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A deep-learning approach for online cell
identification and trace extraction in functional
two-photon calcium imaging
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In vivo two-photon calcium imaging is a powerful approach in neuroscience. However, pro-

cessing two-photon calcium imaging data is computationally intensive and time-consuming,

making online frame-by-frame analysis challenging. This is especially true for large field-of-

view (FOV) imaging. Here, we present CITE-On (Cell Identification and Trace Extraction

Online), a convolutional neural network-based algorithm for fast automatic cell identification,

segmentation, identity tracking, and trace extraction in two-photon calcium imaging data.

CITE-On processes thousands of cells online, including during mesoscopic two-photon

imaging, and extracts functional measurements from most neurons in the FOV. Applied to

publicly available datasets, the offline version of CITE-On achieves performance similar to

that of state-of-the-art methods for offline analysis. Moreover, CITE-On generalizes across

calcium indicators, brain regions, and acquisition parameters in anesthetized and awake

head-fixed mice. CITE-On represents a powerful tool to speed up image analysis and facilitate

closed-loop approaches, for example in combined all-optical imaging and manipulation

experiments.
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Multi-photon imaging in combination with Genetically
Encoded Calcium Indicators (GECI) allows the
recording of population activity with high spatial

resolution in the intact brain in vivo1–6. However, multi-photon
imaging datasets, in the form of time series (t-series), can be large
(0.5 GB to >1 TB) and their processing requires time and com-
putational power (50 GB/h–1 TB/h). More specifically, the precise
identification and segmentation of neuronal structures (typically
somata) in a given FOV are critical to extract information from
raw imaging t-series6. This step can be complex because of dense
GECI labeling, low signal-to-noise ratio (SNR), presence of
motion artifacts, and large number of neurons in the FOV (e.g., in
the case of mesoscopic two-photon imaging7,8).

Segmentation is typically performed in two ways: (i) manually,
based on visual inspection by an expert user and on selection of
pixels into regions of interest (ROIs); (ii) automatically, employing
supervised or unsupervised methods leveraging on spatial and
temporal properties of the fluorescence signal in the t-series9–23.
Manual segmentation24,25 is time-consuming and impractical in the
case of large datasets and FOVs (e.g., mesoscopic imaging) or when
real-time manipulation of experimental conditions is needed26,27.
State-of-the-art automatic approaches apply pixel correlation15,16,19,
principal/independent component analysis (PCA/ICA)15,16, con-
strained non-negative matrix factorization (CNMF)10,14,17, and
deep neural networks (DNN)10,20–22 to perform FOV segmenta-
tion. These approaches are usually applied offline and generally take
advantage of both the neuronal spatial footprints and the temporal
dynamics of the fluorescence signal associated with the identified
spatial footprints. Consequently, their performance benefits from
long acquisitions10,16,23, with highly active cells being more easily
segmented than rarely active or inactive ones10,22. Moreover, cur-
rent methods often require the experimenter to set initialization
parameters ahead of the segmentation process10,11,15–17,22. While
most of these parameters are generally easy to adjust (e.g., frame
rate and indicator kinetics), some are inaccessible to the user online
(e.g., number of expected ROIs in a FOV and spatial constraints on
ROI shapes) and must be determined through multiple offline
rounds of empirical tuning steps.

The quality of in vivo two-photon calcium imaging is also
extremely sensitive to motion artifacts6. In particular, the shape
and position of imaged cells may change due to motion artifacts
correlated with the animal’s locomotion, breathing, and heart-
beat. In current approaches10,15–17,22,28, successful neuronal
segmentation is typically achieved after correcting for motion
artifacts: a process requiring additional time and computational
power. The output of the segmentation process is thus a static
mask, representing the “average” shape and position of each cell
throughout the t-series. This approach is impractical whenever
cells should be tracked online on a frame-by-frame basis, for
instance, when a neuronal ensemble (i.e., a group of coactive
neurons) must be optogenetically manipulated after being
identified29,30. In fact, neuronal ensembles are dynamic, and
different cells may belong to a given ensemble at a certain time
point, making it difficult to define a priori the neuronal identities
belonging to future ensembles31. Finally, downstream of seg-
mentation, the dynamic fluorescence signal from each cell must
be extracted and “decontaminated” from background or neuropil
signal6,32. Different approaches are available to this
end10,11,15–17,32,33, all requiring additional computational time.
As a result of all these analytical steps, a total processing time of
30–90 min was reported for most efficient methods when pro-
cessing FOVs of about 500 µm × 500 µm containing hundreds of
cells imaged over tens of thousands of frames10,11,22. OnACID11

and its extended version CaImAn online10 provide online analysis
on streaming data. However, various rounds of offline segmen-
tation with different initialization parameters10 need to be run in

order to obtain a reliable segmentation. Moreover, detection
performance is subordinated to the level of cellular activity10.
These processes introduce a temporal lag that is generally larger
than the few minutes required for a single iteration of offline
segmentation preprocessing. Altogether, current analytical
approaches are: (i) still limited in their ability to perform online
analysis, which is necessary for closed-loop experiments; (ii)
biased against the identification of rarely active or inactive cells,
which could be as informative as more active neurons, for
example, in longitudinal all-optical imaging and manipulation
approaches; (iii) not validated on large FOVs, such as those
generated by mesoscopic two-photon imaging.

Here, we describe CITE-On, a convolutional neural net-
work (CNN) based algorithm trained to perform neuronal somata
identification in two-photon imaging recordings, combined with
a fast dynamic segmentation and trace extraction pipeline. CITE-
On works both offline, after the acquisition is completed, or
online and identifies hundreds to thousands of neuronal cell
bodies in either modality. Moreover, CITE-On identifies both
active and inactive neurons, removing biases towards highly
active cells. Finally, CITE-On’s light architecture and processing
strategy allow fast automatic segmentation, tracking, and trace
extraction in mesoscopic two-photon imaging t-series.

Results
CITE-On: structure and analysis pipeline. CITE-On accepts
individual frames from two-photon calcium imaging t-series
(Fig. 1a) and it includes two main parts: an image detector used to
identify neuronal somata based on the publicly available CNN
RetinaNet34 and a custom-built downstream fast analysis pipe-
line, designed for functional trace extraction. The image detector
and the analysis pipeline operate as asynchronous parallel pro-
cesses in order to provide discrete cell detection update (up to
10 Hz, see text below) and faster than real time functional traces
(available at 100 Hz under all experimental conditions tested in
this study, see text below). CITE-On required three preprocessing
steps ahead of the CNN image detection: (i) frame down-
sampling; (ii) image upscaling; (iii) replication of the input image
into three identical channels (Fig. 1a). The frame downsampling
value was set according to the image SNR, while the upscaling
factor depended on the ratio between the FOV area and the
average area of the neuronal somata (see “Methods” and text
below). The length of the frame downsampling window, as well as
the value of the upscaling factor, was defined a priori and adjusted
according to the data to maximize performance. The three
identical images were sent to the CNN for image detection (blue
rectangle in Fig. 1a–d). The output of the CNN (yellow highlights
in Fig. 1a–d) was a set of boxes tightly surrounding each detected
cell soma (“bounding boxes” represented as green squares over
the FOVs in Fig. 1a–d). Coordinates and surfaces of each
bounding box were used in the analysis pipeline, to generate: (i)
cell identity assignment and tracking along the t-series; (ii) frame-
by-frame segmentation of neuronal somata; (iii) background
subtraction procedure and extraction of neuronal functional
trace.

CITE-On works both offline after the acquisition was
completed and the whole t-series is available (Fig. 1b), or online,
using individual imaging frames as inputs, continuously streamed
from the experimental setup during the acquisition of the imaging
t-series (Fig. 1c, d). In the offline pipeline, a Fourier-transform
approach35 was used to correct for lateral motion artifacts
throughout the t-series (Fig. 1b). The frame downsampling
corresponded to the projection of the entire t-series onto its
temporal median calculated across all frames (Fig. 1b). Soma
detection was then performed once on the preprocessed median
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image (detection in Fig. 1b), and bounding boxes were generated
for each frame of the t-series (Fig. 1b, yellow highlights). Each
bounding box was associated with a score, representing network
confidence in cell detection. We defined the intersection over
union (IoU) for two identified bounding boxes as the proportion
of the overlapping area between two boxes out of the sum of the
areas of the two boxes. Bounding boxes with intersection over

union (IoU) <20% were considered as separate neuronal
identities. When IoU of two bounding boxes was >20%, the
bounding box with the highest score was retained.

In the online pipeline, no motion correction was performed,
and the user selected between two downsampling strategies
depending on the SNR of the data and on the required upscaling
factor in the preprocessing step. In the case of relatively high SNR
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and low upscaling factors (Fig. 1c), a sliding average (arithmetic
mean) was calculated on the first n frames of the t-series and
updated with every new individual frame generated by the
microscope. Neuronal detections were updated for each imaging
frame starting from the n+ 1th frame. When the SNR was
relatively low and the upscaling factor large (Fig. 1d), a step
average approach was performed, where the input for the image
detector was the average projection of blocks of n frames (i.e.,
arithmetic mean of the n considered frames along the temporal
axis). Additional n frames were thus required for generating the
next step average projection, and the detections were updated
every n frames. In the sliding-average mode, the maximum
detection rate decreased with the upscaling factor, with a peak
rate of 10 Hz with upscaling factor= 1 (Fig. 1e). Active detections
(i.e., detections in the current sliding average or step average) and
past detections (i.e., detections in any previous sliding or step
average) were continuously tracked and updated (Fig. 1c, d,
update detection and tracking). Specifically, active detections were
compared with past detections at each step of the detection
update and a new identity was added (and included in the
tracking system) every time the surface of an actively detected
bounding box had IoU <20% with any of the previously identified
boxes. Bounding boxes from active detections with IoU > 20%
with those of past detections did not change identities of
previously detected boxes, but their positions and shapes were
updated according to the position in the most recent detection
step. All past detections without updates were retained in the
tracking system in the form of their last active detection for the
remaining part of the t-series (Supplementary Movie 1).

For both the online and offline pipelines (Fig. 1f, g), bounding
boxes were used to generate a dynamic segmentation of the
t-series and to identify ROIs. The distribution of fluorescence
values inside each bounding box was computed at each frame
(Fig. 1f, left). Only pixels with values between the 80th and the
95th percentile of the box’s fluorescence distribution were
assigned to the ROI corresponding to the cell soma (white pixels
of the binary mask in Fig. 1f, right). This range of values was
chosen in order to base trace extraction on the pixels with highest
intensity (>80th percentile), while avoiding pixels close to
saturation (<95th percentile). Since pixel assignment to cell
somata in each individual box was updated at each frame, the
resulting dynamic segmentation was updated online for every
new frame. All the FOV pixels that were not included in any
bounding box were assigned to a global background ROI,
similarly to ref. 36. The fluorescence intensity of all pixels

belonging to the global background ROI was averaged at each
frame to obtain the background signal (bg). Moreover, at each
frame, the bg was subtracted from the fluorescence of each
segmented neuronal ROI, generating bg-corrected fluorescence
traces (Fig. 1g). Since shape, number, and position of bounding
boxes changed as the t-series progressed (according to active
detections and tracking), the pixels assigned to bg also changed in
number and identity across frames. Identity tracking, segmenta-
tion, and functional trace extraction required ≤10 ms per frame
(either offline or online).

Training of the image detector and ground truth generation.
The ResNet50 Feature Extractor CNN incorporated in CITE-On
was not originally developed for detecting neuronal somata, but
rather for the analysis of natural images, and it was trained on >1
million RGB images across 80 classes (http://www.image-net.org/).
We decided to use a transfer learning strategy37 to adapt this effi-
cient detection architecture to the identification of neuronal somata
(i.e., a single class) in greyscale two-photon images. This choice
was dictated by the fact that available two-photon calcium
imaging datasets (http://neurofinder.codeneuro.org/, http://help.
brain-map.org/display/observatory/Data+-+Visual+Coding) are
far too small for an ab-initio CNN training. Moreover, they are too
homogeneous in terms of calcium indicators used, FOV dimen-
sions, cell density, acquisition frame period, SNR, and background
signal contamination22, making them suboptimal even for a transfer
learning strategy. For example, no publicly available large dataset
comprises imaging data collected using red-shifted GECIs, such as
jRCaMP1a. We thus decided to use a dedicated dataset including
only t-series acquired in our laboratory for training and internal
validation. In this way, we employed publicly available datasets to
test CITE-On performance and its generalization capability on
never-before-seen data. The dedicated dataset included 197 t-series
from 28 mice acquired using different acquisition parameters (see
“Methods”). More specifically, we included 131 t-series from layer
IV neurons of the somatosensory cortex expressing either
GCaMP6f, GCaMP6s, or GCaMP7f (globally indicated as “LIV”)
and 66 t-series from the CA1 pyramidal neurons of the hippo-
campus expressing both jRCaMP1a and GCaMP6f (indicated as
“CA1 jRCaMP1a” and “CA1 GCaMP6f”, respectively). We included
t-series with heterogeneous median fluorescence and SNR in order
to reduce potential biases toward bright cells during the training
process, while avoiding large differences between groups of data
that could have generated better performance on specific subsets of
t-series (Supplementary Fig. 1a, b).

Fig. 1 Structure and analysis pipeline of CITE-On. a Schematic of the image detection process in CITE-On. During ongoing two-photon imaging
acquisitions, individual frames are transferred to CITE-On as they are completed (left). A preprocessing step (green rectangle) is required ahead of image
detection, including frame downsampling, image upscaling, and triplication of the upscaled image. The result of the preprocessing is then used as input to
the CNN (blue rectangle). The CNN output is the detection of neuronal somata in the form of bounding boxes (green squares, greyscale image on the
right). b CITE-On offline pipeline starts with the complete t-series and the correction of motion artifacts (blue arrow, motion correction). Frame
downsampling is performed by computing the global median projection of the t-series. The upscaled and triplicated global median (green) is fed to the
CNN (blue), a single detection is performed, and the bounding boxes (detection, green squares) are projected onto each frame of the complete t-series
(yellow). The color scale shown on the left in this panel applies to all grayscale images in this figure. c In the online pipeline, for data requiring low upscaling
factors, a sliding average projection of the first n frames of the ongoing t-series is calculated in the frame downsampling preprocessing step (green). This
image is upscaled and triplicated, processed by the CNN (blue), producing the first detection (yellow). As the next frame of the t-series is acquired, a new
sliding average is computed, again on n frames, but starting from the second frame of the acquisition and including the n+ 1th one (green). The CNN
processes this image (blue), updating the detections and starting the tracking system (yellow). d For data requiring high upscaling factors, the pipeline is
similar to that in c, but instead of a sliding average, a step average is calculated on n frames as the frame downsampling preprocessing step (green).
Detections are updated every n new frames. e Detection rates as a function of the magnitude of the upscaling factor. The maximum detection rate is 10 Hz
for upscaling factor between 1 and 1.5. f Representative average fluorescence of pixels inside the bounding box relative to two cells (cell #3 and cell #11),
calculated in a single frame of the LIV dataset (GCaMP6s, pseudocolor, left). Associated dynamic segmentation mask in the same frame (binary mask,
right). g Functional traces from N= 15 representative cells extracted with online CITE-On pipeline. Traces from cells displayed in f are shown in orange and
purple.
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To obtain a consensus Ground Truth (GT) annotation of the
t-series used for training and validation of the CNN, two human
graders manually annotated all t-series, defining the tightest
rectangular box fitting each visible cell in each FOV. Manual GT
annotation was preferred to automatic segmentation for two main
reasons: (i) available automatic segmentation approaches rely on
both functional (i.e., fluorescence signal dynamics across frames)
and morphological features9–23, while we wanted the GT
annotation to be exclusively based on morphological features (see
below); (ii) manual annotation is still frequently considered more
accurate than automatic methods10,22. Initially, manual annotation
on single frames by two graders produced only few neuronal
identities because cells were only visible in a minority of frames
(Supplementary Fig. 1c, Supplementary Movie 2). This could be
due to the low basal emission of some of the indicators used (e.g.,
GCaMP6f), to the variable expression level of the calcium indicator
across cells, and to the sparse activity profile of the imaged cells. In
order to increase the visibility of neurons, we created high contrast
single images representative of each t-series. To this end, we first
corrected each t-series for lateral motion artifacts and then
collapsed each acquisition onto its median projection (Supple-
mentary Fig. 1d). These images were sharpened (Supplementary
Fig. 1e) and gamma corrected. Brightness and contrast were
adjusted in order to obtain a distribution of intensity values
spanning the whole bit range. The sharpened images, named
enhanced median projections (EMPs) (Supplementary Fig. 1f, g),
were used for manual annotation (Supplementary Fig. 1h,
Supplementary Movie 3). In training and validation datasets
(LIVtrain, CA1train, LIVtest, and CA1test datasets, N= 197 t-series),
grader #1 annotated 14425 boxes, while grader 2 annotated 12912
(Supplementary Table 1). The bounding boxes produced by grader
#1 and grader #2 and their superposition in different experimental
preparations are shown in Supplementary Fig. 2. We used mean
average precision (mAP), Precision, Recall, and F-1 score as
metrics for performance quantification (see “Methods” for
definitions). Annotations from the two graders largely overlapped
(mAP, 0.77 ± 0.08; F-1 score, 0.93 ± 0.02; precision: 0.98 ± 0.01;
recall: 0.88 ± 0.12, N= 197 EMPs, see also Supplementary Table 2).
Given the high similarity of the independent annotations provided
by the two graders, we defined the consensus GT for our entire
dataset as the GT shared between the two graders (see “Methods”).
Given that our dataset contained partially overlapping FOVs and
more than one t-series acquired on the same FOV, the dataset was
manually split into training (160 t-series) and validation (37 t-
series) subsets. To avoid data leakage and to decrease overfitting38,
the t-series relative to a given FOV were first grouped together and
then included only in the training dataset or the validation dataset.
We trained the CITE-On image detector on the training dataset
and evaluated its performance on the validation dataset. The EMPs
of all the t-series used for CITE-On training, together with the
corresponding consensus GT annotations (green boxes) are shown
in Supplementary Movie 4.

Performance of the image detector. We trained the CITE-On
image detector on our consensus GT annotations achieving the
best performance after 17 training epochs (mAP: 0.79 on the
validation dataset). We first evaluated CITE-On performance
using the offline pipeline on the validation dataset. A repre-
sentative CITE-On output for a CA1 jRCaMP1a, a CA1
GCaMP6f, and a LIV t-series is shown in Fig. 2a–d and Fig. 2e,
respectively. For the whole validation dataset, Precision, Recall,
and F-1 score are reported in Fig. 2f and Supplementary Table 3.
The EMPs of all the t-series used for CITE-On validation and the
corresponding consensus GT annotations (green) are shown in
Supplementary Movie 5.

We then used the online pipeline and calculated the F-1 of
CITE-On detections on the motion corrected validation dataset,
which was used as input to CITE-On at the actual frame rate
occurring during acquisition. Our validation data required an
upscaling factor of 1, compatible with a maximum detection rate
of 10 Hz, while acquisition frame rates varied between 1.5 Hz for
LIV and 3 Hz for CA1 acquisitions. We empirically explored the
effect of frame downsampling on detection performance using the
sliding average approach with different numbers of frames (n).
Our aim was to maximize F-1 and score threshold for detections
while minimizing n. F-1 increased with n between 1 and 20
frames. At this latter value, a local maximum in F-1 was observed
(Fig. 3a). Using the sliding average, an initial delay of 6.6 s for LIV
data and 14 s for CA1 data was necessary before CITE-On
processed each frame in real time at a detection rate of 10 Hz. F-1
values calculated on sliding averages of 20 frames are reported in
Fig. 3a. Detections (green boxes) are displayed together with GT
annotations (magenta boxes) for both the CA1 jRCaMP1a
(Fig. 3b, left) and the CA1 GCaMP6f channels (Fig. 3b, middle).
The superimposition of the detections from both channels is
shown in Fig. 3b (right). Similarly, in Fig. 3c, we show GT and
online detections (magenta and green boxes, respectively) for a
representative LIV (GCaMP6f) t-series.

To quantify the impact of motion artifacts on online detection
accuracy, we calculated the F-1 score on validation t-series that
were not corrected for motion artifacts (Supplementary Table 4).
To this end, we translated the GT annotations for each frame
according to the shift vectors produced by the motion correction
algorithm implemented when building the relative EMPs (see
“Methods”). We observed no significant difference between the
F-1 obtained on motion corrected and non-corrected validation
t-series (Fig. 3d), suggesting that the motion correction step was
not necessary to achieve higher performance with our approach.
The distribution of motion displacements is shown in Supple-
mentary Fig. 3. Figure 3e shows that the F-1 score increased
during online processing and became stable within ~1/3 of the
total length of the processed t-series.

To explore the performance of CITE-On in the presence of
larger motion artifacts, we created a set of t-series (N= 90) with
artificial motion artifacts ranging between 4 µm and 20 µm. The
artifacts were obtained using frame-by-frame lateral drifts from
one ABO motion-corrected t-series (ABO #501271265). The
consensus GT annotation was translated frame-by-frame accord-
ing to the imposed artificial drift. Using this strategy, we were able
to study CITE-On performance (Precision, Recall, and F-1 score)
as a function of the amplitude and duration of the artificial shift
(Supplementary Fig. 4). We observed that the F-1 score was
highest for lateral displacements ≤8 μm for all the values of
motion artifact duration that we considered. In contrast, CITE-
On performance decreased for displacements >8 μm, and this
drop was larger for faster artifacts (<2 s).

Online data processing. We developed a fast method to dyna-
mically segment each detected cell based on the corresponding
bounding box, relying on the instantaneous (i.e., frame-wise)
fluorescence statistics of the pixels inside each box (Fig. 4, Sup-
plementary Movie 6). Specifically, the fluorescence intensity dis-
tribution of the pixels inside each bounding box was first
computed frame-wise. Pixels with fluorescence values between
the 80th and 95th percentile of the distribution were then selected
as belonging to neuronal somata. The values of selected pixels
were averaged (arithmetic mean), and the resulting fluorescence
trace was “denoised” by subtracting, at each frame, the bg signal.
This simple method was computationally light, an important
requirement to achieve fast frame-by-frame data processing (trace
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extraction rate, 100 Hz). Bounding boxes detected by CITE-On
on a representative LIV t-series and a representative CA1 t-series
are shown in Fig. 4a. Representative fluorescence traces extracted
by CITE-On on the two t-series are displayed in Fig. 4b, c. Fig-
ure 4d, e shows the cross-correlation matrix (lower-left triangle)
and the dendrogram analysis (upper-right triangle) of all the

identified cells before (Fig. 4d, e left) and after (Fig. 4d, e, right) bg
subtraction. We found that the dendrogram sorting showed
blocks with different cross-correlation values for various sub-
groups of cells. Cross-correlation matrices (see “Methods”) before
bg subtraction displayed substantially larger values of average
correlation compared to cross-correlation matrices after bg
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Fig. 2 CITE-On offline cell detection performance. a Representative fluorescence median projection showing jRCaMP1a (red) and GCaMP6f (green)
expressing CA1 neurons. b Ground truth (GT, magenta) and CITE-On detections (Det, green) for the jRCaMP1a channel of the image shown in a. c Same as
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median projection from the LIV dataset with GT (magenta) and CITE-On detections (green). f Boxplots showing performance as Precision (gray), Recall
(white), and F-1 score (black) obtained with the offline CITE-On pipeline on the validation t-series of the LIV (N= 13), CA1 jRCaMP1a (N= 12), and CA1
GCaMP6f (N= 12) datasets. The orange line in all boxplots indicates the median, the bounds of the boxes represent the 75th and 25th percentiles (i.e., the
interquartile range (IQR)), and the whiskers correspond to the highest value or lowest value of the distribution. If the lowest or highest values are outliers
(i.e., >1.5 *IQR from the bounds of the boxes) the whiskers correspond to 1.5 *IQR. Outliers are represented as black diamonds.
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Fig. 3 CITE-On online cell detection performance. a Best parameter search for frame downsampling: F-1 score (pseudocolor) as a function of score
threshold (vertical axis) and number of frames in the sliding average (horizontal axis) for LIV (left), CA1 jRCaMP1a (middle), and CA1 GCaMP6f (right).
The maximal F-1 is indicated with the black rectangle. b Fluorescence median projections of one representative FOV for CA1 jRCaMP1a (left) and one FOV
for CA1 GCaMP6f (middle). GT (magenta) and online detections at the end of the t-series (Det, green) are also shown. In the rightmost panel, the online
detections of jRCaMP1a (cyan) and GCaMP6f (magenta) at the end of the t-series are shown. c Same as in b but for a representative LIV t-series. d Top:
boxplots showing online performance as Precision (gray), Recall (white), and F-1 (black) for all t-series in the validation datasets (LIV, N= 13; CA1
jRCaMP1a, N= 12; CA1 GCaMP6f, N= 12). No motion correction was performed. Bottom: same as top, but for the motion-corrected t-series. The orange
line in all boxplots (in top and bottom panels) is the median, the bounds of the boxes are the 75th and 25th percentiles (i.e., the interquartile range (IQR)),
and the whiskers correspond to the highest value or lowest value of the distribution. If the lowest or highest values are outliers (i.e., >1.5 *IQR from the
bounds of the boxes), the whiskers correspond to 1.5 *IQR. Outliers are represented as black diamonds. Results of Kolmogorov–Smirnov test for
performance in not motion-corrected t-series vs. motion-corrected t-series from LIV: p= 0.54 for F-1, p= 0.15 for Precision, p= 0.38 for Recall, N= 13
t-series. Results of two-sided Kolmogorov–Smirnov test for performance in not motion-corrected t-series vs. motion-corrected t-series from CA1
jRCaMP1a: p= 0.16 for F-1, p= 0.20 for Precision, p= 0.20 for Recall, N= 12 t-series. Results of Kolmogorov–Smirnov test for performance in not motion
corrected vs. motion-corrected t-series from CA1 GCaMP6f: p= 0.18 for F-1, p= 0.28 for Precision, p= 0.22 for Recall, N= 12 t-series. e F-1 values as a
function of the fraction of the total length of the t-series for not-motion corrected data (N= 13 t-series for LIV, N= 24 t-series for CA1, including N= 12
t-series for CA1 jRCaMP1a and N= 12 t-series for CA1 GCaMP6f t-series).
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Fig. 4 Fast extraction of fluorescence traces using CITE-On. a Fluorescence median projection showing representative FOVs from the LIV GCaMP6s (left)
and the CA1 jRCaMP1a (right) datasets. True positive bounding boxes for five CITE-On identified cells in each FOV are shown in green. b Left: the five cells
indicated in the LIV t-series displayed in a are shown at an expanded spatial scale. Right: fluorescence traces for the cells shown in the left panel were thresholded
and background subtracted (see “Methods”). c Same as in b but for the CA1 t-series in a. d Lower-left triangle: cross-correlation matrix for all functional traces
extracted from true positive detection in the LIV GCaMP6s t-series displayed in a. Upper-right triangle: corresponding dendrogram sorting. The left matrix shows
signals before background subtraction. The right matrix after background subtraction. e Same as in d, but for the CA1 jRCaMP1a t-series shown in a.
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subtraction (Fig. 4d, 0.60 ± 0.14 before subtraction vs. 0.05 ± 0.27
after subtraction, p < 1E-9, Wilcoxon signed-rank test, N= 197.
Figure 4e, 0.33 ± 0.18 before subtraction vs. 0.08 ± 0.19 after
subtraction, p < 1E-9, Wilcoxon signed-rank test, N= 166). Thus,
bg subtraction reduced the overall pairwise correlations, as
expected when a signal that is common to all neurons is sub-
tracted. Therefore, by reducing the average value of pairwise
correlations, bg subtraction allowed the identification of neuronal
pairs with low cross-correlation values (close to zero or <0),
which would be difficult to identify otherwise. The dendrogram
sorting of neuronal identities (upper triangles of the cross-
correlation matrices in Fig. 4d, e) was based on the relative dis-
tance of their cross-correlation values (see “Methods”). Com-
paring dendrograms before bg subtraction with dendrograms
after bg subtraction highlights how subtracting the bg is instru-
mental to identify spatially localized clusters of cells with dis-
tinctive patterns of cross-correlations (both positive and
negative), which may be suggestive of functional neuronal
ensembles.

We compared traces extracted by CITE-On with those
extracted by CaImAn, a state-of-the-art method based on
CNMF10. Both programs were used in the offline modality and
on motion-corrected t-series. We used the bounding boxes
generated offline by CITE-On to build binary masks that were
used as seeds to initialize the seeded-CNMF algorithm10. The
spatial components of the CNMF were non-zero only inside the
bounding boxes identified by CITE-On. Therefore, the detected
factors from seeded-CNMF had one-to-one correspondence with
the detected boxes from CITE-On. Using this strategy, we
obtained fluorescent traces extracted by CaImAn from putative
cells detected in the same locations as those detected by CITE-On,
allowing for a one-to-one trace comparison between algorithms.
We first observed very high pairwise cross-correlations between
the bg traces extracted with the two methods (Supplementary
Fig. 5a). We then asked how the bg signal calculated over the
whole FOV (bg) correlated with the ‘local bg’, that is, the
background activity calculated for each cell from the pixels in the
immediate surroundings of the relative bounding box (see
“Methods”). The average correlation between bg and local bg
traces was high (Supplementary Fig. 5b). Given the high
correlation values observed between bg and local bg and the
lower computational cost of bg, we decided to implement the bg
method only. We then tested how the bg-subtracted functional
traces calculated by CITE-On compared to those extracted with
seeded-CNMF. We did so after denoising traces by averaging
fluorescence values across consecutive frames in each t-series (see
“Methods”). We again observed high correlation values (Supple-
mentary Fig. 5c–e).

Although the average correlation values for the cells extracted
with the two methods were high, some neuronal pairs showed
lower correlations. We asked whether the low correlation values
emerged from pairs of cells with low SNR. We found that
pairwise correlation values for traces extracted with the two
methods increased with the SNR of the corresponding neuronal
traces (Supplementary Fig. 5f), indicating that indeed the
functional traces obtained with the two methods were more
similar when the trace SNR was high.

Offline performance on never-before-seen recordings. To test
the robustness of our image detection approach and its ability to
generalize across experimental conditions, we tested CITE-On on
three additional datasets, which were not used during the training
and validation phases. The three datasets were: the Allen Brain
Observatory repository (ABO, 19 t-series divided into 9 super-
ficial, ABOsup, t-series, acquired in visual cortex at depth 175 µm,

and 10 deep, ABOdeep, t-series, acquired in visual cortex at depth
275 µm), the Neurofinder Challenge dataset (28 t-series, divided
into 19 t-series, NFtrain, 9 t-series, NFtest, from different pre-
parations at different depths), and a dataset acquired in our
laboratory using GRIN-based endoscopic two-photon imaging of
the ventral posteromedial thalamic nucleus (VPM, 9 t-series). The
datasets were first manually annotated de novo to obtain the
consensus GT annotation (Supplementary Fig. 6, Supplementary
Table 1–2). Because the ratios between FOV and cell surface were
variable across the ABO, NF, and VPM datasets and different
from our validation dataset, we optimized the upscaling factor
and used the one that maximized the F-1 score (Fig. 5a–e). The
offline performance (defined in terms of Precision, Recall, and
F-1 score) obtained using optimized upscaling factors for each
dataset is shown in Fig. 5g and Supplementary Table 3. While
CITE-On performance was high for most datasets, we observed
lower performance for the NFtrain dataset, in agreement with the
observation that NFtrain has among the lowest SNR of all con-
sidered datasets and that CITE-On performance decreases with
decreasing SNR (Supplementary Fig. 5f).

We compared the offline detection performance of CITE-On
(Supplementary Table 3) with state-of-the-art alternative segmenta-
tion approaches such as STNeuroNET22, CaImAn online10,
CaImAn batch10, Suite2P16, HNCcorr19, UNet2DS23 on the ABO
and NF datasets provided in ref. 22. To this aim, we did not run the
alternative approaches ourselves. Rather, we used the data reported
in ref. 22 for all of them. To carry out this comparison, CITE-On
was run on the GT annotations provided in ref. 22. Detection
performance (Precision, Recall, and F-1 score) is similar or better
for CITE-On (both online and offline) when compared with
detection performance reported on the same GT for CaImAn
(CaImAn online and CaImAn batch) and most other algorithms
(Fig. 6). Moreover, CITE-On performance (online and offline)
using our consensus GT tends to be higher than CITE-On
performance computed using the GT provided in ref. 22. The bg
signals calculated using seeded CaImAn and CITE-On presented
high cross-correlation values for all three datasets (Supplementary
Fig. 7a). Similarly, high cross-correlations were measured between
local bg and bg signals computed with CITE-On (Supplementary
Fig. 7b), as well as between CITE-On and seeded CaImAn extracted
functional traces after bg subtraction and smoothing (Supplemen-
tary Fig. 7c–e). As in our previous characterization on the validation
dataset, cross-correlation values of neuronal traces extracted with
CITE-On and CaImAn increased with SNR (Supplementary Fig. 7f).
This relationship between cross-correlation and SNR can be
ascribed to the larger amount of signal extracted by both CaImAn
and CITE-On when the SNR is large.

We compared true positive detections obtained with CITE-On
to ABO true positive detections (see “Methods”) and to
STNeuroNET true positive detections (Fig. 7a–c). Examples of
cells identified by CITE-On and present in the true positive
detections from both the ABO dataset and the STNeuroNET
study are reported in Fig. 7d, together with their relative
background-subtracted traces extracted by CITE-On. Examples
of cells identified only by CITE-On are reported in Fig. 7e. We
analyzed the functional traces of all the CITE-On true positives
(i.e., including cells detected in ABO and STNeuroNET) after
background subtraction (Fig. 7f). Similar to what is described for
our validation dataset, the dendrogram sorting showed blocks
with different cross-correlation values for various subgroups of
cells. On average, the number of CITE-On detected cells exceeded
the number of identities available in public repositories
(Supplementary Table 5).

Since state-of-the-art segmentation methods have a bias against
inactive cells, we investigated whether CITE-On only cells were
inactive. We quantified the number of calcium events
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per detection in the ABO true positives (ABO TP), STNeuroNET
true positives (STNuroNET TP), CITE-On true positives (CITE-
On TP), and CITE-On only true positives (CITE-On only,
Supplementary Fig. 8). The number of cells with few detected
calcium events was larger for CITE-On TP (Supplementary
Fig. 8). Moreover, the distribution of calcium events per detection

for CITE-On only cells (Supplementary Fig. 8d) shows that some
identities were silent (as expected), but also that a large fraction of
them displayed detectable activity (91% displayed at least one
calcium event and 69% showed at least ten calcium events in the
whole ABO dataset). The number of detected calcium events with
CITE-On (all detections, true positives, false positives, and CITE-
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On only identities), ABO (true and false positives), and with
STNeuroNET (true and false positives) is reported in Supple-
mentary Fig. 8e. These data indicate that the identities captured
exclusively by CITE-On were mostly active neurons. We observed
no significant difference between the medians of the distribution
of SNR values for CITE-On only cells and for all CITE-On TP
cells (Supplementary Fig. 8f, Wilcoxon rank sum test, p= 0.20,
N= 439 total number of CITE-On only cells and N= 4934 total
number of CITE-On TP cells). The average number of cell
detections in the different datasets is reported in Supplementary
Table 5.

Online performance on never-before-seen recordings. We ran
CITE-On online and compared the results to our consensus GT
annotation on each frame of the ABO, NF, and VPM datasets.
When computing the F-1 score, we tested different sizes of the
sliding average, in order to define the smallest number of frames
required to achieve real-time processing. The absolute maximum
F-1 score was achieved in 10 frames for the ABO dataset (both
ABOsup, and ABOdeep, Fig. 8a, b), 20 frames for the VPM dataset
(Fig. 8e), and 200 frames for the NF (train and test) dataset
(Fig. 8c, d). For the ABO dataset, 0.3 s were necessary to acquire
10 frames (0.00086% of the whole time series of average duration

Fig. 5 CITE-On offline cell detection performance on never-before-seen data. a–e Best parameter search for frame upscaling factor: F-1 score
(pseudocolor) as a function of upscaling factor and score threshold for the Allen Brain Observatory (ABO) ABOsup (a), ABOdeep (b), and Neurofinder (NF)
NFtrain (c), NFtest (d) and VPM (e) datasets. The maximal F-1 is indicated by the black rectangle. The pseudocolor scale in (e) applies to a–d. f Optimized
upscaling factor as a function of the ratio between the FOV area and the bounding box area for all acquisitions in the validation datasets. Each dot
represents a single t-series (green, ABOsup and ABOdeep together, N= 19; purple, NFtrain, N= 19; red, NFtest, N= 9; brown, VPM, N= 9; orange, CA1
jRCaMP1a and GCaMP6f together, N= 24; gray, LIV, N= 13). The dotted line represents the linear fit of the data (R2= 0.942). g Boxplots showing
performance as Precision (gray), Recall (white), and F-1 (black) for all t-series in the ABOsup (N= 9), ABOdeep (N= 10), NFtrain (N= 19), NFtest (N= 9), and
VPM (N= 9) datasets. The orange line in all boxplots is the median, the bounds of the boxes are the 75th and 25th percentiles (i.e., the interquartile range
(IQR)), and the whiskers correspond to the highest value or lowest value of the distribution. If the lowest or highest values are outliers (i.e., >1.5 *IQR from
the bounds of the boxes) the whiskers correspond to 1.5 *IQR. Outliers are represented as black diamonds.
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diamonds.
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115635 ± 130 frames) with a CITE-On detection rate of 5 Hz and
an upscaling factor of 2. The NF dataset required upscaling fac-
tors of 2.4 and 2.6 for NFtrain and NFtest, respectively. A time
window of 28.5 s was required to acquire the 200 frames neces-
sary to reach peak F-1 value (5.4% of the whole t-series of average
duration 3697 ± 1874 frames) with a CITE-On detection rate of

4 Hz for NFtrain and 3 Hz for NFtest. Given the relatively low
online performance for these latter datasets, we decided to mea-
sure the F-1 score using an alternative frame downsampling
strategy: step average. Using this approach, we found that
detection performance remained high (Fig. 8i and Supplementary
Table 4). The F-1 score calculated online as a function of the
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length of the t-series for ABO (ABOsup and ABOdeep together),
NF (NFtrain and NFtest), and VPM data is shown in Fig. 8j. Stable
F-1 scores were observed within 30% of the total length of the
t-series. Processing time required for running the online pipeline
on the ABO, VPM, and NF datasets was not different from that
described previously for our validation datasets. CITE-On per-
formance (both in the offline and the online modality) strongly
depended on the mean SNR and, to a lower extent, on the mean
fluorescence intensity (Supplementary Fig. 9a–d). CITE-On per-
formance did not show strong dependence on the pixel size and
the strategy used for expressing the calcium indicator (Supple-
mentary Fig. 9e–h).

Analysis of large FOV mesoscopic images. Given the speed of
the CITE-On architecture, we tested if it could be applied to
detect cells in the mesoscopic imaging t-series described in
Sofroniew et al. 7. Because the dimensions of the input image
were too large (1792 pixels x 1682 pixels, or 4.3 mm × 4.0 mm, at
0.42 pixel/µm) to fit the CNN architecture using the appropriate
upscaling factor based on the FOV/neuron surface ratio
(upscaling factor for direct processing, 12.8), we tiled the entire
mesoscopic FOV in 272 subfields (subfield dimension,
128 pixel x 128 pixels, 28 pixels overlap). Each subfield was
appropriately upscaled (upscaling factor, 1; score threshold, 0.4;
detection rate, 10 Hz). To increase speed, we multiplexed the
CNN detector process and processed subfields in batches of eight
images in parallel until completion. Identity duplicates were
suppressed using a non-maximum suppression algorithm, where
boxes having an IoU > 20% were considered duplicates, and only
the one with the highest score was retained (see “Methods”).
Image detection outputs were finally recombined to reconstruct
the entire FOV. In Fig. 9a, we report CITE-On detected bounding
boxes on the entire FOV obtained using the offline pipeline. Two
FOV patches are magnified (Fig. 9b) to show the shape of the
detected cells (total number of detected somata, 4842). In Fig. 9c,
we show representative fluorescence traces obtained with CITE-
On from five cells from the whole mesoscopic FOV. Figure 9d
shows the cross-correlation matrix (lower-left triangle) of all the
identified cells for the first 700 frames of the t-series. The den-
drogram analysis (upper-right triangle of Fig. 9d) highlighted
several distinct functional modules observed in the identified
neuronal population.

The single subfields were processed by the CITE-On detector at
10 Hz (upscaling factor, 1), while segmentation, tracking, and
functional trace extraction were performed at 100 Hz (see
previous results). Parallel processing of all the 272 sub-fields
required 12.6 s for each detection step. Therefore, with a step
average downsampling approach including 25 frames (13.2 s of
mesoscopic imaging time since acquisition rate was 1.9 Hz), and
while extracting traces faster than the incoming frames, we
minimized the CITE-On detection lag with respect to the running
acquisition. With this strategy, we achieved an online F-1 score of
0.54 (Precision: 0.77; Recall: 0.42) with a score threshold of 0.25
(quantified on 4 patches from the entire FOV). Although the
performance was lower in mesoscopic data compared to other

datasets, these results demonstrate that CITE-On can be applied
to fast processing of mesoscopic two-photon t-series with good
efficiency.

Discussion
In this study, we developed a CNN-based algorithm, CITE-On,
for fast analysis of two-photon imaging recordings. CITE-On
performed online identification of neuronal somata, tracking of
identities across frames, dynamic segmentation, and functional
trace extraction with background subtraction. CITE-On could
generalize across calcium indicators, brain regions, acquisition
parameters, and it was successfully applied to data obtained using
different surgical and optical preparations (e.g., chronic super-
ficial imaging window, chronic deep imaging window, and
endoscopic GRIN lens-based deep imaging).

Our image detection strategy was based on RetinaNET; a CNN
originally developed to detect natural images34. On one side, this
choice was justified by RetinaNET’s excellent performance in
object recognition and by its availability. On the other hand, it
required us to exploit RetinaNET on a set of greyscale two-
photon fluorescence images of neurons, which were remarkably
different from those RetinaNET was originally trained on. To
compensate for this difference and to have a large and hetero-
geneous dataset for training and validation of the detection
algorithm, we built a dedicated library of hundreds of two-photon
imaging t-series acquired with different GECIs, in different
regions of the mouse brain, at different frame rates, using dif-
ferent surgical/optical preparations, and showing variable image
quality. In this dataset, a reliable GT consensus was reached using
the annotations of two human graders, which allowed us to
evaluate CITE-On performance. To obtain a GT annotation
insensitive to the graders’ biases, a potential alternative approach
could have been to generate an in silico dataset for network
training and validation39. No online libraries of this kind are
currently available, but we foresee that this approach may
represent an extremely useful method to optimize future CNN-
based approaches for the analysis of two-photon functional data.
It is also worth noticing that utilizing public datasets already used
for training and validation of alternative processing toolboxes22

would have given us the possibility to take advantage of third-
party GT annotations. However, we decided not to do so because:
(i) CITE-On would have likely inherited the annotation bias
toward more active cells, which is shared by existing publicly
available repositories; (ii) by using public datasets exclusively for
the validation of the CITE-On image detector (rather than for
training, too), we avoided any chance of data leakage, and we
demonstrated that CITE-On generalizes to never-before-seen
data, although with lower performance.

In the absence of GT annotations, CITE-On can be run in three
consecutive steps (see also Methods). First, the optimal upscaling
factor must be set. This step can be performed on the median
projection of the motion-corrected t-series by manually adjusting
the upscaling factor in order to have tight bounding boxes sur-
rounding neuronal somata. The second step consists in gradually
increasing the offline score threshold to decrease the number of

Fig. 7 CITE-On data processing of never-before-seen recordings. a Median projection of a representative t-series from the ABO dataset showing
GCaMP6f expressing cortical neurons. CITE-On true positives (CITE-On, green) and true positives provided by the Allen Brain Observatory (ABO,
magenta) are shown. b Same as in a with CITE-On true positives (green) and STNeuroNET true positives (magenta). c Superposition of CITE-On (green),
ABO (magenta), and STNeuroNET (cyan) true positives. d Left: 24 representative cells detected by CITE-On and identified as true positives in ABO and
STNeuroNET. The CITE-On-identified bounding box is represented in green. Right: corresponding CITE-On extracted fluorescence traces. e Same as in d
for four representative CITE-On only cells. These fours cells were not included in the GT of the ABO dataset and of the STNeuroNET GT reported in the
ref. 22, either as true or false positives. f Cross-correlation matrix for all functional traces extracted from true positive (TP) detections in the t-series
displayed in a. Cell identities are grouped with hierarchical dendrogram sorting. The pseudocolor scale indicates the cross-correlation value.
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false positives. The third step involves running a grid search to
determine: (i) the most appropriate number of averages, and (ii)
the online score threshold giving the highest F-1 score compared
to the offline detection obtained in the first step described above.
This three-step procedure is implemented in a Jupyter notebook,

which is available in the online repository (https://gitlab.iit.it/
fellin-public/cite-on).

CITE-On performed similarly to state-of-the-art
algorithms10,11,16,19,22,40 on publicly available datasets, and
importantly, it did so in a much shorter time. In fact, only a few

GT/Det.

GT/Det. NFtrain

VPM VPMGT/Det.

f

g

h

c

10 30 50 100 150 200

NFtrain

Sc
or

e 
th

re
sh

ol
d

0.95
0.85
0.75
0.65
0.55
0.45
0.35
0.25

# of frames in step average
d

Sc
or

e 
th

re
sh

ol
d

0.95
0.85
0.75
0.65
0.55
0.45
0.35
0.25

10 30 50 100 150 200

NFtest

# of frames in step average

b ABOdeep

10 30 50 100 150 200

Sc
or

e 
th

re
sh

ol
d

0.95
0.85
0.75
0.65
0.55

# of frames in sliding average

a ABOsup

Sc
or

e 
th

re
sh

ol
d

0.95
0.85
0.75
0.65
0.55

10 30 50 100 150 200
# of frames in sliding average

20 mµ

0

0.2

0.4

0.6

0.8

1

F-
1

0 0.2 0.4 0.6 0.8 1
Fraction of total t-series

NFtrain

NFtest

ABO

VPM

j
Precision Recall F-11

0.8

0.6

0.4

0.2

0
ABOsup ABOdeep NFtrain NFtest VPM

Pe
rfo

rm
an

ce

3 5 10 15 20
0.95
0.85
0.75
0.65
0.55
0.45
0.35
0.25

Sc
or

e 
th

re
sh

ol
d

VPM

# of frames in step average

e

F-1

0.2 0.4 0.6 0.8 10

Fluor. intensity

0 64 128 192 255

i

ABOsup ABOsup

20 mµ

20 mµ

NFtrain

TP

TP

TP

20 mµ

20 mµ

20 mµ

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29180-0

14 NATURE COMMUNICATIONS |         (2022) 13:1529 | https://doi.org/10.1038/s41467-022-29180-0 | www.nature.com/naturecommunications

https://gitlab.iit.it/fellin-public/cite-on
https://gitlab.iit.it/fellin-public/cite-on
www.nature.com/naturecommunications


seconds were needed to have online, frame-by-frame, accurate
ROI segmentation, identity tracking, bg subtraction, and func-
tional trace extraction. Four main characteristics were crucial for
CITE-On’s high performance. First, CITE-On relied exclusively
on morphological features to identify neurons. Second, neuronal
identification was dynamic and it adapted to changes in shape,
position, and activity of the detected cells frame-by-frame,
avoiding time-consuming motion correction procedures. Third,
once bounding boxes were identified in individual frames, we
used a simple computationally effective strategy to extract pixels
belonging to neuronal ROIs based on their brightness. Fourth, we
implemented a fast background subtraction strategy, limiting
computational costs. When applied in the online modality, these
characteristics were crucial to achieve real-time frame-by-frame
trace extraction, something current approaches do not
achieve9–25, while maintaining high cell detection performance.
The observation that functional fluorescence traces extracted by
CITE-On were highly correlated when the SNR was large with
those extracted on the same bounding boxes by a state-of-the-art
method, i.e., CaImAn10, confirmed the validity of our computa-
tionally effective approach.

Thanks to the features described above, CITE-On efficiently
processes full mesoscopic two-photon t-series (FOV dimension,
4.3 mm × 4mm). It did so by dividing each image into subfields
and processing subfields in parallel. CITE-On’s detector pro-
cessed single subfields at 10 Hz, while segmentation, tracking, and
functional trace extraction were performed at 100 Hz. Parallel
processing of all the 272 sub-fields generating a whole mesoscopic
FOV required 12.6 s for each detection step. Thus after 12.6 s,
trace extraction could be performed at 100 Hz on thousands of
cells. Besides its application online, the offline application of
CITE-On is also going to be extremely powerful for the identi-
fication of the thousands of neurons imaged in mesoscopic two-
photon functional imaging.

CITE-On online works on individual images. These were either
updated frame-by-frame after obtaining them as the result of a
sliding average approach, or they were updated every n-frames
when a step average strategy was used. In both cases, CITE-On
online has an initial lag in detecting identities, due to the time
required to compute the first sliding average or step average.
During this initial lag, detections are not available, and if no
previous detections had been computed, no functional trace
extraction is performed. In the case of the LIV, CA1, VPM, and
ABO datasets, the initial lag was 6.6 s, 14 s, 7 s, and 0.3 s,
respectively, using the sliding average approach. For the NF and
mesoscope datasets, on which a step averaged approach was
taken, a time window of respectively 28.5 s and 12.6 s was
required for the computation to be performed. In both cases, the
shape of each bounding box was updated every time active
detections were updated. This process occurred in real time for

the LIV, CA1, VPM, and ABO datasets. In all cases, dynamic
segmentation and functional trace extraction were performed at
100 Hz, which was faster than real time. CITE-On did not ret-
rospectively update functional traces corresponding to a newly
identified ROI, and functional traces started being extracted only
when the associated ROI was detected.

Closed-loop all-optical experiments are fundamental to inves-
tigate whether models of network dynamics, circuit connectivity,
and causality are accurate26. Recently, all-optical closed-loop
experiments have been validated27. For example, using this
approach specific groups of neurons were activated based on the
readout of ongoing activity in a reference cell. However, the
closed-loop strategy described in27 was based on a priori identi-
fication of the reference cell. Because CITE-On allows efficient
frame-by-frame cell identification and trace extraction, it will
enable a new type of experiment in which the loop is closed based
on real-time identification and readout of any neuron or group of
neurons in the FOV.

It is important to underline that CITE-On performance is
lower in the online modality than in the offline modality.
Moreover, during online processing, CITE-On has on average
lower performance in the initial third of each given t-series
(Fig. 3), with F-1 scores ~0.6. The F-1 score then plateaus in the
second and third of the t-series. Given that different datasets had
different sampling rates, average length of the acquisitions, and
considering the non-stationary activity of neurons, CITE-On
required a different number of frames to reach plateau F-1 score
across different datasets. This value was ~40,000 frames for a
t-series acquired at 30 Hz with SNR comparable to that of the
ABO dataset, ~1200 frames for 30 Hz frame rate movies with
SNR comparable to that of the NFtest dataset, ~260 frames for a
2.66 Hz frame rate movie with SNR comparable to that of the
VPM dataset, ~150 frames for a 1.5 Hz frame rate movie with
SNR comparable to that of the LIV dataset, and ~250 frames for a
3 Hz frame rate movie with SNR comparable to that of the CA1
dataset.

Cross-correlation values between traces extracted with CITE-
On and those extracted with seeded CaImAn depended on the
trace SNR (i.e., correlations were lower for small values of SNR).
This result may indicate that CITE-On is less accurate in
extracting functional traces from low SNR cells. However, this
effect may also be due to the reduced accuracy of CaImAn in
extracting functional traces from low SNR cells10. A way to dis-
criminate between these possibilities would be to pair single-cell
electrophysiology (to record the cell’s spiking activity) with two-
photon calcium imaging and test which method (CITE-On vs.
CaImAn) extracts functional traces that best match the AP firing
profile of cells with low SNR. However, low SNR cells are typically
absent in current available datasets of combined imaging and
electrophysiological measurements due to the difficulty of

Fig. 8 CITE-On online cell detection performance on never-before-seen datasets. a–e Best parameter search for frame downsampling: F-1 score
(pseudocolor) as a function of score threshold and number of frames for the ABOsup (a), ABOdeep (b), NFtrain (c), NFtest (d), and VPM (e) datasets. The
maximal F-1 is indicated by the black rectangle. The pseudocolor scale in (e) applies to (a–d). For the ABOsup, ABOdeep datasets the sliding average frame
downsampling approach was used, while for the NFtest, NFtrain, and VPM datasets, the step average approach was implemented. f–h Left: median projection
of a representative t-series from the ABOsup (f), NFtrain (g), and VPM (h) datasets. GT (magenta) and online CITE-On detections (green bounding boxes)
are shown. Right: bounding boxes (yellow) corresponding to true positives (TP) are shown. The greyscale in h applies also to f, g. i Boxplots showing online
detection performance of Precision (gray), Recall (white), and F-1 (black) for all t-series in the ABOsup (N= 9), ABOdeep (N= 10), NFtrain (N= 19), NFtest
(N= 9), and VPM (N= 9) datasets. The orange line in all boxplots is the median, the bounds of the boxes are the 75th and 25th percentiles (i.e., the
interquartile range (IQR)), and the whiskers correspond to the highest value or lowest value of the distribution. If the lowest or highest values are outliers
(i.e., >1.5 *IQR from the bounds of the boxes) the whiskers correspond to 1.5 *IQR. Outliers are represented as black diamonds. j F-1 values as a function of
the fraction of processed t-series for ABO (green, N= 19 t-series), NFtest (red, N= 9 t-series), NFtrain (purple, N= 19 t-series), and VPM (brown, N= 9 t-
series) datasets. Ten frames sliding averages for ABO; detection rate, 5 Hz. Step median of 20 frames and 200 frames for VPM and NF datasets; detection
rate, 0.3 Hz and 0.035 Hz for VPM and NF datasets, respectively.
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performing imaging-guided electrophysiological recordings on
low SNR cells. Although the pairwise correlations between low
SNR cells extracted by CITE-On and CaImAn are low, we believe
that these should not be removed from the CITE-On online
analysis, for two reasons. First, excluding these identities alto-
gether may lead to a substantial bias towards more active cells or
cells with higher levels of indicator expression. Second, SNR is a

dynamic property, and each cell may display both high and low
SNR periods during chronic imaging.

Since online CITE-On detection efficiency increased with
increasing SNR of the input image (Supplementary Fig. 9), we
decided to feed the CNN with images resulting from averaging a
subset of frames from the running t-series, rather than individual
frames. This approach increased the detectability of neuronal

Fig. 9 CITE-On analysis of mesoscopic two-photon imaging t-series. a, b Median projection of a mesoscopic imaging t-series showing GCaMP6s
expressing neurons (mesoscopic data from ref. 7). Green boxes indicate cells detected by CITE-On (total: 4842 cells). Two regions are highlighted by the
red and white squares, and are shown at an expanded spatial scale in b. Greyscale in a applies also to b. c Left: five representative cells detected by CITE-
On. The brightest cell in each FOV was selected. Right: corresponding CITE-On extracted fluorescence traces in the first 230 s of the t-series. d Cross-
correlation matrix (bottom-left triangle) calculated on the background-subtracted traces extracted by CITE-On on all detected cells in the first 7000
frames and relative dendrogram (top-right triangle).
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somata (Supplementary Fig. 1c–d) because the average across
frames reduced uncorrelated noise emerging from each individual
frame. In order to process data online, we opted for a sliding
average approach. Here, the input image fed to the CNN was
obtained by averaging the last n frames of the t-series, and it was
updated at every new incoming frame. The input image was then
appropriately upscaled and processed as described for the offline
pipeline. In the presence of large FOVs and small pixel size, the
upscaling process could be slower than the time required for the
calculation of the sliding average. In this case, a step average
approach was used, where the input image was computed on
blocks of n frames and updated every n frames.

The result of the regression process, performed by the CNN, on
the anchor boxes against putative position and size of a cell,
determines the dependence of CITE-On performance on neuro-
nal size (and on the upscaling factor value). When the upscaling
factor is optimized, the size of the anchor boxes matches that of
the feature(s) to detect, and the detection process ends in good
agreement with the GT annotation. On the other hand, if the
upscaling factor is not optimized, the sizes of the anchor boxes
and the features to detect do not match, and lower performance is
expected.

CITE-On has some similarities but also several differences
compared to CaImAn online10. First, both CITE-On online and
CaImAn online require the optimization of some initialization
parameters10. In CITE-On, initialization parameters (e.g.,
upscaling factor and score threshold) are set knowing the
dimension and the resolution of the target t-series. In contrast,
CaImAn online requires the user to provide input parameters
such as number of expected components, maximum number of
neurons added per frame, threshold on SNR for accepting new
identities10. These can be difficult to estimate simply based on the
acquisition settings, and are usually optimized in repeated rounds
of offline segmentation. Second, CaImAn online requires a pre-
processing step for offline segmentation, which typically runs on
1000–3000 frames10. The quality of this initial offline segmenta-
tion has a large impact on the subsequent online processing. To
obtain a reliable (convergent) segmentation using CaImAn
online, it is often necessary to run multiple rounds of offline
segmentation with different initialization parameters10 and the
result is subordinated to the level of cellular activity10. Once the
offline segmentation converges, CaImAn online starts the online
analysis, updating ROIs (in terms of position, shape, and newly
identified identities) with a temporal lag that is generally larger
than the 2–4 min required for a single iteration of offline seg-
mentation preprocessing10. CITE-On reduces this initial lag.
After this time window, frames were processed in real time.
Third, in the online modality, CITE-On does not require the
correction of motion artifacts when lateral displacements are
within 4 μm/s (Supplementary Fig. 4). In contrast, CaImAn
online requires a frame-by-frame motion correction routine that
is fast and efficient (on average 5 ms per frame10), but is
dependent on the surface (i.e., number of pixels) of the FOV. The
correction of motion artifacts using CaImAn online may thus
introduce significant delays when processing large FOVs (e.g.,
mesoscopic imaging data). Fourth, CITE-On performs tracking,
dynamic segmentation, and functional trace extraction at 100 Hz
independently of the number of detected neurons and their
activity. This feature allows maintaining high online performance
on FOVs characterized by large numbers of neurons (e.g., those
obtained from mesoscopic imaging) and sparse activity. Frame-
by-frame processing with CaImAn online, instead, depends on
the number of ROIs to be updated or added on the basis of the
initial offline segmentation10. Fifth, CITE-On does not use local
pixel correlation for cell identification, which may be advanta-
geous when separating nearby synchronous cells. In contrast, the

CaImAn online fast deconvolution approach may be more effi-
cient in separating adjacent cells with different temporal profiles
of fluorescence emission10. Finally, CaImAn online was tested on
two datasets with rather homogenous acquisition parameters, and
its application to different experimental conditions was not fully
characterized10. Here, we demonstrate that CITE-On generalizes
across indicators (i.e., GCaMP6s, GCaMP6f, GCaMP7f, and
jRCaMP1a) and across data acquired in different brain regions
and with different pixel sizes, SNR, and frame rates. CITE-On
performance on never-before-seen data tended to be, however,
lower. Thanks to the properties described above CITE-On is a
flexible online analysis tool to apply in different experimental
conditions.

Because cell identification was based only on spatial features,
CITE-On identified both active and silent cells. This unique
characteristic of CITE-On is important because it adds further
flexibility in designing imaging experiments. Neurons that are
silent in a t-series may change their level of activity in subsequent
acquisitions depending on the behavioral state of the animal or
because of external manipulations41–43. Thus, being able to track
cells regardless of their activity level is key, for instance, for
investigating the sensory information carried by neurons that
significantly change their activity throughout longitudinal ima-
ging experiments. Biasing the cell identification toward active
neurons, as currently done by most approaches, intrinsically
skews the proportion of analyzed cells towards those that are
responsive to a given stimulation in a certain brain region. In this
regard, it is also interesting to note that neurons that were
detected only by CITE-On and not by other state-of-the-art
approaches comprised silent cells but, unexpectedly, also
active cells.

In summary, we developed CITE-On, a tool to effectively
process two-photon imaging data frame-by-frame, while main-
taining similar cell detection and trace extraction performance of
existing offline state-of-the-art methods. Future developments of
CITE-On will likely include its optimization for one-photon
imaging44,45, its application to genetically encoded voltage
indicators46 as well as to volumetric two-photon imaging47.

Methods
Animals. All experiments were carried out in accordance with the guidelines of the
European Communities Council Directive and were approved by the National
Council on Animal Care of the Italian Ministry of Health (authorization #34/2015-
PR, #1134/2015-PR, and #61/2019-PR).

Wild type (wt) C57BL/6 J mice were purchased from Charles River Laboratories
(Calco, Italy; strain code #632), transgenic Scnn1a-cre (B6;C3-Tg(Scnn1a-cre)3Aibs/J;
JAX #009613), and Ai95D (B6;129S-Gt(ROSA)26Sortm95.1(CAG-GCaMP6f)Hze/J; JAX
#024105) were purchased from Jackson Laboratories (Bar Harbor, USA). Scnn1a-cre
mice express the enzyme Cre in a subpopulation of layer IV neurons48 and of VPM
cells49. Animals were housed in individually ventilated cages under a 12-h light:dark
cycle, with controlled room temperature and humidity (22–23 °C, 60%, respectively).
A maximum of five animals per cage was allowed with ad libitum access to food and
water. Mice of both sexes were used for experiments.

Viral injections and surgical procedures. We expressed GCaMP6 or GCaMP7
through the following viral vectors AAV1.Syn.Flex.GCaMP6s.WPRE.SV40
(Addgene viral prep # 100845-AAV1), AAV1.Syn.Flex.GCaMP6f.WPRE.SV40
(Addgene viral prep # 100833-AAV1) purchased from the University of Penn-
sylvania Viral Vector Core, or AAV1.Syn.Flex.GCaMP7f.WPRE.SV40 (Addgene
viral prep #104492-AAV1) purchased from Addgene. For CA1 imaging, we
expressed jRCaMP1a using co-injection of AAV1.CAG.Flex.NES-jRCaMP1a.W-
PRE.SV40 (Addgene viral prep # 100846-AAV1) and AAV1.CamKII 0.4.Cre.SV40
(Addgene viral prep # 105558-AAV1) purchased from the University of Penn-
sylvania Viral Vector Core.

For LIV imaging, we used a total of 29 mice. Specifically, 17 Scnn1a-cre mice
injected with a viral vector transducing GCaMP6s, six Scnn1a-cre mice injected with a
virus transducing GCaMP6f, three Scnn1a-cre mice injected with a virus transducing
GCaMP7s, and three Scnn1a-cre crossed with Ai95D mice. Mice between post-natal
days 30 and 33 were anesthetized with 2% isoflurane (IsoFlu, Zoetis, IT) in 0.8 (L/min)
oxygen, placed into a stereotaxic apparatus (Stoelting Co, Wood Dale, IL), and
maintained on a warm platform at 37 °C for the whole duration of the anesthesia. Viral
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injection in mice used for LIV imaging was carried out similarly to refs. 36,50 and ref. 51.
Briefly, a scalp incision was performed after local administration of Lidocaine (2%), and
then two small holes were drilled on the skull above the right/left somatosensory cortex
at 1.2mm and 2mm posterior (P) to the bregma suture, 2.8mm and 3mm lateral (L)
to the sagittal sinus. A micropipette was slowly inserted into the cortical tissue until the
tip reached a depth of 0.3mm below the pia mater52. 200 nL of GCaMP6 virus were
injected at 20–60 nl/min by means of a hydraulic injection apparatus driven by a
syringe pump (UltraMicroPump, WPI, Sarasota, FL). The pipette was then further
lowered to reach 0.4mm below the pia mater, and a second injection was performed.
This procedure was repeated for the second injection site. The injected solution
contained 1012 viral genomes/ml diluted 1:1 in artificial cerebrospinal fluid (aCSF:
127mM NaCl, 3.2mM KCl, 2mM CaCl2, 1mM MgCl2 and 10mM HEPES, pH 7.4).
The exposed skull was then cleaned, and the skin sutured and cleansed with
Iodopovidone (Betadine®, Meda Pharma, Milan, Italy). Mice were monitored until full
recovery from the anesthesia. In mice used for imaging in awake conditions, a custom
metal bar was sealed to the skull using Vetbond (3M, St. Paul, MN, USA) and dental
cement (Paladur, Kulzer GmbH, Hanau, Germany). The exposed bone was covered
using the silicone elastomer KWIK-Cast (World Precision Instruments, Friedberg, DE),
and an intraperitoneal injection of antibiotic (BAYTRIL, Bayer, DE) was performed.
Two to four weeks after virus injection, mice used for imaging in LIV during anesthesia
were injected with urethane (1.65 g/kg, 16.5% in saline solution, i-p.). A scalp incision
was performed after local administration of Lidocaine (2%). A circular craniotomy was
opened over the somatosensory cortex, in the area where green fluorescence was clearly
visible using an epifluorescent microscope. The surface of the brain was kept moist with
aCSF. A heating pad underneath the animal was set at 35.5–37 °C. Respiration rate,
eyelid reflex, vibrissae movements, and reactions to tail pinching were monitored
throughout the surgery. Mice were then moved under the two-photon microscope, kept
at 37 °C with a heating pad, and the brain surface irrigated with aCSF. Imaging began
1 h after the end of the surgery. Before imaging LIV activity in awake animals, mice
were habituated to head-fixation similarly to53. In brief, habituation lasted for
7–10 days, during which they were head restrained for increasing periods (from 15min
to 1 h), while running or standing on a custom-made treadmill. On the day of the
experiment, the habituated mouse was anesthetized with a mixture of isoflurane and
oxygen (2%–0.8 L/min), and a was craniotomy performed similarly to that described
above. After surgery, the animal was head-fixed and allowed to recover under the
microscope for at least 1 h before imaging.

For VPM imaging, we used a total of 4 mice. Viral injections and aberration-
corrected microendoscopes insertion in mice used for VPM imaging were performed in
Scnn1a-cre mice as in49. Mice were anesthetized as previously described. A single
craniotomy was performed at stereotaxic coordinates P 1.7mm, L 1.6mm. A
micropipette was lowered to a depth of 3mm below the brain surface. 0.5–1 µl of
GCaMP6s virus-containing solution (containing 1012 viral genomes/ml diluted 1:4 in
aCSF) were injected at 30–50 nl/min. Following virus injection, a craniotomy (area:
600 µm× 600 µm) was performed at stereotaxic coordinates P 2.3mm, L 2mm. A thin
column of brain tissue was displaced with a glass cannula (ID= 300 µm, OD= 500 µm;
Vitrotubs, Vitrocom Inc., Mounting Lakes, NJ) and a microendoscope was slowly
inserted into the cannula track using a custom holder, down to 3mm from the brain
surface. The microendoscope was finally secured by acrylic adhesive and dental cement.
Imaging was performed 2–4 weeks after endoscope implantation.

For CA1 imaging, we used a total of 2 male mice (8–10 weeks old). Before surgery,
mice were medicated with an intramuscular bolus of Dexamethasone (Dexadreson,
4 gr/kg). After scalp incision, a 0.5mm craniotomy was drilled at stereotaxic coordinates
P 1.75mm, L 1.35mm. A micropipette was lowered 1.40mm below the brain surface.
0.8 µl of viral solution (containing a mixture of CamKII-Cre and jRCaMP1a viruses at
1012 viral genomes/ml diluted 1:1 in aCSF) was injected at 100 nL/min in Ai95D
crossed with Glast-cre-ERT2 (Slc1a3tm1(cre/ERT2)Mgoe) mice54. Inducible Glast-cre was
not activated after viral injection, resulting in CA1 neuronal labeling with jRCaMP1a
and GCaMP6f. A stainless-steel screw was attached to the skull, and a chronic
hippocampal window was implanted as described in55,56. A 3mm circular craniotomy
was opened, centered at coordinates P 2.00mm, L 1.80mm. The dura mater was
removed using fine forceps, and the cortical tissue overlaying the hippocampus slowly
aspirated using a blunt needle coupled to a vacuum pump. During aspiration, the
exposed tissue was continuously irrigated with aCSF. Aspiration was stopped once the
fibers of the external capsule were exposed. A cylindrical optical window made of a
thin-walled stainless-steel cannula (OD, 3mm; ID, 2.77mm; height, 1.50–1.60mm)
attached to a 3mm diameter round coverslip was fitted to the craniotomy in contact to
the external capsule. A thin layer of silicone elastomer was used to surround the
interface between the brain tissue and the steel surface of the optical window. A custom
stainless-steel headplate was attached to the skull using epoxy glue. All the components
were finally fixed in place using black dental cement, and the scalp incision was sutured
to adhere to the implant. All the animals received an intraperitoneal bolus of antibiotic
(BAYTRIL, Bayer, DE) to prevent postsurgical infections.

Functional two-photon imaging. Two-photon imaging was performed using a
chameleon ultra II pulsed laser (80 MHz pulse frequency, Coherent Inc, Santa
Clara, CA, USA) tuned at 920 nm for GCaMP6/7 imaging and at 990 nm for dual-
color imaging. Excitation power was 30–110 mW as measured under the micro-
scope objective and controlled via a Pockel cell (Conoptics Inc, Danbury CT,
USA,). An Ultima II scanhead (Bruker Corporation, Milan, Italy) equipped with
3 mm raster scanning galvanometers (6215H, Cambridge Technology, Bedford,

MA) and standard photomultiplier tubes (Hamamatsu Photonics, Tokyo, Japan)
and an Ultima Investigator (Bruker Corporation, Milan, Italy), equipped with
6 mm raster scanning galvanometers, movable objective mount, and multi-alkali
photomultiplier tubes were used. The three objectives were: 25x/1.05 NA (Olympus
Corp., Tokyo, JP) for LIV imaging, 20x/0.5 NA (Zeiss, Oberkochen, Germany) for
VPM endoscopic imaging, and 16x/0.8 NA (Nikon, Tokyo, Japan) for CA1
experiments.

For LIV imaging, dwell time was 4.4 μs, photomultiplier voltage was 777 V,
zoom factor was always 1, pixel size was 0.77 μm, acquisition frame rate ranged
between 0.5–3 Hz for a 512 pixels x 512 pixels image. Fluorescence values spanned
95% of the available dynamic range (16 bit). For dual-color CA1 imaging, pixel
dwell time was set at 4 µs; photomultiplier voltage was 777 V; zoom factor was
always; pixel size was 0.634 µm; acquisition frame rate was 3.03 Hz for a
256 pixels x 256 pixels image. For VPM imaging, the setup was similar to the one
described in49,57, pixel dwell time was set at 4 µs, photomultiplier voltage was
810 V, zoom factor was always 1, pixel size was 2.19 µm, acquisition frame rate was
2.66 Hz for a 196 pixels x 196 pixels image. Imaging sessions lasted 1 h for CA1,
VPM, and awake LIV experiments. They lasted 4 h for the anesthetized LIV
condition. After awake imaging sessions, animals were returned to their
home cages.

Training and validation datasets. In the absence of a generally accepted wide-
scale annotated dataset of two-photon calcium imaging, we built a dataset of
in vivo t-series collected using raster scanning acquisitions. A total of 197 t-series
(average frame number per time series: 597 ± 262, average frame rate: 2.3 ± 1.5 Hz)
were included in the dataset: 66 t-series from CA1 imaging of principal neurons
stained with both GCaMP6f (33 t-series) and jRCaMP1a (33 t-series); 131 t-series
from cortical LIV imaging of principal neurons stained with virally injected
GCaMP6s (113 t-series), GCaMP6f (8 t-series), GCaMP7f (5 t-series), GCaMP6f
expressed in transgenic animals (Scnn1a-cre x Ai95D; 5 t-series). Training and
validation datasets contained 160 (118 from LIV, 21 from CA1 GCaMP6f, and 21
from CA1 jRCaMP1a) and 37 t-series (13 from LIV, 12 from CA1 GCaMP6f, and
12 from CA1 jRCaMP1a), respectively. To avoid data leakage between training and
validation datasets, we grouped together t-series acquired from the same FOV and
included these data either in the training or validation datasets.

Additional datasets. Four additional datasets were selected and used for valida-
tion purposes only:

1. VPM microendoscopic imaging t-series in awake head restrained mice (9 t-
series).

2. The publicly available Allen Brain Observatory (ABO) visual coding dataset
(19 t-series, https://observatory.brain-map.org/visualcoding). T-series identification
numbers: 501271265, 501484643, 501574836, 501704220, 501729039, 501836392,
502115959, 502205092, 502608215, 503109347, 504637623, 510214538, 510514474,
510517131, 527048992, 531006860, 539670003, 540684467, 545446482. The ABO
repository contains both the raw imaging data used in this work and the annotation
of true positive cell identity produced by the curators of the ABO dataset as
described in:

http://help.brain-map.org/download/attachments/10616846/VisualCoding_
Overview.pdf?version=5&modificationDate=1538066962631&api=v2() The ABO
ground truth annotation was used in Fig. 7a–c and Supplementary Fig. 8.

3. The publicly available Neurofinder (NF) challenge dataset (28 t-series, https://
github.com/codeneuro/neurofinder). T-series identification numbers:
neurofinder.00.00, neurofinder.00.01, neurofinder.00.02, neurofinder.00.03,
neurofinder.00.04, neurofinder.00.05, neurofinder.00.06, neurofinder.00.07,
neurofinder.00.08, neurofinder.00.09, neurofinder.00.10, neurofinder.00.11,
neurofinder.01.00, neurofinder.01.01, neurofinder.02.00, neurofinder.02.01,
neurofinder.03.00, neurofinder.04.00, neurofinder.04.01, neurofinder.00.00.test,
neurofinder.00.01.test, neurofinder.01.00.test, neurofinder.01.01.test,
neurofinder.02.00.test, neurofinder.02.01.test, neurofinder.03.00.test,
neurofinder.04.00.test, neurofinder.04.01.test.

4. A single t-series of mesoscopic full field imaging from ref. 7.
No preprocessing was performed on the VPM, ABO, NF, and mesoscopic

t-series. All t-series were manually annotated de novo by the two graders working
independently. The consensus ground truth was obtained as described for the
training and validation dataset below (see also Supplementary Table 1–2).

Image processing and consensus labeling. The CITE-On image detector was
based on purely morphological features extracted from imaging data. No information
from the dynamic fluorescence signal in the t-series was used to detect putative cells.
Each imaging t-series was corrected for lateral displacements using the MOCO35

implementation present in Fiji (ImageJ V. 1.52p). T-series were aligned using the raw
median projection as a reference, without downsampling and with a maximum
possible shift of 13 pixels. The 8-bit median projection of each t-series was then
computed on the motion-corrected t-series. The resulting images (one per t-series)
were globally sharpened to better visualize cell shapes using a [[−1, −1, −1], [−1, 12,
−1], [−1, −1, −1]] kernel. A gamma correction of 0.3 was applied, and the dynamic
range was linearly adjusted, normalizing across the whole 8-bit depth. Processed
images were named “enhanced median projections” (EMPs) and were used to define
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our GT labeling. Two graders independently labeled each EMP. LabelImg (http://
github.com/tzutalin/labelImg) was used to define a single object class by manually
drawing bounding boxes around every visible cell soma in the EMP. The surface of
each bounding box was manually defined in order to tightly surround the cell shape.
Boxes were allowed to overlap. Coordinates and surface of each bounding box for all
EMPs were saved in a standard VOC format where each file reported the top left and
bottom-right coordinates (in pixels) for each bounding box. For each t-series, the
annotations of the two graders were overlapped, and the two graders accepted all
boxes that overlapped with a threshold >0.5 of the intersection of the boxes’ surface
(GToverlap). For boxes with overlap <0.5, the two graders together first analyzed the
boxes only included by grader 1 (GTgrader1only) and then those included only by grader
2 (GTgrader2only). Boxes were retained when both graders were in agreement, otherwise
the identity was rejected. This procedure generated two novel sets of boxes (GTgra-

der1only_consensus and GTgrader2only_consensus). The final consensus GT was the one shared
between the two graders, i.e., GToverlap+GTgrader1only_consensus+GTgrader2only_consensus.

Image detector training. CITE-On is based on a fully convoluted single-shot image
detector, RetinaNet34. Briefly, a feature pyramid network was constructed from residual
layers of the ResNet50 feature extractor58. This feature pyramid was then fed to two
separate sets of convolution filters: one computing the label score (classification subnet),
the second performing bounding box regression from anchor boxes (regression subnet).
We used the consensus GT to train the RetinaNet model from its Keras implementation
(https://github.com/fizyr/keras-retinanet) using a transfer learning approach (i.e.,
starting with a model pre-trained on natural images), and achieving best performance
after 17 epochs (validation mAP= 0.79). Starting from the network trained on a large-
scale dataset of natural images, we fine-tuned the weights of the classification and
regression subnets, while freezing the weights of the feature pyramids. We used “plain”
median projections obtained from the motion-corrected t-series and linearly normalized
across the bit range. The resulting projections were then upsampled in order to obtain
images where the short side was 800 pixels long, while the long side did not exceed
1333 pixels. Since the input layer of the network accepted a three-channel image, the
same image was replicated for each channel without changing any parameter. These last
two image conversions were necessary as the network was originally trained on RGB
images. The network was trained with a regression L1 loss function (Mean Absolute
Errors (MAE) https://rishy.github.io/ml/2015/07/28/l1-vs-l2-loss/) and with focal loss
(http://arxiv.org/abs/1708.02002) using the Adam optimizer59 with learning rate 10−5

and clipnorm 10−3 (http://github.com/keras-team/keras/issues/510)34 modified by
reducing the learning rate on loss plateau with a factor of 0.1. The network was trained
for 17 epochs, each consisting of 1000 training steps of batch size 1.

CITE-On is a Python library and is freely available, along with the trained
network, on our institutional GitLab (https://gitlab.iit.it/fellin-public/cite-on). For
ease of access, the repository is accompanied by sample Jupyter notebooks detailing
every aspect of both the offline and the online pipelines and containing guidelines
for parameter optimization. For offline and simulated online analysis, a Jupyter
instance (preferably with GPU acceleration) is needed in order to run the
notebooks. For true online implementation, programming experience in Python is
required only to interface CITE-On with the microscope acquisition software.

CITE-On offline pipeline. Two-photon calcium imaging t-series were first corrected
for lateral artifacts using MOCO (as described above). The median projections were
then computed, normalized, upscaled to the target input size, and converted to 8-bit
RGB images. The resulting images were fed to the image detection network. Upscaling
factor and score threshold were the only two parameters defined a priori. The para-
meter “upscaling factor” was defined as the geometric transformation of the input
image before it is fed to the CNN input layer. The score threshold was defined as the
minimum value of score needed for each box to be considered as true. The upscaling
factor retained the original aspect ratio of the input image, while the absolute size of all
image features changed (e.g., neuronal somata). In RetinaNET34, a set of anchor boxes
were used to predict the size and position of the bounding box for an object, inde-
pendently from the input image size. Moreover, each location on a given feature map in
RetinaNet had nine anchor boxes (at three scales and three ratios). The relationship
between the anchor boxes and the dimension of the features on which the CNN
performed the detection (i.e., neuronal somata) was therefore important. The upscaling
process was set out to optimize this relationship and improve detection performance.
We did not perform an ab initio training of a CNN because of the lack of suitably large
two-photon datasets annotated for neuronal somata morphology. Rather, because
RetinaNET is trained on millions of natural images, we opted for a transfer learning
approach. This strategy prevented the modification of the anchor boxes size. The
upscaling factor to be used for each input image (or groups of images with features of
similar size) was empirically defined. Specifically, while exploring a range of upscaling
factors and score thresholds, we used a grid search approach aimed to maximize the F-1
score (Fig. 5a–e). This optimization step can be refined for any new dataset containing
features of a size different from those used in this study. Alternatively, new CITE-On
users can optimize their upscaling factor by using the simple empirical relation
described in Fig. 5f. Indeed, the upscaling factor linearly depends on the square root of
the ratio between the FOV area and the average feature surface (Fig. 5f). Upscaling
factor was adjusted in order to have the smallest feature in each image inscribed in a
32 pixels x 32 pixels box. This was because the smallest anchor box encoded in the
network was 32 pixels x 32 pixels.

In order to optimize the upscaling factor, we systematically explored the effect
of varying its value in all used datasets (Fig. 5a–e). We defined an optimal upscaling
factor of 1 for the training and validation datasets (LIV and CA1 datasets). The
optimal upscaling factor was 2 for the ABO dataset, and it was between 1.7 and 3.1
for the NF datasets. In the VPM dataset, the magnification factor of each image was
altered as a function of the radial distance due to the optical properties of the
corrected microendoscopes49. We corrected this distortion with an additional
preprocessing step. The optimal upscaling factor for the corrected VPM dataset was
1.4. Each bounding box was associated with a score, representing network
confidence in cell detection. Bounding boxes with intersection over union (IoU)
<20% were considered as separate neuronal identities. When IoU of two bounding
boxes was >20%, the bounding box with the highest score was retained. Results of
the image detector were filtered by applying a threshold on the output score
provided by the network and optimized for each dataset.

Performance was evaluated using Precision, Recall, and F-1 scores defined as
follows:

Precision ¼ TP=ðTPþ FPÞ ð1Þ

Recall ¼ TP=ðTPþ FNÞ ð2Þ

F� 1 ¼ 2 � ðPrecision � RecallÞ=ðPrecisionþ RecallÞ ð3Þ

mAP ¼ <IoU> ð4Þ
where TP indicates true positive detections, FP indicates false positive detections, and
FN indicates false negative detections. TP and FP detections were defined, according to
the confusion matrix, as bounding boxes identified by CITE-On, which had (TP) or did
not have (FP) a corresponding bounding box in the consensus GT (using a cut-off
threshold of 0.5 on the surface overlap). FN were bounding boxes detected by CITE-On
with no GT counterpart. IoU indicates the intersection over union.

CITE-On online pipeline. In the online pipeline, individual raw imaging frames
were continuously grabbed from a streaming source (e.g., live microscope output)
and processed. To simulate this process, we individually imported in the CITE-On
pipeline each frame of each raw t-series. Single frames were passed on to the trace
extractor and to a buffer. The buffer stored the number of frames sufficient to
produce an average projection. Once the buffer was filled, the projection was
computed, sent to the image detector, and the buffer emptied.

The parameter “frame downsampling” was defined as the number of imaging
frames used by CITE-On online to calculate the local average (either in the sliding
approach or the step average approach). The local average was then used as the
input image for the CNN. In the offline pipeline, the input image for the CNN was
calculated on all the frames of the t-series. In the online pipeline, the frame
downsampling value determined the SNR of the input image to the CNN and
therefore influenced performance (Supplementary Fig. 9). To set the frame
downsampling value on new acquisitions, users should follow these steps: (i) based
on the SNR of the acquisition under consideration, refer to Supplementary Fig. 9 to
estimate a certain range of obtainable F-1 scores; (ii) use the estimated F-1 value to
extract, from Fig. 3a, the optimal range of frame downsampling to use. Further
optimization of the frame downsampling value may be performed offline (if this
modality is compatible with the experimental design). Offline validation would also
allow building the user’s internal GT that may be then used to update the current
model of CITE-On with additional training data and potentially increase detection
performance.

Detections were performed using the same procedure described for the offline
pipeline. Detection results were fed to a custom tracking algorithm detecting all the
overlaps between current and previous detections, and designed in order to
maximize the overlap between putative matching boxes. For every detection
matching a previous one, the coordinates of the relative bounding box were
updated to the last one. For each new detection having an IoU <25% with all the
previous detections, a new identity was created. In case of identities not actively
detected in the current frame, relative coordinates were updated using a rigid shift
calculated as the mean shift obtained from the active identities. In this way, we
aimed to minimize the effect of motion artifacts and identity switch without
implementing online motion correction approaches. A simple dynamic
segmentation was then performed for each identity. At each raw frame, the interval
between the 80th and the 95th percentile of the pixel fluorescence intensity
distribution inside each bounding box was averaged to extract the raw functional
trace. At each frame, background signal corresponded to the average fluorescence
of all the pixels in the FOV not belonging to any bounding box. This frame-wise
value was subtracted from all the individual raw functional traces. In order to
optimize real-time performance for high frame rate acquisitions (above 3 Hz,
including all ABO and some NF t-series), the entire pipeline was implemented in a
multiprocessing scheme where one process was responsible for data loading, one
for image preprocessing, and one for sending its output to the CNN detector
(accelerated over GPU) and tracking identities, while the remaining CPU cores
(compatibly with imaging acquisition software requirements) were dedicated to
real-time trace extraction given the parallel nature of the problem60. This
implementation scheme allowed for cell detection update (up to 10 Hz) and
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functional trace extraction update from all identities (100 Hz) to operate as parallel
and asynchronous processes.

Parameter exploration for the object detector. To find the best operating
parameters for the object detector, we quantified offline CITE-On performance
while systematically exploring various plausible values of upscaling factor and score
threshold. For all datasets, we evaluated the F-1 across a set of upscaling factors
between 0.6 and 3.4 in steps of 0.2. We also explored score thresholds between 0.05
and 0.95, in steps of 0.05. This mapping strategy allowed us to define the optimal
combination of score threshold and upscaling factor for each input data. The
upscaling factor was dependent on the ratio between the average box surface and
the whole FOV surface, while the score threshold presented nonobvious depen-
dence on trivial image statistics. Therefore, we determined the upscaling factor
according to the acquisition parameters (FOV area and mean bounding box area,
Fig. 5f) and the relative score thresholds, in order to maximize the F-1 score for
each dataset. For the online pipeline, we used the same upscaling factors utilized in
the offline pipeline and proceeded by exploring the dependency of F-1 on the score
threshold and on the number of averaged frames in each detection.

Generation of artificial motion artifacts. Artificial motion artifacts were gener-
ated on a representative t-series from the ABO dataset. The FOV was first cropped
by 20 µm (i.e., the size of the maximal displacement tested) on each side to remove
the black bands introduced by the shift. A parameter search was then run to
determine the best combination of upscaling factor, number of averages, and score
threshold for online analysis. We simulated a planar shift from left to right using an
affine transformation with a translation matrix. Starting at the 10,000th frame of
the acquisition, we gradually applied the shift at each frame following a linear
profile in time ranging from 30 ms to 333.33 s with logarithmic sampling. This
procedure was repeated for each value of the shift ranging between 4 and 20 µm. In
Supplementary Fig. 4, we report Precision, Recall, and F-1 score values for the
online pipeline run on the shifted and cropped t-series against the cropped version
of the corresponding GT annotation.

Trace extraction: comparison between CITE-On and other methods. We
compared CITE-On trace extraction with trace extraction performed with a pop-
ular state-of-the-art method based on CNMF, CaImAn10. Briefly, we provided
binary masks corresponding to the CITE-On detected bounding boxes and used
these masks to seed the CNMF algorithm. Seeded-CNMF first calculated the
temporal background component using pixels that were not included in any mask.
We compared this background component to the CITE-On background traces
used for trace correction. The subsequent step of the seeded-CNMF algorithm
estimated temporal components and spatial footprints, constrained to be non-zero
only at the location of the binary masks. Using this strategy, we obtained fluor-
escent traces from putative cells detected in the same locations as those detected by
CITE-On, allowing for a one-to-one trace comparison between algorithms. It is
important to note that, for this analysis, we set the order of the autoregressive
model of the CNMF to zero because we were not interested in trace deconvolution
but only in correcting for background contamination. To better compare the
correlation due to the trace true signal and reduce the noise contribution, after bg
subtraction, we smoothed both the seeded-CNMF and CITE-On extracted traces
using a Gaussian filter. For each dataset, the standard deviation of the Gaussian
kernel was set to 1 frame.

Local vs. global background signal correlation. To compare local and global
background noise contributions, we used the same approach for background noise
subtraction but considering only the pixels in the vicinity of each cell. The vicinity
of a cell was defined as all the pixels in a concentric rectangular box double the size
of the box detected by CITE-On, with no overlap with other bounding boxes. We
then calculated the cross-correlation at lag zero between the local noise for each cell
and the global background trace.

Detection of calcium events. To detect calcium events in Supplementary Fig. 8,
traces extracted with CITE-On were processed as follows: (i) each functional trace
was filtered using a Savitzky-Golay filter, (second order, time bin size= 15 frames);
(ii) the filtered trace was processed using the scipy.find_peaks function (promi-
nence= 7, height= (3, None) to find only positive-going peaks); (iii) the scipy.-
find_peaks function returned all time points at which a peak in the fluorescence
was detected, according to the two parameters in (ii). Each detected fluorescence
peak was defined as a calcium event.

Computation of the SNR. To compute the SNR of a t-series, we divided the
average fluorescence intensity of all pixels by the standard deviation of the fluor-
escence intensity of all pixels. To compute the SNR of single ROIs, we divided the
average fluorescence intensity of all pixels within the ROI by the standard deviation
of the fluorescence intensity of the selected pixels. We ran this computation on
background-subtracted traces extracted by either CITE-On or CaImAn.

Computation of cross-correlation and dendrogram sorting. We used an
agglomerative clustering procedure, where error sum of squares function (i.e.,
Ward distance) is used to define the distance between couples of functional traces
in order to define the hierarchical dendrogram61,62. Dendrogram-sorted correla-
tion matrices shown in this work (Figs. 4d, e, 7f, 9d) were generated using the
clustermap function in the Seaborn package (mwaskom/seaborn v0.9.0 (2018),
https://doi.org/10.5281/zenodo.1313201). This function first computes the Man-
hattan distance between correlations for each pair of cells and then uses Ward
linkage on the aforementioned distances to sort the correlation matrix.

Tiled detection on mesoscopic images. For large-scale datasets (1972 pixels
x 1682 pixels) such as the mesoscopic imaging dataset7, requiring large amounts of
GPU memory (>500 GB), we implemented a tiled detection approach. We divided
each mesoscopic FOV into a configurable number of tiles with a configurable
overlap factor in order to batch process all tiles up to the limit of the available GPU
memory. Once all detections were computed, they were appropriately shifted back
to the original position in the FOV, and a non-maximum suppression63 was
performed in order to remove duplicate boxes in regions of the FOV where overlap
between tiles occurred.

Hardware and software for data analysis. All the data analysis procedures
presented in this work were performed on a Dell Precision 7920 desktop with an
Intel Xeon Silver 4110 @ 2.1 GHz 8 core CPU, 32 GB DDR4-2666 ECC RAM,
NVIDIA Quadro RTX5000 GPU, 512 GB NVMe SSD, and 2 TB 7200 rpm HDD.

All processing steps, including network training and validation, were carried out
under Keras/Tensorflow software libraries64. Image processing and data analysis
were carried out using Python Language ref. 65.

Statistics. Values were expressed as mean ± sd, unless otherwise stated. The
number of samples (N) and p-values are reported in the figure legends or in the
text. No statistical methods were used to pre-determine sample size, but the
sample size was chosen based on the previous studies3,66. All recordings with
no technical issues were included in the analysis, and blinding was not used
in this study. Statistical analysis was performed with the scientific Python
ecosystem (SciPy 1.4, NumPy 1.19) under Python 3.7, Python Software Foun-
dation, Python Language ref. 65 (available at https://www.python.org). A
Kolmogorov–Smirnov test was run on each experimental sample to test for
normality. The significance threshold was always set at p= 0.05. When com-
paring two paired populations of non-normally distributed data, a two-sample
Kolmogorov–Smirnov test or a Wilcoxon signed-rank test were used. For
unpaired comparison, a Student’s t-test or a Wilcoxon rank sum test was used
for normally and non-normally distributed data, respectively. All tests were two-
sided, unless otherwise stated.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All t-series of our datasets (LIV, CA1, and VPM), our GT annotations for our datasets
and for external datasets, and the trained model are freely available at our institutional
data repository at the following link: https://doi.org/10.48557/TRGQOD. Additional
publicly available datasets used in this work can be found at the following links: Allen
Brain Observatory (ABO) visual coding dataset (see “Methods” section for t-series
identification numbers): https://observatory.brain-map.org/visualcoding—Neurofinder
(NF) challenge dataset: https://github.com/codeneuro/neurofinder—Mesoscopic full field
imaging t-series: https://github.com/sofroniewn/2pRAM-paper.

Code availability
All the code presented in this work together with the trained network model and tutorial
examples are freely available from our institutional GitLab server at the following link:
https://gitlab.iit.it/fellin-public/cite-on.
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