

000 001 BENCHMARKING AND ADVANCING QUANTIZATION- 002 AWARE TRAINING FOR REASONING MODELS 003 004

005 **Anonymous authors**
006 Paper under double-blind review

007 008 ABSTRACT 009

011 Reasoning models have excelled at complex tasks such as coding and mathematical
012 competitions, yet their reasoning processes suffer from low inference efficiency.
013 Quantization is a popular way to boost efficiency, but prior work shows
014 that it causes large performance drops in these models. To address this, we
015 comprehensively benchmark the quantization-aware training (QAT) for reasoning
016 models. Our key findings are: (1) knowledge distillation serves as a versa-
017 tile objective for reasoning models trained with either supervised fine-tuning or
018 reinforcement-learning algorithms; (2) post-training quantization (PTQ) provides
019 a strong initialization for QAT, improving accuracy while reducing training cost;
020 (3) QAT with reinforcement learning is feasible and yields additional gains for the
021 quantized model; and (4) aligning the domain of QAT training data with the PTQ
022 calibration data further improves the performance. Building on these insights,
023 we propose Reasoning-QAT, an optimized QAT workflow tailored to reasoning
024 models. Empirical results show that Reasoning-QAT outperforms state-of-the-art
025 PTQ methods across multiple LLM backbones and reasoning datasets. For in-
026 stance, on the DeepSeek-R1-Qwen-Distill-1.5B model, Reasoning-QAT surpasses
027 FlatQuant by 2.92% under W4A4KV4 quantization and GPTQ by 4.74% under
028 W3G128 quantization, respectively.

029 1 INTRODUCTION 030

031 Recent large language models (LLMs) (Jaech et al., 2024; Guo et al., 2025; Team et al., 2025) en-
032 dowed with enhanced reasoning capabilities, have achieved remarkable progress in domains like
033 coding and mathematics. However, these advances come with a trade-off: reasoning-focused in-
034 ference is often slower and more redundant, resulting in huge inference overhead (Qu et al., 2025).
035 Quantization has emerged as a promising technique to accelerate LLM inference (Frantar et al.,
036 2022a; Lin et al., 2023; Li et al., 2024; Liu et al., 2024; Li et al., 2025a). However, prior studies (Li
037 et al., 2025b; Srivastava et al., 2025; Liu et al., 2025a) have shown that post-training quantization
038 (PTQ) can cause significant performance degradation in reasoning models under extreme-low bit
039 scenarios, such as 3-bit weight-only quantization or 4-bit weight-activation quantization. We cor-
040 roborate this finding by comparing quantized LLMs on both non-reasoning and reasoning tasks (see
041 Figure 1). As observed, the 4-bit weight quantization with the group-size 128 achieves near-lossless
042 results across tasks, whereas 3-bit variants suffer large performance drops. Note that this degradation
043 is much more severe in reasoning tasks than in non-reasoning ones.

044 To address this limitation, quantization-aware training (QAT) (Tailor et al., 2020; Nagel et al., 2022;
045 Liu et al., 2023; Bondarenko et al., 2024) provides an appealing alternative by explicitly simulating
046 low-precision inference during training. While QAT has demonstrated effectiveness for general-
047 purpose LLMs (Liu et al., 2023; Chen et al., 2024), it remains unclear whether such benefits can be
048 extended to reasoning models. Several unique challenges for applying QAT to reasoning-focused
049 LLMs arise in this context: (1) the uncertainty of which QAT objective is most suitable for continual
050 training in reasoning models; (2) the prohibitive training overhead that limits practical deployment;
051 and (3) the lack of consensus on how to select effective QAT training data.

052 In this study, we present a comprehensive benchmark of quantization-aware training (QAT) for
053 reasoning models. We investigate two representative low-bit settings: 3-bit weight-only quantiza-
054 tion with a group-size 128 and 4-bit weight-activation quantization. Our benchmark covers mod-

els trained under two major reasoning paradigms: (i) supervised fine-tuning (SFT), represented by DeepSeek-R1-Qwen-Distill-1.5B (Guo et al., 2025); and (ii) reinforcement learning (RL), represented by Qwen3-0.6B and Qwen3-4B (Yang et al., 2025). The evaluation is conducted on a wide range of reasoning benchmarks, including AIME-120, MATH-500 (Lightman et al., 2023), GSM8K (Cobbe et al., 2021), GPQA-Diamond (Rein et al., 2024), and LivceCodeBench (Jain et al., 2024). Our empirical findings are summarized as follows: (1) Knowledge distillation (KD) (Hinton et al., 2015) proves to be a powerful training objective, applicable to reasoning models trained via both SFT and RL; (2) PTQ can serve as a strong initialization for QAT, enabling higher accuracy while reducing training costs; (3) QAT combined with RL is not only feasible but also delivers further improvements to quantized models; (4) it is preferred to keep the QAT training dataset and PTQ calibration data from the same domain, which empirically benefits the quantized reasoning models.

Building on these insights, we propose Reasoning-QAT, an optimized QAT workflow tailored to reasoning-focused LLMs. Reasoning-QAT incorporates three steps: (1) PTQ-based initialization, with the purpose of enhance the model’s tolerance to quantization noise and provide a better starting point for subsequent training; (2) knowledge distillation, which aligns the quantized model’s output distribution with that of its full-precision counterpart. It recovers the performance and paves the way for the next stage; and (3) cold-start RL, which adopts GRPO (Guo et al., 2025) as the RL paradigm on top of the knowledge-distilled model. This stage reduces entropy and enforces more deterministic and reliable outputs. Extensive experiments demonstrate that Reasoning-QAT consistently outperforms the state-of-the-art PTQ methods across multiple LLM backbones and reasoning benchmarks. For example, on the DeepSeek-R1-Qwen-Distill-1.5B model, Reasoning-QAT can surpass FlatQuant (Sun et al., 2024) by **2.92%** under W4A4KV4 quantization and GPTQ (Frantar et al., 2022a) by **4.74%** under W3G128 quantization.

To the best of our knowledge, this is the first comprehensive benchmark of quantization-aware training on reasoning models. We hope our research provides valuable guidance for the community toward better quantization methods for reasoning models.

2 PRELIMINARIES

2.1 POST-TRAINING QUANTIZATION FOR REASONING MODELS

Background and Notations. Quantization has been a popular approach for the compression and acceleration of LLMs. Given the model parameters \mathbf{W} stored in the bfloat16 format, quantization aims to convert it to low bit representations \mathbf{W}_{int} , i.e.,

$$\mathbf{W}_{int} = \text{clip}(\lfloor \frac{\mathbf{W}}{s} \rfloor + z, Q_{min}, Q_{max}), \quad (1)$$

where $\text{clip}(\cdot, Q_{min}, Q_{max})$ truncates the associate values inside the minimal Q_{min} and maximal Q_{max} , s is the scaling factor and z is the zero point. For N -bit symmetric quantization, $s = \frac{\max(|\mathbf{W}|)}{2^{N-1}-1}$ and $z = 0$. For asymmetric quantization, $s = \frac{\max(\mathbf{W})-\min(\mathbf{W})}{2^N-1}$, $z = \lfloor \frac{-\min(\mathbf{W})}{s} \rfloor$.

For weight quantization, the low bit quantized weights \mathbf{W}_{int} in the forward pass are then dequantized to $\hat{\mathbf{W}} = s \cdot (\mathbf{W}_{int} - z)$ for the following operations. Instead, for weight-activation quantization, both quantized weights \mathbf{W}_{int} and activations \mathbf{X}_{int} are stored as low bit integers, and their integer matrix multiplication kernel can further reduces the computation aside from size reduction.

Post-training quantization incurs a large performance drop on reasoning models. A majority work of LLM quantization focuses on post-training quantization (PTQ) (Frantar et al., 2022b; Lin et al., 2023; Ashkboos et al., 2024; Sun et al., 2024), where the model is directly quantized without training. PTQ is usually fast and easy to implement, with satisfactory performance on most general natural language tasks. However, recent studies (Liu et al., 2025a) show that quantized reasoning models still exhibit large performance drops particularly on challenging tasks.

To further validate this, we compare the quantized LLMs with PTQ methods on both non-reasoning and reasoning models. From Figure 1, it can be found that for DeepSeek-R1-Distill-Qwen-1.5B (abbr. R1-Qwen-1.5B for simplicity in the following text), the performance degradation on reasoning tasks (e.g., 11.67%↓ on AIME-120 and 12.80%↓ on MATH-500) are much larger than non-reasoning tasks (e.g., 1.03%↓ on Winogrande, 3.13%↓ on Hellaswag). Similar observations can be

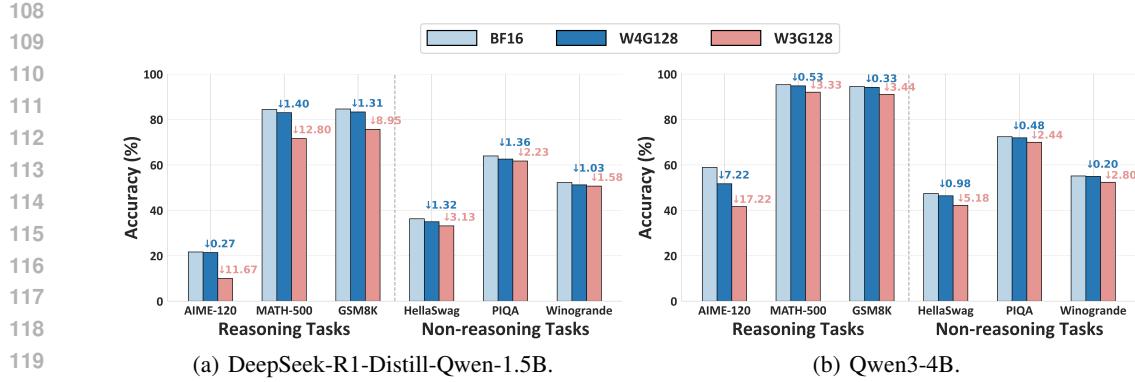


Figure 1: The performance degradation by post-training quantization on reasoning and non-reasoning tasks. We adopt GPTQ with 3-bit weight only quantization with group size 128, and the results are based on DeepSeek-R1-Distill-Qwen-1.5B and Qwen-4B.

found for Qwen3-4B. Therefore, PTQ methods alone can hardly yield satisfactory results, which prohibit practical use of quantized reasoning models.

2.2 QUANTIZATION-AWARE TRAINING FOR REASONING MODELS: NEW CHALLENGES

To tackle the issue of performance degradation in PTQ, quantization-aware training (QAT) is an effective alternative. QAT simulates low-precision inference during training, allowing the model’s weights to adapt to quantization and thereby preserving performance. In the forward pass, QAT inserts “fake quantization” operations to obtain $\hat{\mathbf{W}}$ or $\hat{\mathbf{X}}$ for each linear layer to quantize. Then it computes the loss objective function $\mathcal{L}(\hat{\mathbf{W}})$. In the backward pass, since the quantization function is non-differentiable, the straight-through estimator (STE) is usually adopted to allow the gradient flow back to the original weights \mathbf{W} , i.e., $\frac{\partial \mathcal{L}}{\partial \mathbf{W}} = \frac{\partial \mathcal{L}}{\partial \hat{\mathbf{W}}} \cdot \mathbf{1}(Q_{min} \leq \mathbf{W}/s \leq Q_{max})$. While QAT is shown to be effective on general LLMs (Liu et al., 2023; Chen et al., 2024), its benefit on reasoning models remains largely unexplored. The key challenges to consider include:

Training Paradigm. It remains unclear what QAT objective is preferred for continual training of reasoning models. Standard QAT simply carries over the cross-entropy objective used during full-precision pre-training or instruction fine-tuning (Liu et al., 2025b; Lee et al., 2024). Reasoning models, however, are often trained via either supervised fine-tuning with data collected from stronger teacher models (Guo et al., 2025) or reinforcement learning (Guo et al., 2025; Team et al., 2025; Yang et al., 2025). The combination of QAT with reinforcement learning is also unexplored.

Training Overhead. The large performance degradation by quantization usually requires intensive training for reasoning models to recover the performance. This may greatly increase the time cost of QAT, hindering the practical use when limited time is allowed for deployment.

3 BENCHMARKING QAT FOR REASONING MODELS

In this study, we provide a comprehensive evaluation of quantization-aware training for reasoning models. Based on the discussions in Sec. 2.2, we seek to answer the following research questions:

RQ1 (Sec. 3.2) How to choose the training objective of QAT for reasoning models?

RQ2 (Sec. 3.3) How to improve the training efficiency of QAT?

RQ3 (Sec. 3.4) How does QAT interact with RL algorithms such as GRPO?

RQ4 (Sec. 3.5) How to choose the training dataset of QAT for reasoning models?

162 3.1 SETUPS
163

164 **Quantization Settings.** We quantize all linear layers of the model, excluding the token embedding
165 and lm_head layers. Our primary focus is on 3-bit group-wise weight-only quantization with a
166 group-size of 128 (W3G128), for which we explore two initializations: a symmetric scheme initialized
167 with round-to-nearest (RTN) and an asymmetric scheme initialized with GPTQ. Furthermore,
168 we extend our approach to a joint 4-bit weight and 4-bit activation (W4A4) setting, initialized from
169 FlatQuant, which combines per-channel symmetric weight quantization with per-token asymmetric
170 activation quantization.

171 We evaluate two categories of reasoning models. For distillation-based reasoning models, we adopt
172 DeepSeek-R1-Distill-Qwen-1.5B (Guo et al., 2025). For reasoning models obtained via reinforce-
173 ment learning, we choose Qwen-3-0.6B and Qwen-3-4B (Yang et al., 2025), which are recent, high-
174 performing open-source models.

175 **Datasets.** Our training pipeline consists of two phases with distinct data configurations. In the
176 initial fine-tuning phase (SFT and KD), the weight-only setting uses the OpenR1-Math dataset (Face,
177 2025), which has 94k problems in its default subset, while the weight-activation setting uses 48k
178 text sequences, each with a length of 8192, sampled from WikiText2 (Merity et al., 2017). For the
179 subsequent Reinforcement Learning (RL) phase, both settings use the OpenR1-Math dataset. We
180 hypothesize that such consistency could enhance the stability of the training process.

182 **Evaluation Benchmarks.** We assess quantized models with different training paradigms on a
183 range of reasoning benchmarks. These include: 1) three mathematical reasoning benchmarks
184 sorted by difficulty: AIME-120, which consists of 120 problems from the American Invitational
185 Mathematics Examination (AIME) from 2022 to 2025 to minimize evaluation variations; MATH-
186 500 (Lightman et al., 2023), a benchmark containing a mix of easy and hard mathematical problems
187 designed to test comprehensive reasoning abilities; and GSM8K (Cobbe et al., 2021), a dataset of
188 primary school-level questions focused on basic arithmetic and algebra; 2) LiveCodeBench (Jain
189 et al., 2024), a benchmark for evaluating large language models on code generation tasks; and 3)
190 GPQA-Diamond (Rein et al., 2024), a graduate-level proof question and answer benchmark that
191 tests the ability of models to generate accurate mathematical proofs. All evaluations are based on
192 Lighteval (Fourrier et al., 2023) with the vLLM (Kwon et al., 2023) backend. The sampling tem-
193 perature is set to 0.6 and top-p is fixed to 0.95. The maximum number of generated tokens is 32,768.
194 To account for randomness, we use three seeds for each evaluation and report the average score.

195 **Training Implementations.** We implement and evaluate three distinct fine-tuning algorithms
196 within our Quantization-Aware Training (QAT) framework. For Supervised Fine-Tuning (SFT), we
197 adopt the standard cross-entropy loss objective. For Knowledge Distillation (KD), the QAT model
198 serves as the student and is trained to mimic the output distribution of the full-precision teacher
199 model by minimizing the KL divergence loss. For Reinforcement Learning (RL), we employ the
200 Group Relative Policy Optimization (GRPO) algorithm (Shao et al., 2024). Further details on hy-
201 perparameters for each method are provided in Appendix A.

203 3.2 QAT TRAINING OBJECTIVES: SFT OR KD?
204

205 We aim to identify the proper training objectives for QAT. Recall that existing reasoning models are
206 optimized via either supervised fine-tuning (e.g., R1-Qwen-1.5B) or reinforcement learning (e.g.,
207 Qwen3-4B). We first study two widely used QAT objectives (i.e., SFT and KD) for both kinds of
208 reasoning models to investigate whether these objectives are compatible with the models’ original
209 training paradigms. We adopt weight-only quantization of W3G128 as the default setting.

210 Table 1 shows the performance recovery of KD and SFT for R1-Qwen-1.5B and Qwen3-4B on four
211 reasoning benchmarks. The key observations can be summarized as follows: 1) KD demonstrates
212 higher accuracy than SFT on reasoning models originally trained via SFT and RL. Specifically,
213 SFT suffers an average accuracy drop of 10.51% \downarrow and 29.85% \downarrow on R1-Qwen-1.5B and Qwen3-4B,
214 respectively. In contrast, KD results in drops of only 8.06% \downarrow and 9.26% \downarrow for the two models; 2) KD
215 exhibits stronger synergy with both SFT- and RL-trained models, i.e., the performance drops on both
models are similar (8.06% \downarrow vs. 9.26% \downarrow). However, while SFT suffers a relatively moderate drop

Model	Setting	Method	AIME120	MATH-500	GSM8K	AVG	Drop \downarrow
R1-Qwen-1.5B	BF16	-	21.67	84.4	84.61	63.56	-
		RTN	0.83	15.00	15.39	10.41	53.15% \downarrow
	W3G128	SFT	10.00	73.60	75.54	53.05	10.51% \downarrow
		KD	14.44	76.20	75.87	55.50	8.06% \downarrow
Qwen3-4B	BF16	-	58.89	95.33	94.49	82.90	-
		RTN	0.00	1.40	0.99	0.80	82.10% \downarrow
	W3G128	SFT	14.44	81.80	88.25	53.05	29.85% \downarrow
		KD	37.50	92.00	91.43	73.64	9.26% \downarrow

Table 1: Comparison of QAT objectives (SFT and KD) on two representative reasoning models trained either with SFT or RL, i.e., R1-Qwen-1.5B and Qwen3-4B.

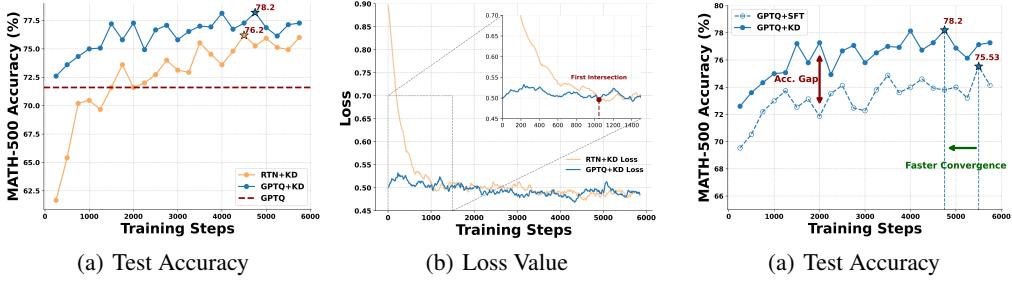


Figure 2: (a) Test accuracy (%) of RTN+KD and GPTQ+KD on MATH-500. We evaluate the two methods on MATH-500. (b) Training loss of RTN+KD and GPTQ+KD. Figure 3: Test accuracy (%) of GPTQ+KD and GPTQ+SFT on MATH-500.

on R1-Qwen-1.5B, it suffers a significantly larger performance drop (29.85% \downarrow) on Qwen3-4B. We therefore recommend KD over SFT as the QAT training objective, given its superior performance and stronger synergy with reasoning models originally trained with both SFT and RL.

3.3 TRAINING EFFICIENCY OF QAT

Initializing QAT with PTQ. In previous work, it has been standard practice to initialize QAT from a pretrained full-precision model (Liu et al., 2023; Du et al., 2024). Here, we systematically investigate how PTQ-based initializations affect the convergence and accuracy of QAT. Specifically, we employ GPTQ (Frantar et al., 2022a) for initialization, using weights that have been adjusted via Hessian-based compensation prior to the quantization process. As shown in Figure 2(a)-(b), we compare the test accuracy and training loss of RTN+KD and GPTQ+KD on the MATH-500 benchmark using the R1-Qwen-1.5B model. Armed with the GPTQ-initialized weights, GPTQ+KD enjoys a higher starting point (higher test accuracy and lower loss). Besides, GPTQ+KD consistently outperforms RTN+KD and exhibits a faster convergence rate within the same number of training steps. Therefore, PTQ acts as an effective initialization to improve the training efficiency of QAT.

Training Efficiency of KD. In addition to studying the initialization of quantized models, we further compare the training efficiency of KD versus SFT, as shown in Figure 3. The results show that KD consistently achieves higher accuracy than SFT and also converges faster.

3.4 QAT WITH REINFORCEMENT LEARNING

Prerequisites of QAT with RL. Reinforcement Learning (RL) has demonstrated notable success in enhancing the reasoning capability of large foundation models. However, its applicability to QAT remains largely unexplored. Here, our results reveal the critical prerequisite for employing RL in QAT: RL must be applied to a properly initialized model; otherwise, the training will collapse. We thus study the necessary conditions that enable the integration of RL with QAT. We compare two

RTN	KD	GRPO	AIME120	MATH-500	GSM8K	AVG
-	-	-	21.67	84.40	84.61	63.56
✓	-	-	0.83	15.00	15.39	10.41
✓	-	✓	1.67	15.33	15.52	10.84
✓	✓	✓	14.44	78.00	77.93	56.79

Table 2: Preliminary ablations of QAT with RL based on R1-Qwen-1.5B.

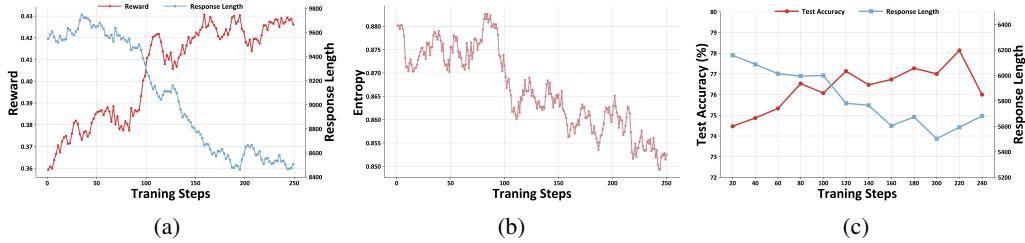


Figure 4: (a) Training reward and response length for RL QAT after cold-start. (b) Training entropy curve. (c) Test accuracy curve and corresponding response length across training steps.

settings: zero-RL QAT and cold-start RL QAT. For zero-RL QAT, we apply RL directly to the base model without any supervised fine-tuning (Guo et al., 2025), i.e., using a model pre-quantized with RTN. For cold-start RL QAT, we use a model fine-tuned with KD as the initial RL actor. During the RL phase, we employ GRPO (Guo et al., 2025) with only a correctness reward to encourage the model to sample high-reward outputs. As shown in Table 2, zero-RL QAT collapses completely, whereas cold-start RL QAT further improves reasoning ability, yielding an accuracy improvement of around 46% over the zero-RL setting. Therefore, when starting from an RTN-based model that suffers from drastic quantization error, the RL process struggles to produce high-quality outputs during inference and is unable to generate effective rewards. This contrast highlights the key prerequisite: *RL alone cannot rescue a heavily quantized model, but with a cold-start initialization, RL becomes an effective driver for enhancing reasoning ability.*

Critical Roles of RL. The experimental results in Figure 4 clearly demonstrate the indispensable roles that RL plays in the QAT process. First, as shown in Figure 4(a), RL simultaneously increases reward and suppresses excessive response length. This means that RL can prevent the quantized model from using response length to gain reward, instead guiding it toward truly high-quality outputs. Second, as shown in Figure 4(b), RL drives a decrease in entropy, which reduces prediction randomness and enforces more deterministic and reliable outputs. This curve indicates the role of RL in avoiding collapse while ensuring stable convergence in the presence of quantization errors. Lastly, in Figure 4(c), RL evidently improves test accuracy while reducing response length, demonstrating its ability to enhance model generalization without relying on unnecessarily verbose outputs. Overall, these results and corresponding analyses confirm the critical roles of RL in quantized reasoning models.

3.5 THE CHOICE OF QAT TRAINING DATASET

The choice of a QAT training dataset for reasoning models is another open challenge. In particular, it remains unclear how data from different domains influence the optimization dynamics and final performance of QAT. To study this, we compare two datasets: WikiText2 (a natural language dataset) and OpenR1-Math (a reasoning-based math dataset). Following the setup in Section 3.3, we initialize the QAT models using PTQ. Calibration is performed using either WikiText2 or NuminaMath-1.5, where the latter is closely aligned with OpenR1-Math¹. Starting from these PTQ-initialized weights, we then conduct knowledge distillation for QAT on both WikiText2 and OpenR1-Math.

¹Note that OpenR1-Math consists of reasoning traces generated by DeepSeek R1 for problems from NuminaMath 1.5. More details can be found at <https://huggingface.co/datasets/open-r1/OpenR1-Math-220k>.

Setting	PTQ	QAT	step 1000	Accuracy step 2000	step 3000	Best Acc.
W3G128	NuminaMath-1.5	Wikitext2	74.33	73.33	73.33	75.33
		OpenR1	75.00	77.27	77.07	78.53
W4A4KV4	Wikitext2	Wikitext2	71.67	73.13	71.80	73.20
		OpenR1	43.27	44.40	43.70	45.80

Table 3: Comparison with different QAT data. With two different training datasets on the R1-Qwen-1.5B model, we present the MATH-500 test accuracy during training and the final best accuracy.

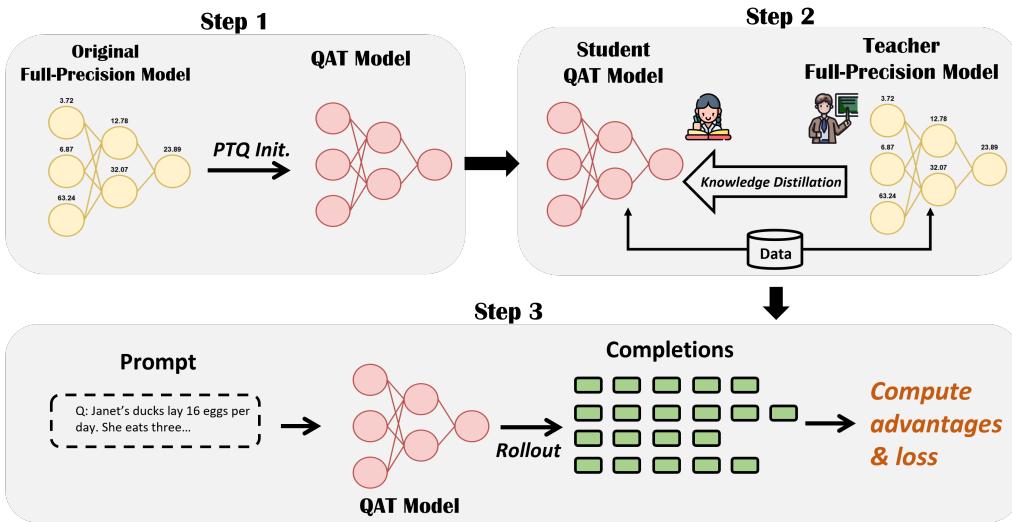


Figure 5: The overall workflow of the proposed Reasoning-QAT. Step 1: PTQ-based initialization can provide a better starting point. Step 2: KD from the original full-precision model to align the teacher’s behavior, and also serve as a cold-start for subsequent RL. Step 3: Based on cold-start, RL can further recover the reasoning ability of the QAT model.

As summarized in Table 3, the results demonstrate that aligning the QAT training dataset with the PTQ calibration data leads to better performance. When QAT is performed on OpenR1-Math with PTQ calibrated on NuminaMath-1.5, the model achieves the highest accuracy (i.e., 78.53%) and exhibits faster convergence compared to the mismatched setting. Conversely, when QAT training is performed on Wikitext2 while PTQ calibration is done on NuminaMath-1.5, model performance drops clearly. These findings suggest that *it is beneficial to keep the consistency between PTQ calibration data and training dataset of QAT for quantized reasoning models, and offer practical guidance for QAT data selection for those reasoning models quantized by PTQ*.

For QAT with RL, we omit the comparisons but consistently choose OpenR1-Math as the training dataset, as it remains unclear to reward the general Wikitext2 dataset.

4 QAT FOR REASONING MODELS: THE ULTIMATE WORKFLOW

Based on the observations in Section 3, we provide the ultimate workflow in Figure 5, which includes three key steps to guide practical applications and support downstream usage. Note that our workflow is agnostic to the choice of quantization configurations, which can be applied to both weight-only and weight-activation quantization.

4.1 DETAILED PIPELINE AND ALGORITHM

• **Step 1: PTQ-based Initialization.** Motivated by Section 3.3, we rectify the latent weights with PTQ techniques as the initial state for QAT. While the QAT model still remains with continuous

378	Model	W-Bits	Methods	AIME-120	MATH-500	GSM8K	GPQA-Diamond	LiveCode-Bench	Avg.	Drop ↓
379	Qwen3-0.6B	BF16	-	11.11	74.00	79.00	28.45	12.94	41.10	-
380		RTN	0.00	0.80	0.30	24.24	0.00	5.07	5.07	-36.03
381		GPTQ	0.83	11.80	20.24	24.24	0.00	11.42	11.42	-29.62
382		AWQ	0.00	5.20	10.01	26.77	0.00	8.40	8.40	-32.70
383		Reasoning-QAT	3.89	57.80	67.02	27.78	1.87	31.67	31.67	-9.43
384		W4A4KV4	QuaRot	0.00	0.00	24.24	0.00	4.84	4.84	-36.26
385		FlatQuant	0.28	21.67	33.06	29.80	1.87	17.34	17.34	-23.76
386		Reasoning-QAT	0.00	30.27	48.62	26.94	1.37	21.44	21.44	-19.66
387		BF16	-	21.67	84.40	84.61	36.87	16.04	48.72	-
388	R1-1.5B	RTN	0.83	15.00	15.39	19.19	0.00	10.08	10.08	-38.64
389		GPTQ	10.00	71.60	75.66	23.74	9.33	38.07	38.07	-10.65
390		AWQ	3.33	48.80	65.81	37.88	4.85	32.13	32.13	-16.58
391		Reasoning-QAT	16.39	79.80	79.35	30.30	8.21	42.81	42.81	-5.91
392		QuaRot	0.00	1.20	0.76	8.59	0.00	2.11	2.11	-46.61
393		FlatQuant	10.00	64.80	78.62	31.82	6.72	38.39	38.39	-10.33
394		Reasoning-QAT	12.50	73.20	77.94	32.83	10.07	41.31	41.31	-7.41
395	Qwen3-4B	BF16	-	58.89	95.33	94.49	56.06	48.38	70.63	-
396		RTN	0.00	1.40	0.99	10.60	0.00	2.60	2.60	-68.03
397		GPTQ	41.67	92.00	91.05	41.41	25.00	58.23	58.23	-12.4
398		AWQ	25.00	87.00	90.07	37.88	19.03	51.80	51.80	-18.83
399		Reasoning-QAT	41.11	93.47	93.48	45.79	38.06	62.38	62.38	-8.25
400		FlatQuant	32.78	89.93	92.12	47.47	29.10	58.28	58.28	-12.35
401		Reasoning-QAT	36.67	91.40	92.42	48.48	34.95	60.78	60.78	-9.85

Table 4: Main results of Reasoning-QAT on Qwen3-0.6B, R1-Qwen-1.5B and Qwen3-4B across various reasoning benchmarks.

weights, this initialization strategy improves its tolerance to quantization and provides a better starting point for subsequent training.

• **Step 2: Knowledge Distillation.** Building upon the model from Step 1, we perform knowledge distillation from the original full-precision model. Guided by the findings in Section 3.2, this step fine-tunes the QAT model to align its output distribution with that of the full-precision model. After that, the distilled model not only recovers from the quantization-induced degradation, but also serves as a stable cold-start actor for RL.

• **Step 3: Cold-start RL.** Following the prerequisites discussed in Section 3.4, we apply RL on top of the knowledge-distilled model from Step 2. Here, we employ GRPO (Guo et al., 2025) as the RL paradigm. This cold start design avoids the collapse issue observed when directly using RL on heavily quantized models, while utilizing the stabilized initialization to ensure reliable optimization. During this stage, RL progressively enhances the reasoning capability of the quantized model, driving more deterministic outputs and reducing randomness.

4.2 EMPIRICAL EVALUATIONS

Weight-only Quantization. We first analyze the results under the W3G128 quantization setting. The experimental results of comparison with PTQ are provided in Table 4. Across all three model scales (Qwen3-0.6B, R1-Qwen-1.5B, and Qwen3-4B), PTQ methods such as RTN, GPTQ, and AWQ show severe degradation on evaluation benchmarks, with performance drop often exceeding 30% on average. In contrast, our Reasoning-QAT consistently achieves clear accuracy recovery. For example, on Qwen3-0.6B, the average score improves from 11.42% (GPTQ) to 31.67% (Reasoning-QAT). This reduces the performance gap to full precision (BF16) by more than 20 points. Similar trends are observed for R1-Qwen-1.5B and Qwen3-4B, where our Reasoning-QAT narrows the gap to only -5.91% and -8.20%, respectively, which obviously outperforms all PTQ baselines. These results highlight that while PTQ struggles to preserve reasoning ability at 3-bit weights, our Reasoning-QAT provides a more advanced solution to bridge the quantization gap.

Weight-activation Quantization. We then examine W4A4KV4 quantization as a representative configuration for weight-activation quantization. This scenario is particularly challenging since weights, activations, and KV cache are quantized to low bits. Note that we implement Reasoning-QAT in this setting by loading the transformation matrices from FlatQuant as initialization and further performing QAT. Unlike the original FlatQuant, which applies layer-wise correction in isolation, our method uses network-wise adjustments during QAT. This holistic optimization makes

	RTN	GPTQ	SFT	KD	GRPO	AIME120	MATH-500	GSM8K	AVG
#0	-	-	-	-	-	21.67	84.40	84.61	63.56
#1	✓	-	-	-	-	0.83	15.00	15.39	10.41
#2	✓	-	✓	-	-	10.00	73.60	75.54	53.05
#3	✓	-	-	✓	-	14.44	76.20	75.87	55.50
#4	✓	-	-	✓	✓	14.44	78.00	77.93	56.79
#5	-	✓	-	-	-	10.00	71.60	75.66	52.42
#6	-	✓	✓	-	-	14.17	75.53	76.12	55.27
#7	-	✓	-	✓	-	13.89	78.20	77.26	56.45
#8	-	✓	-	✓	✓	16.39	79.80	79.35	58.51

Table 5: Ablation studies of Reasoning-QAT, including the PTQ initializations (i.e., RTN and GPTQ), QAT training paradigms (i.e., SFT, KD and GRPO) based on R1-Qwen-1.5B.

the model account for the propagation of quantization errors across layers, thereby handling the accumulation of mismatches that single-layer correction cannot capture. As a result, the model can adaptively correct quantization errors in a globally consistent manner rather than relying solely on static PTQ calibration. As can be seen, PTQ baselines such as QuaRot and FlatQuant suffer from large performance decreases. Our method, however, achieves consistent improvements across all model sizes. For instance, on Qwen3-4B, Reasoning-QAT raises the average score from 58.28 (FlatQuant) to 60.78, effectively narrowing the gap to full precision and demonstrating that our method can effectively tackle the degradation in W4A4KV4 quantization scenarios.

4.3 ABLATION STUDY

In this ablation study, we clarify the efficacy of each Reasoning-QAT components, which are PTQ initialization, KD, and GRPO. We specifically assess the 3-bit groupwise weight-only quantization on R1-Qwen-1.5B model shown in Table 5.

GPTQ Initialization. To investigate the impact of different weight quantization initialization strategies on the effectiveness of Quantization-Aware Training (QAT), we present QAT models starting from RTN and GPTQ in rows 1-4 and rows 5-8, respectively. It can be found that using GPTQ for initialization yields a better starting point, resulting in an average improvement of 42.01% (row 1 vs. row 5).

The Effect of KD. Both SFT and KD significantly recover quantization loss. With RTN initialization, SFT yields a 42.64% improvement (row 1 vs. row 2), while KD achieves an 45.09% gain (row 1 vs. row3). Regardless of initialization, the KD approach demonstrates robustly superior performance over SFT. To be specific, KD achieves higher average accuracy than SFT by 2.45% under RTN (row 1 vs. row 2) and by 1.18% under GPTQ (row 3 vs. row 4).

The Marginal Improvement by GRPO. To further refine the performance of quantized models trained with knowledge distillation (KD), we integrate GRPO into the training pipeline. It can be seen that GRPO further boosts KD performance by 1.29% under RTN (row 3 vs. row 4) and 2.06% under GPTQ (row 7 vs. row 8), demonstrating its effectiveness in enhancing quantized models through policy refinement.

5 CONCLUSION

In this work, we presented a comprehensive benchmark of quantization-aware training (QAT) for reasoning models, revealing four key insights: knowledge distillation as a versatile objective, PTQ as an effective initialization, the feasibility of combining QAT with RL, and the importance of aligning QAT data with PTQ calibration. Building on these findings, we proposed Reasoning-QAT, a three-stage workflow that consistently outperforms PTQ baselines and significantly reduces the gap to full-precision models under extreme low-bit settings. Our study provides practical guidance for the efficient deployment of quantized reasoning LLMs.

486 ETHICS STATEMENT
487488 This work benchmarks and optimizes QAT for reasoning LLMs. All experiments are conducted
489 on publicly available datasets and open-source models, without involving any private or sensitive
490 data. We encourage downstream applications to incorporate safeguards such as usage monitoring,
491 content filtering, and transparency reporting. We further advocate for the ethical development and
492 deployment of reasoning LLMs, with particular attention to fairness, robustness, and accountability.
493494 REPRODUCIBILITY STATEMENT
495496 Experimental settings are carefully described and listed in Appendix A. We detail the model choice,
497 dataset usage in Section 3.1, respectively. To further ensure reproducibility, we promise to open-
498 source both the code and model checkpoints.
499500 REFERENCES
501502 Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L Croci, Bo Li, Martin Jaggi, Dan Alistarh,
503 Torsten Hoefer, and James Hensman. Quarot: Outlier-free 4-bit inference in rotated llms. [arXiv
504 preprint arXiv:2404.00456](#), 2024.505 Yelysei Bondarenko, Riccardo Del Chiaro, and Markus Nagel. Low-rank quantization-aware training
506 for llms. [arXiv preprint arXiv:2406.06385](#), 2024.508 Mengzhao Chen, Wenqi Shao, Peng Xu, Jiahao Wang, Peng Gao, Kaipeng Zhang, and Ping Luo.
509 Efficientqat: Efficient quantization-aware training for large language models. [arXiv preprint
510 arXiv:2407.11062](#), 2024.512 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
513 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
514 Schulman. Training verifiers to solve math word problems. [arXiv preprint arXiv:2110.14168](#),
515 2021.516 Dayou Du, Yijia Zhang, Shijie Cao, Jiaqi Guo, Ting Cao, Xiaowen Chu, and Ningyi Xu. Bitdistiller:
517 Unleashing the potential of sub-4-bit llms via self-distillation. [arXiv preprint arXiv:2402.10631](#),
518 2024.519 Hugging Face. Open r1: A fully open reproduction of deepseek-r1, January 2025. URL <https://github.com/huggingface/open-r1>.
520522 Clémentine Fourrier, Nathan Habib, Hynek Kydlíček, Thomas Wolf, and Lewis Tunstall. Light-
523 eval: A lightweight framework for llm evaluation, 2023. URL [https://github.com/
524 huggingface/lighteval](https://github.com/huggingface/lighteval).526 Elias Frantar, Saleh Ashkboos, Torsten Hoefer, and Dan Alistarh. Gptq: Accurate post-training
527 quantization for generative pre-trained transformers. [arXiv preprint arXiv:2210.17323](#), 2022a.528 Elias Frantar, Saleh Ashkboos, Torsten Hoefer, and Dan Alistarh. Optq: Accurate quantization
529 for generative pre-trained transformers. In [The Eleventh International Conference on Learning
530 Representations](#), 2022b.532 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
533 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
534 via reinforcement learning. [arXiv preprint arXiv:2501.12948](#), 2025.535 Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. [arXiv
536 preprint arXiv:1503.02531](#), 2015.
537538 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
539 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. [arXiv
preprint arXiv:2412.16720](#), 2024.

540 Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
 541 Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
 542 evaluation of large language models for code. [arXiv preprint arXiv:2403.07974](https://arxiv.org/abs/2403.07974), 2024.

543

544 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
 545 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
 546 serving with pagedattention. In [Proceedings of the 29th Symposium on Operating Systems
 547 Principles](https://www.usenix.org/conference/osdi23/technical-sessions/presentation/woosuk-kwon), pp. 611–626, 2023.

548 Janghwan Lee, Seongmin Park, Sukjin Hong, Minsoo Kim, Du-Seong Chang, and Jungwook Choi.
 549 Improving conversational abilities of quantized large language models via direct preference align-
 550 [ment. arXiv preprint arXiv:2407.03051](https://arxiv.org/abs/2407.03051), 2024.

551

552 Shiyao Li, Xuefei Ning, Luning Wang, Tengxuan Liu, Xiangsheng Shi, Shengen Yan, Guohao Dai,
 553 Huazhong Yang, and Yu Wang. Evaluating quantized large language models. [arXiv preprint
 554 arXiv:2402.18158](https://arxiv.org/abs/2402.18158), 2024.

555 Yuhang Li, Ruokai Yin, Donghyun Lee, Shiting Xiao, and Priyadarshini Panda. Gptaq: Efficient
 556 finetuning-free quantization for asymmetric calibration. [arXiv preprint arXiv:2504.02692](https://arxiv.org/abs/2504.02692), 2025a.

557

558 Zhen Li, Yupeng Su, Runming Yang, Congkai Xie, Zheng Wang, Zhongwei Xie, Ngai Wong, and
 559 Hongxia Yang. Quantization meets reasoning: Exploring llm low-bit quantization degradation for
 560 mathematical reasoning. [arXiv preprint arXiv:2501.03035](https://arxiv.org/abs/2501.03035), 2025b.

561

562 Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
 563 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In [The Twelfth
 564 International Conference on Learning Representations](https://www.usenix.org/conference/learningrep23/technical-sessions/presentation/hunter-lightman), 2023.

565

566 Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
 567 Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
 568 llm compression and acceleration. [arXiv preprint arXiv:2306.00978](https://arxiv.org/abs/2306.00978), 2023.

569

570 Ruikang Liu, Haoli Bai, Haokun Lin, Yuening Li, Han Gao, Zhengzhuo Xu, Lu Hou, Jun Yao,
 571 and Chun Yuan. Intactkv: Improving large language model quantization by keeping pivot tokens
 572 intact. [arXiv preprint arXiv:2403.01241](https://arxiv.org/abs/2403.01241), 2024.

573

574 Ruikang Liu, Yuxuan Sun, Manyi Zhang, Haoli Bai, Xianzhi Yu, Tiezheng Yu, Chun Yuan, and
 575 Lu Hou. Quantization hurts reasoning? an empirical study on quantized reasoning models. [arXiv
 576 preprint arXiv:2504.04823](https://arxiv.org/abs/2504.04823), 2025a.

577

578 Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang
 579 Shi, Raghuraman Krishnamoorthi, and Vikas Chandra. Llm-qat: Data-free quantization aware
 580 training for large language models. [arXiv preprint arXiv:2305.17888](https://arxiv.org/abs/2305.17888), 2023.

581

582 Zechun Liu, Changsheng Zhao, Hanxian Huang, Sijia Chen, Jing Zhang, Jiawei Zhao, Scott Roy,
 583 Lisa Jin, Yunyang Xiong, Yangyang Shi, et al. Paretoq: Scaling laws in extremely low-bit llm
 584 quantization. [arXiv preprint arXiv:2502.02631](https://arxiv.org/abs/2502.02631), 2025b.

585

586 Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
 587 models. In [ICLR](https://openreview.net/forum?id=1000000000000000000), 2017.

588

589 Markus Nagel, Marios Fournarakis, Yelysei Bondarenko, and Tijmen Blankevoort. Overcoming
 590 oscillations in quantization-aware training. In [International Conference on Machine Learning](https://openreview.net/forum?id=1000000000000000000),
 591 pp. 16318–16330. PMLR, 2022.

592

593 Xiaoye Qu, Yafu Li, Zhaochen Su, Weigao Sun, Jianhao Yan, Dongrui Liu, Ganqu Cui, Daizong
 594 Liu, Shuxian Liang, Junxian He, et al. A survey of efficient reasoning for large reasoning models:
 595 Language, multimodality, and beyond. [arXiv preprint arXiv:2503.21614](https://arxiv.org/abs/2503.21614), 2025.

596

597 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
 598 rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
 599 mark. In [First Conference on Language Modeling](https://openreview.net/forum?id=1000000000000000000), 2024.

594 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
595 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
596 reasoning in open language models. [arXiv preprint arXiv:2402.03300](https://arxiv.org/abs/2402.03300), 2024.

597

598 Gaurav Srivastava, Shuxiang Cao, and Xuan Wang. Towards reasoning ability of small language
599 models. [arXiv preprint arXiv:2502.11569](https://arxiv.org/abs/2502.11569), 2025.

600

601 Yuxuan Sun, Ruikang Liu, Haoli Bai, Han Bao, Kang Zhao, Yuening Li, Jiaxin Hu, Xianzhi Yu,
602 Lu Hou, Chun Yuan, et al. Flatquant: Flatness matters for llm quantization. [arXiv preprint
602 arXiv:2410.09426](https://arxiv.org/abs/2410.09426), 2024.

603

604 Shyam A Tailor, Javier Fernandez-Marques, and Nicholas D Lane. Degree-quant: Quantization-
605 aware training for graph neural networks. [arXiv preprint arXiv:2008.05000](https://arxiv.org/abs/2008.05000), 2020.

606

607 Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
608 Yanru Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. [arXiv
608 preprint arXiv:2507.20534](https://arxiv.org/abs/2507.20534), 2025.

609

610 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
611 Chang Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. [arXiv preprint
611 arXiv:2505.09388](https://arxiv.org/abs/2505.09388), 2025.

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 A TRAINING IMPLEMENTATIONS DETAILS
649650 We list the detailed training hyper-parameters in Tables 6 and 7.
651652 Table 6: Hyperparameters for Phase 1 (Cold Start). This phase involves Supervised Fine-Tuning
653 (SFT) and Knowledge Distillation (KD) for models under different quantization and initialization
654 schemes.

Parameter	W3g128 Setting				W4A4 Setting	
	RTN Initialization		GPTQ Initialization			
	SFT	KD	SFT	KD		
Optimizer Settings						
Optimizer				Adam		
Learning Rate (Peak)	2e-5	2e-5	1e-6	1e-6	1e-6*	
LR Scheduler				Cosine Decay		
Warmup Steps	180	180	180	180	90	
Adam Betas (β_1, β_2)				0.9, 0.95		
Training Settings						
Global Batch Size				32		
Gradient Accumulation				4		
Training Steps	6,000	6,000	6,000	6,000	3,000	

669 * For the W4A4 KD setting, we employed differentiated learning rates for three distinct parameter groups:
670 [Standard model weights: 1e-6, Transformation matrix and scaling factor: 5e-5, Clipping factor: 5e-4].672 Table 7: Hyperparameters for Phase 2, Reinforcement Learning via GRPO. These settings are ap-
673 plied to models after they have completed Phase 1.

Parameter	Value
Optimizer Settings	
Optimizer	Adam
Learning Rate (Peak)	5e-7
LR Scheduler	Cosine Decay
Warmup Steps	8
Adam Betas (β_1, β_2)	0.9, 0.95
Training Settings	
Global Batch Size	64
Gradient Accumulation	4
Training Steps	250
Algorithm-Specific Settings	
Reward Function	Correctness Reward
GRPO Group Size	8
Maximum Generation Length	32768

692 B THE USE OF LARGE LANGUAGE MODELS
693694 We declare that large language models (LLMs) were employed to assist with the refinement of this
695 manuscript, specifically, for grammar checking, language polishing, and improving the clarity and
696 fluency of the text. Additionally, LLMs were used in a limited capacity for minor debugging and
697 syntactic correction of code snippets included in the work.