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ABSTRACT

Program synthesis aims to create accurate, executable programs from problem
specifications, specifically from natural language descriptions in our context. Re-
cent studies have leveraged the power of reinforcement learning (RL) in conjunc-
tion with large language models (LLMs), significantly enhancing code generation
capabilities. The application of RL focuses on directly optimizing for functional
correctness, offering an advantage over conventional supervised methods. De-
spite policy-based RL methods dominating the literature on RL for program syn-
thesis, the nature of program synthesis tasks hints at a natural alignment with
value-based methods. This stems from the rich collection of off-policy programs,
including those developed by human programmers and also historical samples,
coupled with the straightforward verification of generated programs through au-
tomated unit testing, meaning rewards are easy to obtain. Diverging from the
dominant use of policy-based algorithms, our work explores the feasibility of
value-based approaches, leading to the development of our B-Coder (pronounced
Bellman coder). Yet, training value-based methods presents challenges due to the
enormous search space inherent to program synthesis. To this end, we introduce
an initialization protocol for RL agents utilizing pre-trained LMs and a conserva-
tive Bellman operator to reduce training complexities. Moreover, we demonstrate
how to leverage the learned value functions as a dual strategy to post-process gen-
erated programs. Our empirical evaluations demonstrated B-Coder’s capability in
achieving state-of-the-art performance when compared to policy-based methods.
Remarkably, this achievement is reached with minimal reward engineering effort,
highlighting the effectiveness of value-based RL, independent of reward designs.

1 INTRODUCTION

Program synthesis (or code generation) aims to create functionally accurate executable programs
from problem specifications, such as input-output (IO) examples (Summers, 1977; Gulwani et al.,
2012), constraint-based (Osera & Zdancewic, 2015; Frankle et al., 2016) or natural language de-
scriptions (Hendrycks et al., 2021; Austin et al., 2021), among others. The increasing attention to-
wards this field can be attributed to its potential in transforming the software development paradigm.
Notably, AI-powered tools have shown evidence of boosting efficiency within the software industry.

Large language models (LLMs) (Brown et al., 2020; OpenAI, 2023; Anil et al., 2023; Chowdhery
et al., 2022; Rae et al., 2021; Hoffmann et al., 2022; Touvron et al., 2023) have garnered substantial
interest and shown remarkable achievements. The scheme of pre-training on vast amounts of data
has yielded notable successes in natural language generation. This trend extends its influence to
program synthesis, where numerous specialized code LLMs (Li et al., 2023; 2022; Nijkamp et al.,
2022; Zheng et al., 2023; Fried et al., 2022; Chen et al., 2021a; Wang et al., 2021; 2023; Xu et al.,
2023; Rozière et al., 2023) have been introduced to address challenges in program synthesis.

Unlike many free-form natural language generation tasks, where the quality of model’s output is hard
to assess, the correctness of synthesized programs can be verified through automated execution with
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predefined unit tests. This allows for directly optimizing execution outcomes through reinforcement
learning (RL), by formulating test outcomes as reward signals. Our discussion focuses on recent RL-
based works (Le et al., 2022; Shojaee et al., 2023; Liu et al., 2023) that have achieved remarkable
advancements in Python text-to-code generation, evaluated on the challenging benchmarks sourced
from Codeforces programming contests (Hendrycks et al., 2021; Li et al., 2022) Notably, these
works predominantly favor on-policy policy-based algorithms.

While (on-policy) policy-based methods are favored in existing program synthesis works, they are
known to be sample inefficient (Nachum et al., 2017; Gu et al., 2016) due to their inability to use
off-policy samples. In contrast, value-based methods, using temporal difference learning, are known
to be more sample-efficient (Gu et al., 2016; Nachum et al., 2017; Liu et al., 2020), as they solve
a fixed-point iteration which does not explicitly require a specific data distribution, hence offering
better compatibility with off-policy data. We defer the technical explanations on on/off-policy data
and reasons for the different efficiency to Section 3.2, where we have notations and definitions ready.

In program synthesis, the primary sources of off-policy data include human programs and previously
synthesized programs. Both are off-policy as they do not follow the sequence distribution induced by
the current model. Current program synthesis works often directly use off-policy samples with on-
policy methods. Unsurprisingly, Shojaee et al. (2023) notices that an increase in off-policy synthetic
programs may degrade performance. This occurs as off-policy data lead to biased gradient estimates.
Ideally, an objective should be to enhance or at least sustain performance as data volume grows.

To summarize, the reasons that suggest a natural fit for value-based methods in program synthesis are
twofold: the availability of (inexpensive) rewards, similar to classical RL tasks like GO and Atari;
and the principle compatibility with off-policy data for effectively leveraging human and historical
data. However, value-based RL faces challenges such as difficulty in converging in large state-action
spaces. To this end, we introduce B-Coder (Bellman coder), with our contributions being threefold:

• We stabilize value-based RL for program synthesis by proposing an initialization protocol
for Q-functions and a conservative Bellman operator to mitigate the training complexities.

• We demonstrate how to leverage value functions as a dual strategy to improve generation.
• B-Coder achieves strong empirical performance with minimal reward engineering, provid-

ing further insights of RL algorithm design independent of reward function designs.

Paper structure. We introduce related works and notations in Section 2 and 3. Section 4 details
our method and the rationale behind our design choices. Specifically, Sections 4.1, 4.2, and 4.3
address the challenges of value function training by: leveraging task structure, providing effective Q-
function initialization, and a conservative operator for stable yet less ambitious updates, respectively.
Section 4.5 shows an additional benefit of value functions, and Section 5 shows our empirical results.

2 RELATED WORKS

Execution-guided program synthesis. The feasibility of verifying programs through test case out-
comes has led to the line of execution-guided works (Chen et al., 2018; Zohar & Wolf, 2018; Chen
et al., 2021b). While these efforts leverage execution feedback, they do not directly optimize towards
higher execution success rate due to the inherent non-differentiability of execution outcomes.

RL for general sequence modeling. Supervised LM training, using next token predictions (NTP) or
masked language modeling (Kenton & Toutanova, 2019), has recognized limitations. One prominent
issue is the exposure bias: given that the training is done in a “teacher-forcing” manner (Bengio et al.,
2015; Ranzato et al., 2015), errors tend to accumulate during testing due to auto-regressive genera-
tion. In contrast, prior works (Ranzato et al., 2015; Rennie et al., 2017) have demonstrated the effi-
cacy of RL in addressing exposure bias and optimizing non-differentiable metrics, e.g. BLEU (Pap-
ineni et al., 2002) and ROUGE (Lin, 2004), by leveraging automatic scoring as reward function.

RL for program synthesis. Supervised losses also fall short when assessing the functional accuracy
of synthesized programs (Hendrycks et al., 2021; Chen et al., 2021a). As such, relying solely on su-
pervised learning for program synthesis is not ideal. As RL provides a pathway to directly optimize
non-differentiable objectives, plentiful work (Zhong et al., 2017; Simmons-Edler et al., 2018; Ellis
et al., 2019; Wang et al., 2022) have studied enhancing code generation through RL. For the works
most related to ours: CodeRL (Le et al., 2022) adapted REINFORCE (Williams, 1992), a classic
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policy gradient (PG) algorithm, along with the baseline trick for variance reduction and a supervise-
trained reward model to alleviate the issue of sparse execution signals. In addition, they proposed
a critic sampling strategy to refine and repair program based on the example unit tests feedback.
PPOCoder (Shojaee et al., 2023) applied proximal policy gradient (Schulman et al., 2017, PPO) to
fine-tune pre-trained LMs. In addition, they leverage the syntactic and semantic structure of code,
such as syntax trees (Rabinovich et al., 2017) and data-flow graphs (Yasunaga & Liang, 2020), to
improve reward function designs. RLTF (Liu et al., 2023) proposed an online training framework
for program synthesis using policy gradient with heursitically-designed fine-grained rewards.

Additional discussions. Appendix D lists several RL applications, showing the analogies between
program synthesis and tasks that benefit from value-based methods. In C, we extend the discussion
on works that extend policy-based methods to an off-policy setting. Such attempts often involve
training a value function, further highlighting our motivation for starting with value-based methods.

3 PRELIMINARIES

One could formulate the program synthesis task as a sequence-to-sequence generation task, where a
model takes a problem description D as input and outputs a program Ŵ which aims to achieve the
functionality specified by D. A generated program Ŵ = (ŵ0, . . . , ŵT ) is composed by a sequence
of tokens ŵt ∈ V . For brevity, we use constant T to denote the sequence length although it could
be a variable in practice, and W to denote a program in general (both generated and ground truth).
Let LM be an instance of LM, ℓ((w<t, D), ·) be the logits layer (language modelling head) output,
and p(·|w<t, D) be the probabilistic distribution over the vocabulary V (computed by passing ℓ(·, ·)
through softmax), conditioned on a sequence w<t and D. Suppose W ∗ is a ground truth program
and Dtrain is the train set, conventionally LMs could be trained by minimizing the cross-entropy loss

Lce(p) = −EW∗∼Dtrain log p(W
∗|D) = −EW∗∼Dtrain

∑
t log p(w

∗
t |w∗

<t, D). (1)

3.1 RL NOTATIONS

To make notations easier to interpret, we bridge program synthesis notations to standard RL ones.
RL problems are typically formulated as Markov Decision Processes (MDPs) and an MDP M is
often composed by a 5-tuple M=(S,A,P, r, γ) which are state space, action space, transition func-
tion, reward function and discount factor, respectively. The discount factor γ discounts future values
to emphasize the near futures, and we use γ=0.999 (which slightly prefers more concise solution).
A (stochastic) transition function P : S ×A → ∆(S) is a distribution over S conditioned on a state-
action pair (s, a). In program synthesis, P is trivial as st+1 ≡ st◦at, where ◦ denotes concatenation.

State and action. In code generation context, an action at is a token ŵt. Hence the action space A
is the vocabulary V . As the information used to generate token ŵt is (ŵ<t, D), the state is hence
defined as st := (ŵ<t, D). For a given D, the state space S = VT . For brevity, we will mainly use
st, at rather than the wt notations, and sometimes omit the time index t if it leads to no confusion.
We will also use s′, a′ to denote st+1, at+1 whenever only the relative temporal position matters.

Policy. A policy π : S → ∆(A) assigns an action distribution ∆(A) to any state s ∈ S , meaning
predicting a token ŵt based on current sequence ŵ<t and the problem specification D. Prior works
often define πθ ≡ pθ and directly optimize LM parameters θ with PG methods. We however define
π := f(θ,□) to be a function of θ and other components □, see details in Section 4.

r(W ) = r(sT , aT ) =
+1.0, if W passed all unit tests
−0.3, if W failed any unit test
−0.6, if W cannot be executed
−1.0, if W cannot be compiled

(2)

Reward function. A reward function r : S×A→ R de-
termines reward of taking action at at state st. We follow
the reward design of Le et al. (2022) in equation 2. We may
also use shorthand notation rt := r(st, at). Note that the
reward is determined when the program W is completed at
T . Thus rt = 0 if t ̸= T otherwise defined as equation 2.

Value functions. RL maximizes the discounted returns, J(π)=E[
∑

tγ
trt|π,M]. The state-action

value function Qπ : S×A→R and the state value function V π : S→R, are defined recursively as:
V π(s) := E

[∑∞
t=0γ

trt|π,M, S0 = s
]
= Ea∼π(·|s),s′∼P(·|s,a) [r(s, a) + γV π(s′)] (3)

Qπ(s, a) := E
[∑∞

t=0γ
trt|π,M, S0 = s,A0 = a

]
= Es′∼P(·|s,a) [r(s, a) + γQπ(s′, π)] , (4)

3



Published as a conference paper at ICLR 2024

where Q(s, π) :=Ea∼πQ(s, a). In addition, the advantage function is Aπ(s, a) :=Qπ(s, a)−V π(s).

3.2 VALUE-BASED RL AND DUELING DQN

Value-based algorithms especially the Q-learning family (Watkins & Dayan, 1992; Mnih et al., 2013;
Van Hasselt et al., 2016; Bellemare et al., 2017) have achieved remarkable successes. A canonical
framework of the Q-learning family iterates between policy evaluation and policy improvement:

policy evaluation (PE): Qk = argminQ ED[Qk−1(s, a)− (r + γQk−1(s
′, πk−1))]

2 (5)
policy improvement (PI): πk = argmaxπ Qk(s, π(s)) (6)

where D is an arbitrary dataset, the PE step estimates the previous policy πk−1 using the Bellman
equation (Bellman, 1966), and the PI step finds an improved πk by maximizing Qk estimates.

In particular, we build our framework on top of Dueling DQN (Wang et al., 2016, DDQN). In a
nutshell, DDQN approximates V (s) and A(s, a) with separate heads, and run improvement and
evaluation steps with Q(s, a) = V (s)+A(s, a). This bifurcation enables a robust estimation of
V (s) without conflating with the actions, which subsequently ensures a stable learning of A(s, a)
given that it focuses solely on the relative values. As a consequence, DDQN often exhibits enhanced
stability in training dynamics and improved generalization. In addition to the prior mentioned advan-
tages, DDQN enables us to leverage a task structure that ground truth programs should attain highest
advantages, therefore reducing the searching space, which we will elaborate on in Section 4.1.

Remarks on sample efficiency. We illustrate the inefficiency of policy-based methods using vanilla
PG as an example. PG maximizes J(µ) := E[

∑
t γ

trt|πµ,M] ≡ EW∼πµ
[
∑

t γ
trt], with gradient

∇µJ(µ) computed using the policy gradient theorem. This method requires training data W drawn
from the distribution induced by current policy πµ, hence called on-policy. Therefore, one should in
principle generate new data and discard historical data at every update, leading to undesired sample
inefficiency. In contrast, policy evaluation as in equation 5 works with arbitrary dataset D.

4 ALGORITHMIC DESIGNS - ACCELERATING VALUE-BASED TRAINING
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Figure 1: Training curves on APPS
train set. ■ denotes B-Coder, ⋆ re-
moves our conservative operator,
and ▼ is B-Coder without both our
operator and initialization.

While value-based RL holds great promise, its training can be
challenging due to the large action space A=V and the high-
dimensional state space S=VT . This leads to a notably large
Q-table of size O(|V|T ). And the cardinality of policy space is
|A||S|=O(|V||V|T ), which grows doubly exponentially. Both
challenges from large action spaces and high-dimensional state
spaces are pivotal research topics in RL. The action space
challenges are discussed by e.g. Dulac-Arnold et al. (2015);
Tavakoli et al. (2018); Kalashnikov et al. (2018), while He
et al. (2016); Nair et al. (2018), among others, considered the
state spaces complexities. In particular, Silver (2015); Duan
et al. (2016) commented on that the potentially better training
stability of policy-based methods in these scenarios.

To address the challenges inherent in training value-based RL for LMs, at a high level, we developed
B-Coder considering three key aspects: incorporation of task structure, initialization of Q-function,
and backup using a conservative Bellman operator. Figure 1 previews the effectiveness of our al-
gorithmic designs, which shows the training curve of different value-based RL algorithms on the
APPS dataset. Due to aforementioned challenges, the performance of the vanilla DDQN continu-
ously decreases even evaluated on the training set. In contrast, both the Q-function initialization and
the conservative Bellman operator show benefits in stabilizing and accelerating the training process.

For notational convenience in subsequent sections, we begin with an overview of our notations and
parameterizations, summarized in Figure 2. Figure 2(a) denotes a pre-trained encoder-decoder LM
parameterized by θckpt (where subscript ckpt denotes the fact it’s a checkpoint/constant). Figure 2(b)
and (c) show the forward graphs of our two different training stages: (b) corresponds to a pre-training
stage for ϕ, to provide a good initialization for (c) the subsequent fine-tuning of θ. Motivations and
details are deferred to Section 4.2 and 4.3, respectively. As we proceed to the rationale behind our
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designs, it is encouraged to maintain familiarity with θckpt, ϕ, θ and their corresponding products,
especially the forward paths to Qϕ and Qθ, to prevent confusion in the subsequent sections.

4.1 LEVERAGING TASK STRUCTURES
s enc dec lm head ℓθckpt pθckpt

(a)
θckpt

s enc dec lm head ℓθckpt Aθckpt

Vϕϕ(b)

Qϕ

θckpt

s enc dec
lm head

residual head

ℓθ

V r
θ

Vϕϕpθckptθckpt

(c)
Aθ

Vθ

Qθ

θ

Figure 2: (a) A forward graph of conventional enc-dec
LMs, with a checkpoint θckpt, where p is a distribution
over A and ℓ denotes logits ; (b) Our forward graph for
pre-training ϕ; (c) Our forward graph for fine-tuning
θ. indicates a frozen/constant component.

As noted earlier, a key attribute of program
synthesis task is the provision of human
solutions, which are guaranteed to be cor-
rect. As a result, these solutions should at-
tain the highest Q-values, even if the cor-
rect solutions might not be unique. As such,
for a ground truth program W ∗ = (s∗0, a

∗
0,

. . . , s∗T , a
∗
T ), Q(s∗t , a

∗
t ) ≥ Q(s∗t , a) holds

for all a ∈ V , hence A(s∗t , a
∗
t ) ≥ A(s∗t , a).

To enforce this structure, one could ensure
A(W ) ≤ 0 and A(W ∗) ≈ 0, where we
abuse the notation and by letting A(W ) :=∑T

t=0 A(st, at). It ensures that W ∗ has ad-
vantages that are roughly the highest. To
this end, suppose g(·) is a general neural
network, we decompose Q as follows,

Q(s, a) = g(s, a)−maxa g(s, a)︸ ︷︷ ︸
non-positive advantage

+V (s) = A(s, a) + V (s). (7)

It enforces our first condition that A(W ) ≤ 0. For the second condition A(W ∗) ≈ 0, we optimize
an advantage function A by minimizing an auxiliary advantage loss function, namely Ladv,

Ladv(A) = E(s∗0 ,a
∗
0 ,...,s

∗
T ,a∗

T )∼Dtrain

[∑T
t=0|A(s∗t , a

∗
t )|

]
. (8)

We also cap the Q-function with Rmax=1, the maximum total rewards. See Appendix G for details.

4.2 Q-FUNCTION INITIALIZATION

Despite the task structures introduced, training the Q-function from scratch remains extremely chal-
lenging. While this is not a problem for policy-based learning (given that directly fine-tune pre-
trained LMs without requiring a Q-function at all), it presents significant challenges in value-based
approaches because one often does not have a pre-trained Q-function. To this end, we show that one
could initialize a Q-function from the logits output ℓ(·, ·) of a pre-trained LM.

Initialization of Q via pre-trained models. Yu & Zhang (2023) considered the fine-tuning of
RL agents after offline RL pre-training. Their main idea is to reconstruct a Q-function from the
pre-trained policy, for fine-tuning. Drawing inspiration from their approach, one could similarly
reconstruct/initialize a Q-function using a pre-trained LM, akin to using a pre-trained policy.

This initialization was motivated by the energy-based policy line of works (Haarnoja et al., 2017;
2018), where a policy π is the product of passing a Q-function through a softmax transfer function.
Analogously, in LMs, p - the distribution over V - is produced by passing logits ℓ through softmax.

language modeling: p(a|s) = exp (ℓ(s, a))
/∑

a∈A exp (ℓ(s, a)) (9)

energy-based π: π(a|s) = exp
(
1
αQ(s, a)

)/∑
a∈A exp

(
1
αQ(s, a)

)
, (10)

where α is a temperature hyper-parameter. One could naturally set Q(s, a) = αℓ(s, a) for initial-
ization. Hence, with aforementioned dueling structure in equation 7 and our pre-defined parame-
terization, one could set the advantage function as Aθckpt(s, a) := α[ℓθckpt(s, a)−maxa ℓθckpt(s, a)],
leading to Qϕ(s, a) :=Aθckpt(s, a)+Vϕ(s). See also our forward pass graph defined in Figure 2b. In
a nutshell, this Qϕ-function produces a policy πϕ identical to the output distribution pθckpt of LMθckpt ,

πϕ(a|s)= softmax[ 1αQϕ(s)][a]= softmax[ℓθckpt(s)−max
a

ℓθckpt(s, a)+
1
αVϕ(s)][a]=pθckpt(a|s), (11)
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where Q(s) := [Q(s, a)]a∈A and ℓ(s) := [ℓ(s, a)]a∈A.

Recalling equation 5 - 6, the Q-learning family can be viewed as iterations between policy evaluation
and improvement. We now elaborate on how this Qϕ function initialization affects both steps.

Policy improvement. One could, informally, consider the operation of taking softmax with respect
to 1

αQϕ as a soft policy improvement (Haarnoja et al., 2018) step with a temperature α. Therefore,
equation 11 can be interpreted as: running soft policy improvement alone with this initialized Qϕ

preserved the performance of pre-trained LMθckpt , offering a good starting point of online fine-tuning.

Policy evaluation. Yet, this Qϕ function only captures relative values, since we initialized only the
advantages Aθckpt - the relative information - as shown in equation 11. Vϕ can thereby be an arbitrary
function. This would not affect the policy improvement step due to the translation invariance of the
softmax function. However, during the policy evaluation step, see e.g. equation 5, the Bellman error
can be heavily influenced by the V -values. When the V -values is the dominant source of error, the
policy evaluation optimization could be largely driven by the state-only V -values. This can lead to
a loss of the relative action values, that we intended to preserve in the previous step.

Pre-training of Vϕ. This can be addressed by adding a pre-training phase of Vϕ(s), during which
we freeze the advantage function Aθckpt and train Vϕ by minimizing the temporal difference error (or
equivalently doing policy evaluation). In this stage, we optimize the following loss until convergence

LV (Vϕ; ℓθckpt) =
1
T E(st,at,rt,st+1)∼Dtrain

∑T
t=0 [rt + γ SG (Qϕ(st+1, ât+1))−Qϕ(st, at)]

2
, (12)

where SG is a stop gradient operator, SG(Qϕ(s
′, â′)) follows standard semi-gradient optimization,

ât+1 is a target action (details deferred to section 4.3), and Qϕ(s, a) = Aθckpt(s, a) + Vϕ(s).

In summary, our initialization steps ensures that, prior to fine-tuning θ, our Qϕ meets two important
conditions: it starts with the action distribution pθckpt of a pre-trained LMθckpt , and it begins with low
temporal difference error (because the pre-training of Vϕ in equation 12 directly minimizes it).

4.3 A CONSERVATIVE BELLMAN OPERATOR

With a pre-trained state value function Vϕ, we are now ready to learn a good state-action value func-
tion via fine-tuning. We parameterize Qθ(s, a) := Aθ(s, a)+Vθ(s) = α[ℓθ(s, a)−maxa ℓθ(s, a)]+
V r
θ + Vϕ, where we define Vθ = V r

θ + Vϕ, and we initialize θ in a way such that ℓθ = ℓθckpt and
V r
θ = 0. It ensures that Qθ = Qϕ on initialization, a good starting point for subsequent fine-tuning

on θ. Technically speaking, setting Vθ = V r
θ + Vϕ is not required, as one could finetune both θ and

ϕ. We however observed that finetuning a residual head V r
θ , with ϕ frozen, leads to better stability.

Although we avoid training Qθ from scratch, optimizing Qθ by Q-learning family algorithms can
still be challenging. We attribute this to the characteristics of the Bellman optimality operator B∗ that
seeks to learn the optimal value function Q∗ and optimal policy π∗, which requires a good data cov-
erage of the state-action space S×A (e.g. Jiang & Huang, 2020; Xie et al., 2021a; Zhan et al., 2022).
In program synthesis, however, such assumption can hardly be met due to the large state-action space
and the high computational costs of Transformer inference. While conventional Q-learning family
relies on the operator B∗, recent works in RL, especially those considering limited data regime (e.g.
Agarwal et al., 2020; Levine et al., 2020), often design “conservative” operators (e.g. Achiam et al.,
2017; Kumar et al., 2020; Brandfonbrener et al., 2021) to address difficulties led by B∗.

Conservative Bellman operators. The concept behind conservative Bellman operators is to “aim
low”. Instead of learning the optimal Q∗ and π∗, these operators typically seeks to learn a policy π
that either surpasses a behavior policy (which is used to collect a RL dataset in offline RL literature,
see e.g. Achiam et al., 2017; Brandfonbrener et al., 2021) or fine-tune a pre-existing policy (e.g. Xie
et al., 2021b; Yu & Zhang, 2023). This is often achieved by introducing a regularizer that penalizes
deviations from the behavior/pre-existing policy. In particular, as shown in equation 14, we define
our conservative Bellman operator Bq , which depends on a fixed, pre-defined policy q, as follows:

optimality B: (B∗Q)(s, a) = r(s, a) + γEs′ [Q(s′, â′)],where â′ = argmaxa Q(s′, a) (13)

conservative B: (BqQ)(s, a) = r(s, a) + γEs′ [Q(s′, â′)],where â′ = argmaxa q(a|s′). (14)

The intuition behind our operator Bq is that we evaluate the action-value function Qq↑ of a greed-
ified policy q↑(a|s) := 1{a = argmaxa q(a|s)}, where 1 is the indicator function. The rationale
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behind greedification is that q↑ can be seen as q in a greedy-decoding mode, which usually has bet-
ter (one-shot) capability than sampling mode (although the latter has better generation diversity).
Considering setting q = pθckpt , the operator Bpθckpt seeks to learn a policy π that outperforms pθckpt .

We further comment on some properties of Bq: proposition 4.1 shows Bq is a contraction, meaning
there is an unique fixed point. It leads to proposition 4.2, motivating our development of Section 4.5.
Proposition 4.1. Bq is γ-contraction in ℓ∞ norm.

Given our conservative Bellman operator, we could define our conservative temporal difference loss,

LQ(Qθ; q) =
1
T E(st,at,rt,st+1)∼Dtrain

∑T
t=0 [rt + γ SG (Qθ(st+1, ât+1))−Qθ(st, at)]

2
, (15)

where ât+1 = argmaxa q(a|st+1), and Qθ(s, a) = α [ℓθ(s, a)−maxa ℓθ(s, a)] + V r
θ (s) + Vϕ(s).

4.4 IMPLEMENTATION AND OPTIMIZATION

Architecture and parameterization recap. Following (Le et al., 2022; Shojaee et al., 2023; Liu
et al., 2023), we choose T5 (Raffel et al., 2020) as our base architecture for θckpt, ϕ and θ; and θckpt is
initialized with CodeRL checkpoint which is publicly available. Specifically, θckpt, ϕ and θ share a
same encoder, and the encoder is frozen throughout, to reduce the amount of learnable parameters.

Two-stage training. As noted earlier, our training are composed with two stages: a pre-training
stage of ϕ, namely ϕ-stage, and a fine-tuning stage of θ, namely θ-stage. A pseudo-algorithm could
be found in Appendix A. In addition, further implementation details are deferred to Appendix H.

ϕ-stage: Given our development of Section 4.2, we pre-train Vϕ function using stochastic gradient
descent with ∇ϕLV (Vϕ; ℓθckpt), with LV defined in equation 12.

θ-stage (fine-tuning): In this stage, we seek to optimize Qθ to minimize our previously developed
losses: Ladv and LQ, as defined in equation 8 and 15, respectively. In addition, it is also a common
practice to include a cross-entropy loss Lce during fine-tuning. Therefore, we conclude our final loss
function as equation 17, and θ is updated using stochastic gradient descent with ∇θLft(Qθ; pθckpt).

Recall: Qθ(s, a)=Aθ(s, a)+Vθ(s)=α (ℓθ(s, a)−maxa ℓθ(s, a))+V r
θ (s)+Vϕ(s) (16)

Lft(Qθ; pθckpt)=LQ(Qθ; pθckpt)+βadvLadv(Aθ)+βceLce(πθ), where πθ= softmax
(
1
αQθ

)
. (17)

4.5 A FREE REWARD MODEL

Reward modeling is crucial in language modeling and also in inverse RL (detailed discussions could
be found in Appendix C). An intriguing finding from IRL, applicable to our framework, is that a
trained Q-function can recover a reward function without additional training. Analogously to Garg
et al. (2021), an one-to-one correspondence between Q and reward holds with our conservative
Bellman operator Bq . We define the inverse conservative Bellman operator T q : RS×A → RS×A,

(T qQ)(s, a) = Q(s, a)− γEs′Q (s′, argmaxa q(a|s′)) . (18)
Proposition 4.2. The inverse conservative Bellman operator T q is a bijection.

Proposition 4.2 shows that a Qθ is uniquely corresponding to a reward function r̃θ := T qQθ.1 Given
the definition of T q we could recover a reward model r̃θ with Qθ without additional training:

r̃θ(s, a) = Qθ(s, a)− γEs′Qθ

(
s′, argmaxa pθckpt(a|s

′)
)
≈ Qθ(s, a)− γVθ(s

′). (19)

We use the estimation r̃θ(s, a)≈Qθ(s, a)−γVθ(s
′) in practice, with reasons deferred to Appendix F.

Candidates selection with r̃θ. We leverage our reward model r̃θ to do candidate programs selection,
as an example to highlight the additional benefits of value-based RL. We rank generated programs
by the cumulative rewards R̃θ(W ) :=

∑T
t=0 r̃θ(st, at), predicted by our reward model r̃θ, to select

the programs that are most likely to be correct. Specifically, for pass@k metrics, we follow the
evaluation protocol used in CodeT (Chen et al., 2022), a work that considered program selection
via automatic generated tests. This protocol computes pass@k by first generating m programs and
select a subset of k programs to evaluate pass@k. In our case, we select the k-sized subset with top-k
highest R̃θ(·) from total m candidates. Our results in Section 5 follow this evaluation protocol.

1We use r̃ and r to name our recovered reward model and the real reward function, respectively.
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Table 1: Empirical evaluation on APPS test set. †, ‡ and ‡‡ indicates results duplicated from Le et al.
(2022), Shojaee et al. (2023) and Liu et al. (2023), respectively. Bold number indicates the best
result and underlined number means our result are the second best. Intro, inter and comp stand for
introductory, interview and competition, respectively.

Model # trainable
parameters

Pass@1 Pass@5 Pass@1000

Intro Inter Comp All Intro Inter Comp All Intro Inter Comp All

Codex† 12B 4.14 0.14 0.02 0.92 9.65 0.51 0.09 2.25 25.02 3.70 3.23 7.87
AlphaCode† 1B - - - - - - - - 17.67 5.24 7.06 8.09

GPT3† 175B 0.20 0.03 0.00 0.06 - - - - - - - -
GPT2† 0.1B 1.00 0.33 0.00 0.40 2.70 0.73 0.00 1.02 - - - -
GPT2† 1.5B 1.30 0.70 0.00 0.68 3.60 1.03 0.00 1.34 25.00 9.27 8.80 12.32

GPT-Neo† 2.7B 3.90 0.57 0.00 1.12 5.50 0.80 0.00 1.58 27.90 9.83 11.40 13.76
GPT-J† 6B 5.60 1.00 0.50 1.82 9.20 1.73 1.00 3.08 35.20 13.15 13.51 17.63

RL based methods - without using example unit tests

CodeRL† 770M 6.20 1.50 0.30 2.20 9.39 1.90 0.42 3.10 35.30 13.33 13.60 17.78
PPOCoder‡ 770M 5.20 1.00 0.50 1.74 9.10 2.50 1.20 3.56 35.20 13.35 13.90 17.77

RLTF‡‡ 770M 4.16 0.97 0.20 1.45 10.12 2.65 0.82 3.78 38.30 15.13 15.90 19.92
B-Coder ≤770M/stage3 6.70 1.50 0.30 2.30 10.40 2.63 0.70 3.80 37.00 13.67 12.60 18.12

50403020100
Cumulative Rewards
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passed unit tests
failed unit test(s)
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Figure 3: Kernel density estimation of
R̃θ(·) evaluated on a collection of gen-
erated programs. The x-axis represents
the predicted reward given by R̃θ and
the y-axis is its density. Color codes the
true outcomes defined in equation 2.

Remarks on r̃θ. To further explain the motivation of rank-
ing with r̃θ, consider a realistic deployment setting where
a fine-tuned model is deployed for end-user applications.
Users often provide a language description of their needs
but may not include test cases (which can also be challeng-
ing for beginners or casual users). Additionally, the model
is usually required to offer a single best response instead of
a range of options. Therefore, the ability to rank programs
without true rewards is a desirable advantage.

To preview the effectiveness of r̃θ, we show the correlation
between environmental reward r and our cumulative re-
ward R̃θ. In Figure 3, green region corresponds to correct
programs, and has the highest R̃θ on average. For incor-
rect programs, those with compile and runtime errors have
the lowest and the second lowest R̃θ, respectively. Pro-
grams can be executed but fail some tests, have the second
highest R̃θ. Hence, it concludes that R̃θ has an evident positive correlation to the true reward r.

5 EMPIRICAL EVALUATION

Sampling using Qθ. Nucleus sampling (top-p sampling) (Holtzman et al., 2019) with sampling
temperature2 (Ackley et al., 1985) has been one of the most important sampling techniques. It can
also be easily implemented in our framework. One could simply consider Qθ/α as logits and the
sampling procedure would remain identical to standard LMs, see Appendix B for details.

APPS benchmark and baselines. In line with prior RL-based works (Le et al., 2022; Shojaee
et al., 2023; Liu et al., 2023), we evaluate B-Coder on the challenging code contests benchmark
APPS (Hendrycks et al., 2021). It contains 5,000 training and 5,000 testing problems, with three dif-
ficulty levels: introductory, interview and competition. We compare our B-Coder with pre-trained or
supervise fine-tuned LLM baselines: GPT2 (Radford et al., 2019), GPT3 (Brown et al., 2020), GPT-
Neo (Black et al., 2021), GPT-J (Wang & Komatsuzaki, 2021), Codex (Chen et al., 2021a) and Al-
phaCode (Li et al., 2022); and RL fine-tuned baselines: CodeRL (Le et al., 2022), PPOCoder (Sho-
jaee et al., 2023) and a concurrent work RLTF (Liu et al., 2023).

APPS: without example test outcomes. In the APPS dataset, each problem has several example
unit tests (different from the hidden unit tests used for evaluation). These example tests are usually
leveraged to refine generated samples. For example, CodeRL and RLTF considers a critic sampling

2Sampling temperature is different from temperature α in equation 10. They can be different values.
3For both ϕ and θ-stage, our model trains a decoder and heads, i.e. ≤770M trainable params per stage.
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(CS) strategy that refines and repairs generated programs based on the execution outcomes of the
example tests. We start with experiments results in which example test outcomes are not used (hence
CodeRL and RLTF results in Table 1 are without CS). Table 1 shows that our B-Coder has overall the
best pass@k for k={1, 5} and achieves second best place for k=1000 (best result reported by the
concurrent work RLTF). For Table 1 results, we use nucleus sampling with a sampling temperature
of 0.6. We set m to 256 for k= {1, 5} and m to 2500 for k=1000, where m is a hyper-parameter
of our ranking protocol introduced in Section 4.5 (see Appendix I for an ablation study on m).

Table 2: APPS results when using example test outcomes.

Model Pass@1 Pass@5

Intro Inter Comp All Intro Inter Comp All

Codex† filtered 22.78 2.64 3.04 6.75 24.52 3.23 3.08 7.46
AlphaCode† filtered - - - - 14.36 5.63 4.58 7.17

CodeRL† cs 6.77 1.80 0.69 2.57 15.27 4.48 2.36 6.21
CodeRL† filtered 16.27 6.00 4.27 7.71 - - - -
CodeRL† cs+filtered 16.52 6.16 4.15 7.83 24.49 8.58 7.82 11.61
RLTF‡‡ cs 8.40 2.28 1.10 3.27 18.60 5.57 3.70 7.80
B-Coder filtered 18.00 6.63 2.30 8.04 23.30 8.83 6.40 11.30

APPS: using example test out-
comes. Table 2 lists the results
using example tests. In addition
to the CS strategy that uses ex-
ample tests to refine/repair pro-
grams, Li et al. (2022) and Chen
et al. (2021a) consider a filtered
setting, in which programs fail-
ing example tests are excluded,
and the pass@k is evaluated us-
ing (a subset of) programs that pass example tests (which is also related to the k@m metric (Li et al.,
2022), the pass rate using k submissions from m samples). We also test B-Coder in this filtered set-
ting. Similarly, we first exclude programs that fail example tests. Suppose n out of m programs pass;
we then follow our ranking protocol to get top-k out of n programs for evaluation. B-Coder outper-
forms baselines with either CS or filtered setting for k={1, 5}. The baseline, CodeRL+CS+filtered,
incorporated both strategies achieved a slight advantage over B-Coder for pass@5 while being sur-
passed by B-Coder for pass@1. It worth mentioning that CS is a plug-and-play component, which
could also be combined with B-Coder, to further improve pass rate. For the results in Table 2, we
use a temperature of 0.4 and m set to 1000, matching the m used in Le et al. (2022).

Table 3: Generalization to CodeRL. Pass@k eval-
uated with top-k ranked programs, generated by
CodeRL. · indicates absolute improvement achieved
by ranking, compared to un-ranked pass@k.

k Temp. Pass@k

Intro Inter Comp All

1 0.4 6.30 1.91 1.27 0.37 0.50 0.37 2.12 0.68
0.6 6.00 2.13 1.23 0.42 0.50 0.36 2.04 0.75

5 0.4 9.30 -0.2 2.10 0.01 0.70 0.15 3.26 0.00
0.6 10.20 0.58 2.57 0.41 0.80 0.16 3.74 0.39

Table 4: Zero-shot pass@k on MBPP. · indicates
absolute improvement achieved by ranking.

Temp. k=1 k=5 k=10 k=80

0.7 20.13 6.61 37.04 5.61 44.45 4.63 64.00 1.41

0.8 18.89 6.99 36.59 7.21 44.46 6.59 65.20 4.28

0.9 17.32 7.34 35.04 8.58 43.15 8.22 63.20 4.33

Generalization ability. In addition, we test
the generalization ability of our dual strat-
egy, ranking with R̃θ. We study two aspects:
generalization to other models and general-
ization to different domains. To this end, we
designed the following experiments, which
confirmed its generalizability in positive.

For the former, we generate (off-policy) pro-
grams using CodeRL (with m = 256), and
rank those programs by R̃θ. Table 3 shows
our ranking strategy leads to improvements
in most cases, even though the programs to
be ranked are not generated by B-Coder.

For the latter, we test our dual strategy with
another dataset MBPP (Austin et al., 2021)
(with m = 512). Table 4 shows consistent
improvements for all temperatures and k.

6 CONCLUSION

In this work, we explore the feasibility of value-based RL algorithms for program synthesis task. We
demonstrate how to stabilize and accelerate training through Q-function initialization and conser-
vative updates. Moreover, our work is conducted with minimal reward engineering effort, thereby
placing an emphasis on the perspective of algorithm designs. While policy-based algorithms remain
mainstream in the current program synthesis literature, the question of how to effectively lever-
age off-policy programs, including historical synthetic samples, in a principled way, might still be
under-explored. We are convinced that value-based RL offers a promising direction to address this
question, and thereby to scale RL for code generation at large by (re)-using the extensive collection
of off-policy programs. Our work could thus serve as an important initial step towards this direction.
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A PSEUDO-CODE FOR TRAINING

Algorithm 1 Training Procedure with ϕ- and θ-stages

Require: θckpt, ϕ, and θ with a shared frozen encoder
1: # pre-training stage, update ϕ only
2: procedure PRETRAINV VALUE(ϕ) ▷ ϕ-stage
3: for num iters do
4: Draw sample (s, a, r, s′) from dataset
5: Compute logits ℓθckpt(s, ·)
6: Compute state value Vϕ(s)
7: Compute loss LV (Vϕ; ℓθckpt) ▷ arguments omitted for brevity
8: Gradient step with ∇ϕLV (Vϕ; ℓθckpt) ▷ equation 12
9: end for

10: end procedure
11: # fine-tuning stage, update θ only
12: procedure FINETUNEQVALUE(θ) ▷ θ-stage
13: for num iters do
14: Draw sample (s, a, r, s′) from dataset
15: Compute residual state-value V r

θ (s)
16: Compute pre-trained state-value Vϕ(s)
17: Compute state-value Vθ(s) = V r

θ (s) + Vϕ(s)
18: Compute advantage Aθ(s, ·) = ℓθ(s, ·)−maxa ℓθ(s, a)
19: Compute Qθ(s, ·) = αAθ(s, ·) + Vθ(s) ▷ equation 16
20: Compute πθ(·|s) = softmax(Qθ(s, ·)/α)
21: Compute pθckpt(·|s) ▷ equation 14
22: Compute LQ(Qθ; pθckpt) ▷ equation 15
23: Compute Lce(πθ) and Ladv(Aθ) ▷ equation 1 and 8
24: Compute fine-tune loss Lft(Qθ; pθckpt) = LQ(Qθ; pθckpt) + βceLce(πθ) + βadvLadv(Aθ)

25: Gradient step with ∇θLft(Qθ; pθckpt)
26: end for
27: end procedure

B PSEUDO-CODE FOR SAMPLING

Algorithm 2 Sampling Procedure

Require: model parameters θ, ϕ; SAMPLERp,t(·) : R1×|V| → V that maps a logits vector to a token
with hyper-parameters p (top-p sampling) and temperature t

1:
2: procedure SAMPLEONETOKEN(s)
3: Obtain current state s
4: Compute logits vector ℓθ(s) ∈ R1×|V|

5: Compute advantage vector Aθ(s) = ℓθ(s)−maxa ℓθ(s)[a]
6: Compute Vθ(s) = V r

θ (s) + Vϕ(s)
7: Compute Q vector Qθ(s) = αAθ(s) + Vθ(s)
8: Run SAMPLERp,t (Qθ(s)/α) ▷ sample with Qθ(s)/α
9: end procedure
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C ADDITIONAL RELATED WORKS

Off-policy policy-based methods. One string of off-policy policy-based methods is based on im-
portance ratio. Suppose the data is collected by a behavior policy β, PG with off-policy data can be
corrected by ∇µJ(µ) = Eβ [

πµ(at|st)
β(at|st) (

∑T
i=t γ

i−tri)∇µ log πµ(at|st)]. This allows unbiased gradi-
ent even though the data distribution is off-policy. However, computing the ratio πµ(a|s)/β(a|s) is
not always feasible as the density function of off-policy data, such as human data, is often unknown.
In addition, this correction can lead to high variance due to the product of ratios along trajectories.

While vanilla importance-weighted off-policy PG does not require the approximation of value func-
tions, some advanced ratio-based methods often incorporate value functions, such as (Imani et al.,
2018; Liu et al., 2020). Another viable approach is the direct combination of value-based and policy-
based methods, often referred to as the actor-critic framework, e.g. (Konda & Tsitsiklis, 1999; De-
gris et al., 2012). Although actor-critic methods are often conisdered as the third category, besides
policy-based and value-based, we and some other works (Fujimoto et al., 2018) lean towards cate-
gorizing actor-critic to be more value-based, as the major difficulty lies in value function approxi-
mations. Nevertheless, both directions of extending policy-based methods to an off-policy setting,
largely rely on the value functions. This emphasizes the motivation and significance of our work.

Reward modeling and beyond. Due to the successes of reinforcement learning from human/AI
feedback (Christiano et al., 2017; Bai et al., 2022b). Reward modeling and RL fine-tuning with
learned reward model has been a popular choice for post-SFT (supervised fine-tuning) refine-
ment (see e.g. Ziegler et al., 2019; Stiennon et al., 2020; Bai et al., 2022a; Ouyang et al., 2022). In
particular, in program synthesis, Le et al. (2022) trains a classifier, that predicts unit test outcomes,
as their reward model for RL fine-tuning. However, reward models can sometimes be expensive to
train and their quality can heavily impact RL fine-tuning performance. Recent works (e.g. Rafailov
et al., 2023; Diao et al., 2023) explore preference learning beyond conventional reward model.

Modeling reward function, on the other hand, has been a long-lasting topic in inverse RL or imi-
tation learning (IRL or IL, see e.g. Ng et al., 2000; Abbeel & Ng, 2004; Ziebart et al., 2008; Ho
& Ermon, 2016). While conventional IRL/IL often iterates between reward model fitting and RL
training stages, recent IL works (Jacq et al., 2019; Garg et al., 2021) also explore beyond explicitly
reward modeling to reduce training instability and optimization difficulty, led by the iterative opti-
mization scheme. Specifically, Garg et al. (2021) leverages the one-to-one correspondence between
Q-function and reward model, given the soft Bellman operator, to eliminate the reward fitting step.

Candidate selection in program synthesis. Existing works have shown one could improve program
pass rate by filtering out programs that are likely to be incorrect. For instance, Chen et al. (2021a)
filtered out programs that cannot pass example unit tests given in doc-strings, and Chen et al. (2022)
filtered out programs that cannot pass generated unit tests. Furthermore, reward models are also
often used to rank candidate programs (see e.g. Gulcehre et al., 2023; Touvron et al., 2023).

D A SPECTRUM OF RL APPLICATIONS

To conceptually demonstrate the differences between policy-based and value-based methods, and
why program synthesis might be well-suited to value-based approaches, Figure 4 presents a spec-
trum of RL applications. It could be observed that in scenarios where rewards are not expensive
to evaluate or there’s plenty of off-policy data (data not generated by the current policy/model)
value-based methods tend to be preferred. Consider, for instance, InstructGPT (Ouyang et al., 2022)
(policy-based) and AlphaGo (Silver et al., 2016) (value-based). The former relies on human anno-
tators (expensive) to label model-generated (on-policy) responses, while the latter obtains rewards
from simulators (cheap), and leverages (1) human expert games (off-policy) during training and (2)
re-using historical games (off-policy) through experience reply.

Table 5 provides explanations our application plot of Figure 4. Applications in games typically find
it easy to obtain rewards and make extensive use of off-policy data, e.g human games or historical
replays. Conversely, InstructGPT obtains its rewards from preferences labeled by human annotators,
with the data predominantly generated by the GPT model itself. The self-driving application notable
has high cost of gathering rewards, due to the risks of real-world driving. While existing driving data
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Figure 4: A collection of RL applications. and represents value-based and policy-based
RL, respectively. The x-axis shows the difficulty of obtaining rewards, while the y-axis measures
the amount of off-policy data. Tasks that face significant hurdles in gathering rewards or have
limited off-policy data typically lean towards policy-based algorithms. Tasks where rewards are
more readily obtained or that benefit from a substantial collection of off-policy data favors value-
based methods. See descriptions of each task in Table 5.

could be utilized, Kendall et al. (2019) specifically choose not to use pre-collected data, leading to
their choice of a policy-based algorithm.

In code generation, despite the availability of cheap rewards and the existing collection of off-policy
programs, whether human-written or historical synthetic programs, current literature leans towards
policy-based methods. We believe that value-based methods could be a promising direction, given
their similarity to tasks with simulators.

Table 5: Summary of RL applications.

References Type of RL Costs of Getting Rewards Available Off-Policy Data

Atari (Mnih et al., 2013) value cheap: simulator extensive: history/human games

GO (Silver et al., 2016) value cheap: simulator extensive: history/human games

Poker (Moravčı́k et al., 2017)
(Brown & Sandholm, 2018) value4 cheap: simulator extensive: history/human games

StarCraft II (Arulkumaran et al., 2019) value cheap: simulator extensive: history/human games

InstructGPT (Ouyang et al., 2022) policy expensive: human annotators limited: mostly model-generated data

Image
Caption

(Ranzato et al., 2015)
(Rennie et al., 2017) policy cheap: automatic metrics limited: mostly model-generated data

Self-driving (Kendall et al., 2019) policy expensive: driving in real-world limited: mostly model-generated data

Code
Generation

(Le et al., 2022)
(Shojaee et al., 2023)
(Liu et al., 2023)

policy cheap: unit testing extensive: collection of human programs

E REWARD ENGINEERING COMPARISON

Table 6 shows that ours has the least reward engineering effort. Note that our reward model r̃θ is
directly derived from Qθ, and is not used for training.

Table 7 shows the results when only basic reward function (defined in equation 2) is used, under no
example test outcomes setting. CodeRL and RLTF results are duplicated from their reports.

4While Poker AI often uses counterfactual regret minimization (Zinkevich et al., 2007), which isn’t strictly
reinforcement learning, the shared principle of estimating action values allows us to categorize it under value-
based methods.
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Table 6: Comparison of reward designs

Reward Remark Ours CodeRL RLTF PPOCoder

Basic equation 2 ✓ ✓ ✓ ✓
Reward Model learned reward model ✓
Fine-Grained fine-grained error type & location of error ✓
Adaptive ratio of passed tests ✓
Syntactic Correctness compilable ✓
Syntactic Matching syntactic similarity to ground truth ✓
Semantic Matching semantic similarity to ground truth ✓

Table 7: Performance with only basic reward (equation 2). †and ‡‡ indicates results duplicated
from Le et al. (2022) and Liu et al. (2023), respectively.

Model Pass@1 Pass@5

Intro Inter Comp All Intro Inter Comp All

CodeRL† 4.60 1.10 0.20 1.62 7.10 1.57 0.40 2.44
RLTF‡‡ - - - 1.37 - - - 3.50
B-Coder 6.70 1.50 0.30 2.30 10.40 2.63 0.70 3.80

F ADVANTAGE OF APPROXIMATE VERSION OF r̃

Recap that our recovered reward r̃ is computed by

r̃θ(s, a) = Qθ(s, a)− γEs′Qθ

(
s′, argmaxa pθckpt(a|s

′)
)
≈ Qθ(s, a)− γVθ(s

′). (20)

Imagining a scenario in which we sample/decode using a trained Qθ, the forward pass will compute
Qθ(s, a) and Vθ(s) for each timestep, because of our dueling architecture. But pθckpt will not be
evaluated during generation, because pθckpt is only used when computing LQ( · ; pθckpt). Computing
the exact version Qθ(s, a)− γEs′Qθ(s

′, argmaxa pθckpt(a|s′)) will require additional computation
of pθckpt during generation. In contrast, Q(s, a) and V (s) are already computed during generation,
therefore it requires almost no additional computation to compute r̃θ(s, a).

G ADDITIONAL IMPLEMENTATION TRICKS

G.1 UPPER BOUND OF Q-FUNCTION

Given our reward design in equation 2, the cumulative reward is upper bounded by Rmax = 1.
We enforce Q(s, a) ≤ Rmax by transform the state value function as V (s) = −SOFTABS (V (s)) +
Rmax ≤ Rmax, where SOFTABS(x) := [SOFTPLUS(x)+ SOFTPLUS(−x)]/2+ln 2 is a soft absolute
function. Given A(s, a) ≤ 0, enforcing V (s) ≤ Rmax leads to Q(s, a) ≤ Rmax.

G.2 RESIDUAL HEAD INITIALIZATION

In section 4.3, we initialize θ in a way such that ℓθ = ℓθckpt and V r
θ (s) = 0. The former can be done

by simply loading the checkpoint θckpt. Adding a residual head V r
θ , that initialized to output zeros,

can be done with a simple trick. One can simply add two heads h1 and h2, let h1 be trainable, and
h2 be fixed for subsequent fine-tuning, setting V r

θ = h1 − h2 achieves the desired functionality.

H TRAINING AND EVALUATION DETAILS

In supplement to implementation details in Section 4.4 and 5, we give more low-level details here.

APPS dataset. In addition to the train/test split details described in Section 5, APPS datast, on
average, consists of 2 example unit tests, 21 hidden unit tests, and 23 ground truth programs. We
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follow the same procudure as Hendrycks et al. (2021); Le et al. (2022) to construct prompts for both
training and evaluation. Specifically, see Section 3 of Hendrycks et al. (2021).

MBPP dataset. MBPP has 974 instances with a 374/90/500 train/val/test splits and, in addition, 10
problems reserved for few-shot learning. Because we only do zero-shot evaluation on MBPP, only
the 500 test problems are used for evaluation. Each problem of MBPP usually comes with three unit
tests. In addition, these tests are usually not hidden. Therefore, prior works Le et al. (2022); Shojaee
et al. (2023); Liu et al. (2023) often explicitly incorporate the tests into prompt string. We follow
WizardCoder (Luo et al., 2023) to construct our input format. Details could be found in this repo.

Pre-trained model. We initialize our model with CodeRL checkpoint publicly available at here,
meaning we initialize θckpt, ϕ, and θ from it. Note that we freeze encoder for both ϕ-stage and
θ-stage, therefore the encoder is shared during both training and generation. For both training and
generation, we set the maximum length to 600 and 512 for source and target sequences, respectively.

Training data preparation. While we use Dtrain to represent our training dataset, yet we have not
elaborated on how it is constructed. In general, we follow the protocol of prior RL-based works that
combining all ground truth programs and a set of programs generated by the pre-trained model, for
each problem D. Specifically, we generate 256 programs per problem using pre-trained checkpoint.
Combined with ground truth programs, there are, on average, 278 programs per problem.

Mini-batch preparation. By prior definition, our dataset Dtrain now contains both ground truth
programs and generated programs. Notably, the volume of generated programs is significantly larger
than that of the ground truth programs. This means that if one were to randomly sample from the
dataset, generated programs would dominate the mini-batches. To address this, when preparing a
mini-batch, we sample ρreal × B ground truth programs and (1 − ρreal) × B generated programs,
where B is batch size.

ϕ-stage training. In the ϕ-stage, we pre-train state-value function Vϕ(s). We conduct our exper-
iment with 4×A100-80G GPUs. Specifically, we use batch size of 16 for each GPU and gradient
accumulation step of 4, resulting in a total batch size of 256. For optimizer and scheduler, we use
AdamW optimizer (Loshchilov & Hutter, 2018) with a constant learning rate of 1e-5 and a weight
decay of 0.05. We train ϕ for 18k gradient steps.

θ-stage training. In the θ-stage, we conduct our experiment with 8×A100-80G GPUs. Specificaly
we use batch size of 16 for each GPU and gradient accumulation step of 1, resulting in a total batch
size of 128. For optimizer and scheduler, we use AdamW with a peak learning rate 3e-5, a weight
decay of 0.05, and a linear decay scheduler with no warmup. We train θ for 10k gradient steps.

Other hyper-parameters. We set the ground truth data ratio ρreal=0.5 and the energy-based policy
temperature α=1 (see equation 10) for all experiments. In θ-stage, we use βadv=0.1 and βce=0.5 .
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Figure 5: Ablation on m: our ranking strategy achieves consistent improvements under different
budgets m.

Table 5 conduct an ablation study on ranking budgets m, it can be observed that our ranking strategy
achieves consistent improvements under different budgets m.
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J COMMENTS ON Bq PROPERTIES

J.1 PROPOSITION 4.1

Proof.

∥BqQ1 − BqQ2∥∞ = max
s,a

|r(s, a) + γEs′Q1 (s
′, â′)− r(s, a)− γEs′Q2(s

′, â′)|

(â′ = argmaxa q(a|s′))
= max

s,a
γ |Es′ [Q1(s

′, â′)−Q2(s
′, â′)]| (21)

≤ max
s,a

γEs′ |Q1(s
′, â′)−Q2(s

′, â′)| (22)

≤ max
s,a

γEs′ max
s′,a′

|Q1(s
′, a′)−Q2(s

′, a′)| (23)

= γ∥Q1 −Q2∥∞ (24)

J.2 PROPOSITION 4.2

Proof. The proof is similar to Lemma C.3. in Garg et al. (2021). To prove that T p is a bijection,
it suffices to show that for any r : S × A → R, there exists a unique Q : S × A → R such that
r = T pQ. Note that by proposition 4.1, there exists a unique Qp = Bpr that satisfies Qp(s, a) =
r(s, a) + γEs′Q

p (s′, argmaxa p(a|s′)). Rearranging the terms gives r = T pQp. This completes
the proof.

K DISCUSSION ON LIMITATIONS

Table 8: Pass@1 results are evalu-
ated with greedy decoded programs, and
pass@{5, 50, 100} are computed by sam-
pled programs using a temperature of 0.4.

Pass@ CodeRL B-Coder

1 1.60 1.60
5 3.28 2.88

50 7.16 7.35
100 8.76 9.18

Table 9: Ranking with r̃ compared with filtering with
real environmental reward function r, i.e. hidden
tests. r̃-ranked results are duplicated from Table 1.

r̃-ranked
r-filtered

pass@1 pass@5

Intro 6.70 10.40 26.60
Inter 1.50 2.63 7.87
Comp 0.30 0.70 5.10
All 2.30 3.80 11.06

While being exploratory, our work admits certain limitations including: additional frozen parameters
introduced, and we observe that raw performance (without ranking) is mixed compared to CodeRL
(see Table 8) (which we believe is somewhat excusable as we use less reward designs). However,
we remark the effectiveness of our overall framework including the dual strategy is non-trivial,
especially with limited reward engineering.

It is also informative to show results filtered by the true environmental reward function r, instead of
results ranked by our recovered reward function r̃. Although filtering with r requires using hidden
tests, meaning it cannot be implemented in realistic settings, also see discussions in Section 4.5.
However, it could serve as an upper limit for our ranking strategy and as a sanity check. (Roughly
speaking, if r̃=r, the pass rate of r̃-ranking and r-filtering would be identical.) To this end, we use
the same set of candidate programs as those in Table 1, but apply the ground truth reward function r
to filter candidates rather than using r̃ for ranking. The corresponding results in Table 9 show that,
although r̃-ranking is effective, there remains a large room for improvement.
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