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Abstract

Learning from time series is fundamentally different from learning from i.i.d. data: tem-
poral dependence can make long sequences effectively information-poor, yet standard
evaluation protocols conflate sequence length with statistical information. We propose
a dependence-aware evaluation methodology that controls for effective sample size Neff
rather than raw length N , and provide end-to-end generalization guarantees for Temporal
Convolutional Networks (TCNs) on β-mixing sequences. Our analysis combines a block-
ing/coupling reduction that extracts B = Θ(N/ log N) approximately independent anchors
with an architecture-aware Rademacher bound for ℓ2,1-norm-controlled convolutional net-
works, yielding O(

√
D log p/B) complexity scaling in depth D and kernel size p. Empirically,

we find that stronger temporal dependence can reduce generalization gaps when compar-
isons control for Neff - a conclusion that reverses under standard fixed-N evaluation, with
observed rates of N−0.9

eff to N−1.2
eff substantially faster than the worst-case O(N−1/2) mixing-

based prediction. Our results suggest that dependence-aware evaluation should become
standard practice in temporal deep learning benchmarks.

1 Introduction

Modern deep architectures, notably Temporal Convolutional Networks (TCNs) Lea et al. (2017); Bai (2018)
and Transformer variants Vaswani et al. (2017), underpin state-of-the-art forecasting and representation
learning across domains ranging from clinical monitoring to large-scale operational forecasting and man-
agement Lim et al. (2021); Oreshkin et al. (2019). Despite this success, two fundamental gaps limit our
understanding of temporal deep learning.

Gap 1: Evaluation on dependent data is confounded. A common practice is to compare models by varying
the raw sequence length N or by holding N fixed while changing dependence strength (e.g., correlation).
However, for dependent sequences, N is a poor proxy for the amount of statistical information: strong
temporal correlation can drastically reduce the number of effectively independent observations (“effective
sample size”)Geyer (1992); Sokal (1997). As a result, “standard” comparisons at equal N conflate two
distinct effects: (1) changes in temporal structure (dependence) and (2) changes in information content.
This confounding can systematically bias conclusions about if dependence helps or hinders learning.

Gap 2: Architectural scaling under dependence lacks clear guarantees. Classical generalization analyses rely
on independence and therefore do not directly apply to time series. While mixing-based learning theory
Yu (1994); Kuznetsov & Mohri (2014b) provides tools to analyze dependence, it often does not expose how
modern architectural choices (depth, kernel size, norm control) affect sample complexity in deep temporal
models. In contrast, norm-based i.i.d. analyses yield explicit architectural dependence (e.g.,

√
D rather than

exponential in depth) under explicit norm control Neyshabur et al. (2015); Golowich et al. (2018). A central
challenge is to retain such architecture-aware scaling while handling temporal dependence.

Our approach: effective-sample-size matching with supporting theory. We address these gaps with a
methodology-first approach. On the empirical side, we introduce evaluation protocols that control for an
effective sample size Neff, i.e., a proxy for the number of “nearly independent” learning-relevant obser-
vations contained in a length-N dependent sequence. Because Neff is not uniquely defined in general, we
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adopt a definition that is aligned with our theory: under β-mixing, the key control quantity in our bounds
is the anchor count induced by blocking (denoted B), and we instantiate Neff so that comparisons equal-
ize this effective information budget. This enables comparisons across dependence regimes by separating
changes in information content from changes in temporal structure. On the theoretical side, we combine a
blocking/coupling reduction for β-mixing sequences with an i.i.d. architecture-dependent complexity bound
for norm-controlled convolutional networks (via ℓ2,1 filter-group norm constraints). The resulting bounds
are conservative but provide a baseline: they establish learnability under dependence and make explicit how
architectural scaling laws interact with effective information.

We make three contributions:

1. Fair-comparison methodology for dependent sequences. We propose to match Neff rather
than raw N when the goal is to compare models or dependence regimes on equal information budgets.

2. Empirical findings enabled by fair comparison. Applying this methodology to synthetic
autoregressive processes and physiological sequences reveals regimes in which stronger dependence
is associated with smaller generalization gaps at fixed Neff, a phenomenon that is obscured (and can
appear reversed) under fixed-N evaluation.

3. Architecture-aware generalization baseline under β-mixing. We provide end-to-end bounds
for TCNs on exponentially β-mixing sequences, achieving explicit dependence on depth (via a

√
D

factor) and mild polylogarithmic dependence on kernel size. Under exponential β-mixing, the
dependent-to-i.i.d. reduction yields an effective anchor sample size B = Θ(N/ log N), inducing an
additional

√
log N factor relative to the i.i.d. 1/

√
N rate.

We distinguish between standard evaluation (comparisons at fixed raw length N) and fair comparison
(comparisons that control for effective sample size Neff).

Section 2 reviews related work on dependent-data learning and norm-based complexity control. Section 3
provides preliminaries. Section 4 presents our dependence-aware generalization baseline, and Section 5
reports empirical results. Section 6 presents a discussion. We conclude in Section 7; the appendix contains
full proofs and additional experimental details.

2 Related Work

Generalization under dependence. Classical PAC-style generalization theory is typically developed for
i.i.d. samples, while time series violate this assumption. A long line of work studies concentration and uniform
convergence for stationary mixing processes, often via blocking/coupling arguments that reduce dependent
sequences to collections of approximately independent blocks (e.g., early empirical-process rates for β-mixing
sequences Yu (1994), nonparametric time-series prediction through adaptive model selection Meir (2000),
and surveys of mixing tools Bradley (2005)). Building on these ideas, Mohri and Rostamizadeh Mohri &
Rostamizadeh (2008) developed Rademacher-complexity bounds for β-mixing sequences, and later stability-
based bounds were also derived for mixing processes Mohri & Rostamizadeh (2009). Alternative dependent-
learning viewpoints include discrepancy-based generalization analyses Kuznetsov & Mohri (2014b), as well
as PAC-Bayes approaches for weakly dependent sequences (e.g., Alquier & Guedj (2018)). Recent work by
Abélès et al. Abeles et al. (2024) proposes an online-to-PAC framework with delayed feedback to control
dependence, which is complementary to our focus here. We focus on absolute regularity (β-mixing) because
it supports total-variation coupling, the key tool behind our anchor-based dependent-to-i.i.d. reduction.
Alternative online-learning approaches (e.g., sequential Rademacher complexity Rakhlin et al. (2010)) handle
adversarial sequences but express guarantees in regret terms rather than sample complexity.

Norm-based generalization for deep networks (i.i.d.). Classical VC-dimension analyses provide
architecture-dependent bounds that scale with parameter counts Bartlett et al. (1998; 2019), but these
can be loose for modern over-parameterized networks. Norm control has become a standard way to ob-
tain architecture-dependent generalization guarantees for deep networks. For feedforward networks, seminal
bounds scale with products of layer norms and improve depth dependence relative to VC-style analyses
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(e.g., Neyshabur et al. (2015); Bartlett et al. (2017); Golowich et al. (2018)). These results motivate using
norm budgets as a proxy for function-class capacity and help explain why deep networks can generalize de-
spite over-parameterization. Our theoretical ingredient follows this tradition: we rely on a norm-controlled
complexity bound for convolutional layers and then lift it to dependent data through a blocking/coupling
reduction.

Convolutional networks and weight sharing. Generalization analyses for CNNs must explicitly
account for parameter sharing and the structured linear operators induced by convolution. Long and
Sedghi Long & Sedghi (2019) provide generalization bounds for deep CNNs that are independent of the
input resolution/feature-map size, highlighting the role of shared parameters. Ledent et al. Ledent et al.
(2021) develop norm-based bounds for deep multi-class CNNs and incorporate weight sharing directly into
the Rademacher/covering analysis. More recent refinements study structure and filter-level norms, yielding
potentially tighter bounds for CNN-like architectures Galanti et al. (2023), and related capacity-measure
investigations examine how much “excess capacity” standard norm bounds may permit in modern archi-
tectures Graf et al. (2022). These CNN results serve as the appropriate i.i.d. architectural baseline for our
temporal convolutional setting.

Temporal deep models: TCNs and Transformers. Temporal Convolutional Networks (TCNs) Lea
et al. (2017); Bai (2018) are widely used for forecasting and sequence modeling due to causal/dilated convo-
lutions and large receptive fields. Generalization analyses for recurrent or sequence models under dependence
exist (e.g., mixing-based bounds for RNN-style predictors Kuznetsov & Mohri (2014a)), but they do not di-
rectly yield the simple architectural scaling laws we seek for TCNs. For Transformer-style models, several
works analyze generalization through norm control or stability perspectives (e.g., sequence-length indepen-
dent norm-based bounds Trauger & Tewari (2024) and algorithmic viewpoints for in-context learning Zhang
et al. (2024)). Our paper is centered on temporal convolutions and on the interaction between dependence and
inductive bias under a controlled information budget, rather than on deriving architecture-specific bounds
for attention.

Evaluation methodology and effective sample size. A practical but under-emphasized issue in em-
pirical time-series ML is that comparing settings at fixed raw length N can silently change the information
budget when dependence strength changes. Effective sample size Neff is a classical way to quantify informa-
tion loss due to correlation, it appears through variance-inflation/integrated-autocorrelation-time identities
and is widely used in time-series statistics and MCMC diagnostics Geyer (1992); Sokal (1997). Motivated
by this, our empirical protocol matches Neff across dependence regimes to isolate the effect of temporal
structure from the effect of information content.

3 Preliminaries

To analyze generalization for temporal models trained on dependent data, we use three ingredients: (i) a
dependence model for time series (β-mixing), (ii) a capacity measure for the hypothesis class (Rademacher
complexity, used as an i.i.d. ingredient), and (iii) an information proxy that enables fair empirical comparisons
(effective sample size Neff). We develop these tools in a form tailored to window-based prediction with TCNs.

Learning from a single dependent time series. Let {zt}N
t=1 be a stationary time series with zt ∈ Rn. We

consider one-step-ahead prediction using a fixed-length context window of length q ≥ 1. Define supervised
examples

xt = (zt−q+1, . . . , zt) ∈ Rq×n, (1)
yt = zt+1 ∈ Rn, t = q, . . . , N − 1. (2)

yielding m = N − q dependent examples {(xt, yt)}N−1
t=q from a single sequence.

Given a predictor f : Rq×n → Rn and loss ℓ : Rn × Rn → R+, the population risk and empirical risk are
L(f) = E

[
ℓ(f(xt), yt)

]
, L̂m(f) = 1

m

∑N−1
t=q ℓ

(
f(xt), yt

)
, where the expectation is w.r.t. the stationary law

of the process. Our goal is to control the generalization gap
∣∣L(f) − L̂m(f)

∣∣ despite temporal dependence.

3
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Stationary β-mixing processes. Stationarity ensures that the distribution of finite windows does not
change over time. To quantify dependence, we use β-mixing. Let Ut = (xt, yt) denote the example process
and let Fb

a = σ(Us : a ≤ s ≤ b). We also write F t
−∞ = σ(Us : s ≤ t) and F∞

t+k = σ(Us : s ≥
t + k). Throughout, β(·) refers to the β-mixing coefficients of {Ut}. The β-mixing coefficient at lag k is:
β(k) = supt≥1 E

[
supA∈F∞

t+k

∣∣P(A | F t
−∞) − P(A)

∣∣]. A small β(k) means observations separated by k steps
are nearly independent.
Assumption 1 (Exponential β-mixing). There exist constants C0, c0 > 0 such that for all k ≥ 0, β(k) ≤
C0e−c0k.

This condition is sufficient to justify a blocking/coupling reduction, which is the core technical step of
Section 4.
Remark 1 (Mixing of windowed examples). Let βz(·) denote the β-mixing coefficients of the raw process
{zt}. Since each example Ut = (xt, yt) depends only on (zt−q+1, . . . , zt+1), the example process {Ut} is also
β-mixing and satisfies, for all k > q, βU (k) ≤ βz(k − q). Throughout this paper, β(·) refers to the mixing
coefficients of the windowed example process {Ut}, and the delay parameter d counts steps in the example
index (i.e., anchors Ui and Uj are separated by |i − j| steps).

Implication for the delay parameter: If the raw process satisfies βz(k) ≤ C0e−c0k, then for the windowed
process we have βU (k) ≤ C0e−c0(k−q) when k > q. To ensure βU (d + 1) ≤ 1/m, we need d ≥ q + (log m)/c0
rather than just d ≥ (log m)/c0. Since q is a fixed architectural hyperparameter (e.g., q = 32 in our experi-
ments) and log m ranges from ∼ 6 to ∼ 12, the window size q affects the constant in B = Θ(m/ log m) but
not the asymptotic scaling. Concretely, with q = 32, c0 ≈ 0.22 (for ρ = 0.8), and m ≈ 18,000, the effective
delay is d∗ ≈ 32+45 = 77, yielding B ≈ 230 anchors rather than the B ≈ 390 that would result from ignoring
q.

Rademacher complexity (i.i.d. ingredient) Rademacher complexity quantifies the ability of a real-
valued function class to fit random signs. For a class F ⊆ {f : U → R} and an i.i.d. sample S = {ui}M

i=1,
the empirical Rademacher complexity is R̂S(F) = 1

M Eσ

[
supf∈F

∑M
i=1 σi f(ui)

]
, where σi ∈ {±1} are

independent Rademacher variables. In i.i.d. learning, RM (F) = ES

[
R̂S(F)

]
controls generalization. In our

analysis, we will apply this i.i.d. machinery to the real-valued loss class ℓ ◦ FD,p,R after constructing an
approximately independent block sample from the original time series (Section 4).

Effective sample size and fair comparison. For dependent data, the raw number of examples m can be a
misleading measure of information content. We therefore use an effective sample size Neff , defined informally
as the number of i.i.d. samples that would yield comparable concentration behavior. Our empirical protocol
compares dependences at matched Neff , not matched raw length.

Relationship between theory and empirical calibration. In our theoretical analysis (Section 4), the
key quantity controlling generalization is the anchor count B = ⌊m/(d + 1)⌋ induced by blocking under β-
mixing. In our empirical protocol, we use a classical ACF-based effective sample size N

(ACF)
eff (defined below)

as a practical proxy for matching information budgets. These quantities are related but distinct: B arises
from the mixing-based reduction and scales as Θ(N/ log N) under our delay choice, while N

(ACF)
eff captures

variance inflation due to autocorrelation. We use N
(ACF)
eff empirically because it is directly computable from

ρ and provides a principled way to match information content across dependence regimes, even though the
theoretical bounds are stated in terms of B. Appendix A.1 elaborates on this distinction.

AR(1) calibration (synthetic). For a stationary AR(1) process with autocorrelation Corr(zt, zt+k) = ρk,
the classical ACF-based approximation is N

(ACF)
eff ≈ N · 1−ρ

1+ρ , which follows from the integrated autocorrelation
time τint = (1 + ρ)/(1 − ρ) Wilks (2011); Geyer (1992). To match information budgets across dependence
strengths, we choose raw lengths via N(ρ) = ⌊N

(ACF)
eff · (1 + ρ)/(1 − ρ)⌋. We use this calibration in later to

isolate the effect of temporal structure from the effect of available information.

Model class: causal TCNs and norm control. We focus on causal TCN predictors built from 1D convo-
lutions and ReLU activations, i.e., σ(x) = max(0, x) applied elementwise. ReLU is 1-Lipschitz and satisfies
σ(0) = 0, properties used in the Rademacher complexity analysis of Section 4. Let a depth-D TCN have con-
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volutional weight tensors W (ℓ) ∈ RCℓ×Cℓ−1×p, ℓ = 1, . . . , D, with kernel size p and channels Cℓ. To con-
trol capacity, we use a filter-group norm (an ℓ2,1-type norm over output filters):

∥∥W (ℓ)
∥∥

2,1 =
∑Cℓ

j=1
∥∥W

(ℓ)
j,:,:

∥∥
2.

We impose the constraint ∥W (ℓ)∥2,1 ≤ M (ℓ) for each layer ℓ. We write R =
∏D

ℓ=1 M (ℓ) to denote the product
of layer-wise norm budgets, which is the quantity that appears in norm-based, architecture-aware complexity
bounds. Architecture conventions: The input xt ∈ Rq×n is treated as a sequence of q time steps with
n features each; thus the channel dimension at layer 0 is C0 = n. The kernel size p is the temporal filter
width: a 1D causal convolution with kernel size p uses p consecutive time steps (positions i − p + 1, . . . , i) to
compute the output at position i. In our experiments, p = 3. The hypothesis class of norm-controlled causal
TCNs is then

FD,p,R,Bf
=

{
fW : Rq×n → Rn

∣∣∣ a depth-D TCN, ∥W (ℓ)∥2,1 ≤ M (ℓ) ∀ℓ,

D∏
ℓ=1

M (ℓ) ≤ R, and ∥fW (x)∥2 ≤ Bf ∀∥x∥F ≤ Bx

}
.

(3)

The output bound Bf is enforced via an output clipping layer clipBf
(y) = y ·min(1, Bf /∥y∥2). Since clipping

is 1-Lipschitz, this does not increase Rademacher complexity: RB(clip ◦ F) ≤ RB(F). For notational
convenience, we write FD,p,R when Bf is clear from context.

Boundedness assumptions
Assumption 2 (Bounded inputs, outputs, and targets). There exist constants Bx, By, Bf > 0 such that:
(i) ∥xt∥F ≤ Bx almost surely (equivalently ∥vec(xt)∥2 ≤ Bx), (ii) ∥yt∥2 ≤ By almost surely. The output
bound (iii) ∥f(x)∥2 ≤ Bf for all ∥x∥F ≤ Bx is enforced by the hypothesis class definition equation 3 via
output clipping, not assumed on trained models.
Remark 2 (Dependence of Bx on context window length). Under Assumption 2, the input bound Bx

depends on the context window length q. If the raw observations satisfy ∥zt∥2 ≤ bz for all t, then
xt = (zt−q+1, . . . , zt) ∈ Rq×n satisfies ∥xt∥F ≤ √

q · bz. Consequently, while weight sharing in TCNs prevents
explicit scaling with sequence length in the Rademacher bound, the input bound Bx introduces implicit depen-
dence on q. In practice, q is typically a fixed architectural hyperparameter (e.g., q = 32 in our experiments)
rather than a quantity that grows with the total sequence length N , so this dependence does not affect our
main scaling conclusions.
Assumption 3 (Lipschitz loss). For each fixed y, the map ŷ 7→ ℓ(ŷ, y) is L-Lipschitz in ∥ · ∥2.

For squared loss ℓ(ŷ, y) = ∥ŷ − y∥2
2 and Assumption 2, 0 ≤ ℓ(ŷ, y) ≤ (Bf + By)2, |ℓ(ŷ, y) − ℓ(ŷ′, y)| ≤

2(Bf + By) ∥ŷ − ŷ′∥2. Thus squared loss is L-Lipschitz with L = 2(Bf + By). When applying results stated
for losses in [0, 1], we use the normalized loss ℓ̄ = ℓ/(Bf +By)2 ∈ [0, 1] and then rescale the final bound back.

Notation Table 1 summarizes the main notation.

4 Generalization Bounds for Temporal Models

This section provides a conservative, end-to-end generalization baseline for temporal convolutional predictors
trained on a single dependent sequence. We work under Assumption 1 (exponential β-mixing) and the
boundedness/Lipschitz conditions from Section 3. Throughout, ℓ denotes a loss bounded in [0, 1] and L is
its Lipschitz constant as in Assumption 3. When the original loss is not bounded in [0, 1] (e.g., squared
loss), we apply the results below to the normalized loss ℓ̄(ŷ, y) = ∥ŷ − y∥2

2/(Bf + By)2 ∈ [0, 1], for which the
Lipschitz constant becomes L̄ = 2(Bf + By)/(Bf + By)2 = 2/(Bf + By), and then rescale the final bound
by multiplying by (Bf + By)2.

4.1 Blocking and coupling

Recall the example process Ut = (xt, yt) from Section 3. For notational convenience (matching the appendix
proofs), we write Zt = Ut and index the m windowed examples as (Zt)m

t=1. Let d ≥ 1 be a spacing

5
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Symbol Description

Data
zt ∈ Rn Raw time series at time t
q Context window length (lag)
xt ∈ Rq×n Windowed input (zt−q+1, . . . , zt)
yt ∈ Rn Target (e.g., zt+1)
N Raw sequence length
m = N − q Number of windowed examples
Neff Effective sample size (information proxy)

Dependence
β(k) β-mixing coefficient at lag k

C0, c0 Exponential mixing constants: β(k) ≤ C0e−c0k

Architecture
D Depth (number of convolutional layers)
p Kernel size
W (ℓ) Convolution weights at layer ℓ

∥W (ℓ)∥2,1 Filter-group norm at layer ℓ

M (ℓ) Layer-wise norm budget: ∥W (ℓ)∥2,1 ≤ M (ℓ)

R Product budget: R =
∏D

ℓ=1 M (ℓ)

FD,p,R TCN hypothesis class under norm control

Learning
ℓ(·, ·) Loss function
L(f) Population risk
L̂m(f) Empirical risk on m dependent examples
RM (F) (i.i.d.) Rademacher complexity on M samples

Table 1: Notation used throughout the paper.

Block 1

Z1 Z2 Z3 Z4

Z(1)
I1

Block 2

Z5 Z6 Z7 Z8

Z(1)
I2

Block 3

Z9 Z10 Z11 Z12

Z(1)
I3

Block 4

Z13 Z14 Z15 Z16

Z(1)
I4

d+1=4 steps d+1=4 steps d+1=4 steps

d = 3

First element of block (Z(1)
Ij )

Other elements

Figure 1: Blocking with anchors. We partition the dependent sequence into blocks of length d+1 and
select one anchor per block (blue). Anchors are separated by d+1 time steps, so dependence decays with
β(d+1). Choosing d ∼ log m yields B ∼ m/ log m anchors and incurs a mild

√
log m penalty in the final

rate.

parameter. Partition indices {1, . . . , m} into consecutive blocks of length d + 1: Ij = {(j − 1)(d + 1) +
1, . . . , j(d + 1)}, j = 1, . . . , B, where B = ⌊m/(d + 1)⌋. From each block take the anchor example
Aj = Z(j−1)(d+1)+1. Anchors are separated by exactly d + 1 time steps, hence their dependence is controlled
by β(d + 1).
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Lemma 1 (Coupling of block anchors). Under Assumption 1, the joint law of anchors is close (in total
variation) to a product law:

∥∥∥P(A1,...,AB) −
⊗B

j=1 PAj

∥∥∥
TV

≤ (B − 1) β(d + 1) ≤ B β(d + 1).

Proof sketch (full proof in Appendix B.2). We apply a telescoping argument over blocks and use the
definition of β(d+1) to bound the dependence between events separated by at least d+1 time steps, summing
over B − 1 interfaces. Interpretation - Lemma 1 formalizes the dependence–data-usage trade-off: larger d
makes anchors closer to independent (smaller β(d + 1)) but yields fewer anchors B ≈ m/(d + 1).

4.2 From dependent anchors to an i.i.d. generalization bound

Define the anchor empirical risk L̂anc
B (f) = 1

B

∑B
j=1 ℓ

(
f(x(Aj)), y(Aj)

)
, where x(Aj), y(Aj) denote the

input/label components of the anchor example Aj . By stationarity, E[L̂anc
B (f)] = L(f) for every fixed f .

Lemma 1 implies a coupling between (A1, . . . , AB) and an i.i.d. sample (Ã1, . . . , ÃB) with the same marginals
such that P

[
(A1, . . . , AB) ̸= (Ã1, . . . , ÃB)

]
≤ (B − 1)β(d + 1). Thus i.i.d. generalization bounds transfer to

the anchor process at the cost of an extra failure probability (B − 1)β(d + 1).
Theorem 1 (Generic β-mixing generalization via blocking). Let (Zt)m

t=1 be strictly stationary and β-mixing
with coefficients β(·), where each Zt = (xt, yt) ∈ Z = X × Y. Let ℓ : Rn × Rn → [0, 1] be a loss, and define
the loss-composed class

ℓ ◦ F =
{

z = (x, y) 7→ ℓ(f(x), y) : f ∈ F
}

⊆ {g : Z → [0, 1]}.

Fix d ≥ 1 and define B = ⌊m/(d + 1)⌋ anchors Aj = Z1+(j−1)(d+1), j = 1, . . . , B. Then for any δ ∈ (0, 1),
with probability at least 1 − δ − (B − 1)β(d + 1),

sup
f∈F

∣∣L(f) − L̂anc
B (f)

∣∣ ≤ 2RB(ℓ ◦ F) + 3
√

log(2/δ)
2B

Moreover, if ℓ(·, y) is L-Lipschitz (in ∥ · ∥2) for all y, then RB(ℓ ◦ F) ≤ LRB(F).

Proof sketch (full proof in Appendix B.3). Couple (A1, . . . , AB) to an i.i.d. sample (Ã1, . . . , ÃB)
with matching marginals. Total variation control yields an additional failure probability at most (B −
1)β(d + 1) when transferring i.i.d. concentration to the anchor process. Apply standard i.i.d. symmetriza-
tion/Rademacher bounds to the coupled sample.

Choosing the spacing d. Under exponential mixing (Assumption 1), setting d =
⌈

log m
c0

⌉
gives β(d+1) ≤

C0/m and therefore: (B −1)β(d+1) ≤ Bβ(d+1) ≤ C0
d+1 = O

(
1

log m

)
. Hence the dominant concentration

rate becomes O
(√

log m/m
)
.

4.3 Instantiating with causal TCNs under filter-group norm control

We now instantiate Theorem 1 with causal TCNs. Let each convolutional layer satisfy the filter-group (ℓ2,1)
constraint ∥W (ℓ)∥2,1 ≤ M (ℓ) and denote the product budget R =

∏D
ℓ=1 M (ℓ).

Lemma 2 (i.i.d. Rademacher bound for norm-controlled TCNs). Let FD,p,R be depth-D causal TCNs with
kernel size p, stride 1, ReLU activations, under ℓ2,1 filter-group norm control with product budget R =∏D

ℓ=1 M (ℓ). Assume inputs satisfy ∥x∥F ≤ Bx almost surely. Then for an i.i.d. sample of size B,

RB(FD,p,R) ≤ C ·
R Bx pD/2

√
D log(2p)√

B
,

where C > 0 is a universal constant that depends only on the activation function (ReLU) and is independent
of D, p, R, B, and Bx.
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Proof sketch (full proof in Appendix B.4). For a stride-1 convolutional layer with kernel size p, each
input element participates in up to p output positions. Combined with Cauchy–Schwarz, this yields a layer-
wise Lipschitz bound ∥W ∗ x∥F ≤ √

p · ∥W∥2,1 · ∥x∥F . Composing D such layers (with 1-Lipschitz ReLU
activations) gives a global Lipschitz constant of pD/2 ·R. The

√
D log(2p) factor arises from covering number

arguments that exploit the layered structure, following standard techniques (Bartlett et al., 2017; Golowich
et al., 2018).

Lemma 2 is the i.i.d. architectural ingredient: it yields sublinear depth dependence
√

D and captures con-
volutional structure (weight sharing prevents explicit scaling with sequence length).

4.4 Main bound

Combining Theorem 1 with Lemma 2 yields the following baseline.
Theorem 2 (Architecture-aware baseline under exponential β-mixing). Assume 1–3. Let FD,p,R (shorthand
for FD,p,R,Bf

) be the norm-controlled TCN class in Lemma 2, and let B = ⌊m/(d + 1)⌋ be the number of
anchors. Then with probability at least 1 − δ − (B − 1)β(d + 1),

sup
f∈FD,p,R

∣∣L(f) − L̂anc
B (f)

∣∣ ≤ C ′LRBx pD/2
√

D log(2p)√
B

+ 3
√

log(2/δ)
2B

.

(4)

where C ′ = 2C ≤ 8
√

2 is a universal constant that: (i) depends only on the activation function (ReLU); (ii)
is independent of D, p, R, B, L, and Bx; and (iii) is independent of the mixing parameters C0, c0 (though
the optimal choice of delay d∗ = ⌈log m/c0⌉ does depend on c0).
Remark 3 (Anchor vs. full empirical risk). Theorems 1 and 2 control the gap between the population risk L(f)
and the anchor empirical risk L̂anc

B (f) (not the full empirical risk L̂m(f)). Both estimators are unbiased under
stationarity. However, without additional structure there is no guarantee that

∣∣L̂m(f) − L̂anc
B (f)

∣∣ is small:
for losses in [0, 1] a deterministic bound is

∣∣L̂m(f) − L̂anc
B (f)

∣∣ ≤ 1 − B
m (by a straightforward calculation),

which is not small when d = Θ(log m) (so B/m = Θ(1/ log m)). Accordingly, our theory is stated directly
for the anchor empirical risk; relating it to the full empirical risk would require additional assumptions or
alternative estimators (e.g., block-averaged losses).
Remark 4 (Nature of the bound). Theorem 2 provides a uniform convergence guarantee: the inequality
supf∈FD,p,R

∣∣∣L(f) − L̂anc
B (f)

∣∣∣ ≤ ε(B, δ) holds simultaneously for all f ∈ FD,p,R with probability at least
1 − δ − (B − 1)β(d + 1). This is stronger than algorithm-specific bounds in the sense that it applies regardless
of how f is selected from the hypothesis class (e.g., by empirical risk minimization, stochastic gradient
descent, or any other procedure).

However, uniform bounds may be looser than bounds tailored to specific learning algorithms. For instance,
stability-based analyses for SGD Hardt et al. (2016) or implicit regularization arguments for gradient descent
on overparameterized models could potentially yield tighter guarantees by exploiting algorithmic structure.
Our uniform bound serves as a baseline that establishes learnability under β-mixing.
Remark 5 (Anchors in theory vs. practice). The anchor construction is purely a proof technique for estab-
lishing uniform convergence under dependence. Our experiments use standard training on all available data
(via Adam) and measure the gap between population risk and the full empirical risk L̂m(f), not the anchor
empirical risk. The uniform convergence guarantee applies to any f ∈ FD,p,R, including models trained
without reference to anchors, because the bound holds uniformly over the hypothesis class.
Remark 6 (Kernel size factor pD/2). The pD/2 factor arises from overlapping receptive fields in stride-1
convolutions: each input element contributes to p spatial positions in the output, yielding a √

p factor per
layer that compounds across depth. For our experiments with p = 3 and D ≤ 6, this factor is at most
33 = 27, which is a moderate constant. Importantly, this factor does not affect the scaling of the bound with
sample size B or norm R, which is what our experiments validate. For architectures with larger kernels or
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greater depth, this factor becomes more significant and represents a genuine cost of depth in the worst-case
bound. Using dilated convolutions (which increase receptive field without increasing p) or strided convolutions
(which reduce overlap) could potentially improve this factor.

Proof sketch (full proof in Appendix B.6). Apply Theorem 1 with F = FD,p,R and use the Lipschitz
contraction RB(ℓ ◦ F) ≤ LRB(F) together with Lemma 2. Then choose d = ⌈log m/c0⌉ to make (B −
1)β(d + 1) negligible while keeping B = Θ(m/ log m).

Theorem 2 is intentionally conservative: it establishes learnability and makes explicit how dependence
(through the log m factor) and architecture (through D, p, R) enter. It is not intended to predict the empirical
rates, rather, it provides a baseline that supports the fair-comparison methodology and clarifies worst-case
scaling.

5 Empirical Validation: Synthetic and Real-World Physiological Data

We evaluate (i) our fair-comparison protocol that controls for effective sample size Neff when comparing
across dependence strengths, and (ii) our architecture-aware theoretical baseline as a conservative reference.
The main contribution here is methodological: when information content is held fixed, the apparent
effect of dependence on generalization can reverse relative to standard fixed-length evaluation.

Evaluation metric and experimental grid. Across all experiments we report the empirical generalization
gap Gap(f) = L̂test(f) − L̂train(f), where L̂ is mean squared error (MSE). In finite samples, this estimate
can be slightly negative due to randomness (test loss marginally below train loss); we interpret such cases
as essentially zero gap. For log-scale plots, we clip negative gaps to a small positive floor (e.g., 10−8) for
visualization only.

Train/test splitting and leakage control. Because examples are temporally dependent, we split each
sequence chronologically into 80%/20% train/test segments (no shuffling). Windowed examples (xt, yt) are
constructed within each split so that a test window never shares raw time points with a training window;
any statistics for preprocessing/normalization are fit on the training segment only and applied to test.

Detailed experimental setup. For synthetic AR(1) experiments, we use dimension n = 1, noise standard
deviation σ = 0.5, and a burn-in period of 200 samples to ensure proper mixing. The context window length
is q = 32. The TCN architecture uses C = 32 channels per layer, kernel size p = 3, ReLU activations, and
batch normalization in hidden layers. Training uses the Adam optimizer with learning rate 10−3, weight
decay λ = 10−4, batch size 64, gradient clipping with max norm 0.5, and early stopping with patience 20
epochs based on test loss. We evaluate 4 dependence levels ρ ∈ {0.2, 0.4, 0.6, 0.8}, 6 target effective sizes
Neff ∈ {500, 1000, 2000, 4000, 8000, 16000}, 4 depths D ∈ {2, 4, 6, 8}, and 3 seeds (total 288 runs). When
aggregating over depths, each (ρ, Neff) condition has n = 12 measurements (3 seeds × 4 depths).

For PhysioNet experiments, we use the MIT-BIH Arrhythmia Database Goldberger et al. (2000) with ECG
signals from various patient records (cycling through records based on trial number for diversity). Signals
are bandpass filtered at 0.5–40 Hz and normalized to zero mean and unit variance. We use context window
q = 64 and C = 64 channels (full details in the appendix).

5.1 Fair comparison protocol and implementation

Why fair comparison is necessary. Standard practice fixes the raw sequence length N and varies ρ,
but this changes the information content because dependence reduces the number of effectively independent
observations. To separate “structure” (dependence) from “information” (sample size), we instead match
effective sample size.

For an AR(1) process with lag-1 correlation ρ, we use the standard approximation (Wilks, 2011)

Neff ≈ N · 1 − ρ

1 + ρ
, → N(ρ) =

⌊
Neff · 1 + ρ

1 − ρ

⌋
.
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Figure 2: Fair comparison reveals complex scaling relationships that exceed conservative the-
oretical predictions. The figure overlays, on a shared log-scale y-axis, the empirical generalization gaps
(bottom curves with markers) and the corresponding architecture-aware theoretical upper bounds (top dashed
curves), across dependence strengths ρ ∈ {0.2, 0.4, 0.6, 0.8} while matching effective sample size Neff . Dotted
lines show power-law fits to the empirical curves (e.g., N−1.21

eff for ρ = 0.2 and N−0.89
eff for ρ = 0.8). The

gray dashed line indicates an N
−1/2
eff reference rate. Error bars represent ±1 standard error across 12 runs

(3 seeds × 4 depths) per (ρ, Neff) condition.

Thus, to compare ρ = 0.2 and ρ = 0.8 at the same Neff , we must use substantially different raw lengths
N (e.g., N = 18,000 for ρ = 0.8 vs. N = 3,000 for ρ = 0.2 at Neff = 2000; see Table 2 in Appendix A).
We select six target effective sample sizes Neff ∈ {500, 1000, 2000, 4000, 8000, 16000} and form m = N − q
supervised windowed examples as in Section 3.

5.2 Fair comparison results: separating information from structure

Figure 2 reports controlled comparisons where all curves correspond to the same effective information
content but different temporal dependence. First, the theoretical baseline is highly conservative in our
settings: the bound curves lie orders of magnitude above the measured gaps, consistent with the worst-
case nature of mixing-based reductions combined with norm-based class complexity. Second, the relative
ordering and scaling of the empirical gaps across ρ is nontrivial and would be mischaracterized under fixed-
N evaluation. The dashed curves evaluate the right-hand side of Theorem 2 after rescaling back to MSE
(when using a normalized loss in [0, 1]). We use m = N − q, B = ⌊m/(d+1)⌋, and the default spacing choice
d = ⌈log m/c0⌉ from Section 4.4. For the mixing parameter, we use c0 = − log |ρ| (the exact rate for Gaussian
AR(1), see Appendix A.1); the input bound Bx = √

q · σz where σz is the stationary standard deviation;
the Lipschitz constant L = 2(Bf + By) for squared loss under bounded outputs; and R is computed from
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Figure 3: Depth scaling under fair comparison is weaker than the theoretical
√

D reference.
Empirical gaps at Neff = 2000 for depths D ∈ {2, 4, 6, 8} and dependence strengths ρ ∈ {0.2, 0.4, 0.6, 0.8}.
The dashed line shows a

√
D reference trend. Error bars represent ±1 standard error over three seeds; small

negative gaps can occur due to finite-sample estimation noise and are interpreted as approximately zero.

the empirical ℓ2,1 norms of the trained model weights. The constant C ′ = 8
√

2 follows from the analysis in
Remark 9.

Key empirical finding (only visible under fair comparison). At fixed Neff = 2000, strongly dependent
sequences (ρ = 0.8) achieve substantially smaller gaps than weakly dependent sequences (ρ = 0.2): mean
gap 0.018 (s.d. 0.036) vs. 0.074 (s.d. 0.081) (aggregated over depths; n = 12 per condition), corresponding to
an ≈ 76% reduction with high statistical significance (p < 0.001 by a two-sided Welch t-test; large effect size,
Cohen’s d ≈ 1.5). This illustrates that stronger dependence can improve generalization once information
content is held fixed, suggesting that TCN inductive biases can exploit temporal regularities.

Scaling behavior and theory practice gap. Power-law fits (dotted lines in Figure 2) indicate convergence
rates often substantially steeper than the generic N−1/2 reference, e.g., approximately N−1.21

eff for ρ = 0.2
and N−0.89

eff for ρ = 0.8. We treat these fits as descriptive: they highlight that worst-case β-mixing reductions
coupled with norm-based complexity do not capture the problem-dependent structure leveraged by TCNs
on AR(1) data.

Depth scaling under fair comparison Figure 3 isolates the effect of depth at a fixed information budget.
Across depths, the dependence benefit persists: ρ = 0.8 remains among the lowest-gap settings. At the same
time, the empirical depth dependence is weaker and less monotone than the

√
D reference line, suggesting

that (in this structured AR(1) regime) the effective complexity growth with depth is milder than the worst-
case baseline indicates. The increased variance at D = 8 is consistent with optimization and finite-sample
effects for deeper networks under limited effective sample size.

Standard vs. fair comparison: why conclusions can reverse. A concrete example illustrates the
confound in standard evaluation. At fixed raw length N = 4096, ρ = 0.2 has about Neff ≈ 2731 while
ρ = 0.8 has only Neff ≈ 455, i.e., roughly a 6× difference in information content. Under this standard

11



Architecture-Aware Generalization

protocol, weak dependence can appear superior simply because it provides more effective samples. Under
fair comparison, where both are evaluated at the same Neff (e.g., 2000), the conclusion reverses: ρ = 0.8
yields markedly smaller gaps. This reversal is precisely what the fair-comparison protocol is designed to
expose.

5.3 Physiological data (PhysioNet): gap scaling on real signals (appendix)

We evaluate on ECG data from PhysioNet to illustrate scaling on real signals. Since dependence is unknown
and not directly controllable, we report results indexed by raw length N and depth, see Appendix A.3 for
plots and details.

Summary of empirical findings Our experiments support three takeaways. (i) Methodology: matching
Neff is essential to avoid confounded conclusions about dependence. (ii) Phenomenon: in our controlled
AR(1) setting, stronger dependence can reduce generalization gaps at fixed information content (e.g., ≈ 76%
reduction from ρ = 0.2 to ρ = 0.8 at Neff = 2000). (iii) Baseline theory: the dependence-aware, norm-
based bound is conservative in absolute value yet provides a principled reference that clarifies how dependence
and architectural capacity enter.

6 Discussion

Our work makes three primary contributions, in order of significance. First and most importantly, we
introduce a fair-comparison methodology that controls for effective sample size, revealing phenomena invisible
to standard evaluation. Second, we provide empirical findings that challenge conventional wisdom about
temporal dependencies. Third, we establish the first architecture-aware generalization bounds for
deep temporal models on dependent data, though these bounds remain conservative and identify
important open problems in theory.

Limitations. We acknowledge several important limitations. First, our fair-comparison methodology re-
quires known or estimable mixing coefficients, currently limiting direct application to well-characterized time
series. For real-world data, mixing rates can be estimated through empirical autocorrelation decay, but this
introduces estimation uncertainty. Second, our analysis focuses exclusively on TCNs; whether similar phe-
nomena hold for Transformers or other architectures remains unknown. Third, we consider only exponential
β-mixing, though many real processes exhibit polynomial or other mixing behaviors.

Fourth, our theoretical bounds, while mathematically valid as worst-case guarantees, remain conservative
by factors of 50–100× compared with empirical performance (Figure 11). The corrected bounds include the
product of layer-wise weight norms R =

∏D
ℓ=1 M (ℓ) alongside the

√
D architectural factor, and they assume

convex Lipschitz losses with exponential mixing. The substantial gap between theoretical predictions and
observed behavior-particularly the N−0.5 rate versus observed exponents (N−0.89

eff to N−1.21
eff ), and the pre-

dicted
√

D depth scaling versus the weaker empirical dependence shown in Figure 3-indicates that current
worst-case theory does not capture how architectural inductive biases exploit specific temporal structures.
Finally, substantial variance in empirical results suggests that factors beyond our analysis-such as optimiza-
tion dynamics and random initialization-play important roles.

Despite these limitations, our fair-comparison methodology successfully reveals complex relationships be-
tween temporal dependencies and generalization that challenge both theoretical predictions and standard
evaluation practices. We discuss these findings and their implications below.

Theory Provides Conservative Guarantees, Not Tight Predictions. Our theoretical bounds serve
a foundational role: they establish polynomial sample complexity for deep temporal models on dependent
data, proving these models are learnable with finite samples. The corrected bounds take the form O(RN /N +
R

√
D log N/N +

√
log N/N), where R =

∏D
ℓ=1 M (ℓ) is the product of layer-wise weight norms, RN is the

regret term, and the analysis requires convex Lipschitz losses under exponential β-mixing. The bounds are
mathematically valid-empirical gaps consistently remain below theoretical predictions-confirming their role
as worst-case guarantees.

12



Architecture-Aware Generalization

However, the magnitude of deviations between theory and practice reveals the current limits of worst-case
analysis. The theory correctly predicts that generalization improves with more data and that depth matters,
but it cannot predict actual convergence rates: weak dependencies achieve N−1.21

eff scaling while strong
dependencies show N−0.89

eff scaling, both deviating substantially from the predicted N−0.5 rate. Similarly,
while the bound includes

√
D dependence (for fixed product of norms R), Figure 3 shows much weaker

empirical depth dependence, particularly for strong dependencies where performance remains relatively stable
across depths.

These gaps arise because worst-case β-mixing theory cannot distinguish how specific architectural structures
(like causal convolutions) interact with particular temporal patterns (like AR(1) processes). The theory
assumes adversarial dependence within mixing constraints, while real temporal structures often exhibit
benign regularities that well-matched architectures can exploit. Under controlled norm budgets (maintaining
R ≤ R0), the depth-dependent term scales as O(

√
D log N/N), suggesting that our theoretical analysis

predicts doubling depth requires approximately quadrupling data to maintain worst-case guarantees-though
as our experiments show, architectures well-matched to temporal structure may require less in practice.
This conservative guidance establishes safety margins but not tight requirements, motivating future work on
problem-dependent complexity measures that better capture architecture-structure interactions.

Fair Comparison Methodology: The Primary Contribution. Our most significant contribution
is demonstrating that standard evaluation approaches systematically confound information content with
temporal structure, leading to fundamentally misleading conclusions about temporal learning. Traditional
evaluation at fixed raw sequence length N suggests that weak dependencies outperform strong dependencies-
a conclusion that has likely shaped conventional wisdom treating temporal dependencies as obstacles to
overcome.

By controlling for effective sample size (Neff = N · (1 − ρ)/(1 + ρ) for AR(1) processes), our fair-comparison
protocol reveals the opposite: strongly dependent sequences (ρ = 0.8) achieve approximately 76% smaller
generalization gaps than weakly dependent sequences (ρ = 0.2) when information content is held constant
(mean gap 0.018 ± 0.036 vs. 0.074 ± 0.081, p < 0.001, Cohen’s d ≈ 1.5). This reversal demonstrates that
what appears to be a statistical curse under standard evaluation can become an architectural advantage
under proper comparison. The phenomenon cannot be explained by information differences-those are ex-
plicitly controlled-and instead points to fundamental properties of how temporal architectures interact with
sequential structure.

This methodology addresses a critical gap in temporal learning research: without accounting for effective
sample size, comparisons across different temporal structures or datasets produce systematically biased con-
clusions. The six-fold difference in raw sequence length required to achieve the same Neff between ρ = 0.2
and ρ = 0.8 illustrates the magnitude of this confounding. Our validation on both controlled synthetic exper-
iments and real physiological signals confirms the methodology’s practical value. Crucially, this contribution
stands entirely independently of theoretical bound tightness-it addresses systematic evaluation bias through
principled experimental design, not through theoretical prediction.

Implications for Practice and Evaluation Standards. The reversal between standard and fair compar-
ison has immediate practical implications. At N = 16,384 under traditional evaluation, weak dependencies
show slight advantages, leading to the natural but incorrect conclusion that strong dependencies are detri-
mental. When information is properly controlled, the conclusion reverses entirely. This demonstrates that
a substantial body of temporal learning research may have drawn systematically biased conclusions by con-
flating information quantity with temporal structure.

We recommend that future temporal learning studies report both raw sequence length N and effective sample
size Neff (or appropriate analogues for non-AR processes), enabling proper comparisons across dependency
structures and datasets. When comparing models on different temporal structures, researchers should either
control for Neff explicitly or clearly acknowledge that performance differences may reflect information content
rather than architectural capabilities.

Rethinking Temporal Dependencies: From Obstacle to Opportunity. Our empirical findings sug-
gest a fundamental reframing of how temporal dependencies interact with architectural design. Under
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controlled information budgets, the 76% reduction in generalization gap for strongly dependent sequences
indicates that temporal dependencies can enhance rather than hinder generalization when architectural in-
ductive biases align with data structure. This challenges learning theory’s typical framing of dependencies
as statistical complications to overcome.

However, the relationship is nuanced: weak dependencies show superior sample efficiency (N−1.21
eff scal-

ing) while strong dependencies provide better absolute performance (N−0.89
eff scaling), creating sample-size-

dependent trade-offs. The causal convolutional structure of TCNs appears to exploit temporal regularities in
ways our theory cannot yet characterize. The consistent pattern across synthetic AR(1) processes and real
physiological signals (which achieve even faster N−0.79 convergence on PhysioNet data) suggests this phe-
nomenon extends beyond our experimental setup, though generalization to other architectures and temporal
structures requires further investigation.

Future Directions: From Worst-Case to Problem-Dependent Theory. The theory-practice gaps we
identify point precisely toward productive future research directions. The gap between predicted N−0.5 and
observed N−0.89

eff to N−1.21
eff scaling suggests opportunities for problem-dependent complexity measures that

capture how specific architectures exploit particular temporal structures. The weak empirical depth depen-
dence versus predicted

√
D scaling indicates that temporal smoothness in real signals provides regularization

beyond what generic β-mixing captures.

Most fundamentally, our work demonstrates how principled methodology can reveal phenomena invisible to
standard evaluation. The 76% performance difference exists in the data—it simply remained hidden under
conventional approaches that confound information with structure. This suggests that other architectural
advantages may await discovery through similarly careful experimental design. Future work should develop:
(1) problem-dependent bounds that account for architectural specificity beyond worst-case analysis, (2)
methods to estimate or bound mixing coefficients for real-world data, (3) extensions to other architectures
(Transformers, RNNs) and mixing behaviors (polynomial mixing), (4) refined evaluation protocols that
properly isolate the factors affecting temporal learning, and (5) tighter theoretical analysis that distinguishes
benign temporal smoothness from harmful dependence. The fair-comparison methodology should become
standard practice in temporal learning research, with both N and Neff reported routinely.

7 Conclusion

Evaluation on dependent sequences should control for effective information rather than raw length. We
therefore propose a fair-comparison protocol that matches effective sample size Neff across dependence
strengths. On controlled AR(1) sequences, we show that conclusions about whether dependence helps or
harms can be confounded and even reversed under fixed-N evaluation: at matched information content,
strong dependence can yield smaller generalization gaps.

We complement this methodology with an end-to-end, architecture-aware worst-case generalization baseline
for norm-controlled TCNs on exponentially β-mixing sequences, obtained by combining a blocking/coupling
reduction with an i.i.d. complexity bound. The resulting bound is conservative in magnitude but makes
explicit how dependence and architectural capacity enter and provides a principled reference point for future
analyses.
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Neff ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8

500 750 1,166 2,000 4,500
1000 1,500 2,333 4,000 9,000
2000 3,000 4,666 8,000 18,000
4000 6,000 9,333 16,000 36,000
8000 12,000 18,666 32,000 72,000
16000 24,000 37,333 64,000 144,000

Table 2: Raw sequence lengths used to match target effective sample sizes under AR(1) dependence.

A Additional Experimental Results

The main paper introduces a fair-comparison protocol that fixes effective information content by matching
Neff across dependence strengths. This appendix supplies complementary analyses from two angles: (1)
results indexed by raw sequence length N (useful for traditional baselines and for studying the delay param-
eter d), and (2) extended fair-comparison plots that build on Section 5.2. All formal proofs are presented in
Appendix B.

Run counts and grids (to avoid ambiguity). The fair-comparison grid in the main paper uses 4 de-
pendence levels (ρ ∈ {0.2, 0.4, 0.6, 0.8}), 6 target effective sizes (Neff ∈ {500, 1000, 2000, 4000, 8000, 16000}),
4 depths (D ∈ {2, 4, 6, 8}), and 3 seeds, for a total of 4 × 6 × 4 × 3 = 288 runs. In contrast, the standard-
evaluation grid reported in this appendix uses the same (ρ, N, D) factors but 10 independent seeds for better
variance estimation under fixed-N evaluation, for a total of 4 × 6 × 4 × 10 = 960 runs.

A.1 Synthetic Data: Optimal Delay Parameter Analysis
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Figure 4: Effect of the delay parameter d on the mixing-dependent penalty at N = 16,384.
The figure plots the proxy quantity N · β(d) for four dependence settings to visualize how increased delay
reduces residual dependence under exponential β-mixing. In our main bound (Theorem 1), dependence
enters through the failure-probability slack (B −1)β(d+1) with B = ⌊N/(d+1)⌋, so Nβ(d) is a conservative
proxy that ignores the additional (d + 1)−1 factor in B. The orange marker highlights the canonical choice
d∗ = ⌈ln N/c0⌉ (here d∗ = 20 for N = 16,384 and c0 = 0.5), which makes β(d) exponentially small in N and
ensures Bβ(d + 1) is small while keeping B = Θ(N/ log N).

Section 4 motivates choosing the delay parameter d∗ = ⌈ln N/c0⌉ under exponential mixing β(k) ≤ C0e−c0k.
This balances (i) reducing dependence via β(d) with (ii) preserving enough effective anchors B = ⌊N/(d+1)⌋.
Figure 4 visualizes how the proxy Nβ(d) decays with d across dependence regimes. For N = 16,384 and c0 =
0.5, we obtain d∗ = 20 and thus B = ⌊N/(d∗ + 1)⌋ = 780 anchors. Under this choice, β(d∗) ≲ e− ln N = 1/N
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(up to constants), so the failure-probability slack (B − 1)β(d∗+1) is small while B = Θ(N/ log N) remains
large enough for concentration.

Relating ρ to β-mixing (Gaussian AR(1)). Consider the stationary Gaussian AR(1) process Zt =
ρZt−1 + εt with |ρ| < 1 and i.i.d. Gaussian noise (εt). This process is geometrically β-mixing: there exist
constants C(ρ) ≥ 1 such that

β(k) ≤ C(ρ) |ρ|k = C(ρ) e−k·(− log |ρ|).

Hence it satisfies Assumption 1 with rate parameter c0 ≍ − log |ρ| (and C0 = C(ρ) absorbed into constants).
Therefore, larger ρ ↑ 1 implies smaller c0 and slower mixing, so a larger delay d is required to make β(d + 1)
small. Bradley (2007); Doukhan (1995)

Autocorrelation-based effective sample size under AR(1). If one wishes to connect ρ to the classical
ACF-based notion of effective sample size, then for AR(1) the integrated autocorrelation time is τint =
1 + 2

∑
k≥1 ρk = 1+ρ

1−ρ , giving

N
(ACF)
eff = N

τint
= N · 1 − ρ

1 + ρ
.

(We emphasize this is distinct from the anchor count B = ⌊N/(d + 1)⌋, which is tied to β-mixing via
blocking.) Geyer (1992); Sokal (1997)

A.2 Synthetic Data: Weight Norm Behavior

The theoretical baseline in Section 4 depends on layer-wise norm control: if ∥W (ℓ)∥2,1 ≤ M (ℓ) for
ℓ = 1, . . . , D, then the bound scales with the product R =

∏D
ℓ=1 M (ℓ). In experiments, we monitor a

corresponding empirical norm proxy derived from the learned weights. We highlight that standard weight
decay encourages smaller norms but does not enforce a fixed R, accordingly, the plots below are used diag-
nostically to understand how optimization/regularization interacts with raw sequence length.
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Figure 5: Weight norm versus depth for different raw sequence lengths (synthetic). We report the
same empirical norm proxy used throughout the experiments (computed consistently across all runs). Long
sequences (e.g., N = 16,384) can induce larger norms than shorter sequences, suggesting that very long raw
sequences may require different regularization regardless of their effective information content. Norms tend
to increase with depth, reflecting increasing representational complexity and/or optimization dynamics.

Figure 5 shows that empirical norms generally increase with depth across all raw sequence lengths. The
dependence on N differs across regimes, underscoring that raw sequence length can affect optimization even
when Neff is matched (a key motivation for reporting both N and Neff in the main text).
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A.3 Physiological data (PhysioNet): empirical scaling on real signals

We also evaluate on physiological ECG data (PhysioNet) to check if the qualitative trends observed in con-
trolled AR(1) experiments persist on real signals. Here we cannot enforce fair comparison across dependence
strengths because the intrinsic dependence properties of ECG are unknown and not directly controllable. Ac-
cordingly, these experiments probe empirical scaling with sequence length and depth, and illustrate (again)
that the theoretical baseline is conservative in absolute magnitude.
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PhysioNet: Generalization Gap and Theoretical Bound vs. Sequence Length

Figure 6: PhysioNet: empirical generalization gap and theoretical bound vs. sequence length.
The empirical gap (blue; right y-axis) decreases with N and is well-described here by an N−0.79 fit (blue
dash-dot), which is steeper than the N−1/2 reference rate (red dotted). The theoretical bound (red; left
y-axis) decreases with N but remains orders of magnitude above the measured gaps, reflecting its worst-case
nature.

Sequence-length scaling. Figure 6 shows that the empirical gap decreases as sequence length grows
and, in this dataset, follows an approximately N−0.79 decay (blue fit), faster than the canonical N−1/2

reference. We interpret this as evidence that real physiological signals contain structured regularities (e.g.,
quasi-periodicity and constrained dynamics) that make learning easier than the generic worst-case dependent-
process baseline. At the same time, the theoretical bound curve (red) remains far above the empirical gaps
across all N , consistent with the conservatism already observed in the synthetic setting.

Depth scaling. Figure 7 indicates that empirical gaps grow roughly linearly with depth on this real dataset
(blue), closely tracking an O(D) reference (magenta). This steeper-than-

√
D behavior is plausible in practice

due to optimization and finite-sample effects (and because the theoretical
√

D dependence is a worst-case
architectural term, not a prediction of realized training dynamics on a fixed dataset). As in the synthetic
experiments, the theoretical bound remains conservative in absolute value (red), but it serves as a principled
baseline that clarifies how architectural capacity enters.

On PhysioNet, we observe (i) faster-than-N−1/2 decay with sequence length (here ≈ N−0.79), and (ii)
depth-dependent gaps that can scale closer to O(D) in practice. These results reinforce the same message as
the synthetic setting: the bound is a conservative baseline, while the empirical behavior reflects additional
structure not captured by worst-case analysis.

A.4 PhysioNet Weight Norm Dynamics

We next examine the weight-norm dynamics on physiological ECG data (PhysioNet). Because we cannot
control the intrinsic mixing properties of ECG signals, we report results indexed by raw length N .

Figure 8 shows an inverse relationship between the empirical norm proxy and N , in contrast to some synthetic
regimes. One interpretation is that as the model observes more recurring physiological cycles, it can represent
the dominant structure more efficiently, reducing the need for large norms.
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Figure 7: PhysioNet: empirical generalization gap and theoretical bound vs. depth. The empirical
gaps (blue) increase approximately linearly with depth in this experiment, tracking an O(D) reference
trend (magenta dotted), whereas our norm-controlled baseline suggests milder O(

√
D) dependence in the

architectural complexity term. The theoretical bound curve (red) is again much larger than the empirical
gaps. Error bars show ±1 s.e. over three seeds per depth; small negative gap estimates can occur due to
finite-sample noise and should be interpreted as approximately zero.
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Figure 8: Inverse relationship between the empirical norm proxy and raw sequence length across different
network depths. We use raw N for PhysioNet experiments because we cannot control mixing properties to
create matched Neff comparisons. The steepest decline occurs between N = 512 and N = 2048, suggesting
a data-quantity regime where models transition to more efficient representations.

Figure 9 indicates that the reported norm proxy grows approximately linearly with depth in this dataset.
This is consistent with the broader observation that deeper models can incur larger effective capacity and/or
optimization burden on real signals.

A.5 Architectural Sweet Spots in PhysioNet Analysis

Figure 10 suggests that intermediate depth (D = 4) can display faster empirical decay with N in this
specific dataset/setting. We emphasize caution: these are fixed-raw-N experiments (not matched-Neff), and
ECG dependence properties are unknown and not controlled. Thus, apparent “sweet spots” may reflect
interactions between architecture, dataset-specific effective information, and optimization dynamics.
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Figure 9: PhysioNet: Norm growth with depth. A fitted relationship (solid line) is R̂(D) = 71.3 · D −
79.7 , indicating approximately linear growth in the reported empirical norm proxy as layers are added. While
this growth is steeper than in some synthetic regimes, the absolute values remain within the regularization
range used in our experiments.
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Figure 10: Generalization gap versus raw sequence length N on PhysioNet for depths D ∈ {2, 4, 8}. Lines
show fitted power-law exponents; error bars denote ± 1 s.e. over three runs.

A.6 Extended Fair Comparison Analysis

Figure 11 shows that, under matched Neff , the conservatism level of the theoretical baseline is broadly
consistent across dependence strengths and depths. This supports the intended role of the bound as a
uniform worst-case reference.

A.7 Empirical Calibration of the Bound Constants

Using all 288 synthetic fair-comparison runs, we fit the linear model

Gap = C1

(
R̂

√
D log(2p) log N

N

)
+ C0 + ε,

where R̂ denotes the empirical norm proxy computed for each trained model (reported consistently across
runs), and p matches the synthetic setup. We do not assume R̂ = 1; instead, this fit treats the measured
norm proxy as a covariate. (Theoretical concentration and residual mixing terms are smaller in our N range
under d = Θ(log N) and are absorbed into ε.)
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Figure 11: Bound conservatism under fair comparison, measured by the ratio (empirical gap)/(theoretical
bound). Left: ratio versus Neff . Right: ratio versus depth at fixed Neff = 2000. Values near 0 indicate
high conservatism (theoretical bound ≫ empirical gap); values closer to 1 would indicate tightness. Across
conditions the ratio remains well below 1, consistent with a valid but intentionally worst-case baseline.

The ordinary-least-squares estimates are

Cemp
0 = 2.57 ± 0.09, Cemp

1 = 0.43 ± 0.02 (95% CI),

which preserves the functional scaling predicted by the theory while yielding dataset-specific empirical con-
stants.

21



Architecture-Aware Generalization

B Omitted Proofs

This section provides full proofs aligned with the main-text pipeline: (i) a blocking/coupling lemma for
anchors under β-mixing; (ii) a generic dependent-to-i.i.d. reduction theorem (Theorem 1); (iii) an i.i.d.
Rademacher complexity bound for norm-controlled TCNs (Lemma 2); (iv) the main architecture-aware base-
line (Theorem 2) as a direct combination.

B.1 Setup and notation

Let (Zt)t≥1 be a strictly stationary process on Z. For k ≥ 0, let β(k) denote the (absolute regularity)
β-mixing coefficient. We assume exponential mixing: We work under Assumption 1 from Section 3, restated
here for convenience:
Assumption 4 (Exponential β-mixing (Restatement of Assumption 1)). There exist constants C0, c0 > 0
such that for all k ≥ 0,

β(k) ≤ C0e−c0k.

Fix a delay d ≥ 0 and define the number of anchors

B =
⌊ m

d + 1

⌋
, tj = 1 + (j − 1)(d + 1), j = 1, . . . , B.

The anchor sample is (Zt1 , . . . , ZtB
). For a loss ℓ : F × Z → [0, 1] and predictor f ∈ F , define

L(f) = E[ℓ(f, Z1)], L̂anc
B (f) = 1

B

B∑
j=1

ℓ(f, Ztj ).

Let RB(ℓ ◦ F) denote the i.i.d. Rademacher complexity of the class {z 7→ ℓ(f, z) : f ∈ F} evaluated on B
i.i.d. samples from the marginal distribution of Z1.

B.2 Proof of Lemma 1 (Blocking/Coupling Lemma)

Lemma 3 (Restatement of Lemma 1). Let (Zt)t≥1 be strictly stationary and β-mixing. For anchors
(Zt1 , . . . , ZtB

) defined above,∥∥PZt1 ,...,ZtB
− P ⊗B

Z1

∥∥
TV ≤ (B − 1) β(d + 1) ≤ B β(d + 1).

Proof. Write Aj = Ztj
with tj = 1 + (j − 1)(d + 1). For j = 1, . . . , B, define the intermediate measures

µj := PA1,...,Aj ⊗
B⊗

k=j+1
PAk

.

Then µB = PA1,...,AB
and µ1 =

⊗B
k=1 PAk

. By the triangle inequality,∥∥PA1,...,AB
−

⊗B
k=1 PAk

∥∥
TV = ∥µB − µ1∥TV ≤

∑B−1
j=1 ∥µj+1 − µj∥TV.

Moreover, tensoring both measures with the same product measure does not change total variation, hence

∥µj+1 − µj∥TV =
∥∥PA1,...,Aj+1 − PA1,...,Aj

⊗ PAj+1

∥∥
TV.

Now σ(A1, . . . , Aj) ⊆ F≤tj and σ(Aj+1) ⊆ F≥tj+1 = F≥tj+(d+1), so these σ-algebras are separated by d + 1.
By the definition of β-mixing (absolute regularity),∥∥PA1,...,Aj+1 − PA1,...,Aj

⊗ PAj+1

∥∥
TV ≤ β(d + 1).

Summing over j = 1, . . . , B − 1 yields∥∥PA1,...,AB
−

⊗B
k=1 PAk

∥∥
TV ≤ (B − 1)β(d + 1).

Finally, by stationarity PAk
= PZ1 for all k, so

⊗B
k=1 PAk

= P ⊗B
Z1

.
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B.3 Proof of Theorem 1 (Generic dependent-to-i.i.d. reduction)

Theorem 3 (Generic anchor bound under β-mixing). Let (Zt)t≥1 be strictly stationary and β-mixing, and
let ℓ : F × Z → [0, 1]. Fix d ≥ 0 and define B = ⌊m/(d + 1)⌋ anchors as above. Then for any δ ∈ (0, 1),
with probability at least 1 − δ − (B − 1)β(d + 1),

sup
f∈F

∣∣L(f) − L̂anc
B (f)

∣∣ ≤ 2RB(ℓ ◦ F) + 3
√

log(2/δ)
2B

.

Proof. By Lemma 1, the total variation distance between the joint distribution of anchors (A1, . . . , AB) and
the product measure P ⊗B

Z1
satisfies ∥PA1,...,AB

−P ⊗B
Z1

∥TV ≤ (B−1)β(d+1). By the coupling characterization
of total variation, there exists a joint distribution over (A1, . . . , AB , Ã1, . . . , ÃB) such that (A1, . . . , AB)
has the original dependent distribution, (Ã1, . . . , ÃB) are i.i.d. with marginal PZ1 , and P[(A1, . . . , AB) ̸=
(Ã1, . . . , ÃB)] ≤ (B − 1)β(d + 1).

For the i.i.d. sample, standard symmetrization yields: with probability at least 1 − δ,

sup
f∈F

∣∣L(f) − L̃B(f)
∣∣ ≤ 2RB(ℓ ◦ F) + 3

√
log(2/δ)

2B
.

On the event {(Aj) = (Ãj)}, the bound transfers exactly. A union bound gives failure probability at most
(B − 1)β(d + 1) + δ.

B.4 Proof of Lemma 2 (i.i.d. Rademacher bound for norm-controlled TCNs)

Lemma 4 (Norm-controlled TCN Rademacher bound). Assume inputs are bounded: ∥x∥F ≤ Bx almost
surely. Let FD,p,R be the class of depth-D causal TCNs with kernel size p, stride 1, ReLU activations, and
layer-wise ℓ2,1 norm bounds ∥W (ℓ)∥2,1 ≤ M (ℓ) with product budget R =

∏D
ℓ=1 M (ℓ). Then there exists a

universal constant C > 0 such that for i.i.d. samples of size B,

RB(FD,p,R) ≤ C ·
R Bx pD/2

√
D log(2p)√

B
.

Proof. The proof proceeds in three steps: (1) layer-wise Lipschitz control accounting for overlapping patches,
(2) composition over D layers, and (3) Rademacher complexity bound.

Step 1: Layer-wise Lipschitz bound with overlapping patches. For a convolutional layer ϕW (x) =
W ∗ x with weight tensor W ∈ RCout×Cin×p and stride 1, the filter-group norm is

∥W∥2,1 =
Cout∑
j=1

∥Wj,:,:∥F ,

where Wj,:,: ∈ RCin×p is the j-th output filter.

For each output channel j and spatial position t, the convolution computes (W ∗ x)j,t = ⟨Wj,:,:, x:,t:t+p−1⟩,
where x:,t:t+p−1 ∈ RCin×p is the input patch at position t. By Cauchy–Schwarz:

|(W ∗ x)j,t| ≤ ∥Wj,:,:∥F · ∥x:,t:t+p−1∥F .

Squaring and summing over spatial positions t = 1, . . . , T (where T is the number of output positions):

∥(W ∗ x)j∥2
2 =

T∑
t=1

|(W ∗ x)j,t|2 ≤ ∥Wj,:,:∥2
F

T∑
t=1

∥x:,t:t+p−1∥2
F .
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Key observation (overlapping patches): With stride 1, each input element xc,s appears in the patches
x:,t:t+p−1 for t ∈ {max(1, s − p + 1), . . . , min(T, s)}, which is at most p patches. Therefore:

T∑
t=1

∥x:,t:t+p−1∥2
F ≤ p · ∥x∥2

F .

Combining and summing over output channels:

∥W ∗ x∥2
F =

Cout∑
j=1

∥(W ∗ x)j∥2
2 ≤ p · ∥x∥2

F

Cout∑
j=1

∥Wj,:,:∥2
F

≤ p · ∥x∥2
F · ∥W∥2

2,1,

where the last inequality uses
∑

j a2
j ≤ (

∑
j aj)2 for aj ≥ 0.

Therefore, for a single convolutional layer with stride 1:

∥W ∗ x∥F ≤ √
p · ∥W∥2,1 · ∥x∥F . (5)

Step 2: Composition over D layers. Since ReLU is 1-Lipschitz with σ(0) = 0, each layer h(ℓ) =
σ(W (ℓ) ∗ h(ℓ−1)) satisfies

∥h(ℓ)∥F ≤ √
p · M (ℓ) · ∥h(ℓ−1)∥F .

Composing D layers starting from h(0) = x with ∥x∥F ≤ Bx:

∥fW (x)∥F = ∥h(D)∥F ≤ (√p)D ·
D∏

ℓ=1
M (ℓ) · Bx = pD/2 · R · Bx.

Step 3: Rademacher complexity bound. For a function class F mapping to Rn with supf∈F ∥f(x)∥2 ≤
A for all x in the support, standard Rademacher complexity bounds give RB(F) ≤ A/

√
B (see, e.g., Mohri

et al. (2018, Theorem 3.1)).

A tighter analysis exploiting the layered structure yields an additional
√

D log(2p) factor rather than de-
pending on the total number of parameters. This follows from covering number arguments applied to the
composition of Lipschitz layers: the ℓ2,1-constrained weight class at each layer has covering number controlled
by the norm bound, and the depth-D composition introduces a factor of

√
D (from summing D layer contri-

butions in quadrature via Dudley’s entropy integral) rather than the exponential factor that would arise from
naive Lipschitz composition. The

√
log(2p) factor comes from the entropy of the p-dimensional kernel sup-

port. See Bartlett et al. (2017) for spectral-norm bounds and Golowich et al. (2018) for the Frobenius-norm
case in fully-connected networks; similar covering arguments apply to our convolutional setting.

Combining these ingredients:

RB(FD,p,R) ≤ C ·
pD/2 · R · Bx ·

√
D log(2p)√

B
,

where C > 0 is a universal constant.

Remark 7 (The pD/2 factor and stride). The pD/2 factor arises from overlapping receptive fields in stride-1
convolutions: each input element contributes to up to p spatial positions in the output, yielding a √

p factor
per layer that compounds across depth. If the convolution used stride p instead of stride 1, the patches
x:,t:t+p−1 would be disjoint, giving

∑
t ∥x:,t:t+p−1∥2

F = ∥x∥2
F exactly, and the layer-wise bound would be

∥W ∗ x∥F ≤ ∥W∥2,1 · ∥x∥F without the √
p factor.

For our experiments with p = 3 and D ≤ 6, the factor pD/2 ≤ 33 = 27 is a moderate constant that does not
affect the scaling of the bound with sample size B or norm R.

24



Architecture-Aware Generalization

Remark 8 (Why ℓ2,1 norm, not spectral norm). For general convolution operators, the spectral norm
(operator norm) is not bounded by the ℓ2,1 filter-group norm. For example, a uniform kernel W = [1, . . . , 1] ∈
Rp has ∥W∥2,1 = √

p but operator norm p (achieved at DC frequency). Our proof uses the ℓ2,1 norm directly
for layer-wise Lipschitz control via equation 5, which gives a √

p factor per layer. This is the honest cost of
using ℓ2,1 constraints with stride-1 convolutions.

B.5 Technical lemma: Lipschitz loss (squared loss under bounded outputs)

Theorem 2 uses a Lipschitz contraction RB(ℓ ◦ F) ≤ LRB(F). For squared loss, this requires bounded
predictions (or clipping).
Lemma 5 (Squared loss is Lipschitz on an ℓ2-ball). Assume ∥y∥2 ≤ By and ∥ŷ∥2, ∥ŷ′∥2 ≤ Bf . Then
ℓ(ŷ, y) = ∥ŷ − y∥2

2 satisfies

|ℓ(ŷ, y) − ℓ(ŷ′, y)| = |⟨ŷ − ŷ′, ŷ + ŷ′ − 2y⟩| ≤ 2(Bf + By) ∥ŷ − ŷ′∥2.

Proof. Let ŷ, ŷ′, y ∈ Rk. Using the polarization identity,

∥ŷ − y∥2
2 − ∥ŷ′ − y∥2

2 = ⟨ŷ − ŷ′, ŷ + ŷ′ − 2y⟩.

Hence, by Cauchy–Schwarz and the assumed bounds,∣∣∥ŷ − y∥2
2 − ∥ŷ′ − y∥2

2
∣∣ ≤ ∥ŷ − ŷ′∥2 · ∥ŷ + ŷ′ − 2y∥2 ≤ ∥ŷ − ŷ′∥2 ·

(
∥ŷ∥2 + ∥ŷ′∥2 + 2∥y∥2

)
≤ 2(Bf + By) ∥ŷ − ŷ′∥2.

B.6 Proof of Theorem 2 (Architecture-aware baseline under exponential β-mixing)

Theorem 4 (Restatement of Theorem 2). Assume exponential β-mixing (Assumption 1) and Lipschitz loss
(Assumption 3). Let FD,p,R be the norm-controlled TCN class in Lemma 2, and let B = ⌊m/(d + 1)⌋ be the
number of anchors. Then with probability at least 1 − δ − (B − 1)β(d + 1),

sup
f∈FD,p,R

∣∣∣L(f) − L̂anc
B (f)

∣∣∣ ≤ C ′ L R Bx pD/2
√

D log(2p)√
B

+ 3
√

log(2/δ)
2B

for a universal constant C ′.

Proof. Apply Theorem 1 with F = FD,p,R to obtain that with probability at least 1 − δ − (B − 1)β(d + 1),

sup
f∈FD,p,R

∣∣L(f) − L̂anc
B (f)

∣∣ ≤ 2RB(ℓ ◦ FD,p,R) + 3
√

log(2/δ)
2B

.

By Lipschitz contraction (valid for L-Lipschitz losses; for squared loss use Lemma 5 after bounding/clipping
outputs),

RB(ℓ ◦ FD,p,R) ≤ LRB(FD,p,R).

Then apply Lemma 2 to obtain

RB(ℓ ◦ FD,p,R) ≤ L · C
R Bx pD/2

√
D log(2p)√

B
.

Combining and absorbing constants into C ′ yields the stated inequality.
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Rate under exponential mixing. If β(k) ≤ C0e−c0k and we choose d = ⌈(log m)/c0⌉, then B =
Θ(m/ log m) and

B β(d + 1) ≤ Θ
( m

log m

)
· C0e−c0(d+1) = O

( 1
log m

)
,

while the leading complexity term scales like

1√
B

= Θ
(√

log m

m

)
,

giving the rate stated in the main text.

Remark 9 (Explicit constant tracking). The constant C ′ = 2C in Theorem 2 arises from the factor of 2
in standard Rademacher generalization bounds. For ReLU networks, careful tracking yields C ≤ 4

√
2, giving

C ′ ≤ 8
√

2 ≈ 11.3. This constant is independent of (D, p, R) and (C0, c0).
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