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ABSTRACT

Reasoning models have excelled at complex tasks such as coding and mathemat-
ical competitions, yet their reasoning processes suffer from low inference effi-
ciency. Quantization is a popular way to boost efficiency, but prior work shows
that it causes large performance drops in these models. To address this, we
comprehensively benchmark the quantization-aware training (QAT) for reason-
ing models. Our key findings are: (1) knowledge distillation serves as a versa-
tile objective for reasoning models trained with either supervised fine-tuning or
reinforcement-learning algorithms; (2) post-training quantization (PTQ) provides
a strong initialization for QAT, improving accuracy while reducing training cost;
(3) QAT with reinforcement learning is feasible and yields additional gains for the
quantized model; and (4) aligning the domain of QAT training data with the PTQ
calibration data further improves the performance. Building on these insights,
we propose Reasoning-QAT, an optimized QAT workflow tailored to reasoning
models. Empirical results show that Reasoning-QAT outperforms state-of-the-art
PTQ methods across multiple LLM backbones and reasoning datasets. For in-
stance, on the DeepSeek-R1-Qwen-Distill-1.5B model, Reasoning-QAT surpasses
FlatQuant by 2.92% under W4A4KV4 quantization and GPTQ by 4.74% under
W3G128 quantization, respectively.

1 INTRODUCTION

Recent large language models (LLMs) (Jaech et al., 2024; Guo et al., 2025; Team et al., 2025) en-
dowed with enhanced reasoning capabilities, have achieved remarkable progress in domains like
coding and mathematics. However, these advances come with a trade-off: reasoning-focused in-
ference is often slower and more redundant, resulting in huge inference overhead (Qu et al., 2025).
Quantization has emerged as a promising technique to accelerate LLM inference (Frantar et al.,
2022a; Lin et al., 2023; Li et al., 2024; Liu et al., 2024; Li et al., 2025a). However, prior studies (Li
et al., 2025b; Srivastava et al., 2025; Liu et al., 2025a) have shown that post-training quantization
(PTQ) can cause significant performance degradation in reasoning models under extreme-low bit
scenarios, such as 3-bit weight-only quantization or 4-bit weight–activation quantization. We cor-
roborate this finding by comparing quantized LLMs on both non-reasoning and reasoning tasks (see
Figure 1). As observed, the 4-bit weight quantization with the group-size 128 achieves near-lossless
results across tasks, whereas 3-bit variants suffer large performance drops. Note that this degradation
is much more severe in reasoning tasks than in non-reasoning ones.

To address this limitation, quantization-aware training (QAT) (Tailor et al., 2020; Nagel et al., 2022;
Liu et al., 2023; Bondarenko et al., 2024) provides an appealing alternative by explicitly simulating
low-precision inference during training. While QAT has demonstrated effectiveness for general-
purpose LLMs (Liu et al., 2023; Chen et al., 2024), it remains unclear whether such benefits can be
extended to reasoning models. Several unique challenges for applying QAT to reasoning-focused
LLMs arise in this context: (1) the uncertainty of which QAT objective is most suitable for continual
training in reasoning models; (2) the prohibitive training overhead that limits practical deployment;
and (3) the lack of consensus on how to select effective QAT training data.

In this study, we present a comprehensive benchmark of quantization-aware training (QAT) for
reasoning models. We investigate two representative low-bit settings: 3-bit weight-only quantiza-
tion with a group-size 128 and 4-bit weight–activation quantization. Our benchmark covers mod-
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els trained under two major reasoning paradigms: (i) supervised fine-tuning (SFT), represented
by DeepSeek-R1-Qwen-Distill-1.5B (Guo et al., 2025); and (ii) reinforcement learning (RL), rep-
resented by Qwen3-0.6B and Qwen3-4B (Yang et al., 2025). The evaluation is conducted on a
wide range of reasoning benchmarks, including AIME-120, MATH-500 (Lightman et al., 2023),
GSM8K (Cobbe et al., 2021), GPQA-Diamond (Rein et al., 2024), and LivceCodeBench (Jain et al.,
2024). Our empirical findings are summarized as follows: (1) Knowledge distillation (KD) (Hinton
et al., 2015) proves to be a powerful training objective, applicable to reasoning models trained via
both SFT and RL; (2) PTQ can serve as a strong initialization for QAT, enabling higher accuracy
while reducing training costs; (3) QAT combined with RL is not only feasible but also delivers fur-
ther improvements to quantized models; (4) it is preferred to keep the QAT training dataset and PTQ
calibration data from the same domain, which empirically benefits the quantized reasoning models.

Building on these insights, we propose Reasoning-QAT, an optimized QAT workflow tailored to
reasoning-focused LLMs. Reasoning-QAT incorporates three steps: (1) PTQ-based initialization,
with the purpose of enhance the model’s tolerance to quantization noise and provide a better starting
point for subsequent training; (2) knowledge distillation, which aligns the quantized model’s output
distribution with that of its full-precision counterpart. It recovers the performance and paves the
way for the next stage; and (3) cold-start RL, which adopts GRPO (Guo et al., 2025) as the RL
paradigm on top of the knowledge-distilled model. This stage reduces entropy and enforces more
deterministic and reliable outputs. Extensive experiments demonstrate that Reasoning-QAT consis-
tently outperforms the state-of-the-art PTQ methods across multiple LLM backbones and reasoning
benchmarks. For example, on the DeepSeek-R1-Qwen-Distill-1.5B model, Reasoning-QAT can
surpass FlatQuant (Sun et al., 2024) by 2.92% under W4A4KV4 quantization and GPTQ (Frantar
et al., 2022a) by 4.74% under W3G128 quantization.

To the best of our knowledge, this is the first comprehensive benchmark of quantization-aware train-
ing on reasoning models. We hope our research provides valuable guidance for the community
toward better quantization methods for reasoning models.

2 PRELIMINARIES

2.1 POST-TRAINING QUANTIZATION FOR REASONING MODELS

Background and Notations. Quantization has been a popular approach for the compression and
acceleration of LLMs. Given the model parameters W stored in the bfloat16 format, quantization
aims to convert it to low bit representations Wint, i.e.,

Wint = clip(⌊W
s
⌉+ z,Qmin, Qmax), (1)

where clip(·, Qmin, Qmax) truncates the associate values inside the minimal Qmin and maximal
Qmax, s is the scaling factor and z is the zero point. For N -bit symmetric quantization, s =
max(|W|)
2N−1−1

and z = 0. For asymmetric quantization, s = max(W)−min(W)
2N−1

, z = ⌊−min(W)
s ⌉.

For weight quantization, the low bit quantized weights Wint in the forward pass are then dequan-
tized to Ŵ = s·(Wint−z) for the following operations. Instead, for weight-activation quantization,
both quantized weights Wint and activations Xint are stored as low bit integers, and their integer
matrix multiplication kernel can further reduces the computation aside from size reduction.

Post-training quantization incurs a large performance drop on reasoning models. A majority
work of LLM quantization focuses on post-training quantization (PTQ) (Frantar et al., 2022b; Lin
et al., 2023; Ashkboos et al., 2024; Sun et al., 2024), where the model is directly quantized without
training. PTQ is usually fast and easy to implement, with satisfactory performance on most general
natural language tasks. However, recent studies (Liu et al., 2025a) show that quantized reasoning
models still exhibit large performance drops particularly on challenging tasks.

To further validate this, we compare the quantized LLMs with PTQ methods on both non-reasoning
and reasoning models. From Figure 1, it can be found that for DeepSeek-R1-Distill-Qwen-1.5B
(abbr. R1-Qwen-1.5B for simplicity in the following text), the performance degradation on rea-
soning tasks (e.g., 11.67%↓ on AIME-120 and 12.80%↓ on MATH-500) are much larger than non-
reasoning tasks (e.g., 1.03%↓ on Winogrande, 3.13%↓ on Hellaswag). Similar observations can be
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(a) DeepSeek-R1-Distill-Qwen-1.5B. (b) Qwen3-4B.

Figure 1: The performance degradation by post-training quantization on reasoning and non-
reasoning tasks. We adopt GPTQ with 3-bit weight only quantization with group size 128, and
the results are based on DeepSeek-R1-Distill-Qwen-1.5B and Qwen-4B.

found for Qwen3-4B. Therefore, PTQ methods alone can hardly yield satisfactory results, which
prohibit practical use of quantized reasoning models.

2.2 QUANTIZATION-AWARE TRAINING FOR REASONING MODELS: NEW CHALLENGES

To tackle the issue of performance degradation in PTQ, quantization-aware training (QAT) is an
effective alternative. QAT simulates low-precision inference during training, allowing the model’s
weights to adapt to quantization and thereby preserving performance. In the forward pass, QAT
inserts ”fake quantization” operations to obtain Ŵ or X̂ for each linear layer to quantize. Then it
computes the loss objective function L(Ŵ). In the backward pass, since the quantization function
is non-differentiable, the straight-through estimator (STE) is usually adopted to allow the gradient
flow back to the original weights W, i.e., ∂L

∂W = ∂L
∂Ŵ

· 1(Qmin ≤ W/s ≤ Qmax). While QAT is
shown to be effective on general LLMs (Liu et al., 2023; Chen et al., 2024), its benefit on reasoning
models remains largely unexplored. The key challenges to consider include:

Training Paradigm. It remains unclear what QAT objective is preferred for continual training
of reasoning models. Standard QAT simply carries over the cross-entropy objective used during
full-precision pre-training or instruction fine-tuning (Liu et al., 2025b; Lee et al., 2024). Reasoning
models, however, are often trained via either supervised fine-tuning with data collected from stronger
teacher models (Guo et al., 2025) or reinforcement learning (Guo et al., 2025; Team et al., 2025;
Yang et al., 2025). The combination of QAT with reinforcement learning is also unexplored.

Training Overhead. The large performance degradation by quantization usually requires inten-
sive training for reasoning models to recover the performance. This may greatly increase the time
cost of QAT, hindering the practical use when limited time is allowed for deployment.

3 BENCHMARKING QAT FOR REASONING MODELS

In this study, we provide a comprehensive evaluation of quantization-aware training for reasoning
models. Based on the discussions in Sec. 2.2, we seek to answer the following research questions:

RQ1 (Sec. 3.2) How to choose the training objective of QAT for reasoning models?
RQ2 (Sec. 3.3) How to improve the training efficiency of QAT?
RQ3 (Sec. 3.4) How does QAT interact with RL algorithms such as GRPO?
RQ4 (Sec. 3.5) How to choose the training dataset of QAT for reasoning models?
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3.1 SETUPS

Quantization Settings. We quantize all linear layers of the model, excluding the token embed-
ding and lm head layers. Our primary focus is on 3-bit group-wise weight-only quantization with a
group-size of 128 (W3G128), for which we explore two initializations: a symmetric scheme initial-
ized with round-to-nearest (RTN) and an asymmetric scheme initialized with GPTQ. Furthermore,
we extend our approach to a joint 4-bit weight and 4-bit activation (W4A4) setting, initialized from
FlatQuant, which combines per-channel symmetric weight quantization with per-token asymmetric
activation quantization.

We evaluate two categories of reasoning models. For distillation-based reasoning models, we adopt
DeepSeek-R1-Distill-Qwen-1.5B (Guo et al., 2025). For reasoning models obtained via reinforce-
ment learning, we choose Qwen-3-0.6B and Qwen-3-4B (Yang et al., 2025), which are recent, high-
performing open-source models.

Datasets. Our training pipeline consists of two phases with distinct data configurations. In the
initial fine-tuning phase (SFT and KD), the weight-only setting uses the OpenR1-Math dataset (Face,
2025), which has 94k problems in its default subset, while the weight-activation setting uses 48k
text sequences, each with a length of 8192, sampled from Wikitext2 (Merity et al., 2017). For the
subsequent Reinforcement Learning (RL) phase, both settings use the OpenR1-Math dataset. We
hypothesize that such consistency could enhance the stability of the training process.

Evaluation Benchmarks. We assess quantized models with different training paradigms on a
range of reasoning benchmarks. These include: 1) three mathematical reasoning benchmarks
sorted by difficulty: AIME-120, which consists of 120 problems from the American Invitational
Mathematics Examination (AIME) from 2022 to 2025 to minimize evaluation variations; MATH-
500 (Lightman et al., 2023), a benchmark containing a mix of easy and hard mathematical problems
designed to test comprehensive reasoning abilities; and GSM8K (Cobbe et al., 2021), a dataset of
primary school-level questions focused on basic arithmetic and algebra; 2) LiveCodeBench (Jain
et al., 2024), a benchmark for evaluating large language models on code generation tasks; and 3)
GPQA-Diamond (Rein et al., 2024), a graduate-level proof question and answer benchmark that
tests the ability of models to generate accurate mathematical proofs. All evaluations are based on
Lighteval (Fourrier et al., 2023) with the vLLM (Kwon et al., 2023) backend. The sampling tem-
perature is set to 0.6 and top-p is fixed to 0.95. The maximum number of generated tokens is 32,768.
To account for randomness, we use three seeds for each evaluation and report the average score.

Training Implementations. We implement and evaluate three distinct fine-tuning algorithms
within our Quantization-Aware Training (QAT) framework. For Supervised Fine-Tuning (SFT), we
adopt the standard cross-entropy loss objective. For Knowledge Distillation (KD), the QAT model
serves as the student and is trained to mimic the output distribution of the full-precision teacher
model by minimizing the KL divergence loss. For Reinforcement Learning (RL), we employ the
Group Relative Policy Optimization (GRPO) algorithm (Shao et al., 2024). Further details on hy-
perparameters for each method are provided in Appendix A.

3.2 QAT TRAINING OBJECTIVES: SFT OR KD?

We aim to identify the proper training objectives for QAT. Recall that existing reasoning models are
optimized via either supervised fine-tuning (e.g., R1-Qwen-1.5B) or reinforcement learning (e.g.,
Qwen3-4B). We first study two widely used QAT objectives (i.e., SFT and KD) for both kinds of
reasoning models to investigate whether these objectives are compatible with the models’ original
training paradigms. We adopt weight-only quantization of W3G128 as the default setting.

Table 1 shows the performance recovery of KD and SFT for R1-Qwen-1.5B and Qwen3-4B on four
reasoning benchmarks. The key observations can be summarized as follows: 1) KD demonstrates
higher accuracy than SFT on reasoning models originally trained via SFT and RL. Specifically,
SFT suffers an average accuracy drop of 10.51%↓ and 29.85%↓ on R1-Qwen-1.5B and Qwen3-4B,
respectively. In contrast, KD results in drops of only 8.06%↓ and 9.26%↓ for the two models; 2) KD
exhibits stronger synergy with both SFT- and RL-trained models, i.e., the performance drops on both
models are similar (8.06%↓ vs. 9.26%↓). However, while SFT suffers a relatively moderate drop
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Model Setting Method AIME120 MATH-500 GSM8K AVG Drop↓

R
1-

Q
w

en
-1

.5
B BF16 - 21.67 84.4 84.61 63.56 –

W3G128
RTN 0.83 15.00 15.39 10.41 53.15%↓
SFT 10.00 73.60 75.54 53.05 10.51%↓
KD 14.44 76.20 75.87 55.50 8.06%↓

Q
w

en
3-

4B
BF16 - 58.89 95.33 94.49 82.90 –

W3G128
RTN 0.00 1.40 0.99 0.80 82.10%↓
SFT 14.44 81.80 88.25 53.05 29.85 %↓
KD 37.50 92.00 91.43 73.64 9.26%↓

Table 1: Comparison of QAT objectives (SFT and KD) on two representative reasoning models
trained either with SFT or RL, i.e., R1-Qwen-1.5B and Qwen3-4B.

(a) Test Accuracy (b) Loss Value

Figure 2: (a) Test accuracy (%) of RTN+KD and GPTQ+KD
on MATH-500. We evaluate the two methods on MATH-500.
(b) Training loss of RTN+KD and GPTQ+KD.

(a) Test Accuracy

Figure 3: Test accuracy (%) of
GPTQ+KD and GPTQ+SFT on
MATH-500.

on R1-Qwen-1.5B, it suffers a significantly larger performance drop (29.85%↓) on Qwen3-4B. We
therefore recommend KD over SFT as the QAT training objective, given its superior performance
and stronger synergy with reasoning models originally trained with both SFT and RL.
3.3 TRAINING EFFICIENCY OF QAT

Initializing QAT with PTQ. In previous work, it has been standard practice to initialize QAT from
a pretrained full-precision model (Liu et al., 2023; Du et al., 2024). Here, we systematically in-
vestigate how PTQ-based initializations affect the convergence and accuracy of QAT. Specifically,
we employ GPTQ (Frantar et al., 2022a) for initialization, using weights that have been adjusted via
Hessian-based compensation prior to the quantization process. As shown in Figure 2(a)-(b), we com-
pare the test accuracy and training loss of RTN+KD and GPTQ+KD on the MATH-500 benchmark
using the R1-Qwen-1.5B model. Armed with the GPTQ-initialized weights, GPTQ+KD enjoys a
higher starting point (higher test accuracy and lower loss). Besides, GPTQ+KD consistently out-
performs RTN+KD and exhibits a faster convergence rate within the same number of training steps.
Therefore, PTQ acts as an effective initialization to improve the training efficiency of QAT.

Training Efficiency of KD. In addition to studying the initialization of quantized models, we
further compare the training efficiency of KD versus SFT, as shown in Figure 3. The results show
that KD consistently achieves higher accuracy than SFT and also converges faster.

3.4 QAT WITH REINFORCEMENT LEARNING

Prerequisites of QAT with RL. Reinforcement Learning (RL) has demonstrated notable success
in enhancing the reasoning capability of large foundation models. However, its applicability to QAT
remains largely unexplored. Here, our results reveal the critical prerequisite for employing RL in
QAT: RL must be applied to a properly initialized model; otherwise, the training will collapse. We
thus study the necessary conditions that enable the integration of RL with QAT. We compare two
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RTN KD GRPO AIME120 MATH-500 GSM8K AVG
- - - 21.67 84.40 84.61 63.56
✓ - - 0.83 15.00 15.39 10.41
✓ - ✓ 1.67 15.33 15.52 10.84
✓ ✓ ✓ 14.44 78.00 77.93 56.79

Table 2: Preliminary ablations of QAT with RL based on R1-Qwen-1.5B.

(a) (b) (c)

Figure 4: (a) Training reward and response length for RL QAT after cold-start. (b) Training entropy
curve. (c) Test accuracy curve and corresponding response length across training steps.

settings: zero-RL QAT and cold-start RL QAT. For zero-RL QAT, we apply RL directly to the base
model without any supervised fine-tuning (Guo et al., 2025), i.e., using a model pre-quantized with
RTN. For cold-start RL QAT, we use a model fine-tuned with KD as the initial RL actor. During
the RL phase, we employ GRPO (Guo et al., 2025) with only a correctness reward to encourage
the model to sample high-reward outputs. As shown in Table 2, zero-RL QAT collapses completely,
whereas cold-start RL QAT further improves reasoning ability, yielding an accuracy improvement of
around 46% over the zero-RL setting. Therefore, when starting from an RTN-based model that suf-
fers from drastic quantization error, the RL process struggles to produce high-quality outputs during
inference and is unable to generate effective rewards. This contrast highlights the key prerequisite:
RL alone cannot rescue a heavily quantized model, but with a cold-start initialization, RL becomes
an effective driver for enhancing reasoning ability.

Critical Roles of RL. The experimental results in Figure 4 clearly demonstrate the indispens-
able roles that RL plays in the QAT process. First, as shown in Figure 4(a), RL simultaneously
increases reward and suppresses excessive response length. This means that RL can prevent the
quantized model from using response length to gain reward, instead guiding it toward truly high-
quality outputs. Second, as shown in Figure 4(b), RL drives a decrease in entropy, which reduces
prediction randomness and enforces more deterministic and reliable outputs. This curve indicates
the role of RL in avoiding collapse while ensuring stable convergence in the presence of quanti-
zation errors. Lastly, in Figure 4(c), RL evidently improves test accuracy while reducing response
length, demonstrating its ability to enhance model generalization without relying on unnecessarily
verbose outputs. Overall, these results and corresponding analyses confirm the critical roles of RL
in quantized reasoning models.

3.5 THE CHOICE OF QAT TRAINING DATASET

The choice of a QAT training dataset for reasoning models is another open challenge. In particular,
it remains unclear how data from different domains influence the optimization dynamics and final
performance of QAT. To study this, we compare two datasets: Wikitext2 (a natural language dataset)
and OpenR1-Math (a reasoning-based math dataset). Following the setup in Section 3.3, we initial-
ize the QAT models using PTQ. Calibration is performed using either Wikitext2 or NuminaMath-1.5,
where the latter is closely aligned with OpenR1-Math1. Starting from these PTQ-initialized weights,
we then conduct knowledge distillation for QAT on both Wikitext2 and OpenR1-Math.

1Note that OpenR1-Math consists of reasoning traces generated by DeepSeek R1 for problems from
NuminaMath 1.5. More details can be found at https://huggingface.co/datasets/open-r1/
OpenR1-Math-220k.
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Setting PTQ QAT Accuracy Best Acc.step 1000 step 2000 step 3000

W3G128 NuminaMath-1.5 Wikitext2 74.33 73.33 73.33 75.33
OpenR1 75.00 77.27 77.07 78.53

W4A4KV4 Wikitext2 Wikitext2 71.67 73.13 71.80 73.20
OpenR1 43.27 44.40 43.70 45.80

Table 3: Comparison with different QAT data. With two different training datasets on the R1-Qwen-
1.5B model, we present the MATH-500 test accuracy during training and the final best accuracy.

Figure 5: The overall workflow of the proposed Reasoning-QAT. Step 1: PTQ-based initialization
can provide a better starting point. Step 2: KD from the original full-precision model to align the
teacher’s behavior, and also serve as a cold-start for subsequent RL. Step 3: Based on cold-start, RL
can further recover the reasoning ability of the QAT model.

As summarized in Table 3, the results demonstrate that aligning the QAT training dataset with the
PTQ calibration data leads to better performance. When QAT is performed on OpenR1-Math with
PTQ calibrated on NuminaMath-1.5, the model achieves the highest accuracy (i.e., 78.53%) and
exhibits faster convergence compared to the mismatched setting. Conversely, when QAT training
is performed on Wikitext2 while PTQ calibration is done on NuminaMath-1.5, model performance
drops clearly. These findings suggest that it is beneficial to keep the consistency between PTQ
calibration data and training dataset of QAT for quantized reasoning models, and offer practical
guidance for QAT data selection for those reasoning models quantized by PTQ.

For QAT with RL, we omit the comparisons but consistently choose OpenR1-Math as the training
dataset, as it remains unclear to reward the general Wikitext2 dataset.

4 QAT FOR REASONING MODELS: THE ULTIMATE WORKFLOW

Based on the observations in Section 3, we provide the ultimate workflow in Figure 5, which in-
cludes three key steps to guide practical applications and support downstream usage. Note that our
workflow is agonistic to the choice of quantization configurations, which can be applied to both
weight-only and weight-activation quantization.

4.1 DETAILED PIPELINE AND ALGORITHM

• Step 1: PTQ-based Initialization. Motivated by Section 3.3, we rectify the latent weights with
PTQ techniques as the initial state for QAT. While the QAT model still remains with continuous

7
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Model W-Bits Methods AIME-120 MATH-500 GSM8K GPQA-
Diamond

LiveCode-
Bench Avg. Drop ↓

Q
w

en
3-

0.
6B

BF16 - 11.11 74.00 79.00 28.45 12.94 41.10 -

W3G128

RTN 0.00 0.80 0.30 24.24 0.00 5.07 -36.03
GPTQ 0.83 11.80 20.24 24.24 0.00 11.42 -29.62
AWQ 0.00 5.20 10.01 26.77 0.00 8.40 -32.70

Reasoning-QAT 3.89 57.80 67.02 27.78 1.87 31.67 -9.43

W4A4KV4
QuaRot 0.00 0.00 0.00 24.24 0.00 4.84 -36.26

FlatQuant 0.28 21.67 33.06 29.80 1.87 17.34 -23.76
Reasoning-QAT 0.00 30.27 48.62 26.94 1.37 21.44 -19.66

R
1-

1.
5B

BF16 - 21.67 84.40 84.61 36.87 16.04 48.72 -

W3G128

RTN 0.83 15.00 15.39 19.19 0.00 10.08 -38.64
GPTQ 10.00 71.60 75.66 23.74 9.33 38.07 -10.65
AWQ 3.33 48.80 65.81 37.88 4.85 32.13 -16.58

Reasoning-QAT 16.39 79.80 79.35 30.30 8.21 42.81 -5.91

W4A4KV4
QuaRot 0.00 1.20 0.76 8.59 0.00 2.11 -46.61

FlatQuant 10.00 64.80 78.62 31.82 6.72 38.39 -10.33
Reasoning-QAT 12.50 73.20 77.94 32.83 10.07 41.31 -7.41

Q
w

en
3-

4B

BF16 - 58.89 95.33 94.49 56.06 48.38 70.63 -

W3G128

RTN 0.00 1.40 0.99 10.60 0.00 2.60 -68.03
GPTQ 41.67 92.00 91.05 41.41 25.00 58.23 -12.4
AWQ 25.00 87.00 90.07 37.88 19.03 51.80 -18.83

Reasoning-QAT 41.11 93.47 93.48 45.79 38.06 62.38 -8.25

W4A4KV4 FlatQuant 32.78 89.93 92.12 47.47 29.10 58.28 -12.35
Reasoning-QAT 36.67 91.40 92.42 48.48 34.95 60.78 -9.85

Table 4: Main results of Reasoning-QAT on Qwen3-0.6B, R1-Qwen-1.5B and Qwen3-4B across
various reasoning benchmarks.

weights, this initialization strategy improves its tolerance to quantization and provides a better start-
ing point for subsequent training.

• Step 2: Knowledge Distillation. Building upon the model from Step 1, we perform knowledge
distillation from the original full-precision model. Guided by the findings in Section 3.2, this step
fine-tunes the QAT model to align its output distribution with that of the full-precision model. After
that, the distilled model not only recovers from the quantization-induced degradation, but also serves
as a stable cold-start actor for RL.

• Step 3: Cold-start RL. Following the prerequisites discussed in Section 3.4, we apply RL on
top of the knowledge-distilled model from Step 2. Here, we employ GRPO (Guo et al., 2025) as
the RL paradigm. This cold start design avoids the collapse issue observed when directly using RL
on heavily quantized models, while utilizing the stabilized initialization to ensure reliable optimiza-
tion. During this stage, RL progressively enhances the reasoning capability of the quantized model,
driving more deterministic outputs and reducing randomness.

4.2 EMPIRICAL EVALUATIONS

Weight-only Quantization. We first analyze the results under the W3G128 quantization setting.
The experimental results of comparison with PTQ are provided in Table 4. Across all three model
scales (Qwen3-0.6B, R1-Qwen-1.5B, and Qwen3-4B), PTQ methods such as RTN, GPTQ, and
AWQ show severe degradation on evaluation benchmarks, with performance drop often exceeding
30% on average. In contrast, our Reasoning-QAT consistently achieves clear accuracy recovery. For
example, on Qwen3-0.6B, the average score improves from 11.42% (GPTQ) to 31.67% (Reasoning-
QAT). This reduces the performance gap to full precision (BF16) by more than 20 points. Sim-
ilar trends are observed for R1-Qwen-1.5B and Qwen3-4B, where our Reasoning-QAT narrows
the gap to only -5.91% and -8.20%, respectively, which obviously outperforms all PTQ baselines.
These results highlight that while PTQ struggles to preserve reasoning ability at 3-bit weights, our
Reasoning-QAT provides a more advanced solution to bridge the quantization gap.

Weight-activation Quantization. We then examine W4A4KV4 quantization as a representative
configuration for weight-activation quantization. This scenario is particularly challenging since
weights, activations, and KV cache are quantized to low bits. Note that we implement Reasoning-
QAT in this setting by loading the transformation matrices from FlatQuant as initialization and
further performing QAT. Unlike the original FlatQuant, which applies layer-wise correction in iso-
lation, our method uses network-wise adjustments during QAT. This holistic optimization makes

8
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RTN GPTQ SFT KD GRPO AIME120 MATH-500 GSM8K AVG
#0 - - - - - 21.67 84.40 84.61 63.56
#1 ✓ - - - 0.83 15.00 15.39 10.41
#2 ✓ - ✓ - - 10.00 73.60 75.54 53.05
#3 ✓ - - ✓ - 14.44 76.20 75.87 55.50
#4 ✓ - - ✓ ✓ 14.44 78.00 77.93 56.79
#5 - ✓ - - - 10.00 71.60 75.66 52.42
#6 - ✓ ✓ - - 14.17 75.53 76.12 55.27
#7 - ✓ - ✓ - 13.89 78.20 77.26 56.45
#8 - ✓ - ✓ ✓ 16.39 79.80 79.35 58.51

Table 5: Ablation studies of Reasoning-QAT, including the PTQ initializations (i.e., RTN and
GPTQ), QAT training paradigms (i.e., SFT, KD and GRPO) based on R1-Qwen-1.5B.

the model account for the propagation of quantization errors across layers, thereby handling the
accumulation of mismatches that single-layer correction cannot capture. As a result, the model
can adaptively correct quantization errors in a globally consistent manner rather than relying solely
on static PTQ calibration. As can be seen, PTQ baselines such as QuaRot and FlatQuant suffer
from large performance decreases. Our method, however, achieves consistent improvements across
all model sizes. For instance, on Qwen3-4B, Reasoning-QAT raises the average score from 58.28
(FlatQuant) to 60.78, effectively narrowing the gap to full precision and demonstrating that our
method can effectively tackle the degradation in W4A4KV4 quantization scenarios.

4.3 ABLATION STUDY

In this ablation study, we clarify the efficacy of each Reasoning-QAT components, which are PTQ
initialization, KD, and GRPO. We specifically assess the 3-bit groupwise weight-only quantization
on R1-Qwen-1.5B model shown in Table 5.

GPTQ Initialization. To investigate the impact of different weight quantization initialization
strategies on the effectiveness of Quantization-Aware Training (QAT), we present QAT models start-
ing from RTN and GPTQ in rows 1-4 and rows 5-8, respectively. It can be found that using GPTQ
for initialization yields a better starting point, resulting in an average improvement of 42.01% (row
1 vs. row 5).

The Effect of KD. Both SFT and KD significantly recover quantization loss. With RTN initial-
ization, SFT yields a 42.64% improvement (row 1 vs. row 2), while KD achieves an 45.09% gain
(row 1 vs. row3). Regardless of initialization, the KD approach demonstrates robustly superior per-
formance over SFT. To be specific, KD achieves higher average accuracy than SFT by 2.45% under
RTN (row 1 vs. row 2) and by 1.18% under GPTQ (row 3 vs. row 4).

The Marginal Improvement by GRPO. To further refine the performance of quantized models
trained with knowledge distillation (KD), we integrate GRPO into the training pipeline. It can be
seen that GRPO further boosts KD performance by 1.29% under RTN (row 3 vs. row 4) and 2.06%
under GPTQ (row 7 vs. row 8), demonstrating its effectiveness in enhancing quantized models
through policy refinement.

5 CONCLUSION

In this work, we presented a comprehensive benchmark of quantization-aware training (QAT) for
reasoning models, revealing four key insights: knowledge distillation as a versatile objective, PTQ as
an effective initialization, the feasibility of combining QAT with RL, and the importance of aligning
QAT data with PTQ calibration. Building on these findings, we proposed Reasoning-QAT, a three-
stage workflow that consistently outperforms PTQ baselines and significantly reduces the gap to
full-precision models under extreme low-bit settings. Our study provides practical guidance for the
efficient deployment of quantized reasoning LLMs.
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This work benchmarks and optimizes QAT for reasoning LLMs. All experiments are conducted
on publicly available datasets and open-source models, without involving any private or sensitive
data. We encourage downstream applications to incorporate safeguards such as usage monitoring,
content filtering, and transparency reporting. We further advocate for the ethical development and
deployment of reasoning LLMs, with particular attention to fairness, robustness, and accountability.

REPRODUCIBILITY STATEMENT

Experimental settings are carefully described and listed in Appendix A. We detail the model choice,
dataset usage in Section 3.1, respectively. To further ensure reproducibility, we promise to open-
source both the code and model checkpoints.
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A TRAINING IMPLEMENTATIONS DETAILS

We list the detailed training hyper-parameters in Tables 6 and 7.

Table 6: Hyperparameters for Phase 1 (Cold Start). This phase involves Supervised Fine-Tuning
(SFT) and Knowledge Distillation (KD) for models under different quantization and initialization
schemes.

Parameter
W3g128 Setting W4A4 Setting

RTN Initialization GPTQ Initialization FlatQuant Init.
SFT KD SFT KD KD

Optimizer Settings
Optimizer Adam
Learning Rate (Peak) 2e-5 2e-5 1e-6 1e-6 1e-6*

LR Scheduler Cosine Decay
Warmup Steps 180 180 180 180 90
Adam Betas (β1, β2) 0.9, 0.95

Training Settings
Global Batch Size 32
Gradient Accumulation 4
Training Steps 6,000 6,000 6,000 6,000 3,000

* For the W4A4 KD setting, we employed differentiated learning rates for three distinct parameter groups:
[Standard model weights: 1e-6, Transformation matrix and scaling factor: 5e-5, Clipping factor: 5e-4].

Table 7: Hyperparameters for Phase 2, Reinforcement Learning via GRPO. These settings are ap-
plied to models after they have completed Phase 1.

Parameter Value
Optimizer Settings
Optimizer Adam
Learning Rate (Peak) 5e-7
LR Scheduler Cosine Decay
Warmup Steps 8
Adam Betas (β1, β2) 0.9, 0.95

Training Settings
Global Batch Size 64
Gradient Accumulation 4
Training Steps 250

Algorithm-Specific Settings
Reward Function Correctness Reward
GRPO Group Size 8
Maximum Generation Length 32768

B THE USE OF LARGE LANGUAGE MODELS

We declare that large language models (LLMs) were employed to assist with the refinement of this
manuscript, specifically, for grammar checking, language polishing, and improving the clarity and
fluency of the text. Additionally, LLMs were used in a limited capacity for minor debugging and
syntactic correction of code snippets included in the work.
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