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ABSTRACT

The unravelled nosological relation among diverse types of neuropsychiatric dis-
orders serves as an important precursor in advocating the dimensional approach
to psychiatric classification. Leveraging high-dimensional abnormal resting-state
functional connectivity, the crux of mining corresponded nosological relations is
to derive a low-dimensional embedding space that preserves the diagnostic at-
tributes of represented disorders. To accomplish this goal, we seek to exploit
the available diagnostic information in learning the optimal embedding space by
proposing a novel type of conditional variational auto-encoder that incorporates
dual utilisation of diagnostic information. Encouraged by the achieved promising
results in challenging the conventional approaches in low dimensional density es-
timation of synthetic functional connectivity features, we further implement our
approach on two empirical neuropsychiatric neuroimaging datasets and discover
a reliable nosological relation among autism spectrum disorder, major depressive
disorder, and schizophrenia.

1 INTRODUCTION

1.1 NOSOLOGICAL RELATION AMONG NEUROPSYCHIATRIC DISORDERS

Instead of the traditional discrete, categorical view on nosology of multiple neuropsychological
disorders (Frances, 2009), an alternative dimensional, continuous view, which suggests all mental
illnesses lie along a single low dimensional spectrum (Adam, 2013; Casey et al., 2013; Helzer et al.,
2009), uprises to be a more promising perspective to view the relation among diverse disorders.
Despite its commonplace in the symptom-based clinical domain (Caspi & Moffitt, 2018), it was
not until recently that the finding of shared genetic components across various neuropsychiatric
disorders (Anttila et al., 2018) offered the first computational study to reveal the nosological relation
among various disorders.

Aside from the discovered commonalities on the genetic makeup of various disorders, as the resting-
state functional connectivity (FC) has proved itself as a valuable biomarker in distinguishing disorder
patients from healthy controls in a plethora of computational studies (Woodward & Cascio, 2015),
they may also hold great promise for uncovering the complex, continuous relation among differ-
ent neuropsychiatric disorders. Unfortunately, due to their inherent high dimensionality, it poses
a formidable data-analytic challenge in discovering the targeted nosological relation on the high-
dimensional neuropsychiatric FC feature space. Thence, the crux of unveiling the FC informed
nosological relation rests on finding an optimal low-dimensional embedding space to be informative
of high-dimensional FC feature space.

1.2 THE OBJECTIVE OF THIS RESEARCH

One straightforward approach is to apply dimensionality reduction techniques to these high-
dimensional FC features. However, as stated in Huys et al. (2016), without the supplied super-
vision signals, over-reliance on data-driven methods may not be sufficient to derive the optimal
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low-dimensional embeddings of FC features. Hence, the objective of this research is to seek the util-
isation of supervision signals, e.g., diagnostic information, in learning a neural correlate informed
low-dimensional embedding space, which allows us to attain the nosological relation among diverse
disorders.

To harness diagnostic information in learning a targeted low-dimensional embedding space, in the
following sections, we chiefly propose a novel type of conditional variational auto-encoder (VAE)
to incorporate dual utilisation of this information, which involves regularising the learning of em-
beddings through the introduced implicit clustering effect, and encoding the diagnostic difference
among disorders. Based on the demonstrated empirical superiority of our approach in a simulation
study, we implemented it in mining a consistent nosological relation among three common disorders
across two curated neuropsychiatric FC datasets.

In summarisation, main contributions of our work include:

• putting forward a novel type of conditional VAE, which involves two utilisations of di-
agnostic information in learning an optimal embedding space for high dimensional FC
features;

• mining a consistent nosological relation among autism spectrum disorder, major depressive
disorder, and schizophrenia across two curated neuropsychiatric FC datasets.

2 PREVIOUS WORKS

Harnessing the extracted brain features, recent efforts in computational psychiatry are largely ac-
knowledged on developing increasingly complicated classification models to mine discriminative
features to aid clinical diagnosis (Guo et al., 2017; Heinsfeld et al., 2018) and discovering the sub-
types of a single mental illness via advanced data-driven approaches, e.g., the multi-view clustering
method (Tokuda et al., 2018).

Unfortunately, little attention was paid to unveiling complex nosological relations among diverse
types of neuropsychiatric disorders based on brain correlates. Among few attempts, a worth men-
tioned study that shares a similar motivation with ours is the work of Xia et al. (2018), where di-
mensions of psychopathology were closely tied to certain common brain features at the macro level,
e.g., resting-state networks. However, this finding – in support of the differentiation of disorders on
the brain feature level – reveals little on the nosological relationship among disorders, let alone their
symptom-based methodology, which does not fully harness the essence of brain features.

Narrowing our focus on prevailing methodological modifications on VAE, a plethora of variants
ranging from the improved generalisation, e.g., beta-VAE (Burgess et al., 2018), Vamp-VAE (Tom-
czak & Welling, 2018), the diversified generative process, e.g., EVAE (Bai et al., 2019), Multi-entity
VAE (Nash et al., 2017), the optimised inference (encoding) process, e.g., Info-VAE (Zhao et al.,
2017), the discretised latent space, e.g., vq-VAE (Oord et al., 2017), to the conditional variant and its
recent advents, e.g., a semi-supervised VAE (Kingma et al., 2014), NVAE (Vahdat & Kautz, 2020),
CVAE (Sohn et al., 2015), and the Gaussian mixture VAE (Dilokthanakul et al., 2016). Falling into
the last category, our proposed method can be regarded as a novel type of conditional VAE that
embeds a clustering concept. To interested readers, we attach a detailed methodological comparison
between our approach and mentioned alternative approaches in A.1. Additionally, rather than the
conventional usage in the work of Zhu et al. (2020), our implementation of the contrastive learning
is directly applied in the embedding space instead of the original feature space.

3 DUAL UTILISATION OF DIAGNOSTIC INFORMATION

To exploit diagnostic information, i.e., the discrete diagnostic labels c ∈ C, in learning low di-
mensional latent variables in the embedding space z ∈ Z that are aware of both projected high
dimensional FC input features x ∈ X , and their diagnostic attributes, as shown in Figure 1, we
delineate dual utilisation of diagnostic information in our proposed conditional VAE.
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1. The provided diagnostic information first serves as observable variables to regularise
the learning of z in a novel type of conditional VAE, ensuring the learned (low-
dimensional) z to be clustered around close-to-empirical cluster centers.

2. The z associated diagnostic difference is further encoded in the embedding space via
contrastive learning.

Figure 1: Dual utilisation of diagnostic information in a novel type of conditional VAE. a. The
scheme of dual utilisation of diagnostic information. The red dotted line represents the Manner-1,
i.e., provided diagnostic information serves as discrete variables to facilitate the projection of high-
dimensional FC space into a low-dimensional embedding space (the red dotted line in subfigure b),
whereas the blue dotted one denotes the Manner-2, i.e., the modelling of diagnostic difference in
the projected low-dimensional embedding space. Both manners are incorporated into our derived
novel type of conditional VAE. b. The graphical model rendering of our proposed novel type of
conditional VAE, which encourages the encoded z to be clustered in accord with their corresponded
disorder phenotypes. Solid lines denote the generative processes; dashed lines refer to the inference
processes. Unshaded circles denote the unobservable variables, whereas the shaded ones represent
the observable variables. c. The thumbnail of the second manner: encoding the diagnostic difference
in the embedding space through contrastive learning.

3.1 MANNER-1: REGULARISE THE LEARNING OF z IN A NOVEL CONDITIONAL VAE

Under the coinage of VAE, an amortised joint inference distribution qφ(z, x) ≡ qφ(z|x)p(x) is com-
monly employed to approximate the intractable joint generative distribution pθ(z, x) ≡ pθ(x|z)p(z).
Aside from the empirical distribution p(x), we further assume p(z) as a Normal distribution, and
both qφ(z|x) and pθ(x|z) are conditional Gaussian distributions in which location and scale parame-
ters can be parameterised by complex neural networks. The optimisation objective is acknowledged
as the minimisation of the K-L divergence between two joint densities of latent variable and input,
i.e., p(z, x) and q(z, x), as: DKL{qφ(z, x)||pθ(z, x)}.
To harness provided diagnostic information, we explicitly add discrete variables c ∈ C to represent
available diagnostic information; it leads to a conditional VAE (Figure 1 (b)), which the general
optimisation objective can be derived as DKL{qφ(z, x, c)||pθ(z, x, c)}. Crucially, to further spec-
ify the inner components of two joint densities qφ(z, x, c), and pθ(z, x, c), we adopt a hierarchical
encoding process that admits the following derivation: q(φz,φc)(c, z|x) ∝ qφc(c|z)qφz (z|x). In a
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similar vein, a hierarchical decoding process permits: p(θz,θc)(x, z|c) ∝ pθz (x|z)pθc(z|c). As a re-
sult, the foregoing joint inference and generative distributions can be derived as: q(φz,φc)(x, z, c) ∝
qφc

(c|z)qφz
(z|x)p(x) and p(θz,θx)(x, z, c) ∝ pθx(x|z)pθz (z|c)p(c), respectively. From now on, we

ignore subscripts for brevity. The general optimisation objective of this novel type of conditional
VAE Lcvae with specified hierarchical inference and generative processes can be rewritten into a
novel format:

DKL{qφ(z, x, c)||pθ(z, x, c)}

=
∑
c

∫∫
q(c|z)q(z|x)p(x) log

q(c|z)q(z|x)p(x)

p(x|z)p(z|c)p(c)
dzdx

= Ex∼p(x)

[
Ez∼q(z|x)[− log p(x|z)]

]
+ Ex∼p(x)

[
DKL(q(c|z)||p(c)) +

∑
c

q(c|z) log
q(z|x)

p(z|c)

]
,

(1)

where we ignore the optimisation irrelevant term log p(x) (an empirical distribution) for brevity.
With N number of classes, we define a categorical prior distribution Cat(c|π), π ∈ <N+ for p(c).
Three different parameterised Gaussian distributions are further defined as p(x|z) = N (x;µx, I),
q(z|x) = N (z;µx, σ

2
xI), and p(z|c) = N (z;µc, I), respectively, where I is the identity matrix.

q(c|z) can be modelled by a multi-layer feedforward soft-max network to produce a categorical
representation (logits) for each encoded latent representation.

The first component in equation 1, i.e., Ez∼q(z|x)[− log p(x|z)], can be realised as the conven-
tional reconstruction loss in a vanilla VAE to ensure the low-dimensional latent variables encoded
from high-dimensional FC features. The entire second component, i.e., DKL(q(c|z)||p(c)) +∑
c q(c|z) log q(z|x)

p(z|c) , can be understood as the imposed (implicit) clustering effect in the low-
dimensional embedding space.

The first term in the above-mentioned second component, i.e., DKL(q(c|z)||p(c)), serves as a pre-
ventative measure to prevent creating a dominant cluster in the face of a class-imbalanced dataset.
Intuitively, it encourages the produced categorical representation (logits) c from q(c|z) to be close
to its categorical prior distribution p(c). However, since the K-L divergence is an intractable di-
vergence measure, we compute an easy-to-measure alternative quantity, i.e., the cross-entropy of
two distributions H(q(c|z), p(c)) in practice. Letting N to indicate the number of input classes, the
second term in the second component, i.e.,

∑
c q(c|z) log q(z|x)

p(z|c) , encourages the learned embedding
space to be divided into N different subspaces to ensure each encoded latent representation can be
ascribed to 1 of N clusters. Since the loss term that is on the clustering effect can be pinned down
to 1

2 ||z − µc||
2 (see the derivation in attached A.2), where the cluster centre µc is provided directly

from the precomputed empirical cluster mean, the first utilisation of diagnostic information can be
regarded as enforcing each encoded embedding z to be closer to its belonged cluster centre µc within
each of N clusters.

3.2 MANNER-2: ENCODING DIAGNOSTIC DIFFERENCE IN THE EMBEDDING SPACE

Corresponding to the second manner of utilising diagnostic information, i.e., embedding the di-
agnostic difference between disorder phenotypes, we resort to contrastive learning (Hadsell et al.,
2006) to explicitly model this diagnostic difference. As shown in Figure 1(c), we define a pair of
latent vectors−→z1 ,

−→z2 ∈ Z to represent two encoded high dimensional brain features, a distance func-
tion D to measure the dissimilarity of two latent vectors, and a binary class indicator C = 0, 1 to
verify whether latent vectors come from the same disorder phenotype. The contrastive loss function
Lclr (Hadsell et al., 2006) in our case can be defined as:

(1− C)
1

2
(D(−→z1,−→z2))

2 + C
1

2
{max(0,m−D(−→z1,−→z2))}2, (2)

where m is a pre-definable margin to weigh the contribution of dissimilar pairs, and we adopt the
simple euclidean distance to captureD(−→z1,−→z2), i.e.,D(−→z1,−→z2) = ||−→z1−−→z2 ||2. To preserve the authentic
diagnostic differences among encoded latent variables, the m is set to 0, i.e., we weigh the equal
importance of dissimilar and similar pairs.
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Importantly, bridging the two loss terms, i.e., Lclr and Lcvae together, an overall loss function Ltotal
through a convex combination of two terms can be derived as:

Ltotal = (1− λ)Lcvae + λLclr, (3)
where we enforce the equal contribution of two loss terms, i.e., λ = 0.5, to stress the equal im-
portance of two manners in utilising the diagnostic information to derive our targeted embedding
space. In attached A.3, we show the effects of differentiated λ in shaping the embedding space for
interested readers.

4 ASSESSING THE IMPORTANCE OF DIAGNOSTIC INFORMATION

To assess the importance of diagnostic information in deriving the optimal low-dimensional embed-
ding of neuropsychiatric FC features, we implemented our proposed method in a simulation study,
along with the ground truth embeddings. The purpose of this simulation study is twofold. (1) We
seek to assess the importance of diagnostic information in recovering ground truth embeddings. (2)
We also aim to demonstrate the empirical superiority of our proposed approach over several existing
supervised representation learning approaches.

In preparing for the synthetic high-dimensional FC features, we strictly follow the following three-
step generation procedure.

1. We firstly pre-train a U-map projection function F on a real FC dataset, e.g., the SRPBS
multi-disorder brain connectivity database (Tanaka et al., 2021).

2. 300 low dimensional embeddings are then sampled from three 2D multivariate Gaussians
N2(0.8, 1);N2(0.4, 1);N2(0.2, 1). The pair-wise distance relations among three 2D Gaus-
sians are served as the ground-truth relation (see Figure 2).

3. The inverted projection function F−1 is further utilised to map the foregoing 300 em-
beddings from the low-dimensional (2D) ground truth embedding space into the high-
dimensional FC space. In the case of the SRPBS dataset, this produces a [300, 9730]
synthetic FC feature matrix.

4.1 MODELS AND THEIR IMPLEMENTATIONS

4.1.1 WITHIN OUR APPROACH

The crux of implementing our proposed approach is to compute the final loss function equation 3
with its involved loss terms Lcvae in equation 1, and Lclr in equation 2. Aside from the easy com-
puted reconstruction loss, in the remaining components of equation 1, i.e.,

∑
c q(c|z) log q(z|x)

p(z|c) +

DKL(q(c|z)||p(c)), the parameters that are pertaining to the optimisation of
∑
c q(c|z) log q(z|x)

p(z|c)
can be reduced to σ2

x, µx, z, and µc. As σx and µx can be parameterised by a feed-forward neural
network, it allows the production of z via the re-parameteristion trick Kingma & Welling (2013),
i.e., z = ε

⊗
σx+µx, ε ∼ N (0, 1). The cluster-wise mean µc can be produced by a simple one layer

Gaussian network with supplied supervision signals, e.g., cluster labels in this simulation study. A
simple softmax network is sufficient to measure the KL-divergence between q(c|z) and p(c). The
second loss term Lclr in equation 2 can be easily captured via adding a margin (distance) based
feed-forward neural network on top of encoded latent representations.

Essentially, to demonstrate the importance of dual utilisation of diagnostic information in our pro-
posed approach, corresponding to above-mentioned two utilisations, three instantiations of our ap-
proach are established ranging from the full implementation of our model (Full model) to the
mere implementation of Lcvae (Manner-1 model), and Lclr (Manner-2 model). Their layer-
wise configurations and respective parameter estimation processes are concisely summarised in at-
tached B.1.

4.1.2 ALTERNATIVE APPROACHES

Three categories of alternative methods are also included in this simulation study, ranging from the
conventional semi-supervised VAE (S-VAE) (Kingma et al., 2014), the mainstream manifold learn-
ing based dimensionality reduction approach, e.g., supervised Umap (S-Umap) (McInnes et al.,
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2018), to the metric learning based neighbourhood component analysis (NCA) (Goldberger et al.,
2004). The implementation details of these alternative approaches are also demonstrated in attached
B.1.

4.2 PERFORMANCE EVALUATION

As shown in Figure 2, provided with ground truth embeddings and their pairwise distance relations,
we target on evaluating the performance of various models regarding the capability of recovering
the ground truth embeddings from synthetic high-dimensional FC features. The evaluation metrics
include the qualitative visual inspection of yielded embedding spaces, and a quantitative assessment
to verdict whether the distance relations among estimated clusters are preserved.

To quantify the between-cluster distance on the derived low dimensional embedding space, we rely
on the pair-wise Wasserstein distance-based Frechet inception distance (FID) based metric (Heusel
et al., 2017), i.e., FID(µ1,Σ1,µ1,Σ2), over the conventional L− 1 and L− 2 distance metrics for its
consideration on both first and second degree statistics in measuring the discrepancy between two
multivariate Gaussians. Its computation can be defined as:

FID(µ1,Σ1,µ1,Σ2) = |µ1 − µ2|2 + tr(Σ1 + Σ2 − 2(Σ1Σ2)1/2),

where µ; Σ are the first and second degree statistics of inferred low-dimensional multivariate Gaus-
sians, i.e., z ∼ N (µ,Σ). On the basis of suggested FID metric to assess the between-cluster relation,
the provided ground-truth relation among three clusters can be expressed into the three-way inequal-
ity: FID(Cluster1−Cluster3) > FID(Cluster1−Cluster2) < FID(Cluster2−Cluster3).

Juxtaposed in demonstrated Figure 2, among three instantiations of our approach, the maximum
utilisation of diagnostic information, i.e., the Full model, achieved the most promising result on
recovering the correct distance relation among three instantiations of our approach, along with the
assessed significant pair-wist t-tests among three between-cluster distances in our Full model
(see attached C).

This observation, in conjunction with the consistent result in the second simulation study (see at-
tached D), greatly substantiates the importance of diagnostic information in deriving an optimal
low-dimensional space for high-dimensional FC like features. The superiority of our approach over
included alternative ones are presented less-distorted low-dimensional embedding space and recov-
ered accurate distance matrix. This observed empirical superiority of our approach assures the
further implementation on real neuropsychiatric FC datasets.

5 MINING THE NOSOLOGICAL RELATION AMONG MULTIPLE DISORDERS

After demonstrating the importance of diagnostic information in learning low-dimensional embed-
dings of FC features, we seek to implement our approach, i.e., the Full model, on curated neu-
ropsychiatric FC datasets to explore nosological relations among disorder phenotypes. In short,
high-dimensional FC features of included neuropsychiatric disorders are firstly projected into a
common low-dimensional (2D) embedding space, where their pairwise distances are served as the
nosological relation in this embedding space.

5.1 DATASETS & METRICS

To acquire a high-quality neuropsychiatric FC dataset that contains multiple types of disorders is
a time-consuming task, which demands expertise in diagnosis, and consistency in neuroimaging
scanning protocols. The SRPBS multi-disorder brain connectivity database (Tanaka et al., 2021) 1

that pools the fMRI scans of diverse neuropsychiatric patients from 8 different scanning sites with
consistent diagnosis guidelines, perfectly serves as our research database.

UTO dataset From the opted SRPBS database, two datasets were formed to suit our need in study-
ing the nosological relation among multiple neuropsychiatric disorders. The primary dataset comes
from the data that were acquired at the University of Tokyo Hospital (AKA., UTO dataset), which is

1The URL link for this database can be referred to https://bicr-resource.atr.jp/srpbsfc/.
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Figure 2: Model performance on synthetic FC features. The attached distance matrix is based on
the computed FID distance between clusters in the derived low-dimensional embedding space. For
each evaluated model, both the learned embedding space and the computed distance matrix were
averaged over 20 runs of implementation.

comprised of fMRI scans from 3 chosen types of clearly diagnosed disorders: autism spectrum dis-
order (ASD; 10 subjects), major depressive disorder (MDD; 62 subjects), and schizophrenia (SCZ;
35 subjects). These fMRI scans were acquired in the same facility under the identical scanning
protocol, which is free from the common threat of site difference in most fMRI studies. The brief
introduction of the SRPBS database can be found in attached E.

The subject-wise brain features, i.e., functional connectivities, were obtained from 10-min resting-
state fMRI BOLD signals that underwent the identical preprocessing steps. To compute the subject-
wise functional connectivities from these preprocessed BOLD signals, the Brainvisa Sulci Atlas
parcellation scheme, which each individual image was divided into 140 regions (Perrot et al., 2011)
and the standard Pearson R correlation method were adopted for time series extraction, and the com-
putation of connectivity matrix 2, respectively. Hence, for each subject, 9730 connectivity features
were crafted to serve as high dimensional brain features, forming a [107, 9730] brain feature matrix.

HuShoWa dataset Aside from the main UTO dataset, a replication dataset from the SRPBS
database were further curated from the Hiroshima University and ShoWa University (HuShoWa
dataset). A total of 307 subjects were included in our HuShoWa dataset, occupying categories of
MDD (173 subjects), ASD (115 subjects), and SCZ (19 subjects). Underwent the identical prepro-
cessing steps, and the feature extraction process, we harvested a [307, 9730] FC feature matrix. To
minimise the effect of site-difference on acquired fMRI scans in HuShoWa dataset, we resorted to
the harmonisation technique, e.g., the combat approach (Yu et al., 2018) to correct site-difference in
our input features.

2To ease the computation, the lower diagonal of connectivity matrix is reserved for connectivity features.
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Validation scheme & performance assessment Since empirical neuropsychiatric FC features are
seldom accompanied with ground truth low-dimensional embeddings, it is essential to obtain a strict
validation scheme to ensure the reliability of our attained nosological relations. For this, we opt
for 10-fold cross validation scheme that demands 10 times running of our model on two empirical
datasets.

In consist with the previous harnessed FID metric in assessing the between-cluster relation,
in both UTO and HuShoWa datasets, we applied the FID metric to compute the cluster-wise
FID distance on the basis of yielded low-dimensional embeddings of three disorders, e.g.,
FID(ASD−MDD);FID(ASD−SCZ);FID(MDD−SCZ), their inequality may inform us the noso-
logical relation among ASD, MDD, and SCZ. Over the implemented 10-fold cross validation, mul-
tiple paired t-tests in testing the statistical significance of these pair-wise FID distances were also
conducted to assess the reliability of attained nosological relations.

5.2 DISCOVERED NOSOLOGICAL RELATIONSHIPS AMONG ASD, MDD AND SCZ

As shown in Figure 3 (left panel), on low-dimensional embedding spaces that are derived from the
UTO and HuShoWa datasets, with maximum utilisation of diagnostic information, the learned em-
beddings are compact, clear-cut clustered in accordance with their represented disorder phenotypes
3.

Figure 3: The discovered nosological relation among ASD, MDD, and SCZ across the UTO and
HuShoWa datasets. Left panel: learned embedding spaces that are derived from the test data of
UTO and HuShoWa datasets through the average over 10-fold cross validation. Middle panel: the
computed FID distance matrices based on the averaged FID distances over 10-fold cross validation.
Right panel: the conducted paired t-tests on pairs of FID relation of three disorders in 10-fold cross
validation. The training configuration for this empirical experiment is recorded in attached B.2.

In respect of the attained highly consistent embedding spaces (Figure 3 left panel), two simi-
lar FID matrices (Figure 3 middle panel), and high statistical power in conducted paired t-tests
(Figure 3 right panel) across two curated neuropsychiatric datasets, it unveils us an interestingly
between-phenotype relation among the considered ASD, MDD and SCZ, i.e., FID(ASD−MDD) >

3To interested readers, in attached F, we demonstrate the empirical comparison of the derived embeddings
from our approach and several competing alternatives on HuShoWa dataset.
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FID(ASD−SCZ) and FID(ASD−MDD) > FID(MDD−SCZ). This suggests that ASD and MDD
may belong to two independent nosology entities, which are loosely connected regarding their large
differences in corresponding neural correlates (functional connectivities), whereas the closely linked
ASD-SCZ, MDD-SCZ nexuses indicate the potential ’nosological closeness’ between SCZ and the
other two disorder phenotypes, which is in line with the previous findings on high rates of comor-
bidity on SCZ-ASD (Wood, 2017) and SCZ-MDD (Tsai & Rosenheck, 2013).

Based on this finding, we are able to align these disorder phenotypes on an FC informed dimensional
coordinate, allowing ASD and MDD to situate at two ends of this coordinate, in correspondence with
two domains of psychopathology, i.e., the neurodevelopmental and affective pathology, respectively
(see attached G) (Craddock & Owen, 2010).

5.3 NEUROSCIENTIFIC INSIGHT

Furthermore, since the final projected FCs were represented as two-dimensional features, it is of
increasing research interest to see whether these two-dimensional features are in agreement with ex-
isting disorder related connectivities in the brain space. For this, harnessing the layer-wise relevance
propagation method (Montavon et al., 2019), we have projected each ’cluster centre’ (the most repre-
sentative feature in each of three clusters) back into the high dimensional FC space, and tentatively
identified a significant connection between Caudate and Cuneus that obtains the highest rele-
vance in discriminating three disorders (MDD, SCZ, ASD) among the overall 9730 FCs. However,
the validity of this preliminary neuroscientific insight on involved functional connectivity is under
the threat of used nonlinear projections (multiple ReLU connections in both inference and generative
networks), where the isomorphism between the low-dimensional embedding and high-dimensional
FC space is not guaranteed.

Lastly, to assess the interpretability of learned low-dimensional embedding space in our context, we
focus on probing the potential association between learned embeddings and measured clinical or
psychological assessments. On the basis of provided ASD related autism spectrum quotient (AQ
score) (Baron-Cohen et al., 2001), and MDD related Beck Depression Inventory (BDI score) (Beck
et al., 1996) in the HuShoWa dataset, the associations between our derived embeddings and the
clinical factors are captured, i.e., AQ score: ρ = 0.533, p < 0.001 and BDI score: ρ = 0.540, p <
0.001, suggesting the potential clinical awareness of derived low-dimensional embeddings.

6 LIMITATIONS

Two limitations of this study are the confined capability of our approach in discerning a novel sub-
type of a disorder or the nosological overlap between two disorders, and the scarcity of high-quality
independent FC datasets that are curated other than the harnessed SRPBS database. The former
limitation may be ameliorated through investigating the finer (possibly hierarchical) structure within
low-dimensional embeddings of known phenotypes, whereas the latter one may be tackled by the
future release of the high-quality imaging datasets from the Brain/Minds beyond MRI project (Koike
et al., 2021).

7 CONCLUSION

Unveiling the complex nosological relation among diverse neuropsychiatric disorders with the help
of diagnostic information, we advocate a neural correlate based approach, which targets on deriv-
ing a neural correlate informed low-dimensional embedding space. To learn low-dimensional em-
beddings of neural correlates that preserves the diagnostic attributes, dual utilisation of diagnostic
information that is incorporated in a novel type of conditional VAE, are proposed in this research.
Relying on this method, we discovered a reliable and consistent nosological relation among ASD,
MDD, and SCZ across two curated neuropsychiatric FC datasets.

Undoubtedly, the current approach – at its embryonic stage -- faces several mentioned limitations, a
future approach with enhanced interpretability on the obtained low dimensional embedding space,
and the inclusion of an independent validation dataset should enable us to attain more reliable noso-
logical relations on various neuropsychiatric disorders to encourage the age-old, discrete categorical
view on mental illness to make an exit at a fast pace.
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ETHICS STATEMENT

Concerning the potential ethnic issues of our propose approach in serving as a clinical application,
we raise four concerns on future use of our approach.

1. Undoubtably, the sole reliance on the discovered nosological relation on basis of our ap-
proach is neither optimal nor responsible in the diagnosis procedure. Given the early stage
of our approach, harnessing the discovered nosological relation among disorders is still
immature to replace established symptom-based diagnosis in clinical psychiatry.

2. Regarding discovered nosological relations among disorders, given the heterogeneous,
complex, and developmental nature of most neuropsychiatric disorders, further validation
of such relations is demanded.

3. Meanwhile, since our probed nosological relation among disorders on 2D embedding space
is induced from the computed distance relation, it does not imply any potential signs of
comorbidity.

4. To yield a wide range of social acceptance on using neuroimaging modality in clinical
diagnosis, it demands more future validation studies that come from other aspects, e.g., the
genetic aspect, and symptom relevance. Solely relying on the neuroimaging modality in
clinical diagnosis can be misleading and unethical.

Unless these raised ethical concerns are addressed, along with additional validation studies and
evidence, clinical use of our approach should not be considered and recommended at this moment.

REPRODUCIBILITY STATEMENT

To boost the reproducibility of our study, the executable Python code snippet that allows the
implementation of our model is contained within the uploaded Zip file. Within the uploaded
Zip file, we also include a code snippet that contains the helper function we used in the com-
putation of FID scores between embeddings. The used SRPBS database can be referred to
https://bicr-resource.atr.jp/srpbsfc/. The public available version of this re-
ferred database can be requested upon the site.
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A METHODOLOGICAL DISTINCTIVENESS & DERIVATIONS

A.1 METHODOLOGICAL COMPARISON BETWEEN OUR APPROACH AND ALTERNATIVES

As summarised in following Table 1, the main difference between our approach and NVAE (Vahdat
& Kautz, 2020) lies on the derived hierarchical process in defining the decoding and generative
process. In NVAE, the hierarchical process can be seen in the sequential production of z, i.e., z =
z1, ..., zl; q(z2|x) = q(z2|z1, x). This sequential encoding and decoding procedure allows NVAE
to implement feature combinations from z1 to zl. Differ to NVAE, our hierarchical process focuses
on the conditional generation of the latent variable z from both discrete variable c, and the input x,
i.e., q(c, z|x) ∝ q(z|x)q(c|z). More importantly, with a defined categorical prior distribution for
the discrete variable Cat(c|π), π ∈ <N+ for p(c), the N groups of z are encouraged to be mutually
independent, i.e., the implicit clustering effect. Such independence is neither the objective nor the
outcome of NVAE approach.

The hierarchical process in our inference model entails the conditional chain q(c|z)q(z|x)p(x),
whereas in CVAE (Sohn et al., 2015), such conditional chain is replaced by the conditional den-
sity q(z|x, y). In a similar vein, as illustrated in Table 1, the major distinction of our approach to a
conventional semi-supervised VAE (Kingma et al., 2014) also lies on their differentiated derivations
on inference networks.

In regards to different instantiations on graphical models, our approach also differs from the Gaus-
sian mixture VAE on both inference and generative networks. In Gaussian mixture VAE (Dilok-
thanakul et al., 2016), the inference network is defined as q(x,w, z|c), and its corresponded gen-
eration network is p(c, x, w, z) ∝ p(x|w, z)p(c|x). Ignoring the Gaussian mixture variable w, the
foregoing networks can be seen as q(x, z|c) ∝ q(z|x)q(x|c) and p(x|z)p(c|x). In our networks,
these two processes are defined as q(c|z)q(z|x) and p(x|z)p(z|c), respectively. Aside from these
differences, we acknowledge the explicit modelling of different Gaussian mixtures w, which cannot
be achieved by the current version of our approach.

TABLE 1: MODELLING DIFFERENCES BETWEEN OUR APPROACH AND ALTERNATIVES.
MODEL GENERATIVE NETWORK INFERENCE NETWORK
NVAE Πlp(zl|z<l)p(x|zl) Πlq(zl|z<l, x)p(x)
CVAE p(z|x)p(c|x, z) q(z|x, c)p(x, c)
SEMI SUPERVISED-VAE p(x|z, c)p(z|c)p(c) q(z|x, c)p(x)p(c)
GAUSSIAN MIXTURE VAE p(x|z)p(c|x)p(z) q(z|x)q(c|z)p(x)

OUR APPROACH p(x|z)p(z|c)p(c) q(c|z)q(z|x)p(x)

A.2 DERIVATIONS

In Section 3.1, we put forward a novel type of conditional VAE that allows implicit clustered em-
beddings. The core component of our loss function is pertaining to log q(z|x)

p(z|c) , where we embed
the implicit clustering effect. Given two conditional Gaussians to parameterise q(z|x) and p(z|c),
respectively, i.e., q(z|x) ∼ N (µx, σ

2
x), and p(z|c) ∼ N (µc, I), the general optimisation loss term
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for this component can be derived into:

log
q(z|x)

p(z|c)
= log

N (µx, σ
2
x)

N (µc, 1)

where N (µx, σ
2
x) =

1√
2πσ2

x

exp

{
−1

2

∥∥∥∥z − µxσx

∥∥∥∥2
}

, and N (µc, 1) =
1

(2π)
exp

{
−1

2
‖z − µc‖2

}
,

=
1

2
‖z − µc‖2 −

1

2
log σ2

x −
1

2

∥∥∥∥z − µ(x)

σ(x)

∥∥∥∥2

, as z = µx + ε⊗ σx, ε ∼ N (0, 1)

=
1

2
‖z − µc‖2 −

1

2
log σ2

x +
1

2
||ε||2.

Ignoring the last constant term
1

2
||ε||2, we arrive at

=
1

2
‖z − µc‖2 −

1

2
log σ2

x.

(4)

From the following general derivation, it clearly indicates the contribution of µc in producing our
targeted low dimensional embeddings z. I.e., from the regularisation viewpoint, µc can be viewed
as one type of regulariser to regularise the learning of z.

A.3 THE IMPORTANCE OF λ IN DETERMINING THE SHAPE OF z

Figure 4: The role of λ in our proposed approach. With the increment on the value of λ, the cluster-
wise distances are enlarged, along with the increasing amount of void space among clusters.

In the main text, to balance the contribution of two manners, we pre-define the λ = 0.5 to enforce
the equal weighting between two manners. However, this λ value be tuned flexibly in determining
the shape of each embedded cluster. In the attached Figure 4, through the demonstration on MNIST
dataset, we show the effect of differentiated λ in controlling the overlapping degree of encoded
clusters. I.e., λ→ 0, clusters of embeddings tend to be overlapped with each other, whereas λ→ 1,
encoded clusters are pulling away from each other, in the contribution of the independent, non-
overlapping clustering effect.

B TRAINING CONFIGURATIONS

B.1 CONFIGURATIONS IN THE SIMULATION STUDY (SECTION 4.)

The following two subsections are presented here to demonstrate the default configura-
tions for implementing three instantiations of our proposed approach, i.e., Full model,
Manner-1 model, and Manner-2 model, and three alternative models, i.e., S-VAE
model, S-Umap model, and NCA model, which were utilised in Section 3 of the main
text.
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Table 2: Model configurations of three instantiations of our proposed approach.

Instantiation Configurations

Full model

Network-1 (z) #1: FC 9730;200;2;200,9730, ReLU activation
Network-2 (c): FC 4000; 2000;100, ReLU and Soft-max activations
Network-3 (Lclr):FC 40, ReLU activation, D: Euclidean distance
λ = 0.5, Batch Size: 20, num of batch: 20
optimiser:Adam, (Kingma & Ba, 2014)

Manner-1 model

Network-1 (z):FC 9730;200;2;200,9730, ReLU activation
Network-2 (c): FC 4000;2000;100, ReLU activation
Batch Size: 20, num of batch: 20
optimiser:Adam (Kingma & Ba, 2014)

Manner-2 model
FC 40, ReLU activation
D: Euclidean distance, Batch Size: 20, num of batch: 20
optimiser:Adam (Kingma & Ba, 2014)

Table 3: Model configurations of three alternative approaches

Model Configurations

S-VAE model

Network-1 (z): FC 500, ReLU activation
Network-2 (c): FC 500, FC 9730, ReLU and Sigmoid activations
Network-3 (µc): FC40;3, ReLU and softmax activation
Batch size: 20, num of training epoch: 20
optimiser: rmsprop, (Hinton et al., 2012)

S-Umap
num of components: 3, num of neighbours: 10
space: Euclidean space
num of training iterations: 1k, convergence tolerance: 1e−4

NCA
num of components: 3,
initialisation approach: LinearDiscriminantAnalysis (Duda et al., 2006)
num of training iterations: 1k, convergence tolerance: 1e−4

B.2 CONFIGURATIONS IN THE EMPIRICAL STUDY (SECTION 5.)

The following table summarises the training configuration of our approach in exploring the nosolog-
ical relations among various disorder phenotypes in two empirical datasets (Section 4 of the main
text). To improve the reliability of the attained nosological relation, we adopt the nearly identical
model configurations to implement our model in UTO and HuShoWa datasets, respectively. Re-
garding the scarce sample sizes of two datasets, the complex cross validation procedure may not
be appropriate here. Therefore, in Figure 4 of the main text, the results were yielded from two full
datasets.

Table 4: Model configurations in UTO and HuShoWa datasets.

Dataset Configurations

UTO

Network-1 (z) #1: FC 9730;400;200;100;2;100;200,1000;9730, ReLU activation
Network-2 (c): FC 4000; 2000;100, ReLU and Soft-max activations
Network-3 (Lclr):FC 40, 20, ReLU activation, D: Euclidean distance
λ = 0.5, Batch Size: 1024, num of batch: 500
optimiser:Adam, (Kingma & Ba, 2014)

& HuShoWa number of training epochs: 80
batch size: 256
the usage of early-stopping: No
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C STATISTICAL TESTS

To assess the statistical significance of attained embedding relation in the above-mentioned simula-
tion study (see Main text Section 4.), we conduct a series of paired t-tests to assess the significance
of pair-wise between-cluster FID across six different approaches. As shown in the following Fig-
ure 5, our proposed Full model achieved the most superior t-test results among the harnessed 6
approaches, albeit the comparison between C2-C3 and C1-C2 does not achieve the statistical signif-
icance. Note here, the observed strong statistical significance between C2-C3 and C1-C2 in NCA,
i.e., C2− C3 > C1− C2, contradicts with the ground-truth, i.e., C2− C3 < C1− C2.

Figure 5: Paired t-tests in assessing the statistical significance among the computed between-cluster
distances across 20 runs of implementation. All reported significant t-test scores are Bonferroni
corrected. Only t-test scores that are statistical significant, are reported in this figure. Abbreviation
index: C1/C2/C3: Cluster1/2/3.

D THE SECOND SIMULATION STUDY

We attach a supplementary (2nd) simulation study (see the following Figure 6) to further solidify the
observed empirical superiority of our approach, i.e., the full model, in recovering low-dimensional
embedding of FC-like high-dimensional features. In this attached 2nd simulation study, all set-ups
are kept the same with the 1st simulation study (Section 4. main text) except for the non-linear
scattering of simulated ground-truth embeddings. Inconsistent with the rendered 1st simulation
study, the only model that recovers the ground-truth between-cluster relation is our proposed Full
model.

E SRPBS DATABASE & DATA PRE-PROCESSING STEPS

The employed UTO and HuShoWa datasets are derived from the SRPBS database, which is con-
sisted of resting-state fMRI scans from 8 different sites. The detailed curation and pre-precessing
steps of SRPBS database can be consulted in the work of Tanaka et al. (2021). Here, we highlight
some of the key aspects of scanning and data pre-processing. At each site, the subject-wise resting-
state fMRI data were obtained from 10-min resting-state fMRI scanning session with the eye-open
condition. For data curated in HuShoWa dataset, the imaging data were acquired in a Siemens Spec-
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Figure 6: The second simulation study on synthetic FC features. In line with the 1st simulation
study in the main text, we compute the distance matrix on the basis of between-cluster FID in the
derived low-dimensional embedding space. The training configuration of each model is identical to
the 1st simulation study.

tra and a Siemens Verio scanner, whereas for the data in UTO dataset, data were acquired from a GE
MR750W scanner.

All resting-state fMRI data underwent the identical pre-processing step include slice-time correla-
tion, realignment, co-registeration, segmentation of T1-weighted structural images, normalisation
to Montreal Neurological Institute (MNI) space, and spatial smoothing with an isotropic Gaussian
kernel of 6 mm full-width at half-maximum.

F EMPIRICAL COMPARISON OF DERIVED EMBEDDINGS FROM OUR
APPROACH AND ALTERNATIVE MODELS

Implemented on the same HuShoWa dataset, we empirically evaluate the derived low dimensional
embeddings from our approach, and several alternative ones, e.g., neighbourhood component anal-
ysis (NCA) (Goldberger et al., 2004), T-SNE (Van der Maaten & Hinton, 2008), Supervised Umap
(S-Umap) (McInnes et al., 2018), and a conventional semi-supervised VAE (S-VAE) (Kingma et al.,
2014).

Figure 7: Empirical comparison of embeddings derived from our approach and several alternative
approaches on HuShoWa dataset.
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G DIMENSIONAL VIEW ON ASD, MDD, & SCZ

Demonstrated in the following Figure 8, in accordance with the envisioned dimensional view on
diverse neuropsychiatric disorders (Craddock & Owen, 2010), we recast the attained the nosological
relation among ASD, MDD, SCZ on the following continua, where ASD and MDD reside at two
poles of this continua.

Figure 8: The dimensional view on ASD, MDD and SCZ
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