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Abstract

Recently, computational techniques that employ physical systems (physical com-
puting systems) have been developed. To utilize physical computing systems, their
design strategy is important. Although there are practical learning based methods
and theoretical approaches, no general method exists that provides specific design
guidelines for given systems with rigorous theoretical support. In this paper, we
propose a novel algebraic design framework for a physical computing system for
time-series generation, which is capable of extracting specific design guidelines.
Our approach describes input-output relationships algebraically and relates them
to this task. We present two theorems and the results of experiments. The first
theorem offers a basic strategy for algebraic design. The second theorem explores
the “replaceability" of such systems.

1 Introduction
Recent developments in sensing and Internet of Things technology require enormous complex time
series data to be processed efficiently in real-time. The von Neumann architecture, which is a
conventional computational architecture that aligns the processor and memory separately, causes
an intrinsic limitation in processing speed, the von Neumann bottleneck. To design a successful
real-time information processing method with lower computational and energy costs, it is necessary
to reconsider the computational architecture and concept [9]. Therefore, many approaches based on
the non-von Neumann type architectures have recently been proposed, capitalizing on the power of
material properties [27, 11] and the diverse dynamics of physical systems [18]. Physical systems
outsource the computational load to natural physical dynamics and add some properties in addition
to computation, such as robustness against a radioactive environment [12, 1], which significantly
extends the application domains. In this paper, the term systems refers to physical computing systems,
and we propose a design principle for such systems, in particular, for time-series generation based on
the theory of algebra.

We focus on mapping input sequences to output sequences, which we consider computing in this
paper. Specifically, we examine physical computing, where a physical system characterized by its
parameters is employed to map an input sequence (Fig. 1). In the research field of physical computing,
designing a system that exhibits desirable computing has been a focus of attention [26, 20, 7, 15].
Common and practical methods include simulation- [26] and learning-based methods [20]. Although
the efficacy of such methods has been partially confirmed, they basically rely on an enormous number
of trial and error attempts or simulations, and/or it is necessary to learn their input-output relationships,
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Figure 1: Overview of the proposed framework. The framework of a physical computing system is
depicted at the upper left. Theorems on the algebraic design of physical computing systems are the
main results. Their applications, which are illustrated at the bottom, are shown in Section 3.

which are not supported by theories. On one hand, researchers [7, 15] have attempted to understand
the design principle of physical computing systems, which are based on the theory of nonlinear
filter approximation [2]. In these studies, computational tasks are reduced to the approximation of
a class of filters by the systems. In other words, each filter in the class has the role of mapping
an input stream to an output stream. Then, sufficient conditions for the approximation such as the
echo-state property [8, 16], fading memory property and point separation property [7, 2] are provided.
The practical use of such theories can be challenging. Specifically, there is a lack of methods for
relating the specific physical systems under consideration to the conditions. Hence, no specific design
guidelines for physical computing systems are available.

Based on the above, we aim to establish a theoretical framework for designing physical computing
systems that can offer specific design guidelines. We assume that a physical computing system is
modeled as a state-space model and examine its specific design guidelines based on algebra. An
overview of our framework is depicted in Fig. 1. Our approach not only achieves our research
aim but also reveals the potential of physical computing systems. In this framework, the specific
input-output relationships of a given system are first described (F = 0 in Fig. 1.) Then, F is related
to the computational tasks (Theorems 1 and 2). To be more precise, the input-output relationships
are characterized by the Gröbner basis, which is an algebraic technique. This makes it possible to
describe the relationships and obtain design guidelines using computer algebra software without
being aware of the underlying algebraic theory. Theorem 1 outlines a fundamental design strategy
for computational tasks. In this strategy, a physical system generates the desired time-series after its
inputs or parameters are adjusted, which is a process that is often conducted empirically in practical
methods. Theorem 2 extends Theorem 1 by addressing situations where one physical computing
system might be preferable over another, considering the “replaceability" of systems. As an example,
such a situation may arise as a result of the emergence of diverse implementations of physical
computing. Section 3demonstrates the effectiveness of Theorem 2, which provides specific guidelines
for replacing one system with another. The limitations of our framework are discussed in Section 4.

2 Proposed framework
2.1 Notations and basic assumptions
In this study, we assume that the physical computing system is modeled by a system of differential
equations with an observation function as follows:

ẋ = f(x, u; θ), y = g(x, u; θ). (1)

where f : RN+M → RN , g : RN+M → R. x ∈ RN is the state variable vector of the physical
computing system; u ∈ RM is the input vector; y ∈ RM is the output variable; θ ∈ Rn is the
parameter vector. Let us denote the initial state variable vector as x(0) ∈ RN . The former equation
of (1) describes the physical system of interest. We assume the existence and uniqueness of its
solution. An observation equation, which is the latter equation of (1), describes how to observe the
output of the system. In the field of reservoir computing [19], this is commonly referred to as the
readout, where the outputs of (1) correspond to the outputs from readouts equipped with a physical
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reservoir. Throughout this paper, we assume that f and g are polynomials of x, u, whose coefficients
are rational functions of θ; f, g ∈ C(θ)[x, u]. Hereafter, symbols with a hat denote outputs from the
physical computing system and those with a bar or tilde denote the given time-series. We denote
dNx/dtN as x(N) and dx/dt as ẋ, depending on the context.
To design physical computing system, we first consider whether the output of a given system generates
target time-series ȳ(t). This can be regarded as a machine learning task, which is typically conducted
using a method such as a recurrent neural network.
Target task 1 (time-series generation) Let us denote output y(t) of (1) as ŷ(t; θ, u, x(0)) given
θ ∈ Θ, x(0) ∈ RN , and u in a set of functions, R → RM , denoted as U . Suppose that we have
a target time-series denoted as ȳ(t) over a time duration. A time-series generation task is to find
(θ, u, x(0)) ∈ Rn × U × RN such that ŷ(t; θ, u, x(0)) = ȳ(t) holds over the specified domain.
Although this is a common task in the field of machine learning, our approach is different from
learning-based design, as explained in Section 1. The following extended task can be successfully
handled using our algebraic approaches, as shown in Section 2.4.

Target task 2 (designing a system and exploiting its replaceability with another system)
Suppose that we have two systems described by state-space models such as (1). The first is a
system to be designed, whereas the other is the target. With common inputs u ∈ U , their output
variables are denoted as ŷ(t; θ, u, x(0)) and ȳ(t; θ̃, u, x̃(0)) given initial states x(0), x̃(0) ∈ RN and
parameter vectors θ ∈ Rn, θ̃ ∈ Rñ, respectively. In this task, (θ, u, x(0)) ∈ Rn × U ×RN such that
ŷ(t; θ, u, x(0)) = ȳ(t; θ̃, u, x̃(0)) holds over the specified duration is to be found if it exists. Note
that if such (θ, u, x(0)) exists, the system is said to be replaceable with respect to the target system.
We make two assumptions regarding target time-series ȳ(t). The first relates to its smoothness (As-
sumption 1), which is assumed throughout this paper (Section 4.) The other assumption (Assumption
2) is introduced in Section 2.4 and is related to the replaceability.
Assumption 1 Target time-series ȳ(t) is a sufficiently smooth function from R onto R over the
duration under consideration.
Assumption 2 Target time-series ȳ(t) satisfies h(ȳ(N), . . . , ȳ; θ̃) = 0, where h is a polynomial
differential equations up to the N th order of y given parameter vector θ̃ ∈ Rñ.
2.2 Key ingredient in algebraic design: the input-output map of physical computing systems
To extract equations representing the input-output relations in the system modeled by (1), we consider
eliminating its state variables. Because (1) contains derivatives of the state variables, such eliminations
are realized through algebraic manipulations and derivations of the model described by (1). Here, the
question is how many times we need to differentiate the models to extract equations representing the
input-output relations, which may not be bounded. Proposition 1 (Appendix B), which is a theorem
shown in [6], clarifies the order of the derivations needed for this. It supports the existence of maps
describing the input-output relationships of a physical computing system. In terms of algebra, we
regard the model as polynomials of the states, inputs, outputs, and their higher-order derivatives.
If we consider derivations up to the 2nd order, a set of polynomials obtained by manipulating
dx/dt− f, d2x/dt2 − f (2), y − x, y(1) − x(1) is considered. Proposition 1 shows that polynomials
representing the input-output relations are obtained through algebraic manipulations of a set of
polynomials up to at least N th order derivatives, where N is the dimension of the state vector of the
system. Let us denote a set of polynomials obtained through algebraic manipulations of the model
differentiated up to the N th order as I(N) (Appendix B). Using this, polynomials in which the state
variables and their derivatives are eliminated are described as follows:

I(N) ∩ C(θ)[y(N), . . . , y, u(N), . . . , u], (2)
which is a set of polynomials representing the input-output relationships of the model (Fig. 1d). As (2)
is shown to have a non-zero polynomial, the existence of the equations representing the input-output
relations of the physical computing systems modeled by (1) is shown.

Next, we explain how to characterize (2), which represents the input-output relations of the model. In
terms of algebra, this problem involves describing the ideal where the Gröbner basis is known to be
a key (Appendix A.) Intuitively, (2) (an ideal) can be characterized by its Gröbner basis, as a basis
characterizes a linear subspace in terms of linear algebra [3]. In particular, any polynomial equation
corresponding to a polynomial in (2) holds if all the equations constituting the Gröbner basis for (2)
hold. In this sense, the Gröbner basis for (2) explicitly describes the input-output relations for a
given physical computing system. Notably, the Gröbner basis can be derived automatically using
computer algebra software. The details on the Gröbner basis and its derivation using computer algebra
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software are summarized in Appendix D. Furthermore, there is another benefit of using the Gröbner
basis. The Gröbner basis can be used to determine whether a given differential equation belongs to
(2). This allows us to compare different physical implementations of a physical computing system,
which is explained in Section 2.4. The following equation, which is an element of the Gröbner basis,
representing the input-output relationships of (1) is called the input-output equation (Fig. 1d):

F (y(N), . . . , y, u(N), . . . , u; θ) = 0. (3)
This is a polynomial differential equation up to the N th order of u, y.

2.3 Main Theorem 1: Deriving design guidelines of physical computing systems algebraically
Theorem 1 is a fundamental theorem for deriving design guidelines from (3) for Target task 1.
Intuitively, it provides a discriminator to determine whether a given physical computing system
generates ȳ(t), which reveals design guidelines for the system.
Theorem 1 Let Fy and Fu denote sets of sufficiently smooth functions containing functions from
R onto R and RM , respectively. Let us consider a physical computing system described by (1) and
assume it is generic in terms of Definition 13. Suppose that there exists ȳ(t) ∈ Fy , which is observed
over [0, T ] (Assumption 1.) Suppose also that for (1) given ȳ, there exists a non-empty set of consistent
initial values X ⊂ RN . Then, ȳ(t) can be generated by (1) given (θ, u, x(0)) ∈ Θ×Fu ×X if and
only if

F (ȳ(N)(t), . . . , ȳ(t), u(N)(t), . . . , u(t); θ) = 0, (4)
holds over [0, T ], where Θ ⊂ Rn is a set of generic parameter vectors.
See Appendix E for the proof and related definitions. This guarantees that (3) plays a role in
deriving the design guidelines of the system for the time-series generation task. There are two
assumptions besides those mentioned in Section 2.1: the genericity of the physical computing system
(Definition 13) and consistent initial conditions of the system corresponding to the given time-series
(Definition 12). The first assumptions is weak, whereas the second assumption is of importance
especially for non-stationary tasks. Generally, the consistent initial state x(0) is one that satisfies
ŷ(t1; θ, u, x(0)) = ȳ(t1) given arbitrary θ and u. The second assumption is critical for non-stationary
tasks, whereas it is not for stationary ones. See Experiment 3 for examples.
Experiment: Designing inputs applied to physical computing systems We consider the physical
system modeled using the FitzHugh-Nagumo equation [21],

ẋ1 = x1 (x1 − 1) (1− (1/3)x1)− x2 + u, ẋ2 = x1. (5)
We assume that x2 is observed; y = x2. Then, following the procedures in Appendix D, the input-
output equation of this system, y + 1

3 ẏ
3 − 4

3 ẏ
2 + ẏ + ÿ−u = 0 is obtained. According to Theorem

1, the input-output equation in which a target time-series is substituted, serves as a discriminant for
generation tasks. Manipulating the discriminant, a design guideline on input

u = ȳ +
(
˙̄y3/3

)
−

(
4 ˙̄y2/3

)
+ ˙̄y + ¨̄y, (6)

is derived. Using the input defined as (6) and given consistent initial states (x1(0), x2(0))
⊤ =

( ˙̄y(0), ȳ(0))⊤, the system generates the given time-series, ȳ. The guideline derived based on Theorem
1, (6), suggests that the system can generate several target time-series by adjusting its input while
maintaining itself and its observation method consistent. See Appendix I for numerical examples.
Notably, this property, which is a type of multi-tasking property, is desirable in physical computing,
leading to the efficient use of given physical assets to perform various computations. See Appendix J
for details on how these initial values are chosen.

2.4 Main Theorem 2: Relating two different physical computing systems
In this section, we provide a theorem that enables the design of physical computing systems that
can be replaced with other computing systems. Such a design is useful considering the diverse
implementations of physical systems (Target task 2.) The basic idea is to provide a description of the
relationship between the input-output equations of a given physical computing system and a target
system. Such a relationship provides information about whether those systems can be interchanged,
as well as providing design guidelines. To accomplish this, we leverage another benefit of the Gröbner
basis. The Gröbner basis (e.g., (3)) can determine whether a given polynomial in a set of polynomials
corresponds to itself (e.g., (2)); a polynomial is shown to be or not to be in a certain ideal (Appendix
A) through division by its Gröbner basis. Suppose that the input-output equation of a target system,
which is denoted as h in Assumption 2, is set as the polynomial to be divided. Then, intuitively, the
division by (3) makes it possible to determine whether the target input-output behavior is realized by
a given physical computing system.
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When performing division between the polynomials of a single variable, in general, we first arrange
the terms of the polynomial in descending order of the degree of the variable. We then focus on the
monomials whose variable degree is the highest in the polynomial to be divided and for the division.
If the monomial for the polynomial to be divided is higher than or equal to that of the polynomial to
divide, then the polynomial to be divided is factorized by the highest degree term of the polynomial
to divide. Therefore, the order of monomials is critical in dividing polynomials of a single variable.
This holds for the multivariate case as well. In general, the monomial ordering fixes the order of the
monomials in the set of monomials of interest [3].

In this paper, we consider differential polynomial equations such as (3); therefore, we introduce an or-
der of monomials, whose variables are u, y, along with their derivatives, up to the N th order. First, we
fix an order of (N +1)+(M(N +1)) variables as y(N), . . . , y, u(N), . . . , u. Let us consider a mono-
mial, M1, of these variables, and denote the order of each variable as α1, . . . , α(N+1)+(M(N+1)). In
the same way, we consider another monomial, M2, and denote the order as β1, . . . , β(N+1)+(M(N+1)).
We then evaluate βi − αi(i = 1, . . . , (N + 1) + (M(N + 1))) in order and find the non-zero ele-
ments with the smallest i. The smallest i is denoted as s. We define M1 < M2 if βs − αs is positive.
We call this the input-output order, which is precisely defined in Definition 6.
Example 1 (the input-output order) Let us consider a polynomial, h := y(2) + y − (1− y2)y(1)

where the order of variables is y(2), y(1), y, as discussed in Section 3. The monomials in h are
y(2), y, y(1), and y(1)y2. Given the input-output order, they are ordered as y(2) > y(1)y2 > y(1) > y.
Hereafter, the monomial with the highest order in polynomial p with respect to order < is denoted as
LM<(p) and the coefficient of LM<(p) is denoted as LC<(p). For instance, consider h appears in
Example 1. LM<(h) = y(2) and LC<(h) = 1 hold with respect to the input-output order. With these
notations, a theorem on the replaceability is provided. Let us consider the correspondence between
h = 0 and the input-output equation of a target system for the practical use of the theorem.
Theorem 2 Let us consider a physical computing system described by (1) and assume it is generic.
Suppose that ȳ(t) satisfying Assumption 1 and 2 are observed over [0, T ]; and suppose that
there exists ȳ(t) ∈ Fy satisfying a differential equation h(ȳ(N), . . . , ȳ; θ̃) = 0 where the ini-
tial value of ȳ is denoted as ȳ0 := (ȳ(0), . . . , ȳ(N)(0)) ∈ RN+1. Suppose that for (1) given ȳ,
there exists a non-empty set of consistent initial values, X ⊂ RN . We fix a monomial order of
C(θ, θ̃)[y(N), . . . , y, u(N), . . . , u] as the input-output order <. h(y(N), . . . , y; θ̃) is divided by F ,
defined as (3), and represented as

q(y(N), . . . , y, u(N), . . . , u; θ, θ̃)F +R(y(N), . . . , y, u(N), . . . , u; θ, θ̃), (7)
where we assume that LM<(h) ≥ LM<(F ), LC<(F ) is non-zero, and the coefficient of h with
respect to LM<(F ) is non-zero or a non-zero function over [0, T ]. Then, ȳ(t) can be generated by
(1) given (θ, u, x(0)) ∈ Θ×Fu ×X if the following holds:

R(ȳ(N)(t), . . . , ȳ(t), u(N)(t), . . . , u(t); θ, θ̃) = 0. (8)
The basic assumptions are the same as those for Theorem 1 together with Assumption 2. Additional
assumptions are related to the order of the monomials. In general, when the polynomials are divided,
the polynomials to be divided have higher-order monomials than those used for the division. Hence,
to consistently perform the division, it must hold that LM<(h) ≥ LM<(F ), which is one of the
additional assumptions. In addition, we assume that LC<(F ) and LC<(h) are non-zero or non-zero
functions over [0, T ], which are generic ones. (8) is a differential polynomial equation up to the N th
order, whose coefficients are functions of θ, θ̃ and the variables are u. In the same manner as for (4),
design guidelines for a physical computing system can be derived from (8). However, in this case,
they are related to the replaceability of (1) with a target system generating ȳ.
3 Experiments: Exploitation of the replaceability and subsequent design
We apply Theorem 2 and investigate specific design guidelines for a physical computing system to be
utilized to replace a target system that generates parameterized time-series. Let us consider a physical
computing system modeled by a FitzHugh-Nagumo equation with parameters (θ1, . . . , θ4)⊤ ∈ R4,

ẋ1 = θ1
(
x1 − (1/3)x3

1 + x2 + θ2
)
, ẋ2 = − (1/θ1) (x1 − θ3 + θ4x2) (9)

with readout y = x1. We denote this system as Σ1 and regard this as the system to be designed. The
input-output equation of Σ1 is as follows:

θ4y
3 + 3θ1ẏy

2 + 3 (1− θ4) y + 3ÿ − 3ẏ (θ1 − (θ4/θ1))− 3 (θ3 − θ2θ4) = 0. (10)
We denote the left side of (10) as F1. Then, we consider a target system that consists of van der Pol
equation [25], ˙̃x1 = x̃2, ˙̃x2 = −x̃1 + (1 − x̃2

1)x̃2 and observation equation ỹ = x1. We denote
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this system as Σ2. The input-output equation of Σ2 is ¨̃y + ỹ − (1 − ỹ2) ˙̃y = 0. By dividing the
left-side of this by F1 following the procedures explained in Example 6 of Appendix H, we obtain
(1− θ1)ẏy

2 − (θ4/3) y
3 +

((
θ21 − θ1 − θ4

)
/θ1

)
ẏ + θ4y + (θ2θ4 + θ3) as the remainder, denoted

by R1. Based on R1 and Theorem 2, it is shown that Σ1 generates a time-series generated by Σ2 if,
essentially, it holds that (θ1, θ3, θ4)⊤ = (1, 0, 0)⊤ given consistent initial values (see Appendix J).
Note that the value of θ2 does not affect the replaceability. Given these constraints on the parameters
and initial values, Σ1 is shown to be replaceable with Σ2. To numerically confirm this, we conduct
the following comparative experiments, in which the value of θ2 is randomly taken from [0, 1].

Replaceability with respect to a single target time-series We fix initial states of Σ2 as
(x̃1(0), x̃2(0))

⊤ = (2, 0)⊤, and thus, consider the replaceability with respect to a target time-series.
In Fig. 2(a), Σ1 is designed such that it satisfies the constraints on the parameters and initial states. As
it follows the proposed design guidelines, the output of Σ1 with Σ2 is well-fitted, and the average of
the normalized MSE is 0.0056. In contrast, Figs. 2 (b) and (c) show that the results with Σ1 disobey
some of these guidelines without the constraints on the (b) parameters and (c) initial states. As shown
in Figs. 2 (b) and (c), when neither (θ1, θ3, θ4)⊤ = (1, 0, 0)⊤ nor x(0) = (2, 0.167)⊤ is unsatisfied,
the outputs of Σ1 and Σ2 greatly differ. The average values of the normalized MSE were 1.0395 and
0.0983. In addition, we confirmed that a stationary state of Σ2, where t ∈ [100, 200], which forms an
attractor, is also appropriately generated (Fig. 2(d).) See Section K for the details. Note that both the
stationary and non-stationary tasks are accomplished using our algebraic approach.

Figure 2: Replaceability of FitzHugh-Nagumo system (Σ1) with
respect to the target system (Σ2) given constraints on the(a) pa-
rameters and initial states, (b) initial states, and (c) parameters.
(d) The reconstructed attractors under the same conditions as (c).

Replaceability with respect
to initial values of a tar-
get system For simplicity, we
consider (θ1, θ2, θ3, θ4)

⊤ =
(1, 0.5, 0, 0)⊤, which are the
same constraints used in Fig.
2(a). Here, we randomly choose
(x̃1(0), x̃2(0))

⊤ from [−2, 2]
2

10 times and design the initial
states of Σ1 to be consistent so
that it they fit each target time-
series. The results are summa-
rized in Fig. 3 (a). As observed,
when the initial values of Σ1 are
consistent, Σ1 approximats the
output of Σ2 well (the normal-
ized MSE is 3.8173 × 10−6).
This indicates that the Σ1 satisfying the proposed design guidelines can be replaced with Σ2 for
various initial states from [−2, 2]

2.

Figure 3: Replaceability of Σ1 with respect to
(x̃1(0), x̃2(0))

⊤ or θ̃ of Σ2. The outputs of Σ1 are
shown in dashed lines and the target time-series
are shown in solid red lines.

Replaceability with respect to parameters of
a target system We consider a modified target
system, denoted by Σ′

2. Differential equations
of Σ′

2 are ˙̃x1 = x̃2, ˙̃x2 = −x̃1 + θ̃(1 − x̃2
1)x̃2

where θ̃ ∈ R denotes its parameter and x̃1 is
observed. The input-output equation of Σ′

2 is
ÿ + y − θ̃(1 − y2)ẏ. The remainder of this
by F1 with respect to the input-output order,
is (−θ1 + θ̃)ẏy2 + ((θ1

2 − θ1θ̃ − θ4)/θ1)ẏ −
(θ4/3)y

3 + θ4y + (θ2θ4 + θ3). Here, we let θ̃
take 1, 3, and −3 and set (θ1, θ2, θ3, θ4)⊤ as
(θ̃, 0.5, 0, 0)⊤ . The same initial values of the
target system were applied as previous experi-
ments and (x1(0), x2(0))

⊤ are designed consis-
tently. As observed in Fig. 3(b), if Σ1 satisfies
(θ1, θ3, θ4)

⊤ = (θ̃, 0, 0)⊤, it can be replaced
with and approximate Σ′

2 (the average of the normalized MSE was 1.7765× 10−6).
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4 Conclusion
In this paper, we proposed an algebraic design framework for physical computing systems that can
offer specific design guidelines. Two main theorems were provided and their validity was shown
through experiments. The proposed framework has the following limitations. The Gröbner basis
computation is often computationally expensive for large physical computing systems. Incorporating
efficient methods for deriving input-output equations such as [5], which is recently proposed, into our
framework may be a promising method to avoid such a scale limitation. Considering the system and
observation noise caused by physical systems, the relaxation of Assumption 1 should be investigated.
Combining algebraic techniques with the integration of the model instead of its differentiation may
be one way to accomplish this. See Appendix L for further discussions.
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Appendix

A Algebraic preliminary

Here, we introduce some algebraic terminology related to the study. For basic terminology concerning
the field, ring, polynomial ring, and order, please refer to [3, 13]. Throughout this study, K[x] denotes
a polynomial ring whose variables are x = (x1, . . . , xs) over a field K.

Definition 1 (Ideal on a polynomial ring) A non-zero subset of K[x] satisfies

if p ∈ I, q ∈ I, then p+ q ∈ I, (11)
if p ∈ I, q ∈ K[x], then qp ∈ I, (12)

where K[x] is a polynomial ring; p, q are polynomials.

Definition 2 (Generator) For an ideal I , suppose that there exists a non-zero subset {pλ | λ ∈ Λ}
of ring K[x] that satisfies

I =

{∑
λ∈Λ

qλpλ

∣∣∣∣∣ for all qλ ∈ K[x]

}
. (13)

Then, {pλ | λ ∈ Λ} is defined as a generator of I .

Notably, the set on the right side of (13) is shown to satisfy the definition of the ideal[3]. Representing
the ideal I , whose generator is {pλ | λ ∈ Λ}, is commonly expressed as follows:

I = ⟨{pλ | λ ∈ Λ}⟩ . (14)

For example, the ideal generated by (1), and their derivatives up to the N th order is denoted as
(23). The underlying algorithm for deriving the input-output equation (3) and remainder such as r
appearing in (7) is common - polynomial division. We introduce some concepts related to dividing a
multivariate polynomial by a single multivariate polynomial for conciseness. For a general case, i.e.,
dividing a multivariate polynomial by a set of multivariate polynomials, please refer to [3]. As stated
in Section 2.4, we consider the monomial order to handle polynomials, which is a special type of the
total order.

Definition 3 (Total order) ≤ is a total order on a set Σ if the followings holds for all a, b, c ∈ Σ:

a ≤ a, (15)
a ≤ b or b ≤ a, (16)
if a ≤ b and b ≤ a, then a = b, (17)
if a ≤ b and b ≤ c, then a ≤ c. (18)

Conventionally, we denote a < b if both a ≤ b and a ̸= b hold. Among a set Σ equipped with a total
order, we can compare every pair of elements. This is important in ordering monomials, as explained
in Section 2.4. By adding some properties to the total order, the monomial orderings are defined as
follows.

Definition 4 (Monomial order) Monomial order < is the total order on a set of monomials Ms of a
polynomial ring such that

1 < u, for allu ∈ Ms, u ̸= 1, (19)
if u ≤ v u, v ∈ Ms thenuw ≤ vw, for allw ∈ Ms. (20)

The input-output order defined in Definition 6, a monomial order called the lexcographic order.

Definition 5 (Lexcographic order) Let us consider a ring K[x] and monomial order < on the ring
such that for arbitrary u = xα1

1 xα2
2 , . . . , xαs

s , v = xβ1

1 xβ2

2 , . . . , and xβs
s ∈ K[x], u < v holds if the

left-most element among the non-zero elements of (β1 − α1, β2 − α2, . . . , βs − αs) is positive. We
define < as the lexcographic order.
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The lexicographic order can be used to eliminate variables from ideals [3]; hence, it is used in
this study. We eliminate state variables and their derivatives from (23) to derive (3). The type of
lexcographic order shown in the following examples is what we used to compute the Gröbner basis
and derive input-output equations.

Example 2 For a physical computing system modeled as (1), we consider the polynomial ring

C(θ)[x(N), . . . , x, y(N), . . . , y, u(N), . . . , u] (21)

as in Proposition 1. To eliminate x(N), . . . , x from the ideal (23) corresponding to the model,
we fix the monomial order of the ring to the lexcographic order such that x(N) > . . . > x >
y(N) > . . . > y > u(N) > . . . > u. That is, monomials in the ring are considered as(
x(N)

)α1
(
x(N−1)

)α2 · · ·
(
u(1)

)αs−1
(u)

αs , where the derivatives (e.g., x(N)) are considered distinct
from the ordinary variables (e.g., x).

Definition 6 (input-output order) Let us denote the ring C(θ)[y(N), . . . , y, u(N), . . . , u] as
C(θ)[z], in which each element of z = (z1, z2, . . . , zs) corresponds to y(N), . . . , y, u(N), . . . , u
in order. Let us consider a monomial order < such that for arbitrary u = zα1

1 zα2
2 , . . . , zαs

s , v =

zβ1

1 zβ2

2 , . . . , zβs
s ∈ C(θ)[z], u < v holds if the left-most element among the non-zero elements of

(β1 − α1, β2 − α2, . . . , βs − αs) is positive. We define < as an input-output order.

Example 3 In Theorem 2, we consider the polynomial ring C(θ)[y(N), . . . , y, u(N), . . . , u], which is
the subset of the ring considered in Example 2. The input-output order defined in Definition 6 is the
order induced by the lexcographic order explained in Example 2. That is, we fix the monomial order
of the ring to the lexcographic order such that y(N) > . . . > y > u(N) > . . . > u. This corresponds
to considering monomials in the ring as

(
y(N)

)β1
(
y(N−1)

)β2 · · ·
(
u(1)

)βs−1
(u)

βs .

As stated in Section 2.3, the input-output equations are derived by computing the Gröbner basis,
whose underlying algorithm is polynomial division. Before explaining this, we introduce related
terminology.

Definition 7 The largest monomial in the set of monomials, whose coefficients are non-zero, appear-
ing in a polynomial p ∈ K[x] with respect to a given monomial order < is defined as the leading
monomial of p. We denote this by LM<(p).

Definition 8 The coefficient of the leading monomial of p ∈ K[x] with respect to a given monomial
order < is defined as the leading coefficient of p. We denote this as LC<(p).

Definition 9 Let us consider a ring K[x] with a given a monomial order <. Suppose we have
non-zero polynomials p and h in K[x]. We represent h as

h = qp+R, (22)

where the followings holds:

• if R ̸= 0, then R is not represented by R = q′p, where q ∈ K[x];

• if q ̸= 0, then LM<(h) ≥ LM<(qp).

R is defined as the remainder of h divided by p with respect to < over K[x].

The existence of q and R in Definition 9 is shown [3, p.64]. Although this is the case of a polynomial
being divided by a single polynomial, it can be extended to polynomial division using a set of
polynomials[3]. Because LM(h)LM(qp) holds if q ̸= 0, LM<(h) < LM<(p) implies q = 0, which
leads to an identical equation h = r. That is, if the leading monomial of a polynomial to be used
to divide is greater than that of the polynomial to be divided, the remainder is trivial. Therefore,
we make an assumption to avoid this (See the assumption LM<(h) ≥ LM<(p) in Theorem 2.) In
general, because the division algorithm is implemented on computer algebra software, r can be
specifically computed using a given h, p, and monomial order. See [3] for the details and algorithms
on the division of polynomials of multiple variables.
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B Proposition 1 and its proof

Proposition 1 (Theorem shown in [6]) For a model (1) with f, g ∈ C(θ)[x, u], suppose that the
ideal I(N) is defined as

⟨dx
dt

− f, . . . ,
dNx

dtN
− f (N−1), . . . y − g, . . . , y(N) − g(N)⟩

⊂ C(θ)[x(N), . . . , x, y(N), . . . , y, u(N), . . . , u]. (23)

Then, (2) is not zero ideal.

The following Lemma shown in [6] is used to prove Proposition 1.

Lemma 1 (Theorem 1.6 of [6]) Let K be the field. Polynomials p1, . . . , pS ∈ K[x1, . . . , xs] are al-
gebraically dependent over K if S > s, that is, there exists a non-zero polynomial P ∈ k[z0, . . . , zS ]
such that P (p1, . . . , pS) = 0.

Proof of Proposition 1 Regarding y(N), . . . , y satisfying (1) and their higher order derivatives up
to the N th order, the following holds:

y(N), . . . , y ∈ C(u(N), . . . , u, θ)[x1, . . . , xN ], (24)

because the higher order derivatives of x1, . . . , xN of (1) can be represented by those with the lower
order derivatives. According to Lemma 1, y(i)(i = 0, . . . , N) being algebraically dependent over
C(u(N), . . . , u, θ) holds. Thus, a non-zero polynomial P ∈ C(u(N), . . . , u, θ)[z0, . . . , zN ] exists
such that P (y(N), . . . , y) = 0. By clearing the denominators of the coefficients of P (y(N), . . . , y),
we obtain a polynomial in I(N) ∩ C(θ)[y(N), . . . , y, u(N), . . . , u]. This concludes the proof of
Proposition 1.

C Gröbner basis

Definition 10 (Gröbner basis) For an ideal I on a polynomial ring K[x] with a given monomial
order, if its generator G = {g1, . . . , gs} satisfies

p ∈ I ⇔ p is divisible by G, (25)

then G is called the Gröbner basis of I .

For an arbitrary non-zero ideal on polynomial rings with a fixed monomial order, there exists a
Gröbner basis [3]. According to (25), any polynomial in an ideal can be represented as a linear
combination of its Gröbner basis. Furthermore, according to (25), the Gröbner basis is known to
solve a membership problem, i.e., discriminate whether a given polynomial is in the ideal [3], and
thus characterize the ideal. In this study, we applied this property in Section 2.4.

Although the Gröbner basis of an ideal with respect to a fixed monomial order is not unique, the
following is unique.

Definition 11 (Reduced Gröbner basis) For an ideal I on a polynomial ring K[x] with a given
monomial order, if G = {g1, . . . , gs} is the Gröbner basis of I and satisfies the followings:

• LC(gi) is 1 for all i = 1, . . . , s; and

• if i ̸= j, any monomial in the set of monomials, whose coefficients are non-zero, appear in
gi is not divisible by LM(gi),

then G is the reduced Gröbner basis of I .

To conclude this section, we provide a proposition known as the elimination theorem [3]. This is
critical for obtaining the input-output equations.

Proposition 2 (Elimination Theorem) Suppose that the lexicographic order is used as the mono-
mial order of a ring of polynomials K[x1, . . . , xn] such that x1 > x2 > . . . > xn. If G is a
reduced Gröbner basis of an ideal I ⊂ K[x1, . . . , xn], then G ∩K[x1, . . . , xj ] is a Gröbner basis
of I ∩K[x1, . . . , xj ].
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This ensures that variables can be eliminated from an ideal using the reduced Gröbner basis with
respect to the lexicographic order. This is used to obtain the input-output equations, which is detailed
in Appendix D.

D Derivation of the input-output equation

The Gröbner basis can be computed using the computer algebra software. We provide commands
required to compute the Gröbner basis using Singular [4], which is free. We first consider Example 4
of Appendix H, in which the derivation of the variables does not appear.

Next, we provide Singular commands required to compute the input-output equation of (1). In the
following examples and commands, θ in (1) is replaced with a for brevity. In this case, the variables
to be eliminated are state variables and their derivatives. As stated in Theorem 1, to eliminate these,
considering (1), and their higher order derivatives up to the N th order suffices, each of which becomes
an element of the generators of (23). Derivatives are considered distinct variables in the computations;
hence, the algebraic computations explained are applicable. See Example 4 of Appendix H for a
specific example.

E Proof of Theorem 1

Definition 12 (Consistent initial values) We define the consistent initial values of (1) and their
derivatives up to N th order as

(
x(0), . . . , x(N)(0)

)
∈ RN×(N+1) such that

ẋ(0)− f(x(0), u(0); θ), . . . , x(N)(0)− f (N−1)(x(0), u(0); θ),

ȳ(0)− g(x(0), u(0); θ), . . . , ȳ(N)(0)− g(N)(x(0), u(0); θ)
(26)

hold, where u is in a set of sufficiently smooth functions Fu, which are functions from R → RM ,
and (ȳ(0), . . . , ȳ(N)(0)) ∈ R(N+1) is an initial value of a given time-series ȳ ∈ Fy , which is a set of
sufficiently smooth functions R → R.

In Theorem 1, the set of consistent initial values are denoted as X , where only a subset of variables
x(0) ∈ RN are considered, unlike in Definition 12. Strictly, the consistency of initial variables
concerns

(
x(0), . . . , x(N)(0)

)
, as in Definition 12.

Lemma 2 Suppose that u ∈ Fu and that the system of differential equations in (1) admits a unique
solution given initial state vector x(0). Then, consider

x(1)

x(2)

...
x(N+1)

 =


f(x, u; θ)
d
dtf(x, u; θ)

...
d(N)

dt(N) f(x, u; θ)

 , (27)

which is the system of differential equations that consists of the system of differential equations in
(1) and its higher order derivatives up to the N th order. Then, (27) admits a unique solution given
initial values such that x(1)(0)

...
x(N)(0)

 =

 f(x(0), u(0); θ)
...

d(N−1)

dt(N−1) f(x(0), u(0); θ)

 . (28)

Furthermore, the output satisfying the observation equation in (1) and their derivatives up to the N th
order given (28) are also unique.

Proof of Lemma 2 Let us substitute the unique solution of the system of differential equations in
(1) into their right side, f(x, u; θ). We then obtain a unique x(1)(t), which is well defined because
f(x, u; θ) is a polynomial vector with respect to x and u. Then, x(1)(0) = f(x(0), u(0); θ) holds.
By substituting x(t), x(1)(t), u(t), u(1)(t), and θ into the right side of the derivative of the system of
differential equations, d

dtf(x, u; θ), we obtain a unique x(2)(t). x(2)(t) that is well defined because
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d
dtf(x, u; θ) is a polynomial vector with respect to x, x(1), u and u(1). x(2)(0) = f (1)(x(0), u(0); θ)

holds as well as x(1)(0). By repeating these procedures, we obtain a unique x(t), x(1)(t), . . . , x(N)(t),
that is, the solution of (27) given (28). Furthermore, these x(t), x(1)(t), . . . , x(N)(t) are shown to
be unique by substituting them into the observation equation in (1) and their derivatives up to the
N th order.

Definition 13 (Generic physical computing system) Let us consider (1), whose input-output equa-
tion is (3), given a time-series ȳ ∈ Fy. Considering (3), as a differential equation with respect to y,
given initial values (ȳ(0), . . . , ȳ(N)(0)), and admitting a unique solution given arbitrary u ∈ Fu, (1)
are defined as generic.

Definition 14 (Generic parameter vectors) Let us consider (1), the input-output equation of which
is (3). A specific parameter vector θ∗ ∈ Rn is defined as generic if the input-output equation of (1)
with θ = θ∗ is equivalent to (3) with θ∗ substituted for θ.

In general, generic parameters can be configured using a comprehensive Gröbner system [10].
Throughout this work, we consider generic parameter vectors and a set of generic parameter vectors
Θ ⊂ Rn.

Proof of Theorem 1 Let us take an arbitrary (θ, u, x(0)) ∈ Θ× Fu ×X . According to Lemma
2, a unique y and their derivatives up to the N th order exist satisfying (1) given (θ, u, x(0)) and
their derivatives up to the N th order. We denote these as ŷ(t; θ, u, x(0)), . . . , ŷ(N)(t; θ, u, x(0)),
introducing the notation shown in Section 2.2.

First, we show that for any (θ, u, x(0)) ∈ Θ×Fu ×X , ŷ(t; θ, u, x(0)) = ȳ(t) holds over [0, T ] if

F
(
ȳ(N)(t), . . . , ȳ(t), u(N)(t), . . . , u(t); θ

)
= 0. (29)

Because (x(0), . . . , x(N)(0)) is consistent based on the assumption, it holds that

(ŷ(0; θ, u, x(0)), . . . , ŷ(N)(0; θ, u, x(0))) = (ȳ(0), . . . , ȳ(N)(0)). (30)

Therefore, ŷ(t; θ, u, x(0)) should satisfy (3) considering that F is in (23) and θ ∈ Θ. Hence, consid-
ering that both ŷ(t; θ, u, x(0)) and ȳ(t) satisfy (3) given (ȳ(0), . . . , ȳ(N)(0)), and (1) is consistent,
they must coincide over [0, T ]. Thus, we finish by showing sufficiency.

Next, we demonstrate that for any (θ, u, x(0)) ∈ Θ × Fu ×X , (4) holds if ȳ(t) can be generated
by (1). Let us again take an arbitrary (θ, u, x(0)) ∈ Θ × Fu × X . Because ȳ(t) ∈ Fy can be
generated by (1), this is equivalent to ŷ(t; θ, u, x(0)) up to the N th order, where ŷ(t; θ, u, x(0)) is a
unique solution of (1), as shown in Lemma 2. Furthermore,

(
ŷ(t; θ, u, x(0)), . . . , ŷ(N)(t; θ, u, x(0))

)
satisfies (3) because F is in (23) and θ ∈ Θ. Therefore,

(
ȳ, . . . , ȳ(N)

)
satisfies F , that is, (4) holds.

This concludes the proof.

F Proof of Theorem 2

Proof of Theorem 2 Because LM<(h) ≥ LM<(F ) holds, q in (7) is represented by q′/LC(F ),
that is, q = q′/LC(F ). According to the assumptions, LC<(F ) is non-zero and q′ is non-zero
or a non-zero function; thus, q is non-zero over t ∈ [0, T ]. By substituting (ȳ, . . . , ȳ(N)) into
(y, . . . , y(N)) of (7), the left side of (7) and r take zeros over t ∈ [0, T ] because ȳ is a solution of
h(y(N), . . . , y; θ̃) = 0 and (8). Thus, it must hold that

F
(
ȳ(N)(t), . . . , ȳ(t), u(N)(t), . . . , u(t); θ

)
= 0 (31)

over t ∈ [0, T ]. This is equivalent to (4). Hence, by connecting this to the sufficiency of Theorem 1,
we finish the proof.

G Division by the input-output equation

A multivariate polynomial can be divided by another multivariate polynomial using computer algebra
software. Singular commands for such divisions are shown in Example 6 of Appendix H.
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H Examples

Example 4 Suppose we have simultaneous equations as follows:

x2 + y2 + z2 = 4, x2 + 2y2 = 5, xz = 1. (32)

Let us eliminate x and y to solve (32) for z based on the computation of the Gröbner basis of the
ideal generated by (32). To do this, we consider the following procedures:

1. We consider ring C[x, y, z]. We fix the monomial ordering over this as the lexcographic
ordering < such that x < y < z.

2. We define the ideal I generated by (32), ⟨x2 + y2 + z2 − 4, x2 + 2y2 − 5, xz − 1⟩.

3. Compute the Gröbner basis of I with respect to <.

An example of Singular commands for conducting these procedures follows.

ring r = 0,(x,y,z),lp;
ideal I = x^2+y^2+z^2-4, x^2+2*y^2-5,x*z-1;
option(redSB);
groebner(I);

The first and second steps correspond to the first and second rows of the series of commands. The 0
in the first command specifies the field that we consider: the rational number field. The following
(x,y,z) and lp specify the variables and ordering of the considered ring, respectively, defined as r. The
second command defines the ideal I by specifying the generators, which are described on the right
side of the equal sign. The third step corresponds to the fourth row of the commands. The third row
of the commands is an option to compute the reduced Gröbner basis. By executing these commands,
we obtain the following results:

_[1]=2z4 -3z2+1
_[2]=y2 -z2 -1
_[3]=x+2z3 -3z

This indicates that we obtain the Gröbner basis as follows:{
2z4 − 3z2 + 1, y2 − z2 − 1, x+ 2z3 − 3z

}
. (33)

Notably, the first element does not contain x or y. Thus, this shows that the elimination of x, y is
completed using the Gröbner basis.

Example 5 Suppose we have a physical computing system modeled as follows:

ẋ1 = a1x1 + a2x2 + u, ẋ2 = a3x1 + a4x2, y = a5x1 + a6x2. (34)

We compute the Gröbner basis of the ideal generated by (34) and their derivatives up to the second
order and thus obtain an input-output equation of (34). Note that ai(i = 1, . . . , 6) in (34) denote the
parameters. The following are commands that can be used to compute it:

ring r =(0,a1 ,a2 ,a3,a4,a5,a6),(X6 ,X5 ,X4,X3,X2,X1,Y3 ,Y2 ,Y1 ,U3,U2,U1),lp;
ideal I =X3-U1-X1*a1 -X2*a2 ,X5-U2-X3*a1-X4*a2 ,X4 -X1*a3-X2*a4,
X6 -X3*a3 -X4*a4,Y1-X1*a5 -X2*a6 ,Y2-X3*a5-X4*a6 ,Y3 -X5*a5-X6*a6;
option(redSB);
groebner(I);

Here, a1,a2,a3,a4,a5,a6 correspond to the a1, a2, a3, a4, a5, a6 of (34). The symbols beginning with
U, X, Y denote the input variables, state variables, output variable, and their higher order derivatives.
Us, where 1 ≤ s ≤ N and s ∈ N denotes the (s− 1)th order derivative of u. The same holds for X
and Y. By executing these commands, we obtain the following result, the Gröbner basis of the second
order ideal of (34):

_[1]=Y3+(-a1-a4)*Y2+(a1*a4 -a2*a3)*Y1+(-a5)*U2+(-a3*a6+a4*a5)*U1
_[2]=(a1*a5*a6-a2*a5^2+a3*a6^2-a4*a5*a6)*X1+(-a6)*Y2+(a2*a5+a4*a6)*Y1

+(a5*a6)*U1
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_[3]=(a1*a5*a6-a2*a5^2+a3*a6^2-a4*a5*a6)*X2+(a5)*Y2+(-a1*a5-a3*a6)*Y1
+(-a5^2)*U1

_[4]=(a1*a5*a6-a2*a5^2+a3*a6^2-a4*a5*a6)*X3+(-a1*a6+a2*a5)*Y2
+(a1*a4*a6-a2*a3*a6)*Y1+(-a3*a6^2+a4*a5*a6)*U1

_[5]=(a1*a5*a6-a2*a5^2+a3*a6^2-a4*a5*a6)*X4+(-a3*a6+a4*a5)*Y2
+(-a1*a4*a5+a2*a3*a5)*Y1+(a3*a5*a6 -a4*a5^2)*U1

_[6]=(a1*a5*a6-a2*a5^2+a3*a6^2-a4*a5*a6)*X5
+(-a1^2*a6+a1*a2*a5 -a2*a3*a6+a2*a4*a5)*Y2
+(a1^2*a4*a6 -a1*a2*a3*a6-a1*a2*a4*a5+a2^2*a3*a5)*Y1
+(-a1*a5*a6+a2*a5^2-a3*a6^2+a4*a5*a6)*U2
+(-a1*a3*a6^2+a1*a4*a5*a6+a2*a3*a5*a6 -a2*a4*a5^2)*U1

_[7]=(a1*a5*a6-a2*a5^2+a3*a6^2-a4*a5*a6)*X6
+(-a1*a3*a6+a2*a3*a5 -a3*a4*a6+a4^2*a5)*Y2
+(a1*a3*a4*a6 -a1*a4^2*a5-a2*a3^2*a6+a2*a3*a4*a5)*Y1
+(-a3^2*a6^2+2*a3*a4*a5*a6-a4^2*a5^2)*U1

The first element does not contain symbols beginning with X and thus describes the input-output
equation of (34) as follows:

ÿ − (a1 + a4)ẏ + (a1a4 − a2a3)y − w1u̇+ (a4a5 − a3a6)u = 0. (35)

Example 6 Suppose that we have polynomials in C(θ)[y3, y2, y1] to be divided h and to divide F as
follows:

h =y3 + y1 − (1− y1
2)y2,

F =a4y
3
1 + 3y2a1y1

2 + (3− 3a4)y + 3y3 − 3y2(a1 − a4/a1)− 3a3 − 3a2a4. (36)

We fix a monomial order of the ring to the lexcographic order such that y3 > y2 > y1. Note that
LM<(h) ≥ LM<(F ) holds because LM<(h) = y3 and LM<(F ) = y3. h is divided by F using
singular as follows:

ring r=(0, a1 , a2, a3, a4),(y3 , y2, y1),lp;
poly F = a4*y1 ^3 + 3* y2*a1*y1 ^2 + (3 -3* a4)* y1 + 3* y3
- 3* y2 *(a1 - a4/a1) -3*a3 -3* a2*a4;
poly h =y3 + y1 - (1- y1 ^2)* y2;
NF(h, F);

The second command defines the polynomial to divide F . The third command corresponds to the
polynomial to be divided h. The last command compute division of h by F . Because of the commands,
we get the following reminder:

(-a1+1)*y2*y1^2+(a1^2-a1 -a4)/(a1)*y2+(-a4)/3*y1^3+(a4)*y1+(a2*a4+a3)

(1− a1)y2y1
2 +

a1
2 − a1 − a4
a1y2

− a4
3y13

+ a4y1 + (a2a4 + a3) (37)

Although this example concerns non-differential polynomials, it is applicable to differential polynomi-
als such as in Section 3. Indeed, if (y1, y2, y3) is replaced by (y, ẏ, ÿ), this example corresponds to
the division in Section 3.

I Numerical examples of the multi-tasking property

In this section, we provide numerical examples for demonstrating the multi-tasking property of (5)
discussed in Section 2.3. We consider chaotic dynamical systems called the Lorentz system [14],

˙̄x1 = 10(x̄2 − x̄1), ˙̄x2 = x̄1(28− x̄3)− x̄2, ˙̄x3 = x̄1x̄2 − (8x̄3/3) , (38)

and the Rössler system [22],

˙̄x1 = −x̄2 − x̄3, ˙̄x2 = x̄1 + (x̄2/10) , ˙̄x3 = (1/10) + x̄3(x̄1 − 14). (39)

where data points are sampled from the first variables. We substituted these target time-series into
the design guideline (6) to obtain the design inputs. Then, they are applied to (5). Fig. 4 shows
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Figure 4: Generation of chaotic time-series (the Lorentz and the Rössler equations) by the physical
computing system (5).

the designed inputs and the outputs of the physical computing system for generating the two types
of time-series. Thus, the different time-series, both of which are obtained from chaotic dynamics,
are numerically confirmed to be generated by the physical computing system based on the design
guidelines derived by our approach. See Appendix J for the details on how to design initial states of
(5).

J Details on estimations of consistent initial parameters

Theorems 1 and 2 require the existence of consistent initial values as defined in Definition 12. To
satisfy the consistency requirement, (26) must be satisfied given a time-series and input functions.
Noting that f (i)(x(0), u(0); θ) and g(i+1)(x(0), u(0); θ) (i = 0, . . . , N − 1) can be represented as
functions of x(0), u(0), . . . , u(N)(0), consistent initial values x(0), . . . , x(N)(0) can be computed by
using this value; (26) given specific values of ȳ(0), . . . , ȳ(N)(0), u(0), . . . , u(N)(0) can be regarded
as a system of equations of x(0), . . . , x(N)(0); thus, its solution must correspond to the consistent
initial vectors.

In Experiment of Section 2.3, the initial values of (5) are fixed consistently. Since x2 is observed,
it holds that x2(0) = ȳ(0). Based on Definition 12, the second equation of (5) must holds, which
leads to x1(0) = ˙̄y(0). In this experiment, ˙̄y(0) are estimated via the approximation of the numerical
solution of ȳ of (38) and (39) using polynomial interpolants in the Chebyshev points [24].

In Section 3, the initial values of (9) must be fixed consistently depending on initial values of Σ2.
Here, we consider the case that initial values of van der Pol equation, which is a part of Σ2, are known.
In this case, we first estimate the values of ȳ(1)(0) and ȳ(2)(0) via Chebyshev approximation similar
as in Experiment in Section 2.3. The approximated values of ȳ(1)(0) and ȳ(2)(0) together with known
ȳ(0) are then substituted into the system of equation corresponding to (26). In this procedure, ȳ is
numerically computed by the chebop function of chebfun1. To perform polynomial interpolation, we
apply the interp1 function of chebfun. A system of equations corresponding to (26) is solved as a
nonlinear least-squares problem by the Levenberg-Marquardt method, which estimates consistent
initial values of Σ1. To conclude this section, we present two additional numerical experiments. In
practice, one may not be satisfied that replaceability holds only for a single time-series, as shown in
Section 3. Considering this, we now confirm the replaceability with respect to the parameters of Σ2,
which allows us to consider replaceability for a set of time-series.

K Details on the experiments on the stationary task

This section provides the details of numerical example corresponding to Fig. 2(d). We consider a
stationary state of Σ2, which is defined in Section 3. In particular, we consider the time duration

1https://www.chebfun.org/download/ (the 3-clause BSD license)
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t ∈ [100, 200]. At this duration, states of Σ2 forms an attractor, as shown in the red line in Fig.
2(d). Considering that Σ2 is originally a two-dimensional system, the attractor is reconstructed in
two-dimensional delayed coordinate. The time delay was set so that the autocorrelation function
of the target time-series data points takes the first local minima [17]2. Owing to the replaceability,
the only condition left for the Σ1 to generate the target time-series in stationary time could be
(θ1, θ3, θ4)

⊤ = (1, 0, 0)⊤. Σ1 under the similar condition as that in Fig. 2(c) can reconstruct similar
attractors, as shown in Fig. 2(d). Thus, we confirmed that Σ2 can be replaced by Σ1 under the design
guideline (θ1, θ3, θ4)

⊤ = (1, 0, 0)⊤ with consistent initial conditions x(0) = (2, 0.167)⊤ for the
stationary task, and (θ1, θ3, θ4)

⊤ = (1, 0, 0)⊤ for the non-stationary task.

L Additional Discussion

In this study, we assumed that physical computing system is modeled by polynomial differential
equations and polynomial observation equations. However, some systems are not described in
these types of equations. The existence of system noise and observation noise is also of concern as
mentioned in Section 4. Thus, from a technical viewpoint, the expansion of the scope of our framework
in terms of models is needed. In conventional approaches [7, 15, 2] based on approximation theory
of filters [2], the Stone-Weierstrass theorem [23] is one of the keys. In the theorem, errors between a
continuous function that corresponds to a considered filter and polynomial functions that approximate
the filter are evaluated. Thereafter, it is shown that there exists a polynomial function that approximates
the function representing the filter sufficiently under the appropriate assumptions. This implies that
algebraic frameworks may be applicable to models described by continuous functions as well. This
may broaden the scope of our frameworks. Therefore, if algebraic approaches are combined with
these conventional approaches, designing methods of physical computing system that are practically
applicable may be constructed, which we leave for future work.

Another additional limitation is the application in more realistic problems. For example, problem
settings of feedback controls are common for physical computing [7, 15], and this study did not cover.
Typically, for feedback control of physical computing system state variables are considered. This may
be integrated with the input-output maps based approaches. Furthermore, considering that algebraic
design allows physical computing systems to perform non-stationary tasks, novel applications may
be considered. For instance, sequence-to-sequence tasks that appear in the field of natural language
processing are in our scope in principle. It is important to apply algebraic design to these applications
while considering the above technical considerations, which we leave for future work.

2https://github.com/manu-mannattil/nolitsa (the 3-clause BSD license)
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