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Abstract
A common training approach for language001
models involves using a large-scale language002
model to expand a human-provided dataset,003
which is subsequently used for model training.004
This method significantly reduces training005
costs by eliminating the need for extensive006
human data annotation. However, it still007
faces challenges such as high carbon emissions008
during data augmentation and the risk of data009
leakage when we use closed-source LLMs.010

To address these issues, we propose a011
self-evolution method for language models.012
First, we introduce the Multi-level Principle013
Generation, which enables a large-scale model014
to summarize task-completion principles based015
on a small amount of task data. Then,016
we propose the Principle-based Instance017
Generation, in which a smaller-scale language018
model uses these task principles to generate a019
large amount of data. This data is then used for020
model training. Experimental results show that021
our proposed method significantly improves022
model performance compared to directly using023
a smaller-scale language model to generate024
data. Additionally, since we only use the025
large-scale language model to generate the task-026
completion principles, the carbon emissions027
associated with training the model are greatly028
reduced. Our code is available at https://029
anonymous.4open.science/r/PSI-0ED6/.030

1 Introduction031

Instruction tuning (Ouyang et al., 2022; Chung032

et al., 2024) is a crucial step in training large033

language models (LLMs). Through supervised034

learning on a large dataset of instruction-response035

pairs, LLMs acquire the ability to follow036

instructions and utilize the knowledge accumulated037

during pre-training. This capability allows038

LLMs to be applied to a wider range of tasks.039

Additionally, this training approach enables LLMs040

to be applied on more task-specific applications041

and more tasks in vertical domains.042
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Figure 1: Comparison between existing self-instruct
methods (a) and our proposed PSI (b). Instead of using
large-scale LM to generate an instruction-tuning dataset,
PSI employs small-scale LM to generate a high-quality
dataset using the principles as guidance.

Existing instruction tuning methods typically 043

obtain large-scale datasets from two sources. The 044

first involves employing a large number of human 045

annotators to annotate the training data (Zhou 046

et al., 2023; Sanh et al., 2022). While this method 047

can produce high-quality datasets, it is expensive 048

and time-consuming. And the second method 049

uses a larger-scale LM to generate the instances, 050

known as the self-instruct framework (Wang et al., 051

2023a; Taori et al., 2023). This approach usually 052

requires human annotation of a small seed dataset, 053

after which a large-scale LM mimics the examples 054

in the seed dataset and incorporates the domain 055

knowledge to generate a larger dataset. This 056

method has been widely applied to tasks such 057

as question answering and reasoning in specific 058

domains, e.g., tool learning (Gao et al., 2024). 059

Since the self-instruct method requires a 060

powerful large-scale LM to perform data 061

annotation in order to obtain high-quality datasets, 062

it involves providing these large-scale LMs with 063

some task examples in the input and having 064

them generate a large-scale dataset. Due to the 065

large number of parameters in these LLMs, the 066
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instances generation process inevitably produces a067

significant amount of carbon emissions. However,068

using smaller LLMs to generate instances fails069

to meet the high-quality dataset requirements for070

instruction fine-tuning (Wang et al., 2023b).071

On the other hand, most self-instruct methods072

(Xu et al., 2024; Peng et al., 2023; Liu et al., 2023)073

rely on closed-source LLMs, such as ChatGPT and074

Claude. During the instances generation process,075

we need to provide these closed-source models with076

example instances as well as additional knowledge077

required for instances generation (Li et al., 2024b).078

For example, when annotating domain-specific079

tool-learning instances, we need to include internal080

tool API documentation in the prompts to generate081

data using these tools (Qin et al., 2024; Yin et al.,082

2023). However, this approach risks leaking083

internal tool documentation. In some applications,084

due to privacy and security concerns, we cannot085

have permission to transfer these tool documents086

to closed-source model service providers.087

Therefore, in this paper, we propose the088

Principle-based Self-Instruct (PSI) method. This089

approach involves having the large LM generate090

a few task-completion principles, which are then091

used by a smaller LM to generate a high-quality,092

large-scale dataset by following these principles.093

This method avoids having the large model directly094

generate the entire dataset and eliminates the need095

to transfer domain-specific knowledge to closed-096

source model service providers. First, we introduce097

the Multi-level Principle Generation method, where098

the large-scale LM reflects and summarizes multi-099

level principles for completing tasks based on a100

seed dataset annotated by humans. The Multi-level101

Principle Generation method starts by randomly102

sampling several subsets from the seed dataset. To103

generate more targeted task principles, we first let104

a smaller LM directly generate instances based on105

the seed dataset. Then, we use a large-scale LM106

to generate task principles that better describe the107

points where the smaller LM is prone to errors.108

Subsequently, through further summarization and109

reflection, we obtain a refined, high-level task110

principle pool. Next, we use the Principle-based111

Instance Generation method to follow these task-112

completion principles and generate a large-scale113

instruction fine-tuning dataset by a smaller LM.114

This instances generation method also mitigates115

the high carbon emissions when directly using116

large-scale LMs to generate instances. Finally, this117

dataset is used for instruction fine-tuning training.118

Experiments on several benchmark datasets 119

reveal that the LLM trained on the dataset 120

constructed by PSI achieves comparable 121

performance to those trained on datasets directly 122

annotated by large-scale LMs. This phenomenon 123

demonstrates the effectiveness of our principle- 124

based instances generation method. Compared 125

to directly using smaller-scale LMs to construct 126

datasets, our principle-based method achieves 127

consistently better performance. Additionally, 128

we also explore the performance of variant types 129

of datasets, the impact of different experiences 130

on dataset quality, and a comparison of carbon 131

emissions among various methods. 132

Our contributions are as follows: 133

• We propose a principle-based method PSI for 134

constructing instruction tuning datasets, which 135

reduces high carbon emissions and solves privacy 136

leakage issues when using closed-source LLMs. 137

• We introduce the Multi-level Principle 138

Generation method to build a low-redundancy, 139

high-quality pool of task principles. 140

• We propose the Principle-based Instance 141

Generation method to enable smaller-scale LLMs 142

to follow task principles and generate high-quality 143

instruction tuning datasets. 144

• We conducted extensive experiments on several 145

benchmark datasets, demonstrating that our PSI 146

achieves comparable performance to directly using 147

large-scale LMs for annotation while significantly 148

reducing carbon emissions. 149

2 Related work 150

Self-instruction (Wang et al., 2023a) has emerged 151

as an effective method for utilizing LLMs to 152

synthesize instruction fine-tune datasets. It 153

starts from a set of manually written seed 154

datasets and utilizes LLM to synthesize instances. 155

Alpaca (Taori et al., 2023) propose to improve the 156

performance of llama-7b through the distillation 157

of a larger LLM, e.g., text-davinci-003. Then, 158

Alpaca-GPT4 (Peng et al., 2023) achieve better 159

performance by using the more powerful GPT-4 as 160

the instance generation model. Taking advantage of 161

the rewriting capabilities of LLMs, WizardLM (Xu 162

et al., 2024) iteratively employs ChatGPT to rewrite 163

initial instructions into increasingly complex 164

instructions. For some specific domains such as 165

math (Luo et al., 2023; Li et al., 2024a), tool- 166

learning (Qin et al., 2024; Gao et al., 2024) and 167

dialogue (Xu et al., 2023; Ding et al., 2023), 168
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generating synthetic dataset via self-instruct has169

also achieved significant success.170

However, most of the self-instruct frameworks171

heavily rely on powerful closed-source LLMs,172

leading to environmental impact and privacy risks.173

Therefore, in this paper, we focus on enhancing174

the instances synthesis capabilities of open-source175

smaller LLMs.176

3 Task Definition177

The self-instruct approach (Wang et al., 2023a)178

typically involves the following steps: First, we179

employ human annotators to construct a seed180

dataset Dseed. Then Dseed is used as in-context181

examples for a large LM ML, with prompts182

designed to guide ML to generate a larger dataset183

Dt consistent with Dseed. Finally, the large dataset184

Dt is used to fine-tune a model Mt.185

In PSI, we also use a small seed dataset Dseed186

as in-context examples for a large language model187

ML. However, instead of directly generating a188

large-scale dataset by prompting the large LM ML,189

we design prompts to guide ML to generate a set190

of task-completion principles P . Then, we use the191

seed dataset Dseed and the task-related principles P192

as prompts to a smaller language model Mg, which193

generates a dataset Dt similar to Dseed under the194

guidance of P . Finally, the dataset Dt is used to195

fine-tune a model Mt.196

4 PSI Method197

In our PSI method, there are two main steps.198

First, we use the Multi-level Principle Generation199

method, where the large-scale language model200

ML reflects and summarizes a set of task-related201

principles P based on the given seed dataset Dseed.202

Then, under the guidance of P , we employ the203

Principle-based Instance Generation method to use204

a smaller language model Mg to generate a large-205

scale dataset Dt similar to Dseed. The parameters206

of the language model Mg is significantly smaller207

than that of the large-scale language model ML208

used for generating the principles P . Thus, our209

method can significantly reduce carbon emissions.210

4.1 Multi-level Principle Generation211

To further reduce reliance on manual data212

annotation, we first use the language model Mg213

to perform a simple expansion of the manually214

annotated seed dataset Dseed, resulting in an215

expanded dataset Dinitial: 216

Dinitial = Mg(Dseed,K, Is), (1) 217

where K represents the external knowledge 218

required for instances generation, and Is is the 219

prompt used to guide the language model Mg in 220

instances augmentation. It is important to indicate 221

that although Dinitial includes some external 222

knowledge, the dataset remains relatively small 223

(|Dseed| < |Dinitial| ≪ |Dt|). This allows us to 224

filter instances or anonymize the knowledge within 225

Dinitial, thus mitigating the risk of privacy leakage. 226

Subsequently, to obtain more diverse task- 227

completion principles, we perform multiple 228

random samplings on the dataset Dinitial. Then, 229

we obtain several subsets {d1, d2, . . . , dT }, where 230

each subset di contains multiple task instances, and 231

T is the number of subsets. We then use the large- 232

scale language model ML to reflect on each subset 233

di and summarize low-level principle PL
i : 234

PL
i = ML(di, Ip), (2) 235

where PL
i includes several natural language 236

descriptions of task principles, and Ip is the prompt 237

guiding the language model ML to generate the 238

low-level task principles: 239

<INSTRUCTIONS DATA>
Conduct a thorough analysis of the given instructions output
pairs. Provide clear principles that can be derived from this
analysis to improve future and outputs. We are not focused
on this one data point, but rather on the general principle.

240

Thus, we obtain the set of low-level 241

task principles for each subset, PL = 242

{PL
1 ,PL

2 , . . . ,PL
T }. 243

Intuitively, some low-level task principles 244

may be redundant or overly specific. To 245

address this, we first vectorize all low-level task 246

principles PL using a semantic embedding model. 247

Then, we apply a clustering algorithm to these 248

semantic representations, resulting in N clusters 249

of task principles, PC = {PC
1 ,PC

2 , . . . ,PC
N}. 250

Specifically, we use a soft clustering algorithm that 251

doesn’t require a pre-defined number of clusters. 252

To reduce computational load and further reflect 253

on the task principles, we use the language model 254

ML to summarize each task principle cluster to 255

construct the high-level principle: 256

PH
i = ML(PC

i , Ih), (3) 257

where PH
i is a high-level task principle, and Ih 258

is the prompt guiding the language model ML to 259

generate high-level task principles: 260
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Figure 2: The architecture of our proposed PSI. The Multi-level Principle Generation consists of two parts: First,
we employ large LM ML to generate low-level principles. Second, these low-level principles will be clustered and
summarized by ML into high-level principles PH . The Principle-based Instance Generation uses a smaller LM
Mg to generate instances guided by high-level principles PH and external knowledge K.

<LOW LEVEL PRINCIPLES>
Create a high level and insightful principle to improve future
responses. Focus on capturing the essence of the feedback
while eliminating redundancies.

261

Then, we obtain the high-level task principle set262

PH = {PH
1 ,PH

2 , . . . ,PH
N }, containing N high-263

level principles necessary for completing the tasks.264

4.2 Principle-based Instance Generation265

Generating a large-scale instruction fine-tuning266

dataset is the most resource-intensive part of267

the self-instruction process. Therefore, after268

obtaining these task principles, to reduce reliance269

on the large-scale model ML, we use a smaller270

parameter model Mg to generate a large amount271

of instruction fine-tuning data:272

d = Mg(PH ,K, Ig), (4)273

where d is a generated instruction tuning instance,274

and Ig is the prompt guiding model Mg to generate275

instances based on the task principles PH :276

You are asked to come up with a set of 20 diverse task
instructions.
The following insights and guidelines may improve
responses:
<PRINCIPLES>277

By repeatedly executing Equation 4, we can278

obtain a large-scale instruction fine-tuning dataset279

Dt, where |Dt| ≫ |Dseed|. Since Mg has280

significantly fewer parameters than model ML, the281

carbon emissions during the generation of a large282

dataset are greatly reduced. Additionally, model283

ML only receives the small-scale dataset Dinitial284

as in-context learning examples throughout the 285

process and does not use our external knowledge 286

K. This also prevents the leakage of the private 287

knowledge base K to external model service 288

providers. Finally, we use the dataset Dt to fine- 289

tune a language model Mt. 290

5 Experimental Setup 291

5.1 Datasets 292

To verify the effectiveness of our proposed PSI, 293

we use the generated instruction tuning dataset 294

to fine-tune a model Mt, and then evaluate the 295

model performance of Mt using the following 296

benchmark datasets. We classify the datasets into 297

four categories according to their task definition: 298

1. Truthfulness and Knowledge. TruthfulQA 299

is a popular benchmark used to test the model’s 300

hallucination (Lin et al., 2022). We utilized it 301

to gauge the truthfulness of models, reporting 302

accuracy under a 0-shot setting. And we use 303

MMLU (Hendrycks et al., 2021) to assess the 304

factual knowledge of models and report the mean 305

accuracy under a 5-shot setting. 306

2. Commonsense Reasoning. WinoGrande is 307

to choose the right option for a given sentence 308

formulated as a fill-in-a-blank (Sakaguchi et al., 309

2021). GPQA (Rein et al., 2023) is a multiple- 310

choice written by domain experts. Both of them 311

require the model to have commonsense reasoning 312

abilities. We report the accuracy of these two 313

datasets under 5-shot and 3-shot settings. 314

3. Coding. We test the programming capabilities 315
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using HumanEval (Chen et al., 2021) and perform316

the decoding using two different temperatures: 0317

and 0.8. We report the better Pass@10 from these318

two decoding results.319

4. Math. We use the GSM8K dataset (Cobbe et al.,320

2021) to evaluate the ability of solving multi-step321

mathematical reasoning problems and report the322

exact match under the 5-shot setting.323

5.2 Baselines324

We compare our method with several state-of-the-325

art self-instruction methods:326

Alpaca (Taori et al., 2023) is 52K instruction-327

tuning dataset generated by text-davinci-003 using328

the self-Instruct technique.329

Alpaca-GPT4 (Peng et al., 2023) follows the same330

methodology as Alpaca, but incorporates GPT-4 as331

its teacher model.332

WizardLM (Xu et al., 2024) uses Evol-Instruct333

to rewrite Alpaca dataset step by step into more334

complex instructions.335

Alpagasus (Chen et al., 2024) uses the robust336

ChatGPT to score and select 9K instances from337

the original Alpaca dataset.338

5.3 Implementation Details339

In our experiments, we employ two LLMs as340

the instances generation model Mg to verify the341

generalization of our proposed method: Zephyr-342

7B-Beta (Tunstall et al., 2023) and Llama-3-8B-343

Instruct (Meta, 2024). And we also use the344

generated dataset to fine-tune two language models345

Mt: Qwen-1.8B (Bai et al., 2023) and Gemma-346

2B (Team et al., 2023). We construct several347

instruction tuning datasets, each containing 20K348

examples, using our proposed PSI method and349

several other baseline methods (e.g., Alpaca). We350

set the number of subsets T to 10, and the size351

of each subset, |di|, to 10. All our experiments352

are conducted on 4 × NVIDIA A800 (80GB)353

GPUs, with the same setting and hyperparameters354

of Alpaca. We employ gpt-3.5-turbo from OpenAI355

as the ML to reflect and summarize. For our356

analytical experiment, we employ Zephyr-7B as357

Mg and Gemma-2B as Mt.358

6 Experimental Results359

6.1 Overall Performance360

Table 1 shows the evaluation results of our361

proposed PSI and other self-instruct baselines.362

Compared to directly using large LMs for instances363

generation (e.g., Alpaca w/ GPT4), our PSI 364

w/ Zephyr-7B achieves comparable performance 365

on two backbone models (including Gemma-2B 366

and Qwen-1.8B). On the GPQA and Winogrande 367

datasets, it even outperformed models that used 368

GPT-4 for instance generation. 369

From Table 1, it can be seen that although 370

the performance of PSI is slightly lower than 371

that of models trained with the dataset generated 372

by GPT-4, it outperforms models that directly 373

use smaller LMs to generate instances (e.g., 374

Zephyr) on most of the datasets. We can find 375

that compared with the Alpaca w/ Zephyr 376

which directly employs the Zephyr as instances 377

generation model Mg, our proposed PSI achieves 378

consistent improvement when using different 379

backbone LLMs (e.g., Gemma-2b and Qwen-1.8B). 380

This indicates that the task principles effectively 381

help these smaller LMs generate a higher-quality 382

instruction-tuning dataset. To demonstrate the 383

generalization ability, we also conduct experiments 384

using Llama-3 as the instance generation LLM. 385

The PSI w/ Llama3 outperforms the Alpaca w/ 386

Llama3 in the majority of datasets. 387

We also find that the improvements of PSI are 388

not consistent across different types of datasets. In 389

most knowledge-centric datasets (e.g., MMLU), 390

the performance improvement of our model 391

compared with directly using smaller models 392

for instance generation is not as high as it is 393

for other types of datasets. It is intuitive that 394

task principles usually only provide higher-level 395

guidance on methodology or instance formats 396

for completing tasks, whereas knowledge-based 397

datasets require extensive knowledge content as 398

support, which is not included in the task principles. 399

For logical reasoning tasks (e.g., GPQA), the 400

problem-solving experience included in the task 401

principles can effectively help the model generate 402

high-quality data. Therefore, our PSI achieves 403

better improvements than the baselines without 404

principles on logical reasoning tasks. 405

6.2 Analysis of Carbon Emission 406

Since one of the motivations of our proposed PSI is 407

to reduce carbon emission when generating large- 408

scale instruction tuning dataset, we compare the 409

carbon emission between PSI w/ Zephyr-7B and 410

Alpaca w/ GPT4 as instances generation LLM. 411

The detailed calculation method of carbon emission 412

is illustrated in Appendix A.3. Additionally, 413

we directly report the number of LLM tokens 414
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Method Instance Gen LLM MMLU TruthfulQA GPQA Winogrande GSM8K HumanEval OverallMg

Base Model (Mt): Gemma-2B - 40.7 33.2 23.4 65.1 18.5 34.2 35.9
Alpaca text-davinci-003 38.7 38.2 24.6 66.9 13.3 35.4 36.2
AlpaGasus gpt-3.5-turbo 41.6 36.3 27.0 66.5 15.5 37.8 37.5
WizardLM gpt-3.5-turbo 41.0 43.2 27.5 64.9 19.4 44.5 40.1
Alpaca GPT-4 42.3 43.6 25.7 65.8 20.2 37.2 39.1
Alpaca Zephyr-7B 40.4 42.0 25.0 65.8 17.3 31.7 37.0
PSI Zephyr-7B 41.7↑1.3 43.5↑1.5 26.3↑1.3 66.1↑0.3 19.0↑1.7 36.6↑4.9 38.9 ↑1.9
Alpaca Llama3-8B 40.9 42.9 25.7 65.7 19.4 35.4 38.3
PSI Llama3-8B 39.9↓1.0 41.8↓1.1 26.6↑0.9 66.9 ↑1.2 22.3↑2.9 37.8↑2.4 39.2↑0.9

Base Model (Mt): Qwen-1.8B - 45.3 39.4 27.2 61.6 34.5 32.9 40.2
Alpaca text-davinci-003 45.3 37.5 28.4 61.3 17.7 34.8 37.5
AlpaGasus gpt-3.5-turbo 46.5 38.5 27.5 61.6 26.9 36.0 39.5
WizardLM gpt-3.5-turbo 46.3 39.9 29.2 62.5 36.6 25.0 39.9
Alpaca GPT-4 46.2 42.3 28.4 60.9 34.4 34.8 41.2
Alpaca Zephyr-7B 45.6 41.6 25.5 62.2 29.4 27.4 38.6
PSI Zephyr-7B 46.9↑1.3 41.3↓0.3 28.8↑3.3 63.3↑1.1 31.0↑1.6 29.3↑1.9 40.1↑1.5
Alpaca Llama3-8B 45.7 36.1 28.1 61.1 31.9 26.8 38.3
PSI Llama3-8B 45.8↑0.1 40.4↑4.3 29.0↑0.9 62.1↑1.0 33.1↑1.2 35.4↑8.6 41.0 ↑2.7

Table 1: The performance of two base models: Gemma-2B and Qwen-1.8B, which are trained on the instruction
tuning datasets generated by our proposed PSI and baselines respectively.

Method Token Consume Carbon Emission

ML (GPT) Mg (Zephyr) (kgCO2e)

AlpaGasus 5,345,600 - 40.72
WizardLM 7,834,077 - 34.74
Alpaca w/ GPT4 3,033,669 - 1.74
PSI 18,264 3,934,321 0.49▼

Table 2: Comparison between PSI and baseline methods
in terms of token consumption and carbon emission.

Method MMLU GSM8K HumanEval GPQA

PSI 41.7 19.0 36.6 26.3
- w/o initial 41.6 17.7 34.8 26.1
- w/o sample 41.5 18.6 30.5 24.8
- w/o cluster 40.7 18.7 31.1 25.0

Table 3: Ablation study on four types of datasets.

used by different instances generation LLMs.415

Table 2 shows a comparison between these two416

methods. From Table 2, it is evident that our417

PSI method significantly reduces carbon emissions418

when generating large-scale instances (with p-value419

< 0.05), which demonstrates that PSI is greener than420

directly using large LM to generate instances.421

6.3 Ablation Study422

To verify the effectiveness of each module in our423

PSI, we employ three variant models that remove424

each module and conduct experiments on each type425

of dataset. w/o initial indicates no initial generation,426

using Dseed to replace with Dinitial. w/o sample427

means there are no samples, and ML evaluates as428

much instances as possible within its context length.429

w/o cluster signifies no clustering, utilizing a set of430
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Figure 3: Effectiveness evaluation of each principle.
Each vertex of the radar chart represents the
performance of the model trained after removing the
principle from the set. The dashed circle indicates the
performance of the model using the whole set.

low-level principles to guide generation. Table 3 431

shows the performance of each ablation model on 432

four datasets, and we can find that removing any 433

module results in a certain degree of performance 434

decline, which validates the necessity of each 435

module. 436

6.4 Effect of Different Principles 437

In the PSI, we employ the ML to generate several 438

task principles to guide the Mg to generate a large- 439

scale dataset. Therefore, an intuitive question 440

arises: Is each generated principle useful for 441

improving the quality of the dataset? In this 442

section, we individually remove each principle, 443

then use the remaining set of principles to generate 444

data, and finally fine-tune the model. Figure 3 445

shows the performance changes of the model 446

on two datasets after removing each principle. 447

From Figure 3, we can find that the performance 448
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Figure 4: Model performance of using different scales
of dataset.

declines compared to using the full set of principles449

after removing any principle, which indicates the450

necessity of these principles. Additionally, we also451

found that some principles are crucial for instances452

quality. For example, we show the principle PH
1453

from the MMLU and GPQA dataset:454

Ensure clear and concise communication by aligning the
output with the prompt, maintaining proper formatting
and grammar, addressing the task accurately and
comprehensively, and organizing the output logically for
better readability.

455

This principle describes a critical method of456

generating data instances, which enables the model457

to generate comprehensive and detailed outputs458

aligned with the instruction. Thus, this experiment459

demonstrates that our proposed PSI can generate460

valuable task principles, thereby helping the model461

generate high-quality datasets.462

6.5 Analysis of Dataset Size463

In the experiments shown in Table 1, all methods464

generate 20K samples for model training. In465

this section, we explore the impact of generating466

datasets of different sizes. Figure 4 shows the467

model performance changes when using datasets468

of varying sizes, with the number of task principles469

kept constant. From Figure 4, we can find that470

as the dataset size increases from 5K to 20K,471

the performance of our model gradually improves.472

However, when the dataset size exceeds 20K, the473

performance no longer increases. The reason474

for this phenomenon is evident that with a fixed475

number of task principles, a dataset with enough476

samples is sufficient for the model to fully grasp477

these principles, while an excessively large dataset478

leads to the model overfitting these principles.479
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Figure 5: Comparison between PSI and Alpaca which
both use a small-scale LM as the instance generation
model.

6.6 Analysis of Different Backbone LLM 480

In our experiments, we utilized the 7B model 481

for generating instances as the Mg, while a 482

smaller 2B model was employed for fine-tuning. 483

An intuitive experiment is to see whether a 484

smaller model with 2B parameters could effectively 485

generate instances. In this section, we replace 486

the Mg in PSI with Gemma-2B and use the 487

generated dataset to finetune another Gemma-2B 488

model. For comparison, we employ the same 489

instance generation model in Alpaca. Figure 5 490

illustrates the comparison results. It shows 491

that the performance of the model trained with 492

instances generated by the smaller Gemma-2B is 493

comparable with the model trained with Alpaca, 494

which does not use any principles. This outcome 495

indicates that the task principles did not help the 496

model generate higher-quality data. An intuitive 497

reason is that the smaller model cannot understand 498

the complex instructions (e.g., following task 499

principles), leading to lower-quality datasets. 500

Conversely, the results in Table 1 demonstrate that 501

the instances generation LLM with 7B parameters 502

can understand complex instructions and achieves 503

better performance than Alpaca without using 504

principles. 505

6.7 Analysis of Instances Length 506

Some research works (Zhao et al., 2024) have 507

found that the length of the instruction tuning 508

instances affects the performance. Thus, in this 509

section, we compare the sample length distribution 510

of our PSI and Alpaca w/ Zephyr. As shown in 511

Figure 6, we can find that the samples generated 512

by our PSI are longer than those generated by 513

Alpaca. It indicates the effectiveness of our 514

proposed Principle-based Instance Generation, 515

which employs the task principles to guide the 516

LLM to generate a high-quality dataset. 517
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6.8 Analysis of Principle Number518

In Equation 2, we randomly sample a subset519

di from the expanded dataset Dinitial and then520

leverage the LLM ML to summarize a low-521

level task principle PL
i . And we randomly522

sample multiple subsets di to construct principles.523

In this section, we analyze the effect of the524

principle number. From Figure 7, we can find525

that the model achieves the best performance526

when we sample 10 times. Additionally, neither527

increasing nor decreasing the number of samples528

can achieve better performance. The reason for this529

phenomenon is that too few times of samples may530

not encompass the experience needed to complete531

the task, while too many samples can result in532

redundant principles confusing the model Mg.533

6.9 Human Evaluation534

Since the instruction following task aims at535

generating an open-ended response as the answer,536

we conduct a human evaluation to qualitatively537

evaluate the performance of our PSI. We538

randomly sample 40 instructions from each dataset:539

Dolly (Conover et al., 2023), Koala (Geng et al.,540

13

17

18

18

10

15

9

13

7

Vicuna

Koala

Dolly

 PSI w/ Zephyr wins   Tie   Alpaca w/ Zephyr wins

Figure 8: Human evaluation of the model trained by
different self-instruct methods.

2023), and Vicuna (Chiang et al., 2023), and use the 541

fine-tuned model to generate the response for each 542

instruction. We employ 3 highly educated human 543

annotators to evaluate the generated responses1. 544

The Cohen’s kappa for the human annotators 545

is 0.56, indicating moderate inter-annotator 546

agreement. Figure 8 compares the performance 547

of models trained on datasets generated by PSI 548

and Alpaca. As shown in Figure 8, on three 549

datasets, the models trained on datasets generated 550

by PSI achieved better performance. This further 551

demonstrates the effectiveness of PSI. 552

7 Conclusion 553

In this paper, we propose Principle-based Self- 554

Instruct (PSI) which is an environmentally 555

friendly self-instruction framework that also 556

avoids inputting task-related knowledge into 557

proprietary LLMs, thereby protecting data privacy. 558

Specifically, we first proposed the Multi-level 559

Principle Generation method, which uses a large- 560

scale LM to generate the task principles based 561

on a given seed dataset. Then, by leveraging 562

these task principles, a smaller-scale LM can be 563

used to generate high-quality instruction-tuning 564

datasets. We conducted extensive experiments 565

on four types of instruction-following datasets, 566

using various combinations of backbone LLMs. 567

These experiments consistently demonstrated the 568

effectiveness of our proposed PSI. Additionally, 569

compared to directly using large-scale LMs (e.g., 570

GPT-4) for instances generation, our method 571

significantly reduces carbon emissions while 572

maintaining comparable performance. 573

1The detailed evaluation criterion for human annotators
is shown in Appendix A.1.
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Limitations574

In this paper, we have conducted extensive575

experiments on four types of datasets, including576

knowledge, reasoning, coding, and math. Due577

to the limited space, some task-specific datasets578

(e.g., tool learning and protein structure analysis)579

are not included in our experiments. However,580

these datasets have some task-specific features that581

our general framework does not include. We will582

expand our PSI to many other fields in our future583

work.584

Ethical Considerations585

In this paper, we propose the PSI for instruction-586

tuning data generation based on LLMs. Although587

the LLMs have finished the alignment training, this588

method cannot entirely prevent generating unsafe589

data. However, since the PSI generates data based590

on a small set of high-level task principles, we591

can constrain these task principles to minimize592

the generation of unsafe data. Additionally, to593

ensure complete safety, a manual review of the594

data is still required. Nevertheless, compared to595

manually constructing instruction-tuning datasets,596

only reviewing data significantly reduces the597

workload of annotators.598
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A Appendix809

810

A.1 Prompts811

We provide our prompts used to generate principles.812

The prompt to generate low-level principles is813

shown in Table 4. The prompt to generate high-814

level principles is shown in Table 5. The prompt815

guiding Mg to generate instances based on high-816

level principles is shown in Table 6817

A.2 Human evaluation818

We engaged three human annotators to label the819

data, following the same instruction as presented820

in (Chen et al., 2024) (see Table 7). Each annotator821

was required to choose the better response from822

the two options provided for each instruction.823

The response receiving the majority of votes was824

selected as the final result for each instruction.825

A.3 Carbon emission calculation826

827

Based on previous research (Patterson et al.,828

2021; Strubell et al., 2019; Dodge et al., 2022),829

we estimate the carbon emissions by calculating830

the total power required for generating and then831

multiplying it by the carbon emission intensity of832

the power grid used. It can be described using the833

following formula:834

Carbon Emissions = EC (kWh) × CI (kgCO2e/kWh)835

836

where the EC is the electricity consumption, refers837

to the total amount of electrical energy used in838

the generating process, and CI represents the839

carbon intensity. For a fair comparison, we use840

0.24 kCO2e/KWh, the carbon intensity in the841

Microsoft Azure US West region, for all following842

calculations.843

Although reporting these operational emissions844

is standard practice, it overlooks other sources of845

emissions, such as those from the manufacturing,846

transportation, and disposal of hardware and847

data center infrastructure, lifetime operational848

emissions from usage, rebound effects, and other849

environmental impacts like water consumption850

and mining. Therefore, our estimates should be851

considered lower bounds.852

For Alpaca-GPT4, due to the lack of detailed853

inference information disclosed by OpenAI, we854

can only make a preliminary estimation. We 855

consider that ChatGPT require an estimated 856

average electraicity consumption of 2.9 Wh per 857

request based on (de Vries, 2023) . The average 858

response generates 8 instances per request, so 859

generating the 20k data we use requires 2.5k 860

requests. The carbon emission is : 861

2.5k × 2.9Wh × 0.24 = 1.74 kgCO2e 862

For AlpaGasus, it must first generate 52k 863

instances, and then score all the instances using 864

ChatGPT 52k times. Its carbon emission can be 865

calculated as follows: 866

(
52

8
+ 52)× 2.9× 0.24 = 40.72 kgCO2e 867

For WizardLM, the author obtained the 250k 868

instances with requesting ChatGPT 624k times in 869

(Xu et al., 2024). We only use 20k of them, the 870

carbon emission can be calculated as follows: 871

624× 20

250
× 2.9× 0.24 = 34.74 kgCO2e 872

For our PSI, we requested ChatGPT 10 times to 873

reflect and summarize principles and ran a single 874

A800 GPU with a power of 250W for 8 hours to 875

generate instances. The carbon emission is : 876

10× 2.9 + 250× 8

1000
× 0.24 = 0.49 kgCO2e 877

A.4 Learned Principles 878

In this section, we show the high-level principles 879

learned by PSI in Table 8 and Table 9. 880

A.5 Implementation Details 881

882

Training details During the training stage, we 883

follow the practices in instruction tuning in Alpaca 884

(Taori et al., 2023). We employed the AdamW 885

optimizer to finetune the model Mt for 3 epochs. 886

The initial learning rate is set to 2× 10−5, with a 887

warm-up ratio of 0.03. The per GPU batch size is 888

set to 8, resulting in a total batch size of 32, as we 889

use 4 A800 GPUs for training. 890

Cluster model For clustering, we employ 891

all-mpnet-base-v22 as the embedding model 892

to encode the low-level principles PL. We then 893

utilize the clustering algorithm described in (Sarthi 894

et al., 2024), which applies soft clustering without 895

requiring a pre-defined number of clusters to 896

organize these principles. 897

2https://huggingface.co/
sentence-transformers/all-mpnet-base-v2
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Figure 9: Effectiveness evaluation of each principle.
Each vertex of the radar chart represents the
performance of the model trained after removing the
principle from the set. The dashed circle indicates the
performance of the model using the whole set.

A.6 Additional Experimental Results898

In section 6.4, we only provide the results on899

two datasets after removing each principle. To900

obtain clearer and more comprehensive results, we901

provide the outcomes for four additional datasets in902

Figure 9. From the figure, we can see that PH
1 still903

plays an important role in the results of TruthfulQA904

and GSM8K.905
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Prompt to generate low-level principles

The data instructions: {INSTRUCTIONS}.

You are an AI assistant. Conduct a thorough analysis of the given instructions output pairs. Identify the points that can be
improved. Hallucinations, empty input and output, tasks that the language model cannot complete, etc. are all considered bad
instructions. Provide clear insights, principles, or guidelines that can be derived from this analysis to improve future instructions
and outputs. We are not focused on this one data point, but rather on the general principle.

Your output should follow the following format.

Reasoning: <discuss how the instruction generator could be improved>

Insights: <what principle should be looked at carefully to improve the instructions outputs quality in the future, given in points>

Table 4: The prompt to generate low-level principles.

Prompt to generate high-level principles

Low-level principles: {low_level_principles}

Create a high level and insightful principle to improve future responses based on the principles above. Focus on capturing the
essence of the feedback while eliminating redundancies. Leave specific details in place.

Principle:

Table 5: The prompt to generate high-level principles.

Prompt to generate instances

You are asked to come up with a set of 20 diverse task instructions. These task instructions will be given to a GPT model and we
will evaluate the GPT model for completing the instructions.
Here are the requirements:
1. Try not to repeat the verb for each instruction to maximize diversity.
2. The language used for the instruction also should be diverse. For example, you should combine questions with imperative
instrucitons.
3. The type of instructions should be diverse. The list should include diverse types of tasks like open-ended generation,
classification, editing, etc.
2. A GPT language model should be able to complete the instruction. For example, do not ask the assistant to create any visual
or audio output. For another example, do not ask the assistant to wake you up at 5pm or set a reminder because it cannot perform
any action.
3. The instructions should be in English.
4. The instructions should be 1 to 2 sentences long. Either an imperative sentence or a question is permitted.
5. You should generate an appropriate input to the instruction. The input field should contain a specific example provided for the
instruction. It should involve realistic data and should not contain simple placeholders. The input should provide substantial
content to make the instruction challenging but should ideally not exceed 100 words.
6. Not all instructions require input. For example, when a instruction asks about some general information, "what is the highest
peak in the world", it is not necssary to provide a specific context. In this case, we simply put "<noinput>" in the input field.
7. The output should be an appropriate response to the instruction and the input. Make sure the output is less than 100 words.

The following insights and guidelines may improve responses:
{PRINCIPLES}

List of 20 tasks:

Table 6: The prompt to generate instances.
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Evaluation criterion for human annotators

You’ll be presented with a series of questions. For each question, two answers will be provided. Your task is to read both answers
carefully and decide which one you believe is better. When judging, consider:

Relevance: Does the answer directly address the question?
Completeness: Is the answer comprehensive?
Coherence: Is the answer logically structured and easy to understand?
Accuracy: Is the information provided in the answer correct?

Question: <QUESTION>
Answer A: <ANSWER A> Answer B: <ANSWER B>

Comparing these two answers, which answer is better?
1. Answer A is significantly better.
2. Answer B is significantly better.
3. Neither is significantly better.

Table 7: The detailed evaluation criterion for human annotators.

Learned high-level principles for Zephyr-7B-beta by PSI

1. Ensure clear and concise communication by aligning the output with the prompt, maintaining proper formatting and grammar,
addressing the task accurately and comprehensively, and organizing the output logically for better readability.
2. Consider the language model’s limitations, provide clear and specific instructions, and anticipate potential constraints to
ensure accurate and feasible responses.
3. Ensure accurate and concise paraphrases or summaries by including relevant information and guiding the model to provide
simpler and more straightforward responses.
4. Ensure clear and relevant inputs to guide the AI in generating accurate and meaningful outputs.
5. Ensure clear and concise instructions that provide complete and specific information, avoiding ambiguity and open-endedness,
while encouraging creativity and providing examples or templates when necessary.
6. Provide clear and detailed instructions that address the specific context and requirements of the task, including specific
guidelines, prompts, and background information, to guide the generation of relevant and inclusive outputs.
7. Ensure comprehensive and accurate responses by understanding and incorporating user preferences, adhering to given
restrictions, and providing detailed feedback, while avoiding fictional or irrelevant information.
8. Ensure meaningful and complete inputs and outputs to enhance the AI’s understanding and delivery of relevant information.
9. Provide clear and concise instructions that guide the model to generate accurate, comprehensive, and effective outputs, while
avoiding unsupported assumptions or hallucinations.

Table 8: The high-level principles for Zephyr-7B-beta.
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Learned high-level principles for Llama3-8B-Instruct by PSI

1. Encourage comprehensive and critical analysis by providing clear instructions that include all relevant details, specify
evaluation criteria, and request justification or reasoning, while also ensuring outputs include explanations or examples, final
results when applicable, and distinct explanations of differences or similarities.
2. Provide clear and specific instructions: Clear and specific instructions, with relevant context and desired outcomes, help the AI
assistant understand the task accurately and generate more accurate and meaningful responses. Avoid ambiguity and subjective
interpretations by providing objective guidelines and criteria.
3. Continuous improvement through user feedback and iterative refinement enhances the quality, accuracy, and relevance of AI
assistant responses, ensuring a better user experience and reliable assistance.
4. Continuous improvement: By continuously testing, iterating, and fact-checking instructions and outputs, while ensuring
alignment between input and output, future responses can be improved to provide accurate, useful, and personalized information.
Incorporating user feedback and considering creativity in the generation process will lead to better instruction outputs over time.
5. Promote creativity and engagement by providing clear guidelines and constraints, specifying format and content expectations,
and offering specific prompts or guidelines for tasks that require creative writing.
6. Provide clear and comprehensive context: Instructions should include relevant context, examples, and specific details to guide
the AI assistant in generating accurate and informative responses.
7. Align instructions with the language model’s capabilities and limitations to ensure accurate and meaningful responses.
8. Ensure accurate and relevant responses by providing complete and specific instructions, avoiding hallucinations or unsupported
claims, and maintaining consistency and coherence between inputs and outputs.
9. Clear and specific instructions: Instructions should provide clear and specific details to guide the model’s response, including
the desired outcome, required input format, expected output format, and any specific elements or explanations needed. Ambiguity
should be avoided, and guidelines for multiple definitions or categorizations should be clarified.

Table 9: The high-level principles for Llama3-8B-Instruct.
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