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Abstract

To alleviate the greenhouse gas emissions by the chemical industry, electrification

has been proposed as a solution where electricity from renewable sources is used to

power processes. The adoption of renewable energy is complicated by its spatial and

temporal variations. To address this challenge, we investigate the potential of distrib-

uted manufacturing for electrified chemical processes installed in a microgrid. We

propose a multiscale mixed-integer linear programming model for locating modular

electrified plants, renewable-based generating units, and power lines in a microgrid

that includes monthly transportation and hourly scheduling decisions. We propose a

K-means clustering-based aggregation disaggregation matheuristic to solve the

model efficiently. The model and algorithm are tested using a case study with 20 can-

didate locations in Western Texas. Additionally, we define a new concept, “the Value

of the Multi-scale Model,” to demonstrate the additional economic benefits of our

model compared with a single-scale model.
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1 | INTRODUCTION

Chemical industries are a major source of greenhouse gas emissions

and are responsible for 7% of the global greenhouse gas emissions1 as

they are mostly powered by the combustion of fossil fuels. To allevi-

ate greenhouse gas emissions, electrification of the chemical industry

is a promising solution that is currently being explored by chemical

engineers.2,3 Electrification helps decarbonize the chemical industry

and transition from fossil fuels to more renewable energy sources

such as solar and wind. Electrification can be done in different parts

of a process, including reactions, such as in electrochemical

reactions,4 and heating, such as in resistive heating.3

The major technical challenge to transitioning to renewable-based

processes is that renewable resources, including solar and wind, have high

spatial and temporal variations. A good way to take advantage of these

variations is to adopt the concept of Distributed Chemical Manufacturing

(DCheM). DCheM aims to improve chemical process industries by devel-

oping modular process plants, which take advantage of distributed

resources and address distributed environmental problems. DCheM

paves the way for introducing numerous new process technologies and

simultaneously supports and enables energy and environmental sustain-

ability while reducing chemical transportation costs. Modular processes

increase the flexibility in dealing with the variability of conditions.5-8

While work has been done on the design and optimization of

electrified plants and on the supply chain optimization of a particular

set of chemicals produced by electricity, the combination of spatial

and temporal variations (across different time scales) of renewable

power-generating units has rarely been exploited with distributed

manufacturing. Thus, there is a need to model both spatial and tempo-

ral features across time scales for electrified chemical processes and
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integrate the planning of the power resources with it. In this article,

we address this gap where we model a network of electrified chemical

plants and power-generating units with three-time scales, that is,

single-time, monthly, and hourly. The problem is considered under the

context of a microgrid, which typically consists of a network of

low-voltage power-generating units, storage devices, and loads capa-

ble of supplying a local area such as a suburban area, an industrial

park, or any commercial area with electric power and heat.9 Micro-

grids support flexible operations, strengthen grid resilience and reduce

energy losses making the electric power system efficient.10 The loca-

tion or point at which the microgrid is connected to the power utility

is called the point of common coupling. Power can be purchased or

sold to the power utility at the point of common coupling.

This article aims to design a network to facilitate DCheM for electri-

fied chemical processes with the power demand satisfied by renewable

sources and power from an external source coordinated by a microgrid

operator by using a mixed-integer linear programming (MILP) model. The

model incorporates both the electricity network (generating units and

power lines) and chemical plant expansion in a single model. The trans-

portation of chemicals and the transmission of power are two competing

energy transportation approaches that are both captured in the lower-

level decisions. Therefore, the tradeoffs between the transportation of

chemicals and the transmission of power are studied. The model has more

than millions of variables and constraints and is very difficult to solve

directly using an MILP solver. To solve the model efficiently, we propose

a tailored algorithm that combines mathematical programming and heuris-

tics. Mathematical programming involves the study of techniques that

can be used to generate provable optimal solutions to optimization prob-

lems. From a practical standpoint, the field of heuristics has a similar goal:

to generate near-optimal and feasible solutions to optimization problems

despite the lack of optimality guarantees. Matheuristics11 are algorithms

that combine mathematical programming and heuristics. Examples of

matheuristics include local branching,12 and feasibility pump13 that have

been implemented in mixed-integer programming solvers such as

CPLEX,14 and DICOPT.15 Matheuristics are different from metaheuristic

methods like the genetic algorithm and simulated annealing as matheuris-

tic methods integrate mathematical programming techniques to construct

solutions. The algorithm we propose in this article is a decomposition-

based matheuristic, where we break down the problem into a sequence

of subproblems where each subproblem is modeled as a mathematical

program and solved to optimality. The major contributions of this article

are listed below:

1. The proposed model encompasses three-time scales taking into

account investment decisions, as well as monthly decisions and hourly

decisions, and thus captures the temporal and spatial variations.

2. The size of the model can easily exceed millions of variables. We

develop a tailored aggregation-disaggregation algorithm to solve

the model efficiently, which is applicable to any multiscale facility

location problem.

3. We propose a new concept, “the Value of the multiscale Model”
(VMM), as a quantitative metric to characterize the additional eco-

nomic savings of the multiscale model (MM) compared with a

single-scale model that ignores the temporal variations.

4. The proposed model and algorithms are made available as open-

source software through our GitHub repository EDCheM.jl with

URL: https://github.com/li-group/EDCheM.jl

The rest of this article is organized as follows. In Section 2, a liter-

ature review of related works is provided. In Section 3, we describe

the problem and the main assumptions. In Section 4, we describe the

proposed algorithm. In Section 5, the definition of the VMM is

described. In Section 6, we illustrate the benefits of the proposed

model and the effectiveness of the proposed solution techniques. The

conclusions are drawn in Section 7.

2 | LITERATURE REVIEW

A number of works have been done in the optimization of the electri-

fied production of various chemicals. Some work has been done with

a focus on optimizing the design of processes.16-25 For example,

Lazouski et al.16 carried out a techno-economic analysis of the cost-

optimal design and operation of a fully electrified ammonia generation

process that utilizes intermittent renewable energy sources by model-

ing it as a MILP model. Sánchez and Martín17 modeled the scale-up

and scale-down of a renewable ammonia-based facility considering

different technologies as a mixed-integer nonlinear programming

(MINLP) model. Cooper et al.18 developed a framework to optimize

the design and operation of a large-scale electrolyzer hub under a var-

iable power supply. Demirhan et al.19 presented a process synthesis

and global optimization framework for efficiently using renewable

resources in ammonia production, where competing technologies

were incorporated in a process superstructure.

Several works have been done with a focus on optimizing the

scheduling of electrified processes.26-34 For example, Brée et al.26 formu-

lated and solved a model for the optimal scheduling of a chloralkali plant

operating under different modes utilizing Demand Side Management.

Allman and Daoutidis27 developed a formulation for the optimal schedul-

ing for a renewable ammonia plant. Bødal and M. Korpås28 developed a

two-stage stochastic model in a rolling horizon framework to consider

uncertainties and used the model to study hydrogen production from

electrolysis in a future scenario of a remote region in Norway with a

focus on scheduling. Zheng et al.29 modeled and optimized the operation

of a grid-connected power-to-methanol system considering its flexibility.

For supply chain optimization of electrified plants, He et al.35

developed a supply chain planning model that determines the least

cost of hydrogen generation, storage, transmission, and compression

facilities to meet hydrogen demand and is combined with power sys-

tems through electricity prices with the location of the renewable

power-generating units fixed beforehand. Welder et al.36 worked on

potential future energy systems for power-to-hydrogen applications

in Germany by developing a supply chain optimization model which

takes the spatial and temporal resolution of the energy system into

account with power through power lines not considered. These

models consider the hourly demand as opposed to the monthly

demand. Li et al.37 proposed a co-planning approach for the regional

wind resources-based ammonia industry and the electric network to
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optimize the wind-to-ammonia configuration and the expansion of

the electrical network with ammonia demand being satisfied locally

rather than transporting ammonia and for a one-time demand. Other

papers have also considered supply chain optimization of electrified

plants.38-42 All these papers do not consider mode-based production

of chemicals as well as local microgrid-based production, and most of

them also do not consider multiple time scales and multiple products

(chemicals) requirements in a network.

The co-expansion of the chemical and electricity network, like

Reference 37, is a less explored area. Another area that has not been

studied in the electrification of the chemical industry is utilizing three-

time scales in the optimization model—single time, monthly, and

hourly. This is important because the output of renewable resources

such as wind and solar varies hourly and by location, while the chemi-

cal delivery contract typically varies monthly. Multiple time scales

have been explored in other areas, such as in the production of

bioproducts43 or in more general energy planning problems, such as

Reference 44, where the focus was more on central planning of the

power utility as opposed to regional planning of microgrids.

As for algorithm development for solving integrated planning and

scheduling models, Reinert et al.45 proposed an algorithm to solve

multitime scale large-scale energy planning problems. Maravelias and

Sung46 reviewed techniques that can be used in integrating planning

and scheduling. Li et al.47 propose a tailored Benders decomposition

algorithm for a multiscale power systems planning problem. Allen

et al.48 propose improvements to decomposition algorithms by adding

valid inequalities for multiscale energy systems planning problems.

3 | PROBLEM STATEMENT

We first provide a general problem statement. An illustrative example

shown in Figure 1 will be explained in detail after the generic descrip-

tion. We take the role of a company/conglomerate planning to invest

in a regional microgrid or an industrial park. Our network has a set of

consumers and suppliers of electrically produced chemical products, a

point of common coupling (the location at which the microgrid is con-

nected to the power utility), and a set of candidate locations. We can

set up modular chemical plants or/and power-generating units at each

candidate location. Modular chemical plants can be selected from sev-

eral given technologies that involve electrochemical processes. For

each plant, we are given the chemicals involved, the associated

electrochemical reactions under different operating modes, and the

equations to determine the power requirements. The modular power-

generating units are all renewable, like solar panels and wind turbines.

The capacity factors of the power-generating units for several histori-

cal years on an hourly basis are given. Power lines can be installed

between any two different locations or between any of the locations

and the point of common coupling, whose location is predetermined.

The time span of our problem is a given year.

Raw materials are obtained from suppliers with predetermined

locations and transported to the installed chemical plants on a

monthly basis. The required chemicals are produced in the plants

and transported to consumers in certain given locations on a

monthly basis. The electrochemical reactions in the plants con-

sume the power obtained through the connected power lines. The

consumed power can come from the installed generating units. In

addition, when the microgrid produces excess electricity, the

excess electricity can be sold to the electric utility through the

point of common coupling. On the other hand, the microgrid oper-

ator has the option of purchasing electricity from the electric util-

ity as well. The monthly demand forecasts for each chemical for

each of the consumers are given. In addition, we are given the

resistance and inductance of the candidate power lines, the elec-

tricity price at each hour, the variable transportation costs, the

capital cost of all the generating units, plants, and power lines, and

the cost of different chemicals. We are also given the limits on pro-

duction rates in different plants, as well as the capacity for power

transmission in power lines, and the capacity for power generation

of the generating units.

The proposed MILP model makes decisions across three-time

scales: investment decisions at the beginning of the time horizon,

monthly delivery of the chemical products to the customers as well as

the monthly purchase of raw materials, and hourly operating decisions

of chemical plants, power-generating units and power through power

lines. To simplify the problem, we consider one year of operating deci-

sions. The investment decisions include

• which chemical plants and power-generating units to install and

the locations to install them,

• which power lines should be installed.

The monthly decisions include

• the amount of each chemical sold from each plant to each

consumer,

• the amount of each chemical purchased from each supplier,

• the amount of consumer demand that is satisfied by other vendors,

• the amount of chemicals stored in the inventory of each plant at

the end of each month.

The hourly operating decisions include

• the power flow of all the installed power lines,

• the amount of power required by each of the plants,

• the amount of each chemical produced in each plant,

• the mode at which each chemical plant operates,

• the amount of net electricity purchased/sold from/to the utility.

As an illustrative example, in the region considered, as shown in

Figure 1, we are given three candidate locations denoted by rectan-

gles. Three modular technologies, including chemical plants, wind tur-

bines, and solar panels, are given, with the maximum number of each

technology that can be installed in the network being one. Also, in the

region shown, there are two consumers and two suppliers of raw

materials and a point of common coupling whose locations are known.

3 of 16 RAMANUJAM ET AL.
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Power lines can be installed between any two different locations and

between any of the locations and the point of common coupling. A

solution to the problem is shown in Figure 2. In the solution, one

chemical plant is placed at R1, one solar panel at R3, and one wind

turbine at R2 to meet the demand of the consumers most economi-

cally with appropriate power lines connected.

The assumptions we make are the following:

• The capacities of each type of modular plant and generating unit

are assumed to be fixed to their standard values.

• At most, one reaction takes place in each electrochemical process

at a particular time.

• The power lines in the network are of the same type, that is, have

the same base voltage and base power.

• The chemical plant undergoes a mode-based operation.

• The time subperiods are hours.

• The transportation cost for transporting a specific amount of

chemical is a linear function of the distance between the two loca-

tions and the amount of chemical transported.

• Chemicals are not transported between two plants.

• Each consumer has a monthly demand. We do not have to satisfy

the entire demand of the consumers with the chemicals produced

by our installed chemical plants. However, a penalty cost higher

than the chemical price is paid for the part of the demand satisfied

by other vendors.

• The interface between the point of common coupling and the elec-

tric utility is set up, and the location of the point of common cou-

pling is fixed.

• A chemical plant runs in different modes, and a chemical cannot be

a reactant in one mode and a product in another mode for a

F IGURE 1 Region representation.

F IGURE 2 Solution representation.
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chemical plant. In other words, a chemical is either a reactant for a

plant or a product for the plant.

• Each plant has a shutdown mode where there is no production.

• The differences between adjacent bus voltage angles are small.

• The chemical storage cost is assumed to be fixed and included in

the capital cost of the plant.

• The ramping constraints, as well as constraints on the restrictions

imposed on mode switching, which connect days, are relaxed.

• The transmission interconnection charges are neglected, that is,

the electricity from the microgrid can be sold at the point of com-

mon coupling at the market price without extra charges.

• The microgrid is assumed to be a price-taker in the electricity mar-

ket, that is, it does not impact the electricity price.

3.1 | Temporal simplification

Modeling each hour for each of the 365 days will make the problem

extremely large. To reduce the number of variables while preserving the

information in the data associated with the 365 days, k representative

days can be selected in each month of the planning problem to represent

the whole planning horizon where k « number of the days in the month,

as shown in Figure 3. A clustering algorithm, such as k-means clustering

or k-medoids clustering, can be used to divide the whole historical dataset

into k clusters based on some of the characteristics of the historical days.

The centroid or the medoid of each cluster is selected as the representa-

tive day. In this problem, k representative days are chosen for each month

by applying a k-means clustering algorithm on the normalized power out-

put of the renewable resources and electricity prices for the same month

over several historical years.49

With this temporal simplification, we propose a multiscale MILP

model. The mathematical formulation of the MILP is given in Appendix B.

4 | ALGORITHM

4.1 | Overview

The model can easily have millions of variables. Even for a small number

of locations (5�10), it is very difficult to solve the model directly using

an MILP solver. In addition, decomposition algorithms such as Benders

decomposition and Lagrangian decomposition cannot be applied to solve

this problem efficiently. We provide the details of the applicability of

existing decomposition methods in Appendix D. To solve it efficiently, we

propose a matheuristic to obtain a good feasible solution in a reasonable

amount of time. Before presenting the details of our algorithm, we pro-

vide an overview of the algorithm to help the reader build some intuition.

The algorithm has two major steps. The first step is to aggregate variables

such that a smaller MILP is solved. The second step is a disaggregation

heuristic to find a feasible solution to the original problem.

For the aggregation step, the integral operating variables are ini-

tially relaxed and the locations are grouped into a smaller number of

clusters by applying the k-means algorithm on their coordinates. The

variables of the locations belonging to the same cluster are then

aggregated and the cluster centers are used as candidate locations.

Thus the problem has been reduced from a large number of candidate

locations to a problem with a reasonable number of candidate loca-

tions that can be solved using an MILP solver in a reasonable amount

of time. From this, the number of plants and power-generating units

in each cluster, as well as a fair idea of the number of power lines

between any two cluster centers, can be obtained. Figure 4C repre-

sents an example of the investment decisions obtained from the

aggregated problem.

In the disaggregation step, an MILP to disaggregate each indi-

vidual cluster is solved while fixing most of the investment decision

variables of the rest of the clusters including the number of plants,

power-generating units, and the power lines among them. Note that

the clusters are disaggregated independently and not sequentially

here. Therefore, these disaggregating MILPs can be parallelized.

After completely disaggregating each cluster, the number of

plants and the number of power-generating units in each location can

be fixed. However, the number of power lines between any two loca-

tions is not fully determined since we are disaggregating each cluster

independently. Essentially, the solution to the disaggregation MILP

has two types of power lines: (a) power lines between a candidate

location and the point of common coupling or between two candidate

locations that are within the same cluster in the disaggregating MILPs

and (b) power lines between a candidate location and a cluster center.

Note that the second type of power line does not correspond to a line

in the original problem. We propose a heuristic to obtain the number

of power lines between any two locations based on the number of

the second type of lines from the disaggregating MILPs. To this end,

an integer program is solved to match the power lines to the solution

of the disaggregating MILPs. While more detailed steps are given in

the next subsection, detailed mathematical formulations of the first

few steps and details on speeding up the algorithm are given in

section C of the Data S1.

4.2 | Details

In this subsection, more details are given on the implementation of

Algorithm 1.

F IGURE 3 Decisions taken in the multiscale model.
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In Step 1 of the algorithm, the k-means clustering algorithm is run on

the coordinates of the locations to cluster the locations. The number of

clusters is chosen such that the aggregated MILP in Step 2 of the algo-

rithm, can be solved in a reasonable amount of time. For example, for the

locations shown in Figure 4A, we cluster the locations into five clusters

and Figure 4B shows an image of the clusters derived from this step.

Using the centers of the clusters obtained from Step 1 of the algo-

rithm as candidate locations, an aggregated problem is solved in Step

F IGURE 4 Steps of the algorithm. (A) 20 Locations; (B) 20 Locations clustered – Step 1; (C) example solution from aggregated problem;
(D) disaggregating one of the clusters.

ALGORITHM 1 Aggregate disaggregate algorithm

1 Func�on Aggregate_Disaggregate Algorithm:
2 Step 1:Cluster the loca�ons based on coordinates
3 Step 2:Solve the aggregated problem (C.2) a�er relaxing the integral opera�onal variables
4 Step 3:
5 foreach clusterdo
6 Solve Problem (C.3) to disaggregate the cluster keeping all the other clusters and their investment decisions fixed to the

op�mal solu�on o�he aggregated problem.
7 end
8 Step 4:Solve Problem (1) to match power lines between clusters obtained from the previous step.
9 Step 5:Fix all the investment decisions and solve for the lower-level decisions to obtain a feasible solu�on to the original

full-scale MILP based on all the original candidate loca�ons.

10 return

RAMANUJAM ET AL. 6 of 16
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2. Here, the constraints on the investment decisions are aggregated based

on the number of locations in each cluster. The operating variables are

also relaxed. After solving the aggregated problem in Step 2 of the algo-

rithm, the number of plants and power-generating units in each cluster,

as well as a rough estimate of power lines between locations in different

clusters, are obtained. Each cluster is then disaggregated in Step 3 of the

algorithm, keeping the other clusters' investment decisions fixed. For

example, Figure 4C represents the investment decisions obtained from

the aggregated problem, Figure 4D represents the process of

disaggregating one of the clusters, where the investment decisions con-

cerning the two locations marked are solved, keeping the investment

decisions of all the other clusters fixed.

From Step 3, the number of plants and power-generating units in

each location are obtained as well as the power lines. As shown in

Figure 5A, there are two types of power lines:

• Power lines between two candidate locations, which happens

between two candidate locations in the same cluster on which we

F IGURE 5 Step 4 of algorithm. (A) Two types of power lines; (B) Constraining the sum of power lines in Step 4 (1b); (C) Symmetry heuristic in
Step 4 (1c); (D) Configurations for power lines with no plant or generator in Step 4 (1f) and (1g).

7 of 16 RAMANUJAM ET AL.
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solve the disaggregation MILP, or a candidate location and the point

of common coupling (there is atleast one candidate power line from

each location in the cluster to the point of common coupling when we

solve the disaggregation MILP) shown by the blue lines in Figure 5A.

• Power lines between a candidate location and a cluster center,

which happens as there are candidate lines from the locations of a

cluster to the other cluster centers when we solve the disaggrega-

tion MILP shown by the green lines in Figure 5A.

Note that cluster centers are not real candidate locations and the

investment decisions must involve lines between two real candidate

locations. In order to convert the second type of power lines into the

form of the first type, we solve the integer programming problem (1).

With a slight abuse of notation, we use the notations in Table 1 in

this section.

Problem (1) aims to minimize the sum of the product of the num-

ber of power lines between two locations and the distance between

the two corresponding locations, over all the potential power lines

(defined in Ltd), as the distance between two locations reflects the

price of a power line between the two locations. Note that when we

define the set Ltd, we only define one set of power lines and not the

lines going both ways, that is, if we have both (p,v) and (v,p) as poten-

tial power line, we include only one of them in set Ltd: The sum of the

power lines connected to locations in a cluster is constrained based

on the number of power lines connected to these locations which is

obtained from the previous step. This is shown in Figure 5B and is

described by Equation (1b). To make the problem more accurate, the

power lines of type 1 which are not connected to the point of com-

mon coupling can be included as well in the set Ltd, and the clusters

can be defined as individual locations.

The symmetry of power lines is used as part of the heuristic,

which is depicted in Figure 5C. If there is at least one power line

between one location rA in cluster A and the center of cluster B, and

at least one line between a location rB in cluster B and the center of

cluster A obtained from the solution of the disaggregation step, then

at least one power line can be constructed between the locations rA

and rB: This heuristic rule is described by Equation (1c).

If there is a location with no plant or power-generating unit, there

cannot be exactly 1 set of power lines connected to it, as shown in

Figure 5D. For example, if there is only one power line connected to

location r1 (from r3) in Figure 5D, power transmitted from r3 is neither

consumed nor transmitted from r1. To ensure the power balance,

there would be no power flowing through it, making it redundant.

Therefore, there should be either no power line or at least two distinct

sets of power lines connected to a location with no plant or power-

generating unit (where power can flow in and out of the node). To

ensure this, constraints (1f) and (1g) are added.

min
P

r,r0 � Ltd

dr,r0ntr,r0 , ð1aÞ

s:t:
P

r0 � Rclus,c

ntr,r0 ≥ ntdisaggr,c , 8ntdisaggr,c ≥1, ð1bÞ

ntr,r0 ≥ 1, 8ntdisaggr,c0 ≥1 and ntdisaggc,r0 ≥1,r�Rc, r0 �Rc0 , ð1cÞ

ntr,r0 ≤Mpr,r0 , 8ðr, r0Þ�Ltd, ð1dÞ

ntr,r0 ≥ pr,r0 , 8ðr, r0Þ�Ltd, ð1eÞ

P

ðr,r0 Þ � Ltd

pr,r0 þ
P

ðr0 ,rÞ � Ltd

pr0 ,r ≤Mqr , 8r�Rempty, ð1fÞ

P

ðr,r0 Þ � Ltd

pr,r0 þ
P

ðr0 ,rÞ � Ltd

pr0 ,r ≥2qr , 8r�Rempty: ð1gÞ

After Step 4 of the algorithm, we have all the investment decisions for

the model. In Step 5, we fix the investment decisions in the original

model to the values obtained in the previous steps and solve the

restricted problem to find feasible operating decisions.

5 | THE VALUE OF THE MULTISCALE
MODEL (VMM)

Although the value of solving multiscale models to consider lower-level

operational decisions is well-recognized by the PSE community, there

has not been a metric to quantify the additional value a multiscale

model (MM) can create compared with a single time-scale model. In this

section, we introduce such a metric that we call the Value of the Multi-

scale Model (VMM). The metric is inspired by the Value of the Stochastic

Solution (VSS) introduced by the stochastic programming community to

quantify the additional value stochastic solutions can bring compared

with the optimal solutions to the deterministic model.50

To define VMM, we introduce several new notations. Note that

these new notations are only valid for this section and should be dis-

tinguished from the notations already introduced in previous sections.

TABLE 1 Notations in Section 4.

Notation Definition

Rc Set of locations in the cluster with center c

Rempty Set of locations with no plant or power-generating unit,

that is, r�Rempty if r�R,
P

i � Iplant [ Ipowerf gxi,r ¼0:

ntdisaggr,c
Number of power lines between r and c obtained from

the disaggregation step

Ltd Set of potential candidates to optimize for which

includes all power lines of type two, that

is, 8ntdisaggr,c ≥1,ðr,r0Þ�Ltd ,r0 �Rc:

c Cluster center

r Candidate location

ntr,r0 Integer variable denoting the number of power lines

between locations r and r0

pr,r0 Binary variable indicating if there is at least one power

line connecting locations r and r0

qr Binary variable indicating if there are more than two

different sets of power lines connected to r

RAMANUJAM ET AL. 8 of 16
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Here, we use x to represent all the upper-level decisions, for example,

the investment decisions and the monthly decisions in our problem.

Lower-level decisions are represented as ys defined for each subper-

iod s. In our model, ys corresponds to the hourly operating decisions

on each representative day where s is the index for each day. The

MM can be defined as,

MM¼ min
x,ys

fðxÞþ P
s � S

wsqðx,ys,θsÞ, s:t: gðxÞ≤ 0,

hðx,ys,θsÞ≤0, 8s�S:
ð2Þ

where θs denotes the parameters associated with subperiod s, for

example, the hourly capacity factors and electricity prices for a given

representative day indexed by s. The objective is a weighted sum of

the costs of the subperiods. hðx,ys,θsÞ corresponds to the detailed

operating constraints for the lower-level problem.

A single-scale model will ignore the detailed operating

decisions during the subperiods. Instead, only the upper-level deci-

sions x are kept in the model. The nominal single-scale model (SM) is

denoted as

SM¼ min
x,z

fðxÞþQðx,z, θ̂Þ, s:t: gðxÞ≤0, Hðx,z, θ̂Þ≤0: ð3Þ

where variables z are introduced as a surrogate to the operating deci-

sions. θ̂ is a nominal parameter that serves as a surrogate to the

parameters θs. Typically, the dimensions of z and θ̂ are lower than the

dimensions of ys and θs because the detailed operations are ignored in

the SM. For example, in our model, θ̂ can be the average of the hourly

electricity prices and capacity factors over the whole historical data-

set. Similarly, the functions Q, and H are surrogates of the functions q

and h. The reduction of the MM to the SM is not a trivial task and

usually depends on the engineering insight of the problem. By solving

(3), we can obtain an upper-level solution denoted as xSM.

We further define a concept called the Multiscale Performance of

the Single-scale Solution (MPSS). The idea is to fix the upper-level deci-

sions to xSM and solve the rest of the multiscale problem to obtain the

“true cost” of the solution xSM.

MPSS¼ min
ys

fðxSMÞþ
X

s � S
qðxSM,ys,θsÞ, s:t: hðxSM,ys,θsÞ≤0 8s�S:

ð4Þ

It should be noted that xSM can be suboptimal or even infeasible

when multiscale decisions are considered. The difference between

MPSS and MS indicates the additional economic savings we can get

by solving the MM, which is defined as VMM.

VMM :¼ MPSS -MM: ð5Þ

We will show in our case study the VMM of our MM compared with

a 0 representative day model that ignores the hourly operating

decisions.

5.1 | Difference with VSS

In computing VSS, an Expected Value problem is solved for one nomi-

nal scenario corresponding to the expected value of θs, that

is, θ¼P
s � Swsθs

EV¼ min
x,y

fðxÞþqðx,y,θÞ, s:t: gðxÞ≤0, hðx,y,θÞ≤0: ð6Þ

The main difference between EV and the SM defined in (3) is that EV

is still a multi-scale model but just one nominal scenario is kept. In

comparison, SM is a single-scale model that has a much smaller num-

ber of variables and constraints. For example, in our problem, EV is a

1 representative day model while SM is a 0 representative day model.

Let the solution to the EV be xEV . We can evaluate the performance

of xEV over all the scenarios by computing the so-called expected result

of using the EV solution (EEV).50

EEV¼ min
ys

fðxEVÞþ
X

s � S
qðxEV ,ys,θsÞ, s:t: hðxEV ,ys,θsÞ≤0 8s�S: ð7Þ

EEV and MPSS only differ in the way the upper-level decisions are

obtained. VSS is defined by

VSS :¼ EEV�MM: ð8Þ

Empirically, VMM is usually larger than VSS because the model com-

plexity of the SM is lower than EV.

6 | CASE STUDY

The MILP model and the proposed algorithm are implemented in a

case study in Western Texas with 20 candidate locations whose coor-

dinates are known. We are given 15 1500-kW solar panels,

150 100-kW wind turbines, modular chlorine plants operating in three

modes, and 12 kV power lines. Additionally, the location of the point

of common coupling and the location of four consumers and four sup-

pliers are given. The demand for each consumer is generated ran-

domly from a uniform distribution.

For the chemical plant, we consider a chloralkali process, an

industrial process to produce chlorine and sodium hydroxide by the

electrolysis of sodium chloride solutions. In this article, we use a

chlorine plant that operates in three modes - standard cathodes

(STCs/ST), oxygen-depolarized cathodes (ODCs/OD), and Shut

down.26 The reaction in ST mode producing H2 as by-product

is: 2NaClþ2H2O⇌2NaOHþCl2þH2. The net reaction of the

chloralkali electrolysis in the OD mode is 2NaClþH2Oþ
0:5O2 ⇌2NaOHþCl2. The energy requirement and the capacity of

the chlorine plant are obtained from Reference 26. We get the capital

costs of the plant and the capital costs and energy requirement of

compressors and turbine from Aspen Plus and add a cost of $160,000

for making the electrolyzer into bi-mode. A storage cost that is 5% of

9 of 16 RAMANUJAM ET AL.
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the total capital cost for each plant is further added to the capital cost.

We assume that the plant remains in one mode for at least 2 h after

switching to it each day and has a negligible cleaning time while

switching modes.

The power output for the wind turbines and solar panels at the

candidate locations for three historical years (2011–2013), as well

as the capital costs of these power-generating units, are obtained

from the software SAM (System Advisor Model)51 after obtaining

the weather-related data from NREL (National Renewable Energy

Laboratory) website (National Solar Radiation Database* and Wind

Integration National Dataset Toolkit†). We assume that there are

incentives for wind turbines. The electricity price for West Texas

for three historical years (2011–2013) is obtained from the web-

site Energy Online‡ and adjusted for inflation. The parameters of

the power lines such as resistance and inductance, are obtained

from DERCAM (Distributed Energy Resource Customer Adoption

Model).52 Five representative days per month are chosen based on

F IGURE 6 Solution Representation
from the algorithm for the investment
decisions.

TABLE 2 Results summary.

Statistics Value

Upper bound from LP relaxation ($) 19.50 M

Total profit from proposed algorithm ($) 18.94 M

Time for aggregation (h) 7.12

Time for disaggregation (h) 0.35

Time for solving operation decisions (h) 0.03

Profit obtained using the model with 0 representative

days ($)

18.52 M

VMM ($) 0.42 M

Average profit from centralized production ($) 18.72 M

Maximum profit from centralized production ($) 18.90 M

Profit from proposed algorithm with constraints on

investment decisions (described in Appendix E) ($)

18.76 M

TABLE 3 Breakdown of profit.

Breakdown of annual profit Cost/revenue in $M

Net revenue from materials 28.22

Net transportation cost 0.23

Net profit from electricity 3.16

Total fixed operating cost 5.98

Total amortized capital cost 6.23

*https://nsrdb.nrel.gov/
†https://www.nrel.gov/grid/wind-toolkit.html
‡http://www.energyonline.com/Data/GenericData.aspx?DataId=4

F IGURE 7 Solution representation
from 0 representative day model for the
investment decisions.

RAMANUJAM ET AL. 10 of 16
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the data using k-means clustering. The power lines are used in

bundles of size 20 while implementing the algorithm. More data

for the case study is given in section F of the Data S1.

6.1 | Results

The proposed algorithm and the corresponding models are implemen-

ted in Julia/JuMP. All the MILPs are solved using Gurobi version 10.0

on a Linux cluster with 48 AMD EPYC 7643 2.3GHz CPUs and 1 TB

RAM. The total annual profit obtained at the end of the algorithm is

$18.94 M and the total time taken for all the steps of the algorithm is

7.5 h. An upper bound for the profit of the problem is obtained by

solving the LP relaxation of the full-scale model using the barrier

method without crossover and it is $19.50 M. The original full space

model has 10,111,090 constraints, 2,094,336 continuous variables,

and 346,080 integer variables.

6.2 | The value of the MM

In order to understand the VMM, it is compared with a model that

does not consider temporal variations. To this end, a model

ignoring hourly variations is formulated where the hourly operat-

ing variables are aggregated by month. The new model only has

investment and monthly variables and thus has no representative

day in each month. Therefore, it is called a 0 representative day

model and outputs the investment decisions. This investment deci-

sion can then be fixed in the MM to obtain the hourly operating

variables and overall profit. Thus through this, the planning and

scheduling are separated, and the planning does not take into

account the hourly temporal variations. This profit is compared to

the profit obtained from the algorithm. It has been found that the

profit obtained using the 0 representative day model is lesser than

the profit obtained from the model and that the 0 representative

day model does not install any solar panels, as without the hourly

variations taken into account, the solar panels are not profitable.

The VMM is $0.42 M§. Figures 6 and 7 show the optimal invest-

ment decisions obtained from the MM and the 0 representative day

model, respectively. The dots represent the candidate locations,

the blue square represents the location of the point of common

coupling, and the triangles represent consumers/suppliers.

F IGURE 8 Operating decisions on representative day 1 of month 9. (A) Hourly mode decisions on representative day 1 of month 9;
(B) Hourly electricity prices on representative day 1 of month 9; (C) Hourly power produced and consumed by the microgrid on representative
day 1 of month 9; (D) Hourly profit from electricity on representative day 1 of month 9.

§Note that the matheuristic did not solve the model to global optimality, this calculated VMM

is an approximation.
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The algorithm provides a configuration that favors distributed

manufacturing. To further demonstrate the value of distributed

manufacturing, it is compared with centralized manufacturing, where

we calculated the profit by installing all the plants, solar panels, and

wind turbines at each one of the 20 locations. The installed facilities

are connected to the point of common coupling through sufficient

number of power lines. The maximum profit obtained from centralized

manufacturing across all 20 locations is around $18.90 M, around

$0.04 M less than the profit obtained from the algorithm. However,

land-based constraints may limit the number of plants or renewable

resources that can be installed in a particular location. We have imple-

mented the algorithm under such conditions, with further details and

the associated results provided in Appendix E. The profit obtained

from the algorithm with these constraints, is $18.76 M and is lesser

than the profit obtained without constraints.

Table 2 shows a summary of the algorithm's computing time per

step and compares the profit obtained with the profit obtained from

the model with 0 representative days and the average and maximum

profit obtained from centralized production.

The breakdown of the profit is shown in Table 3. An important

observation to note from the breakdown of the profit is that a major part

of the revenue comes from the sales of chlorine and other chemicals,

and the major cost is from the capital cost. The profit from the electricity

makes a considerable contribution to the profit and thus the location of

the plant and the power-generating units could influence the profit.

Figure 6 is a representation of the optimal configuration obtained

from solving the MILP model using the algorithm proposed.

In order to understand the trends on an hourly basis and the

effect of the power produced and electricity price on hourly decisions,

several hourly decisions and parameters of representative day 1 in

month 9 are plotted and shown in Figure 8A–D. Figure 8A shows the

dynamics of the mode switching. When the electricity price is low, the

STC mode is mostly preferred, when the price is moderately high the

ODC mode is mostly preferred and when the price is extremely high

the shutdown mode is mostly preferred. This is because the STC

mode consumes high power but does not consume any oxygen and

produces hydrogen, while the ODC mode consumes relatively lower

power and consumes oxygen with no hydrogen produced. Thus, these

two competing effects (consumption/production of oxygen/hydrogen

and power required) help choose the mode for each hour.

Power is sold or bought from the electric utility depending on the

net effect of the power consumed by the plant, the power generated

by the solar panels and wind turbines, and the power loss through the

power lines. It can be seen from Figure 8B that there is a peak in the

electricity price in hour 17. The difference in power produced and

power consumed in hour 17 is moderate, as seen in Figure 8C. Thus,

all the plants run in the Shut down mode in hour 17, as seen in

Figure 8A, and the profit from electricity is high, as seen in Figure 8D.

Another interesting observation is in hour 12 when the profit

from electricity is at its peak for the day. The electricity price is mod-

erately high in hour 12, and hence the Shut down mode is chosen for

3 of the plants and OD mode for the other plant as seen in Figure 8A.

In the first few hours, the power produced is negligible. However, the

F IGURE 11 Average electricity price in each month.

F IGURE 12 Mode decisions in a month.

F IGURE 10 Average number of plants in each mode per hour.

F IGURE 9 Average electricity price in each hour.
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plants operate in the SC mode during the first few hours of the day.

This is because the electricity price is very low.

The weighted average of electricity price over all the representa-

tive days for each hour and the average number of plants in each

mode for each hour is further plotted in Figures 9 and 10 and ana-

lyzed. An observation that can be made is that when the electricity

price increases, the number of plants in the shutdown mode majorly

increases. This is consistent with the trends.

6.2.1 | Monthly trends

From the results obtained, an observation that can be made is that

most of the demand is met by the plants and that the slack variable

for each month is very small. Figure 11 shows the average electric-

ity price for each month whereas Figure 12 depicts the average

percentage of plants on each mode for each month. While the OD

mode is predominantly chosen for plants on average, as seen in

Figure 12, the percentage of shutdown mode mostly increases as

the price of electricity increases, which is consistent with the

hourly trends as well.

6.2.2 | Effect of more renewable electricity
generation

In the future, when the renewable electricity generation capacity

becomes more abundant, electricity prices are expected to be depressed

during hours of peak PV output and increase sharply at sundown.53 Let

us assume that the sundown time is from 6:00 to 7:00 p.m. We reduce

the price by 10% for all hours between 7:00 a.m. to 5:00 p.m. and assign

10% more of the current highest price to the electricity price between

hours 6:00 p.m. to 7:00 p.m. For other hours, we keep the prices the

same. This is done for each representative day of each month. Addition-

ally, we expect that the costs of installing solar panels and wind turbines

are going to reduce.54,55 We reduce the capital and operating costs of

solar panels by 50% and wind turbines by 40%.

For this scenario, the MILP model and the proposed algorithm are

implemented. The total profit obtained at the end of the algorithm is

TABLE 4 Split up of profit for Scenario 2.

Split up of annual profit
Cost/revenue in
$M in Scenario 2

Cost/revenue
in $M in base case

Net revenue from materials 28.13 28.22

Net transportation cost 0.23 0.23

Net profit from electricity 3.25 3.16

Total fixed operating cost 5.71 5.98

Total amortized capital cost 4.53 6.23

F IGURE 14 Average electricity price in each hour in Scenario 2.

F IGURE 15 Average number of plants in each mode per hour in
Scenario 2.

F IGURE 13 Solution representation
from the algorithm for investment
decisions in Scenario 2.
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$20.91 M. Figure 13 depicts the optimal configuration obtained from

the MILP model for this scenario. The optimal configuration is differ-

ent from the base case, with the plants, wind turbines, and solar

panels relocated. The dots represent the candidate locations, the blue

square represents the location of the point of common coupling and

the triangles represent consumers and suppliers.

The split of the profit is shown in Table 4.

While the profit from electricity has increased in scenario 2 as

compared to the base case, the capital cost and fixed operating cost in

Scenario 2 are less than in the base case. The net effect is that the

profit in Scenario 2 is more than the profit obtained in the base case.

The plots of the average electricity price for each hour and the aver-

age number of plants in each mode for each hour are further analyzed in

Figures 14 and 15. It is found that in the daytime, the average number of

plants in the shutdown mode is lesser than that in the base case, while in

the hours 19 and 20, which represent 6:00 p.m. and 7:00 p.m., the aver-

age number of plants in the shutdown mode is more than that in the base

case. This is because, in the daytime, the electricity price is lesser in this

scenario, while at 6:00 p.m. and 7:00 p.m., the electricity price is at its

peak and is more than those in the base case.

7 | CONCLUSIONS

Electrification is a solution being explored to tackle the problem of

greenhouse gas emissions by the chemical industry. Electrification

using renewable sources of energy includes spatial and temporal vari-

ations, which can affect plant production. An MILP model was pro-

posed to determine a feasible near-optimal configuration of a network

of modular plants, power-generating units, and power lines connected

by a microgrid considering spatial and temporal variations in electricity

price and weather conditions. The model takes decisions in three-time

scales: one-time investment decisions, monthly decisions like trans-

portation as well as hourly operating decisions. A spatial aggregation

and disaggregation algorithm based on k-means clustering was devel-

oped to solve the model efficiently. We propose a new metric the

VMM to quantify the economic savings of the MM.

The model was tested on a case study with 20 candidate loca-

tions in Western Texas with data obtained from various sources. The

mode of the plant was chosen depending on the power produced and

the electricity price. The major contributor to the profit was found to

be the materials (products and raw materials). The profit obtained

from electricity was found to have a significant contribution to the

total profit and thus, the spatial location can affect the profit. The

mode switching and the profit from electricity were found to be con-

sistent with the theoretical trends. The VMM was inferred by compar-

ing it with the net annual profit obtained from a model with

0 representative days, and we found that the profit from the 0 repre-

sentative day model was $0.42 M lesser than the profit obtained from

our model. The value of distributed manufacturing was inferred by

comparing it with centralized manufacturing and it was found that the

configuration with distributed manufacturing gave more profit. Fur-

ther, we investigated the case study in the context of a scenario in the

future, where there will be more renewable electricity generation, and

found that the profit increases in this scenario.

Although the case study is on the chloralkali process, we expect

that as technologies for green hydrogen, green ammonia, and other

chemicals which can be produced electrochemically, get more mature,

the model can be used for multiscale planning of these new technolo-

gies. We also expect the proposed approach can have a broader

impact as the cost of renewable power-generating resources reduces,

and microgrids become more widely adopted. In addition, the pro-

posed matheuristic algorithm is general and can be adapted to solve

any multiscale facility location problem, which has been understudied

by the Operations Research community. While bundling of power

lines was used to speed up the algorithm, it adds inherent constraints

to the number of power lines placed between two locations. Addition-

ally, the number of lines in the bundle is heuristically determined

based on data. In the future, we will develop novel methods that do

not require bundling the power lines to speed up the algorithm.
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