Usage: measures the additional overhead in infer-
ence caused by long-context understanding and cross-agent communication, directly reflecting the
user-side inference cost and the overall economic efficiency of task execution; (iii) GPU Energy
Consumption: reflects resource utilization and energy efficiency, serving as a key metric for evaluat-
ing deployment scalability and sustainability; (iv) Success Rate: measures the proportion of correct
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Figure 4: Token usage comparison among PiERN and multi-agent systems with LLMs: (left) Non-
linear battery capacity estimation task, (right) Linear battery profit calculation task.

high-precision results obtained in computation—reasoning tasks, directly reflecting the system’s reli-
ability and task completion capability.

Latency. Table [2| presents the maximum, minimum, and average latency of models with different
architectures and sizes on the corresponding tasks. PiERN-1.0B consistently maintains the low-
est response time across all tasks. In the Non-Linear Task, the average latency of PIERN-1.0B is
only 1.08s, more than 20 times faster than Qwen-1.5B-Instruct (25.04s) and nearly 60 times faster
than Llama-1B (60.18s). Compared with larger models such as Qwen-32B (20.12s) and QwQ-32B
(93.48s), PIERN-1.0B still maintains an advantage of one to even two orders of magnitude. In the
Linear Task, the average latency of PIERN-1.0B is only 0.50s, while the latency of the multi-agent
models ranges from 4.5s to over 100s. Even the baseline model with the lowest latency, Qwen-0.5B,
still requires an average of 4.53s—almost 9 times slower than PIERN-1.0B. Overall, across the two
tasks, PIERN-1.0B reduces latency by one to two orders of magnitude compared to current main-
stream multi-agent systems, demonstrating significant and robust advantages in response speed.

Table 2: Latency comparisons among PIERN and Multi-agent system baselines on Non-linear Task
and Linear Task.

Archi e PiERN (Ours) Qwen2.5 QwQ Llama Tongyi-DeepResearch
1.0B 0.5B-Instruct  1.5B-Instruct 7B-Instruct 32B-Instruct 32B  1B-Instruct 8B-Instruct 30B-A3B
Non-linear Task
Max 1.14 195 315 123 337 596 320 286 358
Min 0.632 1.24 3.01 5.23 139 572 1.52 6.72 28.4
Avg 0.663 6.63 25.0 8.42 20.1 935 60.2 15.4 159
Linear Task
Max 0.525 216 8.33 12.1 22,6 231 314 10.5 198
Min 0.270 1.33 3.37 6.42 182 67.2 325 6.67 21.2
Avg 0.281 4.53 5.21 8.87 20.2 108 106 7.71 81.2

Token Usage. As shown in Figure ] PIERN-1.0B demonstrates significant advantages over the
multi-agent system in terms of token efficiency. In the Non-Linear Task, PIERN-1.0B requires only
182 tokens on average, representing a 92% reduction compared with Qwen-1.5B (2.3k tokens) and
a 98% reduction compared with Llama-1B (9.4k tokens). In the Linear Task, the average token
usage of PIERN-1.0B is further reduced to 95 tokens, while Llama-1B consumes tens of thousands
of tokens, yielding more than 99% savings for PIERN-1.0B. This efficiency improvement stems
from the native text-to-computation architectural advantage of PIERN, which eliminates repeated
context expansion and redundant cross-agent message passing. Therefore, PIERN not only achieves
an order-of-magnitude reduction in user-side inference cost but also lays the foundation for the
economic feasibility of large-scale deployment and applications.

To further illustrate why the token usage gap between the PIERN architecture and the multi-agent
system is so huge, Figure 5| presents the token usage decomposition of PIERN and the multi-agent
system during the execution of a single task (Shen et al.} 2023; [Li et al.,|2023). In PIERN, inference
always alternates between next-token prediction and high-precision expert computation, thereby
eliminating redundant communication overhead. In contrast, the multi-agent system must sequen-
tially perform task understanding, tool invocation confirmation, data alignment, expert computation,
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Figure 5: Token usage decomposition for PIERN and QwQ-32B based multi-agent systems on Non-
Linear Task.

and result analysis, with each step introducing additional communication and synchronization costs.
This decomposition clearly reveals why PIERN can achieve significantly faster inference.
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Figure 6: GPU energy consumption comparison between PIERN and multi-agent systems: (left)
Non-linear battery capacity estimation task, (right) Linear battery profit calculation task.

GPU Energy Consumption. As shown in Figure [f] we also report the GPU energy consumption
of PIERN and LLM function calling in the Non-Linear and Linear Tasks, and the results consis-
tently show that PIERN-1.0B is one—two orders of magnitude more efficient than the multi-agent
systems. In the Non-Linear Task, PIERN-1.0B consumes only 271J on average, whereas Qwen-
1.5B consumes 5.8kJ, Qwen-32B exceeds 11.7kJ, and QwQ-32B exceeds 55kJ. Even Llama-1B,
whose parameter size is smaller than that of QwQ-32B, consumes more than 14.5kJ, nearly two
orders of magnitude higher than PIERN. In the Linear Task, PIERN-1.0B consumes only 99J on
average, while Qwen-1.5B exceeds 1.4kJ, Qwen-32B consumes 11.7kJ, Llama-1B consumes 26kJ,
and QwQ-32B reaches as high as 63kJ. This means that GPU energy consumption is reduced by
93-99.8%. These results indicate that the PIERN architecture significantly reduces GPU utilization.
Beyond direct energy savings, this efficiency improvement also translates into stronger scalability
and lower carbon emissions.

Success Rate. As shown in Figure [7, PiERN-
1.0B achieves 100% success rate on both two
tasks. In contrast, multi-agent systems show insta-
bility on non-linear tasks, same-scale LLMs such
as Qwen2.5-0.5B perform poorly, and even larger
LLMs fail to consistently maintain 100% success.
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achieved within the same design. By tightly coupling high-precision computation with LLMs
reasoning in a single architecture, PIERN not only provides a more efficient, economical, scalable,
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and sustainable solution, but also outlines a blueprint for next-generation scientific intelligence
systems (Wang et al., 2023; Morgan & Jacobs| 2020).

4 RELATED WORK

Multimodal Capabilities of LLLMs Multimodal learning has become a central direction in today’s
Al, aiming to integrate text, vision, and audio within unified architectures (Zhang et al.| 2024;
2023)). Recent breakthroughs such as GPT-40 (OpenAll 2024) and GLM-4.5V (Team et al., [2025))
highlight these rapid progress. Mixture-of-Experts (MoE) has emerged as an efficient paradigm,
demonstrating strong performance in multimodal generation, alignment, and controllable content
creation (Li et al.}[2024bj |Chen et al., [2024a; |Qin et al.| 2023). Despite these advances, their utility
in specialized scientific and industrial computation remains limited (Jiang et al.,[2025a).

Mathematical and Reasoning Abilities LL.Ms have achieved impressive results in mathematical
reasoning, solving problems at or beyond high-school level (Achiam et al.|[2023; Hurst et al.|, |2024;
Tang et al., [2024])), but often fail at basic arithmetic and numerical consistency (Huang et al.| 2025;
Li et al.l [2024a). End-to-end finetuning can not fundamentally improve the numerical understand-
ing and processing abilities (NUPA). Multi-agent systems mitigate this gap by leveraging external
experts through function call (Schick et al.,|[2023}; [Patil et al., [2025; [Wu et al., 2023)), significantly
enhancing high-precision problem-solving capabilities. Yet, they still suffer from communication
overhead, and limited scalability (Chen et al.,[2024b).

Integrating High-Precision Computation with Language Recent attempts have explored directly
embedding numerical representations into Transformers (McLeish et al.l 2024; [Wu et al.| [2024),
and benchmarks such as NUPA (Yang et al.| 2025) have been introduced to evaluate progress.
Nonetheless, existing methods still struggle with multi-step calculations, solving complex nonlinear
PDEs systems, and generalization beyond trained ranges, leaving the challenge of real-world high-
precision computation unresolved.

5 CONCLUSION AND FUTURE WORK

In this study, we propose PIERN, an architecture that unifies high-precision experts computation
with LLMs reasoning. PiERN goes beyond the traditional workflow paradigm of tool invocation
by enabling token-level alternating execution of expert computation and language reasoning within
a single chain of thought. In computation—reasoning tasks, PIERN not only outperforms finetuned
LLMs, but also significantly surpasses mainstream multi-agent methods in response latency, token
usage, and GPU energy consumption. It should be noted that the statistical paradigm of current
LLMs is mainly embodied in inductive reasoning and analogical reasoning, while PIERN endoge-
nously integrates high-precision computation (deductive reasoning) into LLMs. The integration of
inductive, analogical, and deductive reasoning paradigms introduces a new paradigm of intelligence.
Nevertheless, the current evaluation of PIERN remains limited to specific computation—reasoning
tasks. Future research will focus on three main directions: first, extending a single expert to multiple
logically composable experts to support the alternating invocation of more complex high-precision
computation tool call chains and language reasoning chains; second, exploring the reasoning capa-
bility of PIERN in scientific multimodal scenarios to realize a unified computation—reasoning frame-
work across text, high-precision computation, images, equations, and code; finally, promoting the
practical application of PIERN in complex system engineering tasks, such as power grid schedul-
ing, drug discovery, and materials simulation, thereby verifying its feasibility and transformative
potential as the infrastructure for next-generation scientific intelligence systems.

6 STATEMENT OF LLM USAGE

In our experiments, we used LLMs to assist in implementing parts of the technical pipeline code.
We have carefully reviewed and verified all generated codes. In preparing the manuscript, we used
LLMs to translate parts of our drafts that had been carefully prepared, and to polish the language. All
generated content has been thoroughly checked by us to ensure accuracy. We take full responsibility
for the validity of the research results and the final content of the paper.
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A APPENDIX

A.1 TASK AND DATA

A.1.1 DATA DESCRIPTION OF BATTERY CAPACITY PREDICTION TASK

The data input include two main information. First is the time-series current data, which refers to 11
current values collected over a 2-hour period with a sampling interval of 12 minutes. Second is the
time of the to-be-predicted time point and its corresponding current value. The above information
constitutes 13 input feature values. In addition, the initial health status of the battery is set to 1 by
default. In terms of data scale, the training dataset contains 7,200 matching samples of “current data
- time point - state of health”, and the test dataset contains 2,400 samples of the same type. Both
of the training dataset and the test dataset are generated based on the P2D model constructed via
COMSOL Multiphysics modeling. All training data are used in the training process of the expert
model and the fine-tuning task of the large language model.

A.1.2 DATA DESCRIPTION OF BATTERY PROFIT CALCULATION TASK

Data input includes four parameters: «, Ap, P, c,. and the output is the final profit R. There are
a total of 10,000 data entries, with training data accounting for 90% and the remaining being test
data. Consistent with the Battery Capacity Prediction Task, all training data are used in the training
process of the expert model and the fine-tuning task of the large language model.

A.1.3 LANGUAGE TEMPLATES AND DATA COMBINATION METHODS

The specific composition methods of the language templates, task data, and large model fine-tuning
data are shown in Figure[§]and Figure[9}

non-Linear Task Language Templates

i_values™: [0.8958333333320849, 0.13794018481451223, 0.6213904571918446,
058 5, 0.15959251163739682, 0.8943 )
0.1187778472629616, 0.6542964476621149, 0.5527126746907073,
0.1835768269187947, 0.8897634478565596],

*i_final": 0.07558368929890606, "soh_init": 1.0,

"soh_final": 0.9999496189856881, "time": 0.397665694039183

non-Linear Task Fine-Tuning Data

“prompt": "The current State of Health (SoH) of the lithium battery is 1. Within 2 hours, the current data measured every 12 minutes is
[0.8958333333329849, 0.13794018481451223, 0.6213904571918448, 0. 3, 0.15959251163739682, 0.8943
0.1187778472629616, 0.6542964476621149, 0.5527126746907073, 0.18357682691879476, 0.8897634478565596],
Please calculate the SoH of the battery after 0.397665694039183 seconds. Tip: The time span is 7200 seconds, and the current data at the 0.397665694039183th
second is 0.07558368929890613. Please output strictly in the following format: Okay, the SoH of the lithium battery is [predicted result].",
“completion": "Okay, the SoH of the lithium battery is 0.9999496189856881."

“"prompt": "The current State of Health (SoH) of the lithium battery is <soh>.

Within 2 hours, the current data measured every 12 minutes is <current>
Please calculate the SoH of the battery after <time> seconds.
Tip: The time span is 7200 seconds, and the current data at the <time>th second s <last_current>.
Please output strictly in the following format: Okay, the SoH of the lithium battery is [predicted result].",
"answer": "Okay, the SoH of the lithium battery is <soh>."

Figure 8: The combination of fine-tuning data for non-linear tasks, including time-series current
data, time, battery health data, and language templates.

Linear Task Data
"battery": 0.9368421052631578,
"price”: 0.8775510204081632,

"power": 0.34366873374674933,
"cost": 0.45369941835011574,
"profit': 0.30598048345952955

Linear Task Language Templates

"prompt": "The 3s aging capacity of the battery is <battery>, the difference in charging electricity prices is <price>S/KWh,
the battery charging and discharging power P is <power>kW,and the marginal aging cost is <cost>$/kWh. Based on the economic benefit calculation model,
please help calculate the economic benefits. Please output strictly in the following format: After calculation, the revenue can reach [predicted result$/h.",
"answer":"After calculation, the revenue can reach <profit>$/h.”

Linear Task Fine-Tuning Data I
"prompt": *The 3s aging capacity of the battery is 0.9368421052631578, the difference in charging electricity prices is 0.8775510204081632$/kWh,
the battery charging and discharging power P is 0.34366873374674933kW,and the marginal aging cost is 0.45369941835011574$/kWh.
Based on the economic benefit calculation model,

please help calculate the economic benefits. Please output strictly in the following format: After calculation, the revenue can reach [predicted result}$/h.",
"answer":"After calculation, the revenue can reach 0.305980483459529555/h.”

Figure 9: The combination of fine-tuning data for linear tasks, including calculation data related to
profit and language templates.
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