
PettingZoo: A Standard API for Multi-Agent
Reinforcement Learning

J. K. Terry∗†
j.k.terry@swarmlabs.com

Benjamin Black∗†
benjamin.black@swarmlabs.com

Nathaniel Grammel†
ngrammel@umd.edu

Mario Jayakumar†
mariojay@umd.edu

Ananth Hari‡
ahari1@umd.edu

Ryan Sullivan∗†
ryan.sullivan@swarmlabs.com

Luis Santos§
lss@umd.edu

Rodrigo Perez ¶
rlazcano@umd.edu

Caroline Horsch∗†
caroline.horsch@swarmlabs.com

Clemens Dieffendahl ‖
dieffendahl@campus.tu-berlin.de

Niall L. Williams†
niallw@umd.edu

Yashas Lokesh†
yashloke@umd.edu

Praveen Ravi†
pravi@umd.edu

Abstract

This paper introduces the PettingZoo library and the accompanying Agent Envi-
ronment Cycle (“AEC”) games model. PettingZoo is a library of diverse sets of
multi-agent environments with a universal, elegant Python API. PettingZoo was
developed with the goal of accelerating research in Multi-Agent Reinforcement
Learning (“MARL”), by making work more interchangeable, accessible and re-
producible akin to what OpenAI’s Gym library did for single-agent reinforcement
learning. PettingZoo’s API, while inheriting many features of Gym, is unique
amongst MARL APIs in that it’s based around the novel AEC games model. We
argue, in part through case studies on major problems in popular MARL envi-
ronments, that the popular game models are poor conceptual models of games
commonly used in MARL and accordingly can promote confusing bugs that are
hard to detect, and that the AEC games model addresses these problems.

1 Introduction

Multi-Agent Reinforcement Learning (MARL) has been behind many of the most publicized achieve-
ments of modern machine learning — AlphaGo Zero [Silver et al., 2017], OpenAI Five [OpenAI,
2018], AlphaStar [Vinyals et al., 2019]. These achievements motivated a boom in MARL research,
with Google Scholar indexing 9,480 new papers discussing multi-agent reinforcement learning in
2020 alone. Despite this boom, conducting research in MARL remains a significant engineering
∗Swarm Labs
†Department of Computer Science | University of Maryland, College Park
‡Department of Electrical and Computer Engineering | University of Maryland, College Park
§Department of Mechanical Engineering | University of Maryland, College Park
¶Maryland Robotics Center | University of Maryland, College Park
‖Faculty of Electrical Engineering and Computer Science | Technical University of Berlin

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

challenge. A large part of this is because, unlike single agent reinforcement learning which has
OpenAI’s Gym, no de facto standard API exists in MARL for how agents interface with environments.
This makes the reuse of existing learning code for new purposes require substantial effort, consuming
researchers’ time and preventing more thorough comparisons in research. This lack of a standardized
API has also prevented the proliferation of learning libraries in MARL. While a massive number of
Gym-based single-agent reinforcement learning libraries or code bases exist (as a rough measure 669
pip-installable packages depend on it at the time of writing GitHub [2021]), only 5 MARL libraries
with large user bases exist [Lanctot et al., 2019, Weng et al., 2020, Liang et al., 2018, Samvelyan
et al., 2019, Nota, 2020]. The proliferation of these Gym based learning libraries has proved essential
to the adoption of applied RL in fields like robotics or finance and without them the growth of applied
MARL is a significantly greater challenge. Motivated by this, this paper introduces the PettingZoo
library and API, which was created with the goal of making research in MARL more accessible and
serving as a multi-agent version of Gym.

Prior to PettingZoo, the numerous single-use MARL APIs almost exclusively inherited their design
from the two most prominent mathematical models of games in the MARL literature—Partially
Observable Stochastic Games (“POSGs”) and Extensive Form Games (“EFGs”). During our develop-
ment, we discovered that these common models of games are not conceptually clear for multi-agent
games implemented in code and cannot form the basis of APIs that cleanly handle all types of
multi-agent environments.

To solve this, we introduce a new formal model of games, Agent Environment Cycle (“AEC”) games
that serves as the basis of the PettingZoo API. We argue that this model is a better conceptual fit
for games implemented in code. and is uniquely suitable for general MARL APIs. We then prove
that any AEC game can be represented by the standard POSG model, and that any POSG can be
represented by an AEC game. To illustrate the importance of the AEC games model, this paper
further covers two case studies of meaningful bugs in popular MARL implementations. In both cases,
these bugs went unnoticed for a long time. Both stemmed from using confusing models of games,
and would have been made impossible by using an AEC games based API.

The PettingZoo library can be installed via pip install pettingzoo, the documentation is avail-
able at https://www.pettingzoo.ml, and the repository is available at https://github.com/
Farama-Foundation/PettingZoo.

2 Background and Related Works

Here we briefly survey the state of modeling and APIs in MARL, beginning by briefly looking at
Gym’s API (Figure 1). This API is the de facto standard in single agent reinforcement learning, has
largely served as the basis for subsequent multi-agent APIs, and will be compared to later.

import gym
env = gym.make(’CartPole-v0’)
observation = env.reset()
for _ in range(1000):

action = policy(observation)
observation, reward, done, info = env.step(action)

Figure 1: An example of the basic usage of Gym

from ray.rllib.examples.env.multi_agent
import MultiAgentCartPole

env = MultiAgentCartPole()
observation = env.reset()
for _ in range(1000):

actions = policies(agents, observation)
observation, rewards, dones,

infos = env.step(actions)

Figure 2: An example of the basic usage of
RLlib

The Gym API is a fairly straightforward Python API that borrows from the POMDP conceptualization
of RL. The API’s simplicity and conceptual clarity has made it highly influential, and it naturally
accompanying the pervasive POMDP model that’s used as the pervasive mental and mathematical
model of reinforcement learning [Brockman et al., 2016]. This makes it easier for anyone with an
understanding of the RL framework to understand Gym’s API in full.

2.1 Partially Observable Stochastic Games and RLlib

Multi-agent reinforcement learning does not have a universal mental and mathematical model like
the POMDP model in single-agent reinforcement learning. One of the most popular models is the
partially observable stochastic game (“POSG”). This model is very similar to, and strictly more

2

https://www.pettingzoo.ml
https://github.com/Farama-Foundation/PettingZoo
https://github.com/Farama-Foundation/PettingZoo

general than, multi-agent MDPs [Boutilier, 1996], Dec-POMDPs [Bernstein et al., 2002], and
Stochastic (“Markov”) games [Shapley, 1953]). In a POSG, all agents step together, observe together,
and are rewarded together. The full formal definition is presented in Appendix C.1

This model of simultaneous stepping naturally translates into Gym-like APIs, where the actions,
observations, rewards, and so on are lists or dictionaries of individual values for agents. This design
choice has become the standard for MARL outside of strictly turn-based games like poker, where
simultaneous stepping would be a poor conceptual fit [Lowe et al., 2017, Zheng et al., 2017, Gupta
et al., 2017, Liu et al., 2019, Liang et al., 2018, Weng et al., 2020]. One example of this is shown in
Figure 2 with the multi-agent API in RLlib [Liang et al., 2018], where agent-keyed dictionaries of
actions, observations and rewards are passed in a simple extension of the Gym API.

This model has made it much easier to apply single agent RL methods to multi-agent settings.
However, there are two immediate problems with this model:

1. Supporting strictly turn-based games like chess requires constantly passing dummy actions
for non-acting agents (or using similar tricks).

2. Changing the number of agents for agent death or creation is very awkward, as learning
code has to cope with lists suddenly changing sizes.

2.2 OpenSpiel and Extensive Form Games

In the cases of strictly turn based games where POSG models are poorly suited (e.g. Chess), MARL
researchers generally mathematically model the games as Extensive Form Games (“EFG”). The EFG
represents games as a tree, explicitly representing every possible sequence of actions as a root to
leaf path in the tree. Stochastic aspects of a game (or MARL environment) are captured by adding
a “Nature” player (sometimes also called “Chance”) which takes actions according to some given
probability distribution. For a full definition of EFGs, we refer the reader to Osborne and Rubinstein
[1994] or Appendix C.2. OpenSpiel [Lanctot et al., 2019], a major library with a large collection
of classical board and card games for MARL bases their API off of the EFG paradigm, the API of
which is shown in Figure 3.

import pyspiel
import numpy as np

game = pyspiel.load_game("kuhn_poker")
state = game.new_initial_state()
while not state.is_terminal():

if state.is_chance_node():
Step the stochastic environment.
action_list, prob_list = zip(*state.chance_outcomes())
state.apply_action(np.random.choice(action_list, p=prob_list))

else:
sample an action for the agent
legal_actions = state.legal_actions()
observations = state.observation_tensor()
action = policies(state.current_agent(), legal_actions, observations)
state.apply_action(action)
rewards = state.rewards()

Figure 3: An example of the basic usage of OpenSpiel

The EFG model has been successfully used for solving problems involving theory of mind with
methods like game theoretic analysis and tree search. However, for application in general MARL
problems, three immediate concerns arise with the EFG model:

1. The model, and the corresponding API, is very complex compared to that of POSGs, and isn’t
suitable for beginners the way Gym is—this environment API is much more complicated
than Gym’s API or RLLib’s POSG API for example. Furthermore, due to the complexity of
the EFG model, reinforcement learning researchers don’t ubiquitously use it as a mental
model of games in the same way that they use the POSG or POMDP model.

2. The formal definition only includes rewards at the end of games, while reinforcement
learning often requires frequent rewards. While this is possible to work around in the API
implementation, it is not ideal.

3

3. The OpenSpiel API does not handle continuous actions (a common and important case in
RL), though this was a choice that is not inherent to the EFG model.

It’s also worth briefly noting that some simple strictly turn based games are modeled with the
single-agent Gym API, with the environment alternating which agent is controlled, [Ha, 2020]. This
approach is unable to reasonably scale beyond two agents due to the difficulties of handling changes
in agent order (e.g. Uno), agent death, and agent creation.

3 PettingZoo Design Goals

Our development of PettingZoo both as a general library and an API centered around the following
goals.

3.1 Be like Gym

In PettingZoo, we wanted to leverage Gym’s ubiquity, simplicity and universality. This created two
concrete goals for us:

• Make the API look and feel like Gym, and relatedly make the API pythonic and simple
• Include numerous reference implementations of games with the main package

Reusing as many design metaphors from Gym as possible will help its massive existing user base to
almost instantly understand PettingZoo’s API. Similarly, for an API to become standardized, it must
support a large collection of useful environments to attract users and for adoption to begin, similar to
what Gym did.

3.2 Be a Universal API

If there is to be a Gym-like API for MARL, it has to be able to support all use cases and types
of environments. Accordingly, several technically difficult cases exist that have to be carefully
considered:

• Environments with large numbers of agents
• Environments with agent death and creation
• Environments where different agents can be chosen to participate in each episode
• Learning methods that require access to specialty low level features

Two related softer design goals for universal design are ensuring the API is simple enough for
beginners to easily use, and making the API easily changeable if the direction of research in the field
dramatically changes.

4 Case Studies of Problems With The POSG Model in MARL

To supplement the description of the problems with the POSG models described in Section 2.1, we
overview problems with basing APIs around these models that could theoretically occur in software
games, and then examine real cases of those problems occurring in popular MARL environments.
We specifically focus on POSGs here because EFG based APIs are extraordinarily rare (OpenSpiel is
the only major one), while POSG based ones are almost universal.

4.1 POSGs Don’t Allow Access To Information You Should Have

Another problem with modeling environments using simultaneous actions in the POSG model is that
all of an agent’s rewards (from all sources) are summed and returned all at once. In a multi-agent
game though, this combined reward is often the composite reward from the actions of other agentss
and the environment. Similarly, you might want to be able to attribute the source of this reward for
various learning reasons, or for debugging purposes to find out the origin of your rewards. However,
in thinking about reward origins, having all rewards emitted at once proves to be very confusing

4

because rewards from different sources are all combined. Accessing this information via an API
modeled after a POSG requires deviating from the model. This would come in the form of returning
a 2D array of rewards instead of a list, which would be difficult to standardize and inconvenient for
learning code to parse.

A notable case where this caused an issue in practice is in the popular pursuit gridworld environment
from Gupta et al. [2017], shown in Figure 4. In it, 8 red controllable pursuer must work together to
surround and capture 30 randomly moving blue evaders. The action space of each pursuer is discrete
(cardinal directions or do nothing), and the observation space is a 7× 7 box centered around a pursuer
(depicted by the orange box). When an evader is surrounded on all sides by pursuers or the game
boundaries, each contributing pursuer gets a reward of 5.

Figure 4: The pursuit environment from Gupta et al. [2017].

In pursuit, pursuers move first, and then evaders move randomly, before it’s determined if an evader
is captured and rewards are emitted. Thus an evader that “should have” been captured is not actually
captured. Having the evaders move second isn’t a bug, it’s just way of adding complexity to the classic
genre of pursuer/evader multi-agent environments [Vidal et al., 2002], and is representative of real
problems. When pursuit is viewed as an AEC game, we’re forced to attribute rewards to individual
steps, and the breakdown becomes pursuers receiving deterministic rewards from surrounding the
evader, and then random reward due to the evader moving after. Removing this random component
of the reward (the part caused by the evaders action after the pursuers had already moved), should
then lead to superior performance. In this case the problem was so innocuous that fixing it required
switching two lines of code where their order made no obvious difference. We experimentally validate
this performance improvement in Appendix A.1, showing that on average this change resulted in up
to a 22% performance in the expected reward of a learned policy.

Bugs of this family could easily happen in almost any MARL environment, and analyzing and
preventing them is made much easier when using the POSG model. Because every agent’s rewards
are summed together in the POSG model, this specific problem when looking at the code was
extraordinarily non-obvious, whereas when forced to attribute the reward of individual agents this
becomes clear. Moreover if an existing environment had this problem, by exposing the actual sources
of rewards to learning code researchers are able to remove differing sources of reward to more
easily find and remove bugs like this, and in principle learning algorithms could be developed that
automatically differently weighted different sources of reward.

4.2 POSGs Based APIs Are Not Conceptually Clear For Games Implemented In Code

Introducing race conditions is a very easy mistake to make in MARL code in practice, and this occurs
because simultaneous models of multi-agent games are not representative of how game code normally
executes. This stems from a very common scenario in multi-agent environments where two agents
are able to take conflicting actions (i.e. moving into the same space). This discrepancy has to be
resolved by the environment (i.e. collision handling); which we call “tie-breaking.”

Consider an environment with two agents, Alice and Bob, in which Alice steps first and tie-breaking
is biased in Alice’s favor. If such an environment were assumed to have simultaneous actions, then
observations for both agents would be taken before either acted, causing the observation Bob acts on
to no longer be an accurate representation of the environment if a conflict with biased tie-breaking
occurs. For example, if both agents tried to step into the same square and Alice got the square
because she was first in the list, Bob’s observation before acting was effectively inaccurate and the
environment was not truly parallel. This behavior is a true race condition—the result of stepping
through the environment can inadvertently differ depending on the internal resolution order of agent
actions.

5

In any environment that’s even slightly complex, a tremendous number of instances where tie-breaking
must be handled will typically occur. In any cases where a single one is missed, the environment
will have race conditions that your code will attempt to learn. While finding these will always be
important, a valuable tool to mitigate these possibilities is to use an API that treats each agent as
acting sequentially, returning new observations afterwards. This entirely prevents the opportunity
for introducing race conditions. Moreover, this entire problem stems from the fact that using APIs
that model agents as updating sequentially for software MARL environments generally makes more
conceptual sense than modeling the updates as simultaneous—unless the authors of environments
use very complex parallelization, the environments will actually be updated one agent at a time. It is
worth mentioning that this race condition cannot occur in an environment simulated in the physical
world with continuous time or a simulated environment with a sufficient amount of observation delay
(though most actively researched environment in MARL do not currently have any observation delay).

In Appendix A.1 we go through a case study of a race condition like this happening in the open source
implementation of the social sequential dilemma game environments [Vinitsky et al., 2019]. These
are popular multi-agent grid world environments intended to study emergent behaviors for various
forms of resource management, and has imperfect tie-breaking in a case where two agents try to act
on resources in the same grid while using a simultaneous API. This bug in particular illustrates how
extraordinarily difficult making all tie-breaking truly unbiased is in practice even for fairly simple
environments. We defer this to the appendix as explaining the specific origin requires a large amount
of exposition and diagrams about the rules of the environment.

5 The Agent Environment Cycle Games Model

Motivated by the problems with applying the POSG and EFG models to MARL APIs, we developed
the Agent Environment Cycle (“AEC”) Game. In this model, agents sequentially see their observation,
agents take actions, rewards are emitted from the other agents, and the next agent to act is chosen.
This is effectively a sequentially stepping form of the POSG model.

Modeling multi-agent environments sequentially for APIs has numerous benefits:

• It allows for clearer attribution of rewards to different origins, allowing for various learning
improvements, as described in Section 4.1.

• It prevents developers adding confusing and easy-to-introduce race conditions, as described
in Section 4.2.

• It more closely models how computer games are executed in code, as described in Sec-
tion 4.2.

• It formally allows for rewards after every step as is required in RL, but is not generally a
part of the EFG model, as discussed in Section 2.2.

• It is simple enough to serve as a mental model, especially for beginners, unlike the EFG
model as discussed in Section 2.2 and illustrated in the definition in Appendix C.2.

• Changing the number of agents for agent death or creation is less awkward, as learning code
does not have to account for lists constantly changing sizes, as discussed in Section 2.1.

• It is the least bad option for a universal API, compared to simultaneous stepping, as alluded
to in Section 2.1. Simultaneous stepping requires the use of no-op actions if not all agents
can act which are very difficult to deal with, whereas sequentially stepping agents that could
all act simultaneously and queuing up their actions is not especially inconvenient.

In Appendix C.3 we mathematically formalize the AEC games model, however understanding the
formalism in full is not essential to understanding the paper. In Appendix D we further prove that for
every AEC game an equivalent POSG exists and that for every POSG an equivalent AEC game exists.
This shows that the AEC games model is as powerful a model as the most common current model of
multi-agent environments.

One additional conceptual feature of the AEC games model exists that we have not previously
discussed because it does not usually play a role in APIs (see Section 6.4). In the AEC games
model, we deviate from the POSG model by introducing the “environment” agent, which is analogous
to the Nature agent from EFGs. When this agent acts in the model it indicates the updating of

6

the environment itself, realizing and reacting to submitting agent actions. This allows for a more
comprehensive attribution of rewards, causes of agent death, and discussion of games with strange
updating rules and race conditions. An example of the transitions for Chess is shown in Figure 5,
which serves as the inspiration for the name “agent environment cycle”.

Player 1

Environment Step 1

Player 2

Environment Step 2

Figure 5: The AEC diagram of Chess

6 API Design

6.1 Basic API

The PettingZoo API is shown in Figure 6, and the strong similarities to the Gym API (Figure 1)
should be obvious — each agent provides an action to a step function and receives observation,
reward, done, info as the return values. The observation and state spaces also use the the exact
same space objects as Gym. The render and close methods also function identically to Gym’s,
showing a current visual frame representing the environment to the screen whenever called. The
reset method similarly has identical function to Gym — it resets the environment to a starting
configuration after being played through. PettingZoo really only has two deviations from the regular
Gym API — the last and agent_iter methods and the corresponding iteration logic.

from pettingzoo.butterfly import pistonball_v0
env = pistonball_v0.env()
env.reset()
for agent in env.agent_iter(1000):

env.render()
observation, reward, done, info = env.last()
action = policy(observation, agent)
env.step(action)

env.close()

Figure 6: An example of the basic usage of Pettingzoo

6.2 The agent_iter Method

The agent_iter method is a generator method of an environment that returns the next agent that
the environment will be acting upon. Because the environment is providing the next agent to act,
this cleanly abstracts away any issues surrounding changing agent orders, agent generation, and
agent death. This generation also parallels the functionality of the next agent function from the AEC
games model. This method, combined with one agent acting at once, allows for the support of every
conceivable variation of the set of agents changing.

6.3 The last Method

An odd aspect of multi-agent environments is that from the perspective of one agent, the other agents
are part of the environment. Whereas in the single agent case the observation and rewards can be
given immediately, in the multi-agent case an agent has to wait for all other agents to act before it’s
observation, reward, done and info can be fully determined. For this reason, these values are
given by the last method, and they can then be passed into a policy to choose an action. Less robust

7

implementations would not allow for features like changing agent orders (like the reverse card in
Uno).

6.4 Additional API Features

The agents attribute is a list of all agents in the environment, as strings. The rewards, dones,
infos attributes are agent-keyed dictionaries for each attribute (note that the rewards are the in-
stantaneous ones resulting from the most recent action). These allow access to agent properties
at all points on a trajectory, regardless of which is selected. The action_space(agent) and
observation_space(agent) functions return the static action and observation spaces respectively
for the agent given as an argument. The observe(agent) method provides the observation for a
single agent by passing its name as an argument, which can be useful if you need to observe an
agent in an unusual context. The state method is an optional method returns the global state of an
environment, as is required for centralized critic methods. The agent_selection method returns
the agent that can currently be acted upon per agent_iter.

The motivation for allowing access to all these lower level pieces of information is to let researchers to
attempt novel, unusual experiments. The space of multi-agent RL has not yet been comprehensively
explored, and there are many perfectly plausible reasons you might want access to other agents
rewards, observations, and so on. For an API to be universal in an emerging field, it inherently has
to allow access to all the information researchers could plausibly want. For this reason we allow
access to a fairly straightforward set of lower level attributes and methods in addition to the standard
higher level API. As we outline in Section 6.5, we’ve structured PettingZoo in a way such that
including these low-level features doesn’t introduce engineering overhead in creating environments,
as discussed further in the documentation website.

To handle environments where different agents can be present on each reset of an environment,
PettingZoo has an optional possible_agents attribute which lists all the agents that might exist in
an environment at any point. Environments which generate arbitrary numbers or types of agents will
not define a possible_agents list, requiring the user to check for new agents being instantiated as
the environment runs. After resetting the environment, the agents attribute becomes accessible and
lists all agents that are currently active. For similar reasons, num_agents, rewards, dones, infos,
and agent_selection are not available until after a reset.

To handle cases where environments need to have environment agents as per the formal AEC Games
model, the standard is to put it into the agents with the name env and have it take None as it’s action.
We do not require this for all environments by default as it’s rarely used and makes the API more
cumbersome, but this is an important feature for certain edge cases in research. This connects to the
formal model in that, when this feature is not used, the environment actor from the formal model and
the agent actor that acted before it are merged together.

6.5 Environment Creation and the Parallel API

PettingZoo environments actually only expose the reset, seed, step, observe, render, and close
base methods and the agents, rewards, dones, infos, state and agent_iter base attributes.
These are then wrapped to add the last method. Only having environments implement primitive
methods makes creating new environments simpler, and reduces code duplication. This has the useful
side effect of allowing all PettingZoo environments to be easily changed to an alternative API by
simply writing a new wrapper. We’ve actually already done this for the default environments and
added an additional “parallel API” to them that’s almost identical to the RLlib POSG-based API via
a wrapper. We added this secondary API because in environments with very large numbers of agents,
this can improve runtime by reducing the number of Python function calls.

7 Default Environments

Similar to Gym’s default environments, PettingZoo includes 63 environments. Half of the included
environment classes (MPE, MAgent, and SISL), despite their popularity, existed as unmaintained
“research grade” code, have not been available for installation via pip, and have required large
amounts of maintenance to run at all before our cleanup and maintainership. We additionally included
multiplayer Atari games from Terry and Black [2020], Butterfly environments which are original and

8

of our own creation, and popular classic board and card game environments. All default environments
included are surveyed in depth in Appendix B.

8 Adoption

In it’s relatively short lifespan, PettingZoo has already achieved a meaningful amount of adoption. It
is supported by the following learning libraries: The Autonomous Learning Library [Nota, 2020],
AI-Traineree [Laszuk, 2020], PyMARL (ongoing) [Samvelyan et al., 2019], RLlib [Liang et al.,
2018], Stable Baselines 2 [Hill et al., 2018] and Stable Baselines 3 [Raffin et al., 2019], similar
libraries such as CleanRL [Huang et al., 2020] (through SuperSuit [Terry et al., 2020b]), and Tianshou
(ongoing) [Weng et al., 2020]. Perhaps more significantly than any of this, PettingZoo is already
being used to teach in both graduate and undergraduate reinforcement learning classes all over the
world.

9 Conclusion

This paper introduces PettingZoo, a Python library of many diverse multi-agent reinforcement
learning environments under one simple API, akin to a multi-agent version of OpenAI’s Gym library,
and introduces the agent environment cycle game model of multi-agent games.

Given the importance of multi-agent reinforcement learning, we believe that PettingZoo is capable of
democratizing the field similar to what Gym previously did for single agent reinforcement learning,
making it accessible to university scale research and to non-experts. As evidenced by it’s early
adoption into numerous MARL libraries and courses, PettingZoo is moving in the direction of
accomplishing this goal.

We’re aware of one notable limitation of the PettingZoo API. Games with significantly more than
10,000 agents (or potential agents) will have meaningful performance issues because you have to step
each agent at once. Efficiently updating environments like this, and inferencing with the associated
policies, requires true parallel support which almost certainly should be done in a language other than
Python. Because of this, we view this as a practically acceptable limitation.

We see three directions for future work. The first is additions of more interesting environments
under our API (possibly from the community, as has happened with Gym). The second direction we
envision is a service to allow different researchers’ agents to play against each other in competitive
games, leveraging the standardized API and environment set. Finally, we envision the development
of procedurally generated multi-agent environments to test how well methods generalize, akin to the
Gym procgen environments [Cobbe et al., 2019].

Acknowledgements

Justin Terry was supported during part of this work by the QinetiQ Fundamental Machine Learning
Fellowship. Thank you to Kyle Sang for their contributions to the documentation website. Thank
you Rohan Potdar and Sang Hyun Son for their contributions to the Butterfly benchmarks. Thank
you to Deepthi Raghunandan and Christian Clauss for their contributions to testing and continuous
integration. Thank you to the PettingZoo community for the numerous bug reports and contributions
to the package, especially Ross Allen and their group.

References
Nolan Bard, Jakob N. Foerster, Sarath Chandar, Neil Burch, Marc Lanctot, H. Francis Song, Emilio

Parisotto, Vincent Dumoulin, Subhodeep Moitra, Edward Hughes, Iain Dunning, Shibl Mourad,
Hugo Larochelle, Marc G. Bellemare, and Michael Bowling. The hanabi challenge: A new frontier
for AI research. CoRR, abs/1902.00506, 2019. URL http://arxiv.org/abs/1902.00506.

Daniel S. Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. The complexity of
decentralized control of markov decision processes. Mathematics of Operations Research, 27(4):
819–840, 2002. doi: 10.1287/moor.27.4.819.297. URL https://doi.org/10.1287/moor.27.
4.819.297.

9

http://arxiv.org/abs/1902.00506
https://doi.org/10.1287/moor.27.4.819.297
https://doi.org/10.1287/moor.27.4.819.297

Craig Boutilier. Planning, learning and coordination in multiagent decision processes. In Proceedings
of the 6th conference on Theoretical aspects of rationality and knowledge, pages 195–210. Morgan
Kaufmann Publishers Inc., 1996.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Y. Chen, M. Zhou, Ying Wen, Y. Yang, Y. Su, W. Zhang, Dell Zhang, J. Wang, and Han Liu.
Factorized q-learning for large-scale multi-agent systems. In DAI ’19, 2019.

Karl Cobbe, Christopher Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation
to benchmark reinforcement learning. arXiv preprint arXiv:1912.01588, 2019.

GitHub. openai/gym dependents, 2021. URL https://web.archive.org/web/
20210527224052/https://github.com/openai/gym/network/dependents?
dependent_type=PACKAGE.

Jayesh K Gupta, Maxim Egorov, and Mykel Kochenderfer. Cooperative multi-agent control using
deep reinforcement learning. In International Conference on Autonomous Agents and Multiagent
Systems, pages 66–83. Springer, 2017.

David Ha. Slime volleyball gym environment. https://github.com/hardmaru/
slimevolleygym, 2020.

Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, Rene Traore,
Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Radford,
John Schulman, Szymon Sidor, and Yuhuai Wu. Stable baselines. https://github.com/
hill-a/stable-baselines, 2018.

Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado Van Hasselt,
and David Silver. Distributed prioritized experience replay. arXiv preprint arXiv:1803.00933,
2018.

Shengyi Huang, Rousslan Dossa, and Chang Ye. Cleanrl: High-quality single-file implementation of
deep reinforcement learning algorithms. https://github.com/vwxyzjn/cleanrl/, 2020.

Edward Hughes, Joel Z Leibo, Matthew Phillips, Karl Tuyls, Edgar Dueñez-Guzman, Antonio García
Castañeda, Iain Dunning, Tina Zhu, Kevin McKee, Raphael Koster, et al. Inequity aversion
improves cooperation in intertemporal social dilemmas. In Advances in neural information
processing systems, pages 3326–3336, 2018.

Marc Lanctot, Edward Lockhart, Jean-Baptiste Lespiau, Vinícius Flores Zambaldi, Satyaki Upadhyay,
Julien Pérolat, Sriram Srinivasan, Finbarr Timbers, Karl Tuyls, Shayegan Omidshafiei, Daniel
Hennes, Dustin Morrill, Paul Muller, Timo Ewalds, Ryan Faulkner, János Kramár, Bart De
Vylder, Brennan Saeta, James Bradbury, David Ding, Sebastian Borgeaud, Matthew Lai, Julian
Schrittwieser, Thomas W. Anthony, Edward Hughes, Ivo Danihelka, and Jonah Ryan-Davis.
Openspiel: A framework for reinforcement learning in games. CoRR, abs/1908.09453, 2019. URL
http://arxiv.org/abs/1908.09453.

Dawid Laszuk. Ai-traineree. https://github.com/laszukdawid/ai-traineree, 2020.

Joel Z Leibo, Vinicius Zambaldi, Marc Lanctot, Janusz Marecki, and Thore Graepel. Multi-agent
reinforcement learning in sequential social dilemmas. arXiv preprint arXiv:1702.03037, 2017.

Eric Liang, Richard Liaw, Philipp Moritz, Robert Nishihara, Roy Fox, Ken Goldberg, Joseph E
Gonzalez, Michael I Jordan, and Ion Stoica. Rllib: Abstractions for distributed reinforcement
learning. arXiv preprint arXiv:1712.09381, 2017.

Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg, Joseph E.
Gonzalez, Michael I. Jordan, and Ion Stoica. RLlib: Abstractions for distributed reinforcement
learning. In International Conference on Machine Learning (ICML), 2018.

Siqi Liu, Guy Lever, Josh Merel, Saran Tunyasuvunakool, Nicolas Heess, and Thore Graepel.
Emergent coordination through competition. CoRR, abs/1902.07151, 2019. URL http://arxiv.
org/abs/1902.07151.

10

https://web.archive.org/web/20210527224052/https://github.com/openai/gym/network/dependents?dependent_type=PACKAGE
https://web.archive.org/web/20210527224052/https://github.com/openai/gym/network/dependents?dependent_type=PACKAGE
https://web.archive.org/web/20210527224052/https://github.com/openai/gym/network/dependents?dependent_type=PACKAGE
https://github.com/hardmaru/slimevolleygym
https://github.com/hardmaru/slimevolleygym
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
https://github.com/vwxyzjn/cleanrl/
http://arxiv.org/abs/1908.09453
https://github.com/laszukdawid/ai-traineree
http://arxiv.org/abs/1902.07151
http://arxiv.org/abs/1902.07151

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent actor-
critic for mixed cooperative-competitive environments. Neural Information Processing Systems
(NIPS), 2017.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Igor Mordatch and Pieter Abbeel. Emergence of grounded compositional language in multi-agent
populations. arXiv preprint arXiv:1703.04908, 2017.

Chris Nota. The autonomous learning library. https://github.com/cpnota/
autonomous-learning-library, 2020.

OpenAI. Openai five. https://blog.openai.com/openai-five/, 2018.

Martin J Osborne and Ariel Rubinstein. A course in game theory. MIT press, 1994.

G. Palmer. Independent learning approaches: Overcoming multi-agent learning pathologies in
team-games. 2020.

Stefanie Anna Baby Ling Li Ashwini Pokle. Analysis of emergent behavior in multi agent environ-
ments using deep reinforcement learning. 2018.

Antonin Raffin. Rl baselines3 zoo. https://github.com/DLR-RM/rl-baselines3-zoo, 2020.

Antonin Raffin, Ashley Hill, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, and Noah
Dormann. Stable baselines3. https://github.com/DLR-RM/stable-baselines3, 2019.

Mikayel Samvelyan, Tabish Rashid, Christian Schröder de Witt, Gregory Farquhar, Nantas Nardelli,
Tim G. J. Rudner, Chia-Man Hung, Philip H. S. Torr, Jakob N. Foerster, and Shimon Whiteson.
The starcraft multi-agent challenge. CoRR, abs/1902.04043, 2019. URL http://arxiv.org/
abs/1902.04043.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

L. S. Shapley. Stochastic games. Proceedings of the National Academy of Sciences, 39(10):1095–
1100, 1953. ISSN 0027-8424. doi: 10.1073/pnas.39.10.1095.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without
human knowledge. nature, 550(7676):354–359, 2017.

Sriram Ganapathi Subramanian, P. Poupart, Matthew E. Taylor, and N. Hegde. Multi type mean field
reinforcement learning. In AAMAS, 2020.

J K Terry, Nathaniel Grammel, Ananth Hari, Luis Santos, and Benjamin Black. Revisiting parameter
sharing in multi-agent deep reinforcement learning. arXiv preprint arXiv:2005.13625, 2020a.

Justin K Terry and Benjamin Black. Multiplayer support for the arcade learning environment. arXiv
preprint arXiv:2009.09341, 2020.

Justin K Terry, Benjamin Black, and Ananth Hari. Supersuit: Simple microwrappers for reinforcement
learning environments. arXiv preprint arXiv:2008.08932, 2020b.

Justin K Terry, Benjamin Black, and Ananth Hari. Supersuit: Simple microwrappers for reinforcement
learning environments. arXiv preprint arXiv:2008.08932, 2020c.

Justin K Terry, Nathaniel Grammel, Ananth Hari, Luis Santos, and Benjamin Black. Revisiting
parameter sharing in multi-agent deep reinforcement learning. arXiv preprint arXiv:2005.13625,
2020d.

11

https://github.com/cpnota/autonomous-learning-library
https://github.com/cpnota/autonomous-learning-library
https://blog.openai.com/openai-five/
https://github.com/DLR-RM/rl-baselines3-zoo
https://github.com/DLR-RM/stable-baselines3
http://arxiv.org/abs/1902.04043
http://arxiv.org/abs/1902.04043

Gerald Tesauro. Temporal difference learning and td-gammon. Commun. ACM, 38(3):58–68, March
1995. ISSN 0001-0782. doi: 10.1145/203330.203343. URL https://doi.org/10.1145/
203330.203343.

Rene Vidal, Omid Shakernia, H Jin Kim, David Hyunchul Shim, and Shankar Sastry. Probabilistic
pursuit-evasion games: theory, implementation, and experimental evaluation. IEEE transactions
on robotics and automation, 18(5):662–669, 2002.

Eugene Vinitsky, Natasha Jaques, Joel Leibo, Antonio Castenada, and Edward Hughes. An
open source implementation of sequential social dilemma games. https://github.com/
eugenevinitsky/sequential_social_dilemma_games/, 2019. GitHub repository.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung
Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in
starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

Jiayi Weng, Minghao Zhang, Alexis Duburcq, Kaichao You, Dong Yan, Hang Su, and Jun Zhu.
Tianshou. https://github.com/thu-ml/tianshou, 2020.

Daochen Zha, Kwei-Herng Lai, Yuanpu Cao, Songyi Huang, Ruzhe Wei, Junyu Guo, and Xia Hu.
Rlcard: A toolkit for reinforcement learning in card games. arXiv preprint arXiv:1910.04376,
2019.

Lianmin Zheng, Jiacheng Yang, Han Cai, Weinan Zhang, Jun Wang, and Yong Yu. Magent: A
many-agent reinforcement learning platform for artificial collective intelligence. arXiv preprint
arXiv:1712.00600, 2017.

12

https://doi.org/10.1145/203330.203343
https://doi.org/10.1145/203330.203343
https://github.com/eugenevinitsky/sequential_social_dilemma_games/
https://github.com/eugenevinitsky/sequential_social_dilemma_games/
https://github.com/thu-ml/tianshou

	Introduction
	Background and Related Works
	Partially Observable Stochastic Games and RLlib
	OpenSpiel and Extensive Form Games

	PettingZoo Design Goals
	Be like Gym
	Be a Universal API

	Case Studies of Problems With The POSG Model in MARL
	POSGs Don't Allow Access To Information You Should Have
	POSGs Based APIs Are Not Conceptually Clear For Games Implemented In Code

	The Agent Environment Cycle Games Model
	API Design
	Basic API
	The agent_iter Method
	The last Method
	Additional API Features
	Environment Creation and the Parallel API

	Default Environments
	Adoption
	Conclusion

