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Abstract—Patient privacy is a major barrier to healthcare
AI. For confidentiality reasons, most patient data remains in
silo in separate hospitals, preventing the design of data-driven
healthcare AI systems that need large volumes of patient data to
make effective decisions. A solution to this is collective learning
across multiple sites through federated learning with differential
privacy. However, literature in this space typically focuses on
differentially private statistical estimation and machine learning,
which is different from the causal inference-related problems
that arise in healthcare. In this work, we take a fresh look at
federated learning with a focus on causal inference; specifically,
we look at estimating the average treatment effect (ATE), an
important task in causal inference for healthcare applications,
and provide a federated analytics approach to enable ATE
estimation across multiple sites along with differential privacy
(DP) guarantees at each site. The main challenge comes from
site heterogeneity—different sites have different sample sizes
and privacy budgets. We address this through a class of per-
site estimation algorithms that reports the ATE estimate and its
variance as a quality measure, and an aggregation algorithm
on the server side that minimizes the overall variance of the
final ATE estimate. Our experiments on real and synthetic
data show that our method reliably aggregates private statistics
across sites and provides better privacy-utility tradeoff under site
heterogeneity than baselines.

Index Terms—Differential Privacy, Average Treatment Effect,
Federated Analysis

I. INTRODUCTION

Patient privacy is a major barrier to healthcare AI. Pa-
tient confidentiality reasons prevent hospitals and healthcare
providers from freely sharing data; consequently, valuable
data often remains in silo in separate sites, preventing the
development of healthcare AI systems that can learn from
large volumes of patient data to make effective decisions. A
potential solution to this challenge is collaborative privacy-
preserving learning across multiple sites through federated
learning with differential privacy. While this has been well-
explored for statistical estimation and machine learning prob-
lems, these are quite different from the causal inference-related
problems that arise in healthcare applications.

This work takes a fresh look at federated learning with
differential privacy, and applies it to causal inference—
specifically to average treatment effect (ATE) estimation.
Here, we are given data (Xi, Yi,Wi) for patient i, where
Wi corresponds to a treatment (for example, surgery or not),

Yi to an outcome (for example, recovery or not), and Xi

to some covariates or features that describe the patient. The
goal is to find the average treatment effect or ATE, which
measures if treatment results in a different outcome than non-
treatment. While this is easy if the treatments are randomly
assigned (that is, under randomized control trials or RCTs), the
problem is more challenging with observational data where the
assignment of the treatment might depend on the covariates.
For example, sicker patients may be denied surgery, which
may make surgery look like a more appealing option.

Specifically, we consider the problem of ATE estimation
from multiple sites, with differential privacy [1], [2], which
has emerged as the gold standard in privacy-preserving data
analysis. We ensure that each site calculates a DP statistic
on its data to ensure the confidentiality of its patients; these
statistics are then aggregated by a central server to form an
effective ATE estimate.

There are three main challenges in multi-site DP causal
inference. First, for observational studies, where the treatment
assignment is not controlled, designing even a single-site DP
ATE estimator is not straightforward, and little is known about
the problem. In particular, the matching estimator, one of the
most standard estimators [3], is hard to sanitize since it can
significantly depend on a single individual’s data in the worst
case. Second, the estimate quality can vary across sites due
to varying sample sizes and privacy budgets. Therefore, each
site needs to report not only the ATE estimate but also a
quality measure—which sets the problem apart from standard
differentially private federated learning estimation solutions.
Third, given the ATE estimates and their quality measures,
the central server needs to aggregate them appropriately into
a final accurate estimate.

We address the first challenge by proposing a smooth-
sensitivity-based DP matching algorithm, SmoothDPMatch-
ing. Our algorithm adds significantly less noise for typical
real-world datasets than the naive global sensitivity baseline,
achieving a better privacy-utility tradeoff. To deal with the
second challenge, we let each site send its ATE estimate
variance as a quality measure. Since a site estimates the
variance with sensitive data, it publishes the private variance
estimate to the server to guarantee privacy. To address the
third challenge, we propose a minimum-variance aggregation



algorithm, MVAgg. MVAgg chooses a subset of sites to
aggregate so that the variance of the final ATE estimate is
minimum. Combining these three key components gives us a
complete method for multi-site DP causal inference.

We evaluate our method on real and synthetic randomized
trial and observational study datasets and find that our al-
gorithms lead to significant gains in privacy-accuracy trade-
offs. Specifically, MVAgg automatically adopts estimates from
high-quality sites and outperforms baselines, while reliably ag-
gregating the per-site estimates with varying privacy budgets.
We also see that SmoothDPMatching considerably reduces the
noise variance, and achieves an improved privacy-accuracy
tradeoff on both real and synthetic datasets.

A. Related Work

The most closely related model to our work is the distributed
differential privacy model, e.g., [1], [4]–[6], where clients
report differentially private output to the untrusted central
server. There has been a body of work on the combination
of distributed differential privacy and secure aggregation [4],
[7]–[9]. Secure aggregation ensures that the server obtains
the aggregate result but never sees the individual values. To
prevent privacy leakages due to the aggregate result, the clients
output locally differentially private (LDP) statistics. The fact
the server only sees the aggregate result generally amplifies
the final central DP guarantee. Shuffling model is another
model of distributed differential privacy [5], [6], [10]–[15].
The model assumes an entity called shuffler, which receives
LDP outputs from clients, uniformly permutes them, and
sends the shuffled one to the central server. Shuffling further
amplifies the privacy guarantee by making it harder for the
server to identify individual information. While these two
distributed differential privacy models mainly address privacy
amplification on the final central DP guarantee, our work
focuses on how to aggregate client statistics with different
qualities to obtain a more accurate final output by the server.

Another line of related work is causal inference under
privacy guarantees. The main focus of such papers is to carry
out causal inference with privacy in a central DP model, i.e., at
a single site, whereas we investigate how causal inference can
be done with multiple sites while preserving privacy at each
site. [16] provide a private version of the inverse probability
weighting (IPW) method for observational study data. [17]
study a private procedure to determine whether X causes Y
or Y causes X under an additive noise model by privatizing
the statistical dependence scores such as Spearman’s ρ and
Kendall’s τ . [18] address private causal graph discovery for
categorical and numerical data. More recently, [19] propose a
DP meta-algorithm which estimates conditional ATE (CATE).
[20] investigate how introducing DP impacts the identification
of statistical models. Note that, to the best of our knowledge,
no work has addressed the matching estimator under DP even
for a single site setting, which is one of our contributions.

Apart from the privacy literature, there has been a line of
work discussing how ATE estimation can be done in multisite
random trials under site variation in treatment effect [21]–[27].

As for learning from data with variate quality, [28] provide
a theory for choosing an appropriate set of data sources with
variable qualities. [29] study how heterogeneous noise impacts
the performance of stochastic gradient descent (SGD).

II. PRELIMINARIES & PROBLEM SETTING

A. Differential Privacy & Federated Learning/Analytics

Differential privacy is a strong cryptographically-motivated
definition of individual-level privacy. It guarantees that the
participation of a single individual in a dataset does not
change the probability of any outcome by much. In particular,
suppose we have two datasets D and D′, each consisting of
private data from n individuals. We say that D and D′ are
neighboring if they differ in a single individual’s private data,
i.e., d(D,D′) = |{i : Di ̸= D′

i}| = 1. The output distribution
of a differentially private (randomized) algorithm is guaranteed
to be close on neighboring datasets.

Definition 1 ((ϵ, δ)-Differential Privacy [1]). A randomized
algorithm M satisfies (ϵ, δ)-differential privacy if for any two
neighboring datasets D,D′ and for any S ⊆ range(M),

Pr[M(D) ∈ S] ≤ exp(ϵ) Pr[M(D′) ∈ S] + δ.

The most common differentially private mechanism is the
Global Sensitivity method, where we compute a function f
on a dataset D, and add noise that is calibrated to the global
sensitivity of the function. Specifically, the global sensitivity of
a function f is the maximum difference between the outputs of
f on any two neighboring datasets. The standard instances of
the global sensitivity method are the Laplace mechanism [2],
which guarantees (ϵ, 0)-DP, and the Gaussian mechanism [30],
which guarantees (ϵ, δ)-DP.

a) Global Sensitivity & Laplace [2] and Gaussian [30]
mechanism.: The global sensitivity of a scalar function f :
Xn → R is

∆f = max
D,D′

|f(D)− f(D′)|,

where D and D′ are neighboring datasets.
Let ϵ > 0 be arbitrary and f : Xn → R be a function. Then,
the algorithm M : M(D) = f(D)+ξ satisfies (ϵ, 0)-DP, where
ξ ∼ Lap(∆f/ϵ).
Furthermore, let ϵ, δ ∈ (0, 1) be arbitrary and f : Xn → R
be a function. Then, for c2 > 2 ln(1.25/δ), the algorithm M :
M(D) = f(D) + ξ satisfies (ϵ, δ)-DP, where ξ ∼ N (0, σ2)
and σ ≥ c∆2,f

ϵ .
For certain functions, such as the median [31], the global

sensitivity may be too high, which may lead to a poor privacy-
accuracy tradeoff. In these cases, [31] propose calibrating the
noise instead to the smoothed sensitivity, which is a smoothed
version of the local sensitivity. Adding the Laplace noise
calibrated to the smooth sensitivity still guarantees DP with a
slight overhead in the δ term.



b) Local and Smooth Sensitivity & Laplace mecha-
nism [31].: The local sensitivity of a function f : Xn → R
at D is

LSf (D) = max
D′:d(D,D′)=1

|f(D)− f(D′)|.

For β > 0, the β-smooth sensitivity of f is

S∗
f,β(D) = max

D′∈Xn
LSf (D

′) · exp(−βd(D,D′)).

If β ≤ ϵ/2 ln( 2
δ ) and δ ∈ (0, 1), the algorithm M : Xn → R:

M(D) = f(D) +
2S∗

f,β(D)

ϵ
· η,

where η ∼ Lap(0, 1), satisfies (ϵ, δ)-DP.
Federated Learning/Analytics (FL/FA) [32] is an emerging

paradigm for collaborative learning across multiple devices or
sites, which allows a server to learn a model or some target
statistics over sensitive client data, without directly acquiring
raw data from the clients. However, it is well-known that
FL/FA by itself does not directly offer privacy, since the client
updates themselves can be reverse-engineered to extract user
data [33]–[37]. Hence, we will be considering FL/FA with
differential privacy. Additionally, we consider FL/FA over a
small number of clients, each of which holds data from a
certain number of individuals.

B. Average Treatment Effect

Suppose we have a group of people who are given a
treatment, and our goal is to determine whether the treatment
is effective. This is done through estimating the Average
Treatment Effect (ATE). In particular, for an individual i, we
assume two potential outcomes Yi(1) and Yi(0), where Yi(1)
is under treatment and Yi(0) is under control. The average
treatment effect (ATE) is then measured by:

τ = E[Yi(1)− Yi(0)].

In practice, estimating ATE is not straightforward since we
get to observe only one of Yi(1) and Yi(0) and cannot directly
compute individual treatment effect, Yi(1)−Yi(0). Instead, we
observe the treatment indicator Wi (1 when treated, 0 under
control), the corresponding outcome Y obs

i , and some other
covariates Xi. Then, we aim to estimate the ATE given a set
of observed individuals’ data, {Wi, Y

obs
i , Xi}Ni=1.

We follow the standard causal inference literature [38] to
make following three assumptions on these variables.

1) Stable Unit Treatment Value Assumption (SUTVA): the
potential outcomes (Yi(1), Yi(0)) do not depend on
treatments assigned to other individuals

2) Unconfoundedness:

Pr[Wi = 1|Xi, Yi(1), Yi(0)] = Pr[Wi = 1|Xi]

3) Positivity:

∀x. 0 < Pr[Wi = 1|Xi = x] < 1

1) Randomized trial and Difference-in-means Estimator:
In a randomized trial, where treatment assignment is com-
pletely random, we estimate ATE via the difference-in-means
estimator. In a randomized trial, where treatment assignment
is completely random and independent of individual data,
we estimate the ATE via the difference-in-means estimator.
Specifically, the numbers of treated and control individuals,
Nt and Nc (N = Nt + Nc), are determined in advance,
and the treatment indicators W1, . . . ,WN are drawn from the
following distribution:

Pr[W1, . . . ,WN ] =

{(
N
Nt

)−1
if

∑
i Wi = Nt

0 o.w.
.

Then, the ATE estimate is:

τ̂ =
1

Nt

∑
i:Wi=1

Y obs
i − 1

Nc

∑
i:Wi=0

Y obs
i .

2) Observational Studies and Matching Estimator: In ob-
servational studies, where the treatment assignment is not
controlled, standard practice is to use a matching estimator.
This estimator first imputes the unobserved outcome of an
individual by the observed outcome of a similar individual
who has the opposite treatment status, and then outputs the
average of the individual treatment effects.

Among its variants, we use exact single matching under the
assumption that there always exists a similar individual, i.e.,
for an individual i, there exists at least one individual j s.t.
Wi ̸= Wj and Xi = Xj . Let m : [N ] → [N ] be a matching
function s.t. m(i) = j =⇒ Wi ̸= Wj ∧Xi = Xj . Then, ATE
is estimated by:

τ̂ =
1

N

N∑
i=1

(Ŷi(1)− Ŷi(0)),

where Ŷi(1) = WiY
obs
i + (1 − Wi)Y

obs
m(i), and Ŷi(0) =

WiY
obs
m(i) + (1−Wi)Y

obs
i . One of Ŷi(1) and Ŷi(0) is exactly

Y obs
i and the other is imputed outcome by the matched

individual.

C. Problem Setting

Our goal is to estimate the ATE of a specific binary
treatment, where data about the effect of this treatment is
distributed across a small number of sites. We would like to
ensure that raw data stays on the site, and only differentially
private estimates leave a particular site. Specifically, the ATE
computation is done by an untrusted server, which receives
private statistics from J sites. We demonstrate the figure for
this framework in Figure 1.

a) Some Basic Notation.: We assume that site j requires
(ϵj , δj)-DP, and use the notation τ̂j−DP to denote the ATE at
site j. The final ATE estimated at the server is denoted by τ̂DP.
Furthermore, site j has a dataset Dj of size Nj . Note that the
sample sizes, Nj’s, are public information since we are inter-
ested in the site-level privacy guarantee. i-th element in Dj is
a tuple (Yij(1), Yij(0), Xij), where potential outcomes Yij(1)
and Yij(0) are assumed to be bounded, i.e., 0 ≤ Yij(1) ≤ B
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Fig. 1: Our framework on estimating ATE with data from
distributed sites

and 0 ≤ Yij(0) ≤ B for some B, and Xij is the covariates, if
any, of i-th individual at site j. Xij is used for observational
studies and is typically a vector of multiple covariates. In
this work, we assume that it is an element of some finite set
X . In practice, covariates can contain continuous values, e.g.,
height and weight, but we can often discretize them without
losing much precision. Then, a site assigns the treatment, Wij ,
observes the outcome, Y obs

ij , and estimates the ATE with a
set of observed individual data, {Wij , Y

obs
ij , Xij}Nj

i=1. We note
that the neighboring datasets for DP are based on the dataset
definition before the treatment assignment, namely, they differ
by an individual’s potential outcomes and/or covariates. As
a result, the treatment indicators of the differing individuals
in neighboring datasets are the same for randomized trials,
but can be different for observational studies because the
assignment depends on the covariates.

b) Assumptions.: In addition to the three standard causal
inference assumptions [38], we make two other mild assump-
tions. The first is that the sites are homogeneous. That is, if
each individual has potential outcomes, Yij(1) and Yij(0), we
further assume that a tuple (Wij , Yij(1), Yij(0), Xij) is drawn
i.i.d. from some fixed distribution. This assumption is needed
so that the estimand τ = E[Yi(1)−Yi(0)] makes sense; without
this, the underlying ATE at each site differs and it is no longer
clear what estimand we should use. Our second assumption is
that an individual cannot belong to more than one site. This
ensures the privacy loss does not accumulate by outputs from
multiple sites.

III. METHOD

Our method consists of two interconnected components on
a distributed client-server setting—first, a site-level estimation
algorithm and second, a server-side aggregation algorithm.
Combining these two components gives us a complete method
for private and distributed ATE estimation.

A. Per-Site Estimation Algorithm

In a FL/FA setting, a per-site estimation algorithm computes
a per-site gradient/target statistic on its local data, adds noise
for privacy, and sends it to the server. This simple solution,

however, does not directly apply to us. For the server to
aggregate the ATEs appropriately, it needs to know a quality
measure for the ATEs from each site because the estimation
quality can vary across sites due to varying sample sizes
and privacy budgets. For example, even though all the sites
have the same total privacy budget, they can answer multiple
queries on the same data, and the privacy budgets allocated
for an ATE estimation query could differ by site. To this
end, we calculate a differentially private variance estimate
for the ATE, which provides a comprehensive estimate by
taking into account non-private estimate variance as well as
additive noise for DP. Another difficulty for us is that, in
the common observational data case, standard ATE estimators
are more involved than the sum or average over individual
values. Therefore, it is not obvious how to construct their
DP versions. Thus, we propose a new smooth-sensitivity-
based DP matching algorithm, SmoothDPMatching, through
an analysis of the smooth sensitivity of the matching estimator.
Our algorithm significantly reduces the noise variance and
hence improves the accuracy for typical datasets compared
with the baseline global sensitivity method.

1) Randomized Trial and Difference-in-means Estima-
tor: For randomized trials, we use the difference-in-means
estimator for ATE—namely, τ̂ =

∑
i:Wi=1 Y

obs
i /Nt −∑

i:Wi=0 Y
obs
i /Nc. Its differentially private version can

be straightforwardly computed using the global sensitiv-
ity method. The global sensitivities of

∑
i:Wi=1 Y

obs
i and∑

i:Wi=0 Y
obs
i are both B. Thus, by using the Laplace mech-

anism, we have:

τ̂DP =
1

Nt

( ∑
i:Wi=1

Y obs
i + ξt

)
− 1

Nc

( ∑
i:Wi=0

Y obs
i + ξc

)

= τ̂ +
ξt
Nt
− ξc

Nc
,

where ξt, ξc ∼ Lap(B/ϵ1). Recall that Nt and Nc are pre-
determined parameters; thus, we treat them as public informa-
tion. Furthermore, the treatment indicator Wi does not change
by changing an individual’s data. Therefore, by the parallel
composition theorem of DP, the mechanism satisfies ϵ1-DP.
We provide the formal proof in Appendix.

The private variance estimation of τ̂DP is also simple
because ξt and ξc are independent from the data distribution.
That is, we have

V[τ̂DP] = V[τ̂ ] + V
[
ξt
Nt

]
+ V

[
ξc
Nc

]
= V[τ̂ ] +

2B2( 1
N2

t
+ 1

N2
c
)

ϵ21
,

where the last term is computed only with public in-
formation. It remains to estimate the sampling variance
term, V[τ̂ ], with sensitive data and sanitize the esti-
mate using the global sensitivity method. In particu-
lar, V[τ̂ ] is estimated with s2t/Nt + s2c/Nc [38], where
s2t and s2c are sample variance of

∑
i:Wi=1 Y

obs
i /Nt

and
∑

i:Wi=0 Y
obs
i /Nc. It suffices to privately estimate
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Fig. 2: Worst-case matching (left) and our matching (right)
within the same covariate stratum. We omit arrows from
control individuals to treated ones for readability.

∑
i:Wi=1(Y

obs
i )2 to obtain the private estimate of s2t because

s2t =
∑

i:Wi=1(Y
obs
i )2/Nt − (

∑
i:Wi=1 Y

obs
i /Nt)

2 and we
already know the private estimate of

∑
i:Wi=1 Y

obs
i . The

global sensitivity of
∑

i:Wi=1(Y
obs
i )2 is B2; thus, we apply the

Laplace mechanism with a parameter ϵ2 and obtain the private
estimate of s2t . The same argument yields the private estimate
of s2c . By the parallel composition theorem, this computation
satisfies ϵ2-DP. Consequently, we obtain the private variance
estimate of the differentially private difference-in-means esti-
mator. We send this estimation along with τ̂DP to the server,
which satisfies (ϵ1 + ϵ2)-DP by the sequential composition
theorem of DP.

2) Observational Study and Matching Estimator: Things
however are more complicated for observational data, since
we need to match covariates. To do this privately, we pro-
pose a new differentially private approximation to the exact
matching estimator in Section II. The main challenge here
is that changing one value in the input dataset can alter
the final output significantly in the worst case. We address
this through a smooth-sensitivity-based algorithm, SmoothDP-
Matching, which requires much less noise for typical datasets.

We provide the specification to the estimator to make it more
amenable to DP. First, recall that the exact matching estimator
assumes that every individual in the data has an exact match.
If an individual i does not have any matched individual j, then
we extend the matching function m to be m : [N ]→ [N ]∪{⊥}
and set Ŷi(1) = Ŷi(0) = Y obs

i when m(i) = ⊥ so that this
term contributes 0 to the ATE. Second, for each covariate
stratum X = x, the exact matching estimator may match
a control individual to many treated individuals while other
control individuals have no matches, driving up the sensitivity.
We ensure that we balance the number of individuals matched
to a particular individual for each covariate stratum as shown
in Figure 2. This can be done with a greedy algorithm shown
in Algorithm 1. We provide the further details in Appendix.

Even with the specification, unfortunately, it is shown as
below that the global sensitivity of the matching algorithm
is still a constant. We therefore use a smoothed sensitivity
estimator.

Proposition 1. Let τ̂ be the exact single matching estimator
in Algorithm 1, then ∆1,τ̂ ≥ B.

Proof. Consider a pair of neighboring datasets D,D′ where
|D| = |D′| = N , DN ̸= D′

N , Di = (Yi(1), Yi(0), Xi) =
(B,B, x) for i = 1, . . . , N − 1, DN = (0, 0, x), and D′

N =
(0, 0, x′). Furthermore, consider the treatment assignments
yielding Wi = 1 for i = 1, . . . , N − 1, WN = 0, and
W ′

N = 1, where W ′
N is the assignment for N -th individual in

D′. Here, all individuals in D′ are treated; thus, τ̂(D′) = 0.
Then, |τ̂(D)−τ̂(D′)| = | 1N (

∑N−1
i=1 (Y obs

i −Y obs
m(i))+(Y obs

m(N)−
Y obs
N )) − 0| = 1

N ((N − 1)B + B) = B. By the definition of
the global sensitivity, the statement is shown.

We first analyze the smooth sensitivity of our exact single
matching estimator, τ̂ . For most real datasets, we anticipate
the local sensitivity is O(1/N) whereas the global sensitivity
is Ω(1). Then, the smooth sensitivity, the smooth upper bound
of the local sensitivity, is also O(1/N). This is in fact true as
stated in the theorem below.

Theorem 1. Let Tx = {i : Wi = 1 ∧ Xi = x} and Cx =
{i : Wi = 0 ∧ Xi = x} be the sets of treated and control
individuals with the covariate x. Then, the local sensitivity of
τ̂ is upper bounded as follows:

LSτ̂ (D) ≤ 1

N
max

x∈X :|Tx|>0∨|Cx|>0{
4(1 + max(|Tx|, |Cx|))B |Tx| = 0 ∨ |Cx| = 0

4(1 + max(⌈ 1+|Cx|
|Tx| ⌉, ⌈

1+|Tx|
|Cx| ⌉))B o.w.

.

Furthermore, let R
(k)
x (D) ={

max(|Tx|, |Ck|) + k min(|Tx|, |Cx|) ≤ k

⌈max(|Tx|,|Ck|)+k+1
min(|Tx|,|Cx|)−k ⌉ o.w.

. Then, the

β-smooth sensitivity of τ̂ is upper bounded as follows:

S∗
τ̂ ,β(D) = max

k=0,...,N
e−kβ 4B

N
(1 + max

x∈X
R(k)

x (D)). (1)

In addition, S∗
τ̂ ,β(D) can be computed with O(min(|X |, N))

space and O(N ·min(|X |, N)) time.

We provide the proof in Appendix.
We observe that if the dataset is well-balanced in each

covariate value x, i.e., |Tx| ≈ |Cx|, LSτ̂ (D) = O(1/N) and
also S∗

τ̂ ,β(D) = O(1/N). In contrast, the global sensitivity is
Ω(1) regardless of a dataset. We demonstrate this observation
by numerical simulations on a synthetic dataset in Section IV.

For completeness, we present a (ϵ, δ)-DP matching algo-
rithm shown in Algorithm 2, which calibrates the Laplace
noise to the analyzed smooth sensitivity.

Next, we turn to estimating the variance of our DP matching
estimator privately. The variance estimate is slightly more
involved since the additive noise variance now depends on the
smooth sensitivity, which is data-dependent. Thus, we instead
obtain the private estimate of the smooth sensitivity, in addition
to the sampling variance, to get the overall variance estimate.

More formally, we consider the variance conditioned on
Xi’s and Wi’s as in the literature [38]. Recall we have



Algorithm 1: Non-private Matching at site

Data: Observed data: {(Wi, Y
obs
i , Xi)}Ni=1

1 Define placeholders {(Ŷi(1), Ŷi(0))}Ni=1

2 for x ∈ X do
3 Tx = {i : Wi = 1 ∧Xi = x}
4 Cx = {i : Wi = 0 ∧Xi = x}
5 if |Tx| = 0 ∨ |Cx| = 0 then /* when there’s no match */
6 for i ∈ Tx ∪ Cx do
7 (Ŷi(1), Ŷi(0))← (Y obs

i , Y obs
i )

8 else /* when there are matches */
9 for j = 0 to |Tx| − 1 do

10 i← Tx[j]
11 m(i)← Cx[j mod |Cx|] /* matched individual */
12 (Ŷi(1), Ŷi(0))← (Y obs

i , Y obs
m(i))

13 for j = 0 to |Cx| − 1 do
14 i← Cx[j]
15 m(i)← Tx[j mod |Tx|] /* matched individual */
16 (Ŷi(1), Ŷi(0))← (Y obs

m(i), Y
obs
i )

17 Compute non-private ATE: τ̂ = 1
N

∑N
i=1 Ŷi(1)− Ŷi(0)

18 return τ̂

Algorithm 2: SmoothDPMatching at site

Data: Observed data: {(Wi, Y
obs
i , Xi)}Ni=1, Privacy parameters: ϵ, δ

1 β = ϵ
2 ln( 2

δ )

2 Compute S∗
τ̂ ,β(D) as in Eq. (1)

3 Compute non-private ATE: τ̂ = 1
N

∑N
i=1 Ŷi(1)− Ŷi(0) with Algorithm 1

4 τ̂DP = τ̂ +
2S∗

τ̂,β(D)

ϵ · η, where η ∼ Lap(1)
5 return τ̂DP

τ̂DP = τ̂ + (2S∗
τ̂ ,β(D)/ϵ) · η, where η ∼ Lap(1) (line 4 in

Algorithm 2). Then, the variance of τ̂DP is:

V[τ̂DP] = V[τ̂ ] + V
[
2S∗

τ̂ ,β(D)

ϵ
· η
]

= V[τ̂ ] +
8(S∗

τ̂ ,β(D))2

ϵ2
.

It remains to estimate both terms from data privately. Note
that, conditioned on Xi’s and Wi’s, the smooth sensitivity in
eq. (1) is constant.

As for the sampling variance term, V[τ̂ ], we obtain its dif-
ferentially private estimate by the smooth sensitivity method.
We defer the detail to Appendix. As for the second term,
8(S∗

τ̂ ,β(D))2/ϵ2, we need to privately estimate the smooth
sensitivity because it is data-dependent. We thus provide an
unbiased (ϵ, δ)-DP estimator of the β-smooth sensitivity as
follows. Since the smooth sensitivity is the smoothed version
of the local sensitivity, it is designed not to vary a lot by
changing a single individual’s data. Therefore, we first show
that the global sensitivity of lnS∗

τ̂ ,β is β. Then, we apply the

Gaussian mechanism to obtain the differentially private smooth
sensitivity, S∗

τ̂ ,β−DP(D).

Lemma 1. Let S∗
f,β be the β-smooth sensitivity of f . Then,

S∗
f,β−DP(D) = exp(lnS∗

f,β(D) + z − σ2

2
),

where σ =
√
2 ln(1.25/δ)β/ϵ and z ∼ N (0, σ2), satisfies

(ϵ, δ)-differential privacy.
Furthermore, it holds that E[S∗

f,β−DP(D)] = S∗
f,β(D), where

the randomness is over the draws of z.

Proof. By the definition of smooth sensitivity, it holds that
for any neighboring datasets D,D′, S∗

f,β(D) ≤ eβS∗
f,β(D

′).
Therefore, the global sensitivity of lnS∗

f,β is β. The privacy
guarantee of the Gaussian mechanism and the post-processing
theorem of DP guarantee (ϵ, δ)-DP for S∗

f,β−DP.

Additionally, by taking the expectation over the draws of z,



Algorithm 3: MVAgg at server
Data: Sample sizes: N1, . . . , NJ , Noisy estimates and

their variances: {τ̂j−DP, σ̂
2
j−DP}Jj=1

1 I∗ = argminI⊆[J]

∑
j∈I(

Nj

NI
)2σ̂2

j−DP

2 τ̂DP =
∑

j∈I∗
Nj

NI∗
τ̂j−DP

3 return τ̂DP

we have:

E[S∗
f,β−DP(D)] = S∗

f,β(D) · exp(−σ2

2
) · E[exp(z)]

= S∗
f,β(D),

where the last equality holds due to E[exp(z)] = exp(σ
2

2 ).

B. Aggregation Algorithm on Server

In the simple FL/FA, the server would simply average the
gradients/statistics transmitted by the clients. Unfortunately
for us, this solution is not enough—different sites will have
different estimation quality, due to varying dataset size and/or
varying privacy budgets. We therefore propose a new aggre-
gation procedure that takes this heterogeneity into account.

Since we are interested in the average treatment effect on an
individual, we consider the weighted average of ATEs from
sites with weights proportional to the sample sizes at sites
Nj’s. Given a set of sites I and a set of DP ATE estimates
{τ̂j−DP}j∈I , let NI =

∑
j∈I Nj , and the server publishes

τ̂DP =
∑

j∈I(
Nj/NI) · τ̂j−DP.

The central problem at the server is then how to choose
the set of sites I . When some sites in I have very noisy ATE
estimates, the final estimate can be noisy, or has high variance,
as well. In such a case, we might want to remove these sites
from the set so that the final estimate is less noisy. Therefore,
we propose a new aggregation algorithm that embodies this
idea by choosing the set of sites that minimizes the variance of
the aggregate ATE: minimum-variance aggregation algorithm
(MVAgg).

More concretely, the minimum-variance aggregation algo-
rithm shown in Algorithm 3 takes noisy ATEs, noisy variance
of ATE, and sample sizes as the inputs. Then, it minimizes
the estimated variance over a set of sites. Here, since τ̂DP is
the weighted average of τ̂j−DP’s, its variance given the set
I is V[τ̂DP] =

∑
j∈I(Nj/NI)

2V[τ̂j−DP]. It finally computes
the weighted average of the noisy ATEs over the chosen set
of sites. Note that by the post-processing theorem of DP, the
privacy guarantee at each site never changes as a result of the
aggregation.

Our algorithm is general in the sense that it only requires the
noisy estimate and its noisy variance from each site in addition
to the publicly known sample sizes, and it does not limit the
specific estimator used at each site. On the other hand, our
algorithm currently adopts a brute-force search to determine
the minimum variance set (line 1 in Algorithm 3). Finding
a greedy approximation algorithm for the minimization is a
possible direction for our future work.

10−1 100 101

α = ε2/ε1

0.000

0.001

0.002

0.003

0.004

M
A

E

IST

MVAgg

AggAll

AggLargest

IVW

Fig. 3: Mean MAEs and standard deviations of MVAgg,
AggAll, AggLargest, and IVW on IST dataset under two-site
setting

IV. EXPERIMENT

We now empirically investigate how putting together our
estimation algorithms at the client sites with the aggregation
process on the server side works. Specifically, we ask the
following questions:

1) How does the smooth-sensitivity-based DP matching
algorithm (Algorithm 2) improve the privacy-utility
tradeoff on observational study data at each site?

2) How does our aggregation algorithm (Algorithm 3)
impact the final ATE estimation on the server on ran-
domized trial and observational study data?

3) How do site-level privacy parameters affect the overall
performance of the algorithms?

We answer the first question with real and synthetic obser-
vational study data. We then answer the rest of the questions
with real randomized trial data as well as those observational
data.

A. Methodology

a) Datasets.: For randomized trial data, we use two real
datasets. The International Stroke Trial (IST) [39] is a dataset
with N = 18995 individuals, where Nt = 9705 are randomly
treated by the aspirin allocation and Nc = 9703 are controlled.
The outcome measures whether the recurrent ischemic stroke
occurs within 14 days after treatment. Tennessee’s Student
Teacher Achievement Ratio (STAR) dataset [40] contains the
trial results from N = 10331 students, who are randomly
assigned into either a small class (Nt = 2643) or regular-size
class (Nc = 7688). The data is collected from 80 schools. We
use the four kinds of school urbanity (rural, suburban, urban,
inner city) to determine which site the student belongs to, i.e.,
J = 4. The sample sizes result in N1 : N2 : N3 : N4 ≈ 5 : 3 :
3 : 1.
For observational study data, we use a synthetic, a semi-real,
and a real dataset. We generate the synthetic dataset (Synth)
by first sampling Xi’s uniform randomly from a discrete set
X = {0, 1/(|X | − 1), . . . , 1}. Then, we sample Wi from the
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Fig. 4: Mean MAEs and standard deviations of MVAgg, AggAll, AggLargest, and IVW on IST dataset under three-site setting.
N1 : N2 : N3 = 1 : 1 : 1 (left most), 3 : 2 : 1 (middle left), 9 : 9 : 2 (middle right), and 18 : 1 : 1 (right most).
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Fig. 5: Mean MAEs and standard deviations of MVAgg,
AggAll, AggLargest, and IVW on STAR dataset (J = 4)

Bernoulli distribution with a parameter sigmoid(a · (2Xi−1))
with some a ∈ R, where a parameter a is drawn from
Uniform([−1, 1]) if not mentioned or set as constant. This
ensures that the treatment variable Wi has some dependence
on Xi. Note that as a gets larger, the dataset gets more
imbalanced, i.e., |Tx| ≫ |Cx| or |Tx| ≪ |Cx|. Finally, given
the underlying true ATE τ = 0.5, we set Yi = b · Xi + τ ·
Wi + ei, where b ∼ Uniform([0, 0.4]) is a parameter and
ei ∼ Uniform([0, 0.1]) is observation noise. This generation
process ensures that Yi depends on both Xi and Wi and that
0 ≤ Yi ≤ 1. The semi-real dataset we use is the Infant Health
and Development Program (IHDP) dataset [41], where only
the outcome value is simulated. It has N = 747 individuals
comprised of Nt = 139 treated and Nc = 608 controlled
individuals. The treatment is specialist home visits to the
children and the outcome is future cognitive test scores. We
choose 3 discrete covariates out of 25 covariates in the original
dataset to ensure the exact matching. The real dataset we use
is Lalonde [42], which is composed of N = 722 individuals
where Nt = 297 are treated and Nc = 425 are controlled.
The treatment is job training and the outcome is earning in
1978. We choose age as the only covariate to ensure the
exact matching. For all datasets, we preprocess them so that
0 ≤ Yi ≤ 1.

b) Algorithms.: The per-site estimation algorithms used
in the experiments are as follows. We use the DP version of
the difference-in-means estimator presented in Section III-A1

for randomized trial data. For observational study data, we
compare two DP matching algorithms whose additive noises
are calibrated to the global sensitivity (GlobalDPMatching)
and smooth sensitivity (Algorithm 2; SmoothDPMatching)
respectively.
We compare our MVAgg (Algorithm 3) with three baseline
aggregation algorithms on the server. The first algorithm
computes the weighted average of the ATEs from all sites with
weights proportional to the sample sizes (AggAll). The second
one publishes the result of the largest site (AggLargest).
The last one aggregates the site ATE estimates with inverse-
variance weights (IVW). In particular, the weight assigned
to j-th site is wj = c/σ̂2

j−DP, where c = 1/
∑

j(1/σ̂
2
j−DP).

IVW is known to be optimal if the true variances are given
from sites. However, we only have the DP estimates of the
variances; thus, it is not necessarily optimal in our setting.

c) Experiment Setup.: We consider two-site (J = 2) and
three-site (J = 3) settings on the datasets except for STAR
dataset where the sites are pre-assigned (J = 4). For the two-
site setting, we randomly assign individuals to each site while
keeping the sample sizes equal, N1 = N2

1. For the three-
site setting, we consider different sample size proportions as
follows: N1 : N2 : N3 = 1 : 1 : 1, 3 : 2 : 1, 9 : 9 : 2, and
18 : 1 : 1.
We fix the privacy parameter for the first site, ϵ1, and
sweep the others, ϵ2, . . . , ϵJ . In particular, for each α ∈
{1/8, 1/4, 1/2, 1, 2, 4, 8}, let ϵj = α(j−1)/(J−1)ϵ1. As α gets
larger, the second to J-th sites are expected to send more
accurate statistics. We use ϵ1 = 1 for IST, STAR, and Synth,
with N = 10000 and |X | = 100, and ϵ1 = 5 for IHDP
and Lalonde due to their small sample sizes. We further fix
δ1 = · · · = δJ = 10−5. For the per-site estimation, we
evenly split the privacy budget into multiple DP algorithms,
e.g., we assign (ϵ/3, δ/3) separately for obtaining the ATE
estimate, the sampling variance estimate, and the private
smooth sensitivity.
The evaluation metric is the mean absolute error (MAE)
between the non-private and private ATE estimates. For Synth
data, we measure the MAE between the true underlying ATE
and the private estimate. We repeat the algorithms 100 times
and report the mean and standard deviation of MAE.

1We assume AggLargest always chooses the first site as the largest site.
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dataset) under N = 10000 and |X | = 100.
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Fig. 8: Mean MAEs and standard deviations of MVAgg, AggAll, AggLargest, and IVW on Synth, IHDP, and Lalonde datasets
(from left to right) under two-site setting. Upper row: GlobalDPMatching. Lower row: SmoothDPMatching. Note that y-axis
scales are different between upper and lower rows.

B. Results

1) Randomized Trial and Difference-in-means Estimator:
Figure 3 shows the mean MAEs on IST dataset under the
two-site setting (J = 2). As α gets larger, the noise variance
for the second site gets smaller while the one for the first
site remains the same; thus, we generally expect the final
ATE estimate to be never less accurate. We confirm this
is true for all aggregation algorithms. We see that MVAgg
generally achieves the best MAE among the four aggregation
methods. For most of α = ϵ2/ϵ1, its MAE matches with the
better one of AggAll, AggLargest, and IVW. This suggests
that when α is very small meaning the second site sends

very noisy statistics, MVAgg discards the noisy site and only
uses the results from the first site. On the other hand, when
ϵ2 is relatively large and the statistics from the second site
are less noisy, MVAgg uses both sites to reduce a sampling
error. We also observe the standard deviations of MVAgg
are mostly the smallest, which is because MVAgg aims to
minimize the variance of ATE estimate. AggAll performs the
worst when ϵ1 ≫ ϵ2, which supports our intuition that the
noisy site can harm the final ATE estimation. The performance
of AggLargest gets relatively worse as α gets larger since
it does not utilize the accurate statistics from the second
site. IVW performs almost comparably with MVAgg, but the
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Fig. 9: Mean MAEs and standard deviations of MVAgg, AggAll, AggLargest, and IVW on Synth dataset under three-site
setting. Upper low: GlobalDPMatching. Lower row: SmoothDPMatching. N1 : N2 : N3 = 1 : 1 : 1 (left most), 3 : 2 : 1
(middle left), 9 : 9 : 2 (middle right), and 18 : 1 : 1 (right most). Note that y-axis scales are different between upper and
lower rows.
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Fig. 10: Mean MAEs and standard deviations of MVAgg, AggAll, AggLargest, and IVW on IHDP dataset under three-site
setting. Upper low: GlobalDPMatching. Lower row: SmoothDPMatching. N1 : N2 : N3 = 1 : 1 : 1 (left most), 3 : 2 : 1
(middle left), 9 : 9 : 2 (middle right), and 18 : 1 : 1 (right most). Note that y-axis scales are different between upper and
lower rows.

performance is relatively worse as α gets smaller. This might
be because the estimated DP variance from the second site gets
noisier and it adds too much weight on the noisy site. Figure 4
shows the mean MAEs on IST dataset under the three-site
setting (J = 3) with varying sample size proportions. The
results exhibit similar trends to the two-site one. Most notably,
MVAgg and IVW outperform AggAll and AggLargest in most
of the cases. Comparing the results of different sample size
proportions, we see the performance gap between MVAgg
and AggLargest is maximized when the sample distribution
across sites is uniform, i.e., N1 : N2 : N3 = 1 : 1 : 1.
This is because AggLargest cannot use large enough sites
even when those sites have large enough ϵ’s. On the other
hand, the gap between MVAgg and AggAll for α ≪ 1 is

largest when N1 : N2 : N3 = 18 : 1 : 1. This is because
AggAll weighs too much on the largest site, i.e., the first
site, even when it has small ϵ1, leading to noisier results
than the ones obtained by removing the first site. This case
particularly demonstrates the non-triviality of the problem—
more samples do not necessarily help the final ATE estimation
in the presence of DP noise. Although the gap is small, IVW
performs generally better than MVAgg in this setting. IVW
successfully assigns a fine-grained weight to each site.

Figure 5 shows the mean MAEs for STAR dataset, where
the assignments to the four sites (J = 4) are pre-determined.
We observe similar trends for all four aggregation algorithms
to the case on IST dataset. Particularly on STAR dataset,
MVAgg performs the best for α≫ 1. This is because MVAgg
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Fig. 11: Mean MAEs and standard deviations of MVAgg, AggAll, AggLargest, and IVW on Lalonde dataset under three-site
setting. Upper low: GlobalDPMatching. Lower row: SmoothDPMatching. N1 : N2 : N3 = 1 : 1 : 1 (left most), 3 : 2 : 1
(middle left), 9 : 9 : 2 (middle right), and 18 : 1 : 1 (right most). Note that y-axis scales are different between upper and
lower rows.

has more flexibility to choose the number of sites used, e.g.,
it can use sites 1 to 3 while AggAll and AggLargest cannot.
For α < 1, IVW outperforms MVAgg. Under more sites,
the performance degradation due to wrongly assigning a large
weight to a noisy site by IVW might be alleviated by other
sites.

2) Observational Study and Matching Estimator: Figures 6
and 7 demonstrate how the smooth sensitivity on the Synth
dataset changes along with the sample size N and the extent
of imbalance, which is controlled by the parameter a (the
larger a is, the more imbalanced the dataset is). Here, we
measure β-smooth sensitivity for β = ϵ

2 ln( 2
δ )

, where ϵ = 1

and δ = 10−5, c.f., the smooth-sensitivity-based Laplace
mechanism. We observe that the smooth sensitivity actually
scales with ≈ O(1/N) for a balanced dataset. We also see
that it positively correlates with the extent of imbalance—it is
the smallest when the data is well-balanced. Notice that even
for imbalanced data, the smooth sensitivity is smaller than the
global sensitivity ≈ 1.

Figures 8– 11 show the MAEs on three observational study
datasets, Synth, IHDP, and Lalonde, when the ATE estimation
algorithm is GlobalDPMatching or SmoothDPMatching under
two-site (Figure 8) and three-site (Figure 9– 11) settings.
Overall, we observe similar trends for all four aggregation
algorithms to the case on the randomized trial datasets. Espe-
cially, for both ATE estimation algorithms and for all datasets,
we see MVAgg and IVW outperform AggAll and AggLargest
in general. Comparing between MVAgg and IVW, we observe
that MVAgg performs the best when α ≪ 1, where there are
disparities in site privacy budgets, while IVW achieves the
best MAE when α ≈ 1, where privacy budgets are uniform
across sites. Furthermore, we see the standard deviations of
MVAgg are as small as the ones of IVW and smaller than those
of AggAll and AggLargest. In particular, when α ≫ 1, they

are much smaller than AggAll and AggLargest. These trends
suggest that MVAgg discards the sites with small ϵ’s, where
the additive noises dominate the site outputs, and only uses the
sites with large enough ϵ’s, where the noises are negligible, to
reduce a sampling error.

One main difference from the randomized trial case is
the error scale. The global and smooth sensitivities of the
matching estimator are larger than the global sensitivity of
the difference-in-means estimator, which we use for random-
ized trials. Therefore, the ATE estimates at each site by the
DP matching estimators, GlobalDPMatching and SmoothDP-
Matching, tend to be noisier, which results in higher MAEs.
In such a case, it is more beneficial to use MVAgg or IVW
instead of AggAll and AggLargest since the absolute gains in
MAE are much larger.

Comparing the ATE estimation algorithms, we observe that
SmoothDPMatching achieves much better performance (notice
the scales of y-axis). The MAEs of GlobalDPMatching can
be around 1 or more which is impermissible considering
that 0 ≤ τ ≤ 1 as a result of preprocessing. However,
SmoothDPMatching combined with MVAgg or IVW achieves
MAEs less than 1 for all cases and even achieves MAEs
around 0.1 or less when α ≫ 1. This indicates that our
smooth sensitivity analysis enables us to dramatically reduce
an additive DP noise variance and improve the privacy-utility
tradeoff.

C. Discussion

Our results support the superiority of SmoothDPMatching
over GlobalDPMatching, which happens because the smooth
sensitivity is much smaller than the global sensitivity in
practice. We also anticipate that the advantage of SmoothDP-
Matching is larger for well-balanced datasets.

Second, we find MVAgg achieves the best final ATE on
both randomized trial and observational study data especially



when there is a high disparity in the privacy budgets, compared
with the other rule-based aggregation algorithms. This is
because it reliably adopts the estimate at a site only when
the quality is relatively high. The relative quality is hugely
dependent on the data through sampling error, which we
cannot know in advance. Thus, MVAgg provides a principled
way to aggregate the estimates from multiple sites as opposed
to some other rule-based aggregation algorithm, e.g., AggAll
and AggLargest.

Finally, we find that site-level privacy parameters also have
a high impact on performance. In particular, when all sites
have comparable privacy, it is best to combine their estimates;
on the other hand, if some sites have significantly higher
privacy requirements, then it is best not to use those sites. We
find that MVAgg reliably does this for a variety of privacy
parameters. Furthermore, we note that MVAgg never outputs
the impermissible outcome for any combination of privacy
parameters across sites. Considering the risk of outputting
very noisy final estimates with rule-based algorithms, it is
recommended to use MVAgg in general while IVW can also
be a good candidate when sites have almost uniform privacy
budgets.

V. CONCLUSION AND FUTURE WORK

We introduce a multi-site ATE estimation setting with per-
site DP guarantees. We then provide a class of per-site ATE
estimation algorithms which output both the private ATE
estimate and its private variance estimate so that the central
server aggregates the estimates from sites properly by looking
at their qualities. In particular, for observational study data,
we propose a novel DP matching estimator by analyzing
the smooth sensitivity. We also propose an aggregation algo-
rithm on the server that minimizes the variance of the final
ATE estimate. Our experimental results demonstrate that our
method, combining our site and server algorithms, automat-
ically handles the heterogeneity across sites and provides a
better privacy-utility tradeoff.

We believe our work is a first step towards enabling causal
inference studies across multiple sites with formal privacy
guarantees. One of the future directions is to consider how we
can combine statistics from sites with different data distribu-
tions, e.g., children’s hospitals and geriatric hospitals. Another
direction would be studying other estimands, e.g., CATE, and
other estimators, e.g., IPW.
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Algorithm 4: DP difference-in-means estimator at site

Data: Dataset: D = {(Yi(1), Yi(0))}Ni=1, Number of treated/control individuals: Nt, Nc, Privacy parameter: ϵ
1 Sample W1, . . . ,WN according to Eq. (2)
2 Observe outcomes: {Y obs

i = WiYi(1) + (1−Wi)Yi(0)}Ni=1

3 Compute average outcome of treated individuals with DP: Ȳt−DP(D) = 1
Nt

(∑
i:Wi=1 Y

obs
i + ξt

)
, where ξt ∼ Lap(B/ϵ)

4 Compute average outcome of control individuals with DP: Ȳc−DP(D) = 1
Nc

(∑
i:Wi=0 Y

obs
i + ξc

)
, where

ξc ∼ Lap(B/ϵ)
5 return τ̂DP = Ȳt−DP(D)− Ȳc−DP(D)

APPENDIX A
RANDOMIZED TRIAL DATA & DIFFERENCE-IN-MEANS ESTIMATOR

A. Privacy Guarantee

In randomized trials, the number of treated individuals Nt (Nc = N −Nt) is a fixed public information, and the treatment
indicators Wi’s are assigned randomly by the site so that

∑
i Wi = Nt. More specifically,

Pr[W1, . . . ,WN ] =

{
1

(N
Nt
)

if
∑

i Wi = Nt

0 otherwise
. (2)

Note that this assignment does not depend on the individuals’ potential outcomes, Yi(1)’s and Yi(0)’s. Recall that we define a
dataset to be a set of individual potential outcomes, i.e., D = {(Yi(1), Yi(0))}Ni=1 in randomized trials. This definition implies
that neighboring datasets differ by one person’s potential outcomes.

Under this definition of D, we show that our DP version of the difference-in-means estimator satisfies ϵ-DP. Recall that our
DP estimator is as follows:

τ̂DP =
1

Nt

( ∑
i:Wi=1

Y obs
i + ξt

)
− 1

Nc

( ∑
i:Wi=0

Y obs
i + ξc

)

= τ̂ +
ξt
Nt
− ξc

Nc
,

where ξt, ξc ∼ Lap(B/ϵ).
Since the treatment indicators Wi’s are assigned independently of personal information, one could see them as public

information. In such a case, one can use the parallel composition since the change in one record of D only changes the value
of either

∑
i:Wi=1 Y

obs
i or

∑
i:Wi=0 Y

obs
i .

We can also show that the estimator satisfies ϵ-DP when Wi’s are sensitive information and not public. In particular, we
consider the randomized mechanism which explicitly involves the sampling of Wi’s as in Algorithm 4 and show that it satisfies
ϵ-DP. It suffices to show that for any neighboring dataset D,D′ and any subset S of the image of (Ȳt−DP, Ȳc−DP),

Pr[(Ȳt−DP(D), Ȳc−DP(D)) ∈ S] ≤ eϵ Pr[(Ȳt−DP(D
′), Ȳc−DP(D

′)) ∈ S].

We show it by marginalizing over W1, . . . ,WN and observing the fact that (Ȳt−DP, Ȳc−DP) satisfies ϵ-DP for a fixed
W1, . . . ,WN , which is equivalent to the case where Wi’s are public.

Proof.

Pr[(Ȳt−DP(D), Ȳc−DP(D)) ∈ S]

=
∑

W1,...,WN

Pr[W1, . . . ,WN ] · Pr[(Ȳt−DP(D), Ȳc−DP(D)) ∈ S|W1, . . . ,WN ]

≤
∑

W1,...,WN

Pr[W1, . . . ,WN ] · eϵ Pr[(Ȳt−DP(D
′), Ȳc−DP(D

′)) ∈ S|W1, . . . ,WN ]

=eϵ Pr[(Ȳt−DP(D
′), Ȳc−DP(D

′)) ∈ S].

Finally, by the post-processing theorem of DP, our DP difference-in-means estimator satisfies ϵ-DP for randomized trials.
One can apply the same argument to the variance estimation as well.



APPENDIX B
OBSERVATIONAL STUDY DATA & MATCHING ESTIMATOR

Since the treatment indicator Wi depends on the covariates Xi, without loss of generality, we use D = {Wi, Y
obs
i , Xi}Ni=1

as the dataset definition in this section. The neighboring datasets can differ by the treatment assignment as well as the outcome
and/or covariates.

A. Detail on Modification of Matching Estimator

We modify the exact single matching estimator so as to balance the number of individuals matched to a particular individual
in the same covariate stratum. The reason for doing this is to obtain the tighter bound of the sensitivity. In particular, suppose
for a stratum X = x, we have |Tx| treated and |Cx| control individuals. Without specifying any, the first control individual
can be matched with all |Tx| treated in the worst case (left side of Figure 2 in the main paper). Thus, the first one contributes
|Tx|+1 times to the final estimate which leads to larger sensitivity and more DP noise vaiance. As such, we avoid such cases
by greedily balancing the number of matches for each individual (right side of Figure 2 in the main paper) within each covariate
stratum. More specifically, i-th treated individual is matched with i mod |Cx|-th control, and j-th control individual is matched
with j mod |Tx|-th treated. This way we guarantee that each treated (or control) individual contributes up to ⌈|Cx|/|Tx|⌉+ 1
(or ⌈|Tx|/|Cx|⌉+1) times to the final estiamte. As a result, we obtain the tighter sensitivity bound. Note that we only specify
how to handle individuals with the same covariate in the exact single matching; thus, no bias is introduced by our modification.

B. Smooth Sensitivity of Matching Estimator

1) Proof of Theorem 1:

Proof. Let Li be the number of individuals matched with i-th individual, namely, the number of individuals who use Y obs
i as

the imputed value. By our modification to the estimator in the main paper, we have ⌊ |Cx|
|Tx| ⌋ ≤ Li ≤ ⌈ |Cx|

|Tx| ⌉ when Xi = x and
Wi = 1. Then, the exact single matching estimator is written as below.

τ̂(D) =
1

N

∑
x

∑
i∈Tx

(1 + Li)Y
obs
i −

∑
i∈Cx

(1 + Li)Y
obs
i

Let f(D) = N · τ̂(D). Since LSτ̂ (D) = 1
N LSf (D), we instead consider the local sensitivity of f .

Additionally, let dar(D,D′) be the minimum number of row addition/removal from D to obtain D′. Furthermore, let
d+ar(D,D′) ≤ 1⇔ dar(D,D′) ≤ 1∧ |D′| = |D|+ 1 and define LS+f (D) = maxD′:d+

ar(D,D′)≤1 |f(D)− f(D′)|. Similarly, let
d−ar(D,D′) ≤ 1⇔ dar(D,D′) ≤ 1 ∧ |D′| = |D| − 1 and define LS−f (D) = maxD′:d−

ar(D,D′)≤1 |f(D)− f(D′)|. Then, by the
triangle inequality, it holds that

LSf (D) ≤ max
D′′:d+

ar(D,D′′)≤1
max

D′:d−
ar(D′′,D′)≤1

|f(D)− f(D′′)|+ |f(D′′)− f(D′)|

= max
D′′:d+

ar(D,D′′)≤1
(|f(D)− f(D′′)|+ max

D′:d−
ar(D′′,D′)≤1

|f(D′′)− f(D′)|)

≤ LS+f (D) + max
D′′:d+

ar(D,D′′)≤1
LS−f (D

′′)

We first consider LS+f (D). We write the neighboring dataset D′ = {(W ′
i , Y

obs′
i , X ′

i)}N+1
i=1 and also define T ′

x, C ′
x, and L′

i

accordingly. W.l.o.g., DN+1 ∈ D′ is the added individual data. Let x be x = X ′
N+1.

Here we assume w.l.o.g. WN+1 = 1. When Cx, Tx are non-empty, it holds that

|f(D)− f(D′)| = |(
∑
i∈Tx

(1 + Li)Y
obs
i −

∑
i∈Cx

(1 + Li)Y
obs
i )− (

∑
i∈T ′

x

(1 + L′
i)Y

obs′
i −

∑
i∈C′

x

(1 + L′
i)Y

obs′
i )|

= | − (1 + L′
N+1)Y

obs′
N+1 +

∑
i∈Tx

(Li − L′
i)Y

obs
i −

∑
i∈Cx

(Li − L′
i)Y

obs
i |

≤ |(1 + L′
N+1)Y

obs′
N+1|+ |

∑
i∈Tx

(Li − L′
i)Y

obs
i |+ |

∑
i∈Cx

(Li − L′
i)Y

obs
i |

≤ (1 + L′
N+1)B + L′

N+1B +B

= 2(1 + L′
N+1)B

≤ 2(1 + ⌈ |C
′
x|
|T ′

x|
⌉)B = 2(1 + ⌈ |Cx|

|Tx|+ 1
⌉)B.



The second to last inequality holds due to properties achieved by the (greedy) exact single matching estimator: (1) for i ∈ Tx,
Li ≥ L′

i, (2)
∑

i∈Tx
Li − L′

i = L′
N+1 since

∑
i∈Tx

Li =
∑

i∈T ′
x
L′
i = |Cx|, and (3) for i ∈ Cx, there exists only one i′ ∈ Cx

s.t. Li′ − L′
i′ = −1 and for i ̸= i′, Li = L′

i. In particular, the second term is bounded as follows.

|
∑
i∈Tx

(Li − L′
i)Y

obs
i | ≤

∑
i∈Tx

|Li − L′
i||Y obs

i | ≤ B
∑
i∈Tx

|Li − L′
i| = B

∑
i∈Tx

(Li − L′
i) = BL′

N+1

The last inequality holds the exact single matching estimator balances the number of matches.
When Cx is empty, |f(D)− f(D′)| = 0. When Tx is empty and Cx is not empty, |f(D)− f(D′)| = |Y obs

N+1 − ŶN+1(0)−∑
i∈Cx

Y obs
N+1 − Y obs

i | ≤ 2(|Cx|+ 1)B.
Therefore, by the symmetry, the following holds.

LS+f (D) = max
x

{
0 |Tx| = |Cx| = 0

2(1 + max(⌈ |Cx|
|Tx|+1⌉, ⌈

|Tx|
|Cx|+1⌉))B o.w.

With similar arguments, we have the following.

LS−f (D) = max
x

{
0 |Tx| = 0 ∨ |Cx| = 0

2(1 + max(⌈ |Cx|
|Tx| ⌉, ⌈

|Tx|
|Cx|⌉))B o.w.

Therefore,

max
D′′:d+

ar(D,D′′)≤1
LS−f (D

′′) = max
x


0 |Tx| = |Cx| = 0

2(1 + |Cx|)B |Tx| = 0 ∧ |Cx| > 0

2(1 + |Tx|)B |Tx| > 0 ∧ |Cx| = 0

2(1 + max(⌈ 1+|Cx|
|Tx| ⌉, ⌈

1+|Tx|
|Cx| ⌉))B o.w.

Finally, by combining above, we have the upper bound on the local sensitivity as follows.

LSτ̂ (D) ≤ 1

N
max

x


0 |Tx| = |Cx| = 0

4(1 + |Cx|)B |Tx| = 0 ∧ |Cx| > 0

4(1 + |Tx|)B |Tx| > 0 ∧ |Cx| = 0

2(2 + max(⌈ |Cx|
|Tx|+1⌉, ⌈

|Tx|
|Cx|+1⌉) + max(⌈ 1+|Cx|

|Tx| ⌉, ⌈
1+|Tx|
|Cx| ⌉))B o.w.

=
1

N
max

x


0 |Tx| = |Cx| = 0

4(1 + |Cx|)B |Tx| = 0 ∧ |Cx| > 0

4(1 + |Tx|)B |Tx| > 0 ∧ |Cx| = 0

2(2 + max(⌈ |Cx|
|Tx|+1⌉+ ⌈

1+|Cx|
|Tx| ⌉, ⌈

|Tx|
|Cx|+1⌉+ ⌈

1+|Tx|
|Cx| ⌉))B o.w.

≤ 1

N
max

x


0 |Tx| = |Cx| = 0

4(1 + |Cx|)B |Tx| = 0 ∧ |Cx| > 0

4(1 + |Tx|)B |Tx| > 0 ∧ |Cx| = 0

4(1 + max(⌈ 1+|Cx|
|Tx| ⌉, ⌈

1+|Tx|
|Cx| ⌉))B o.w.

The local sensitivity depends only on |Tx| and |Cx|, and thus, the smooth sensitivity is obtained as follows. Let Rx(D)

satisfy LS(D) = 4B
N (1 + maxl Rx(D)). Also, let R(k)

x (D) = maxD′:d(D,D′)≤k Rx(D
′). Then,

A(k)(D) = max
D′:d(D,D′)≤k

LS(D′)

=
4B

N
(1 + max

x
R(k)

x (D)).

Here, R(k)
x (D) is as follows.

Rx(k) =


|Tx|+ k |Tx| ≥ |Cx| ∧ k ≥ |Cx|
⌈ |Tx|+k+1

|Cx|−k ⌉ |Tx| ≥ |Cx| ∧ k < |Cx|
|Cx|+ k |Cx| ≥ |Tx| ∧ k ≥ |Tx|
⌈ |Cx|+k+1

|Tx|−k ⌉ |Cx| ≥ |Tx| ∧ k < |Tx|



Thus, the β-smooth sensitivity is

S∗
τ̂ ,β(D) = max

k=0,...,N
e−kβ 4B

N
(1 + max

x
R(k)

x (D)).

This can be computed by storing |Tx| and |Cx| for each x ∈ X , which is present in the dataset, and enumerating over k;
thus, we need O(min(|X |, N)) space and O(N ·min(|X |, N)) time. Note that for x ∈ X which is not present in th dataset
R

(k)
x (D) is constant for fixed k, i.e., R(k)

x (D) = k.

C. Differentially Private Variance Estimation
Let τ̂DP be our DP matching estimator, SmoothDPMatching. Recall that the variance of τ̂DP is V[τ̂DP] = V[τ̂ ] +

V[(2S∗
τ̂ ,β(D)/ϵ) · η] = V[τ̂ ] + 8(S∗

τ̂ ,β(D))2/ϵ2. Since both terms are data-dependant, we need to estimate them from data
privately.

We guarantee (ϵ2, δ2)-DP and (ϵ3, δ3)-DP separately for each term. Suppose the private ATE estimation is done with (ϵ1, δ1)-
DP. Then, publishing the private ATE estimate and the variance estimate satisfies (ϵ1 + ϵ2 + ϵ3, δ1 + δ2 + δ3)-DP in total.

1) Smooth Sensitivity of Variance of Matching Estimator: By Section 19 of [38], we have the following variance estimate
of the exact single matching estimator, V̂[τ̂ ]:

V̂[τ̂ ] =
1

2N2

∑
x

{∑
i∈Tx

(1 + Li)
2(Ŷi(1)− Ŷi(0))

2 +
∑
i∈Cx

(1 + Li)
2(Ŷi(1)− Ŷi(0))

2

}
.

We produce DP version of the variance estimate by adding noise calibrated to the smooth sensitivity of this quantity. In the
rest of this section, we present its smooth sensitivity.

As in Section B-B1, we consider the local sensitivity of the unnormalized variance estimate, denoting by g, i.e., g(D) = 2N2 ·
V̂[τ̂ ]. Thus, we have LSV̂[τ̂ ](D) = 1

2N2LSg(D). We also upper bound LSg(D) ≤ LS+g (D) + maxD′′:d+
ar(D,D′′)≤1 LS

−
g (D

′′).
We first consider LS+g (D). We write the neighboring dataset D′ = {(W ′

i , Y
obs′
i , X ′

i)}N+1
i=1 and also define T ′

x, C ′
x, and L′

i

accordingly. W.l.o.g., DN+1 ∈ D′ is the added individual data. Let x be x = X ′
N+1.

Here we assume w.l.o.g. WN+1 = 1. When Cx, Tx are non-empty, it holds that

|g(D)− g(D′)| = |
∑

i∈Tx∪Cx

(1 + Li)
2(Ŷi(1)− Ŷi(0))

2 −
∑

i∈T ′
x∪C′

x

(1 + L′
i)

2(Ŷ ′
i (1)− Ŷ ′

i (0))
2|

= |
∑

i∈Tx∪Cx

{
(1 + Li)

2(Ŷi(1)− Ŷi(0))
2 − (1 + L′

i)
2(Ŷ ′

i (1)− Ŷ ′
i (0))

2
}

− (1 + L′
N+1)

2(Ŷ ′
N+1(1)− Ŷ ′

N+1(0))
2|

≤ B2(
∑

i∈Tx∪Cx

{(1 + Li)
2 + (1 + L′

i)
2}+ (1 + L′

N+1)
2)

≤ B2(|Tx|((1 + ⌈
|Cx|
|Tx|
⌉)2 + (1 + ⌈ |C

′
x|
|T ′

x|
⌉)2) + |Cx|((1 + ⌈

|Tx|
|Cx|
⌉)2 + (1 + ⌈ |T

′
x|
|C ′

x|
⌉)2)

+ (1 + ⌈ |C
′
x|
|T ′

x|
⌉)2)

≤ B2(2|Tx|((1 + ⌈
|Cx|
|Tx|
⌉)2 + 2|Cx|((1 + ⌈

|Tx|+ 1

|Cx|
⌉)2 + (1 + ⌈ |Cx|

|Tx|+ 1
⌉)2)

When Cx is empty, |g(D) − g(D′)| = 0. When Tx is empty and Cx is not empty, |g(D) − g(D′)| ≤ B2((1 + |Cx|)2 +
|Cx|(1 + 1)2) = B2((1 + |Cx|)2 + 4|Cx|).

Thus, by symmetry, we have the following upper bound on LS+g (D).

LS+g (D) ≤ max
x



0 |Tx| = |Cx| = 0

B2((1 + |Cx|)2 + 4|Cx|) |Tx| = 0 ∧ |Cx| > 0

B2((1 + |Tx|)2 + 4|Tx|) |Tx| > 0 ∧ |Cx| = 0

B2 max(2|Tx|((1 + ⌈ |Cx|
|Tx| ⌉)

2 + 2|Cx|((1 + ⌈ |Tx|+1
|Cx| ⌉)

2 + (1 + ⌈ |Cx|
|Tx|+1⌉)2,

2|Cx|((1 + ⌈ |Tx|
|Cx|⌉)

2 + 2|Tx|((1 + ⌈ |Cx|+1
|Tx| ⌉)

2 + (1 + ⌈ |Tx|
|Cx|+1⌉)2) o.w.

Similarly, we have the following.

LS−g (D) ≤ max
x


0 |Tx| = 0 ∨ |Cx| = 0

B2 max(2(1 + |Tx|)((1 + ⌈ |Cx|
|Tx| ⌉)

2 + 2|Cx|((1 + ⌈ |Tx|+1
|Cx| ⌉)

2 + (1 + ⌈ |Cx|
|Tx| ⌉)

2,

2(1 + |Cx|)((1 + ⌈ |Tx|
|Cx|⌉)

2 + 2|Tx|((1 + ⌈ |Cx|+1
|Tx| ⌉)

2 + (1 + ⌈ |Tx|
|Cx|⌉)

2) o.w.



Therefore,

max
D′′:d+

ar(D,D′′)≤1
LS−g (D

′′)

= max
x



0 |Tx| = |Cx| = 0

B2 max(8(1 + |Cx|) + 2(2 + |Cx|)2 + 4,

4(1 + |Cx|)2 + 2|Cx|((1 + ⌈ 2
|Cx|⌉)

2 + (1 + |Cx|)2) |Tx| = 0 ∧ |Cx| > 0

B2 max(8(1 + |Tx|) + 2(2 + |Tx|)2 + 4,

4(1 + |Tx|)2 + 2|Tx|((1 + ⌈ 2
|Tx|⌉)

2 + (1 + |Tx|)2) |Tx| > 0 ∧ |Cx| = 0

B2 max(2(1 + |Cx|)(1 + ⌈ 1+|Tx|
|Cx| ⌉)

2 + 2(1 + |Tx|)(1 + ⌈ 1+|Cx|
1+|Tx| ⌉)

2 + (1 + ⌈ 1+|Tx|
|Cx| ⌉)

2,

2(2 + |Tx|)(1 + ⌈ |Cx|
1+|Tx|⌉)

2 + 2|Cx|(1 + ⌈ 2+|Tx|
|Cx| ⌉)

2 + (1 + ⌈ |Cx|
1+|Tx|⌉)

2,

2(1 + |Tx|)(1 + ⌈ 1+|Cx|
|Tx| ⌉)

2 + 2(1 + |Cx|)(1 + ⌈ 1+|Tx|
1+|Cx|⌉)

2 + (1 + ⌈ 1+|Cx|
|Tx| ⌉)

2,

2(2 + |Cx|)(1 + ⌈ |Tx|
1+|Cx|⌉)

2 + 2|Tx|(1 + ⌈ 2+|Cx|
|Tx| ⌉)

2 + (1 + ⌈ |Tx|
1+|Cx|⌉)

2) o.w.

Combining above, we have the upper bound on LSV̂[τ̂ ](D) as below:

LSV̂[τ̂ ](D) ≤ 1

2N2

(
LS+g (D) + max

D′′:d+
ar(D,D′′)≤1

LS−g (D
′′)

)
.

The β-smooth sensitivity is by definition:

S∗
V̂[τ̂ ],β(D) = max

k=0,...,N
e−kβ max

D′:d(D,D′)≤k
LSV̂[τ̂ ](D

′).

Since the local sensitivity depends only on |Tx| and |Cx|, it remains to consider all possible |T ′
x|’s and |C ′

x|’s such that
d(D,D′) ≤ k and compute the local sensitivity for all k and take the maximum.


