
Reshape and Adapt for Output Quantization (RAOQ):
Quantization-aware Training for In-memory Computing Systems

Bonan Zhang 1 Chia-Yu Chen 1 2 Naveen Verma 1 2

Abstract
In-memory computing (IMC) has emerged as a
promising solution to address both computation
and data-movement challenges, by performing
computation on data in-place directly in the mem-
ory array. IMC typically relies on analog oper-
ation, which makes analog-to-digital converters
(ADCs) necessary, for converting results back to
the digital domain. However, ADCs maintain
computational efficiency by having limited pre-
cision, leading to substantial quantization errors
in compute outputs. This work proposes RAOQ
(Reshape and Adapt for Output Quantization) to
overcome this issue, which comprises two classes
of mechanisms including: 1) mitigating ADC
quantization error by adjusting the statistics of
activations and weights, through an activation-
shifting approach (A-shift) and a weight reshap-
ing technique (W-reshape); 2) adapting AI models
to better tolerate ADC quantization through a bit
augmentation method (BitAug), complemented
by the introduction of ADC-LoRA, a low-rank
approximation technique, to reduce the training
overhead. RAOQ demonstrates consistently high
performance across different scales and domains
of neural network models for computer vision
and natural language processing (NLP) tasks at
various bit precisions, achieving state-of-the-art
results with practical IMC implementations.

1. Introduction
Rapid advances in AI have greatly impacted various applica-
tion domains, including computer vision, natural language
processing, speech, etc. Recent generative AI breakthroughs
have pushed the strength of AI even further, producing re-
markably realistic and imaginative outputs, blurring the line

1Princeton University, NJ, USA 2EnCharge AI, CA, USA. Cor-
respondence to: Bonan Zhang <bonanz@princeton.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

between human- and machine-generated content (OpenAI,
2023; Team et al., 2023). However, increasing AI capa-
bility has come from increasing model complexity, with a
sharp rise in both the number of compute operations and the
number of parameters, placing huge demands on hardware
resources (Villalobos et al., 2022; Smith et al., 2022).

This has driven the development of specialized hardware
architectures to accelerate AI model computations. While
digital accelerators have been widely deployed to improve
compute efficiency, they do not address the large amount of
data movement involved, which has been shown to pose a
critical energy and performance bottleneck in state-of-the-
art (SOTA) models (Verma et al., 2019). In-memory com-
puting (IMC), on the other hand, performs computations in
place on stored data, providing an approach to simultane-
ously address both compute efficiency and data movement.

Analog IMC enhances computational efficiency over digi-
tal methods, benefiting advanced AI models (Houshmand
et al., 2023). However, a fundamental requirement of analog
IMC is the need for analog-to-digital converters (ADCs), to
provide compute outputs back to the digital domain. Impor-
tantly, ADCs introduce an additional source of quantization,
which can substantially degrade accuracy in SOTA AI mod-
els. The level of such quantization error is fundamentally set
by both the level of IMC parallelism and ADC resolution,
which also directly sets the energy efficiency and throughput
advantage. This is illustrated in Fig .1a, which compares
the energy efficiency of IMC against digital accelerators, de-
rived from the literature (Murmann; Lee et al., 2021; Jouppi
et al., 2017). While IMC presents a significant energy ef-
ficiency advantage over digital accelerators, the advantage
drops drastically as ADC precision is increased. Hence, it
is critical to overcome such effects of ADC quantization to
enable IMC efficiency in SOTA systems.

Unlike conventional quantizers, whose clipping/scaling pa-
rameters can be optimized during training, ADC quantiza-
tion applies to analog compute results, where additional
processing is not feasible, precluding the use of quantiz-
ers and the optimization degrees of freedom they offer.
In other words, ADC quantization incurs a fixed pre-
defined quantization step and clipping values. This key
attribute distinguishes ADC quantization from traditional

1

Reshape and Adapt for Output Quantization (RAOQ): Quantization-aware Training for In-memory Computing Systems

quantization and imposes critical algorithmic challenges in
IMC systems. Previous works introduce artificial clipping
to ADC quantization at the hardware design stage (Gonu-
gondla et al., 2020; Sakr & Shanbhag, 2021). However, this
limits hardware flexibility in supporting various types of
models, which may present different ADC-input data distri-
butions and thus require different optimal clipping values.

This paper presents RAOQ (Reshape and Adapt for Output
Quantization), to tackle such quantization challenges at
the algorithmic level. As neural networks generally are
sensitive to drastic changes, we first perform quantization-
aware training (QAT) for activations and weights only, and
then apply RAOQ in another finetuning stage with ADC
quantization introduced. We explore RAOQ across multiple
applications, i.e., image classification on ImageNet (Deng
et al., 2009), object detection on COCO 2017 (Lin et al.,
2014), question answering on SQuAD 1.1 (Rajpurkar et al.,
2016), and language modeling on WikiText-2/103 (Merity
et al., 2016). This work is among the first to demonstrate
approaches that enable IMC for inference across various
scales of models and challenging datasets/tasks, particularly
employing SOTA energy-efficiency design points for IMC.
Our major contributions are as follows:

1. We conduct an analysis of the statistical attributes of
activations and weights that yield a high signal-to-
quantization-noise ratio (SQNR) in the presence of
ADC quantization, and propose an activation-shifting
method (A-shift) together with weight-reshaping tech-
niques (W-reshape) to improve the SQNR.

2. We propose bit augmentation (BitAug), where the
model is augmented in the dimension of ADC bit pre-
cision to aid the optimization process, assisting model
adaptation to ADC quantization.

3. We propose ADC-LoRA, which adapts LoRA tech-
niques (Hu et al., 2021) to address ADC quantization
through an MSE-based initialization, achieving > 45×
reduction of trainable parameters, which makes our
proposed method applicable to large-scale AI models.

4. We perform extensive experiments on a wide range
of models and tasks, including both CNN models
(ResNet, MobileNetV2, YOLOv5) and transformer
models (BERT, OPT, BLOOM), and across different
quantization precisions. The consistently high perfor-
mance achieved by our methods shows promise for
their generalizability across challenging AI tasks.

2. Background and Related Works
2.1. In-memory Computing (IMC)

IMC aims to address both compute and data-movement
costs in matrix-vector multiplications (MVMs), which are

6 8 10 12 14 16
ADC bit precision

10 3

10 2

10 1

100

101

102

TO
PS

/W

IMC
Digital accelerators

6 9 12 15
ADC bit precision

100

102

104

En
er

gy
 (p

J)

(a)

�𝒘𝒘𝟏𝟏,𝟏𝟏 �𝒘𝒘𝟐𝟐,𝟏𝟏 �𝒘𝒘𝑵𝑵,𝟏𝟏

�𝒘𝒘𝟏𝟏,𝟐𝟐 �𝒘𝒘𝟐𝟐,𝟐𝟐 �𝒘𝒘𝑵𝑵,𝟐𝟐

�𝒘𝒘𝑵𝑵,𝑴𝑴�𝒘𝒘𝟐𝟐,𝑴𝑴�𝒘𝒘𝟏𝟏,𝑴𝑴

⋯

⋯

⋯

⋯ ⋯ ⋯
�𝒙𝒙𝟏𝟏

�𝒙𝒙𝟐𝟐

�𝒙𝒙𝑴𝑴

⋯

�𝒚𝒚𝟏𝟏 �𝒚𝒚𝟐𝟐 �𝒚𝒚𝑵𝑵

Memory Array

⋯

+ + +

ADC

(b)

6 7 8 9 10 11
ADC bit precision

0

5

10

15

SQ
NR

 (d
B)

6 8 10
ADC bit precision

0

25

50

75

Ac
cu

ra
cy

 (%
) w/ ADC

w/o ADC

(c)

0 10 20 30
Epoch

30

50

70

Ac
cu

ra
cy

 (%
)

No ADC
6b ADC
7b ADC
8b ADC
9b ADC

(d)

Figure 1. (a) Energy efficiency of IMC. (b) An illustration of an
MVM operation via IMC. (c) SQNR and accuracy degradation due
to ADC quantization. (d) Learning curves for vanilla QAT with
ADC quantization involved.

dominant operations in modern AI models. It stores matrix
weights in a 2D array of memory bit cells as shown in Fig.
1b, and accesses compute results over multiple weight bits.
This is achieved by performing multiplication in each bit
cell between stored weight data and provided input data, and
then accumulation to reduce the products in each column
to a single result. The level of reduction, set by the row
parallelism of IMC operation, thus determines the energy
efficiency and throughput gains.

IMC, realized via various memory technologies (e.g.,
SRAM, MRAM, etc.), can leverage analog operation for
efficient computation, where the compute results then need
to be converted back to the digital domain via ADCs (Lee
et al., 2021; Yin et al., 2020; Deaville et al., 2022; Hsieh
et al., 2023; Wan et al., 2022; Spetalnick et al., 2023). Such
analog operation is sensitive to analog noise, which degrades
the output signal-to-noise ratio (SNR). While methods have
been proposed to overcome this issue (Zhang et al., 2022a;
He et al., 2019; Rasch et al., 2023), they have only shown
success at low efficiency IMC design points (low row paral-
lelism, increased power) or on simple tasks. Instead, recent
work has moved to a high-SNR form of IMC, overcom-
ing analog noise sources while enabling higher row paral-
lelism (Jia et al., 2022; Lee et al., 2021), but leaving ADC
quantization as the primary challenge. As an example, Fig.
1c shows the degraded inference accuracy and signal-to-
quantization-noise ratio (SQNR) due to ADC quantization.
Consequently, such quantization now restricts the use of
IMC in SOTA models and/or poses an ultimate limit on its

2

Reshape and Adapt for Output Quantization (RAOQ): Quantization-aware Training for In-memory Computing Systems

efficiency and throughput. This work introduces efficient al-
gorithmic approaches to address such a challenge, doing so
without incurring additional hardware costs, to demonstrate
applicability on a critical set of models.

2.2. Quantization-aware Training (QAT)

QAT restores model accuracy, which may otherwise degrade
due to quantization noise, through a training process that
adapts model parameters. QAT methods have been proposed
to demonstrate SOTA accuracy in quantized networks (Ja-
cob et al., 2017; Bhalgat et al., 2020; Choi et al., 2019; Wang
et al., 2022; Esser et al., 2019). However, previous methods
mainly focus on quantization with scale/clipping parameters
that can be optimized during training. Such parameters are
not available for ADC quantization, which applies to analog
outputs from computation and where the quantization step
is thus fixed. As a result, IMC shows substantially degraded
accuracy with vanilla QAT1, as seen in Fig. 1d.

To address ADC quantization in IMC, Jin et al. (2022) intro-
duces a modified straight-through estimator (STE) (Bengio
et al., 2013) along with calibration and rescaling techniques
to assist QAT, demonstrating on CIFAR-10/100 datasets.
Sun et al. (2021) proposes a non-uniform activation quan-
tizer and a reduced quantization range, validating on CIFAR-
10. Wei et al. (2020) proposes modified minmax quantizers
for activations and weights to incorporate hardware statistics
of IMC, testing on MNIST and CIFAR-10 datasets. While
these prior works show success on relatively simple datasets,
their success has not transferred to more complex datasets
and AI tasks. In this work, we propose improved QAT tech-
niques to enable SOTA accuracy applicable to various bit
precisions on more challenging models and tasks.

2.3. Quantization with LoRA

Low-rank adaption (LoRA) reduces the trainable parame-
ters, enabling efficient finetuning and reduction of memory
requirements (Hu et al., 2021). It freezes the pre-trained
weights and only optimizes a small number of parameters
obtained via low-rank decomposition. Recent research has
applied such a technique for neural network quantization
(Dettmers et al., 2023; Li et al., 2023; Guo et al., 2023;
Xu et al., 2023). A particular challenge is that the original
initialization used in (Hu et al., 2021) does not translate well
to quantization (Guo et al., 2023). Thus, initialization via
SVD techniques has been proposed (Li et al., 2023). How-
ever, as we describe in Section 3.4, this approach does not
apply to IMC ADC quantization. This work introduces an
MSE-based approach to adapt LoRA seamlessly to our pro-
posed algorithms for handling ADC quantization, providing
a significant reduction of the training cost.

1Vanilla QAT refers to training with quantization effects
present, without any additional proposed techniques applied.

3. RAOQ
This section begins with the problem formulation of ADC
quantization. We then introduce the proposed RAOQ by
describing each of its components. We use LQ to denote
the loss during the QAT stage and use LA to denote the loss
during the RAOQ stage 2.

3.1. ADC Quantization

As outlined in the previous sections, ADC quantization
differs from traditional quantization issues, constrained by
the design of the ADC itself and characterized by fixed
clipping values/step sizes with inherently limited precision.

To formally define the IMC ADC quantization problem,
let x ∈ RM be a data vector of the activation X and let
w ∈ RM be a vector of an output channel of the weight W .
Denote x and w as their quantized counterparts, an IMC
column then computes a portion of MVM:

y =< x,w >=

M∑
i=1

wixi (1)

Note that convolutions can be converted to MVMs via
im2col operations. For a bx-bit activation, bw-bit weight,
ba-bit ADC, and memory with dimension M ×N , assum-
ing symmetric quantization is applied to weights, the ADC
quantization and its quantization step ∆a is defined as

y =

⌊
clip

(
y

∆a
, na, pa

)⌋
(2)

∆a =
2M(2bx − 1)(2bw−1 − 1)

2bak
(3)

where ⌊·⌋ denotes the floor operation, and clip(z, rn, rp)
clips z to the range between rn and rp. Similar to conven-
tional QAT, the gradient of the floor operation is approxi-
mated using STE (Bengio et al., 2013). Above, (na, pa) =
(−2ba−1, 2ba−1 − 1). k is a positive integer, serving as
a hardware design parameter to provide fixed clipping
(i.e., quantization step ∆a is fixed), which makes such
quantization particularly challenging. Eq. 3 assumes un-
signed activations. For signed activations, we can replace
2bx − 1 with 2bx−1 − 1. Fig. 2a shows the distribution of
a typical ADC input compared to conventional quantizers.
We see that the input concentrates around a small portion
of the ADC range, resulting in a small signal, relative to its
quantization step. A choice of large k could help to have a
finer step ∆a, but would potentially introduce substantial
clipping error. As different layers and models lead to dif-
ferent statistics of the compute outputs (ADC inputs), there
is no optimal ∆a to rule them all. Thus, with no algorith-
mically controllable parameters for ADC quantization, the

2QAT stage refers to activation/weight quantization only, and
RAOQ stage is with ADC quantization involved.

3

Reshape and Adapt for Output Quantization (RAOQ): Quantization-aware Training for In-memory Computing Systems

only degrees of freedom left are parameters applicable to
the activations and weights.

Digital
quantizer

𝒙𝒙 �𝒙𝒙

Digital
quantizer

𝒘𝒘 �𝒘𝒘

× + ADC
quantizer

Analog IMC
𝒚𝒚 �𝒚𝒚

Digital scaling
before quantization

Digital scaling
before quantization

No analog scaling
before quantization

(a)

20 40 60
E[X2]

2

7

11

Va
r[Y

]

(b)

1 3 5
Var[W]

0

5

10

Va
r[Y

]

(c)

Figure 2. (a) Illustration of conventional weight/activation quan-
tization, where optimal digital scaling/clipping can be directly
applied (red lines indicate quantization levels), and ADC quan-
tization, where analog signals prevent the application of scal-
ing/clipping. (b-c) Relationship of the variance of ADC input
to E[X2

] and V ar[W].

3.2. SQNR Enhancement

Based on observations in Fig. 2a, we prefer the variance of
the ADC input V ar [Y] to be maximized in order to max-
imize signal power and utilize as many ADC quantization
levels as possible. This focus on 2nd-order statistics, makes
it natural to consider the dependence on the 2nd moment
of the activation X and weight W . Before the training
starts, activations and weights are independent of each other,
and V ar [Y] is proportionally set by E[X2

] and E[W 2
].

However, the assumption of independence generally does
not hold after training, as activations and weights exhibit
correlation through the neural network learning process.
Nonetheless, we postulate that a more narrow relationship
holds, namely that there is direct dependence between the
2nd moments, and we conduct an empirical study to validate
this. We randomly sample from widely used datasets (e.g.,
ImageNet), and also generate random input data. To manage
computation complexity, we take the first few layers of vari-
ous SOTA models to incorporate commonly used structures
(e.g., convolution, attention, etc.) to perform QAT for this
study. In Fig. 2b-2c, we plot the variance of the ADC input
V ar[Y] vs. E[X2

] and E[W 2
], respectively, and observe

a proportional relationship. Further, since neural network
weights are typically symmetrically distributed around zero

(Bhalgat et al., 2020), E[W 2
] can be taken to be V ar[W],

and we postulate that V ar [Y] can be increased by maxi-
mizing V ar[W] and E[X2

], to improve IMC SQNR in the
presence of ADC quantization. This rationale forms the
basis of the A-shift and W-reshape as described below.

Activation shifting (A-shift). In order to maximize the 2nd

moment of the activation, it is desirable for activations to
exhibit a concentration of mass at considerably large ab-
solute values, i.e., distancing the mass from zero, so that
the input distribution to the ADC has maximum variance.
However, this is typically not the case with activations de-
rived from functions like SiLU (Elfwing et al., 2018) and
GELU (Hendrycks & Gimpel, 2016), which inherently ex-
hibit significant mass distribution around small values in
close proximity to zero, as shown in Fig. 3a (bottom left).

Exploiting the fact that quantizing these activations as a
signed number or unsigned number does not have much
impact on the overall performance (Bhalgat et al., 2020), we
propose to treat them as unsigned numbers during quantiza-
tion, and then convert them to signed numbers. This yields
a distribution moved away from zero, to the advantage of
ADC quantization. Such an unsigned-to-signed conversion
can be implemented by a simple shift:

xs =

⌊
clip

(
x− β

sx
, 0, 2bx − 1

)⌉
− C = x− C (4)

where ⌊·⌉ denotes round operation, β and sx are learnable
quantization parameters, C is the amount of shift. C is de-
sired to be as large as possible for maximizing E[X2

], but is
limited by the minimum/maximum value that the quantized
activation range can accommodate. Hence, C is chosen3 to
be 2bx−1. Fig. 3a (bottom) shows the A-shift process. We
observe that the mass of xs is concentrated at the most neg-
ative values, hence having an extremely large 2nd moment.
On the contrary, quantizing activations directly to a signed
number prevents such a shift operation, resulting in a much
smaller 2nd moment. We compute the 2nd moment numer-
ically for the quantized activation from A-shift and from
signed quantization based on Fig. 3a, ending up with 57.9
and 3.89, respectively. Our proposed approach produces a
much greater 2nd moment, roughly 15× higher. Addition-
ally, ReLU function naturally suits the A-shift approach, as
they explicitly force the activations to be unsigned numbers.
With such shifting, the IMC computation becomes

y =

M∑
i=1

wixi =

M∑
i=1

wixs,i + C wi︸ ︷︷ ︸
offset

(5)

The additional offset introduced by A-shift can be precom-
puted offline and thus does not add any overhead when

3The range of a signed number is from −2bx−1 to 2bx−1 − 1

4

Reshape and Adapt for Output Quantization (RAOQ): Quantization-aware Training for In-memory Computing Systems

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄(
𝒙𝒙 − 𝜷𝜷
𝒔𝒔𝒙𝒙

,𝟎𝟎,𝟏𝟏𝟏𝟏) �𝒙𝒙𝒔𝒔 = �𝒙𝒙 − 𝟖𝟖

𝜿𝜿

A-shift

W-reshape

(a)

Improved SQNR of ADC quantization

A-shift + W-reshape

Distributions of ADC Input

(b)

Figure 3. (a) Demonstration of W-reshape and A-shift for 4b weights and activations. (b) SQNR improvement under ADC quantization.

performing inference on IMC systems. The applicability
of A-shift on IMC with other number representations is
described in Appendix B.

Weight reshaping (W-reshape). To maximize V ar[W],
one option is to perform aggressive scaling during quanti-
zation. However, this is expected to introduce substantial
clipping error, posing an adverse trade-off with weight dis-
tortion. Thus, we seek an alternate approach to increasing
V ar[W], by adjusting the distribution shape.

Neural network weights typically exhibit a symmetric distri-
bution in the exponential family, e.g., Gaussian or Laplace
distribution (Banner et al., 2019), which results in relatively
low variance. Thus, we leverage an observation from previ-
ous work that a kurtosis penalty, which describes the tailed-
ness of a distribution, on the weight can be used to flatten its
distribution (Shkolnik et al., 2020). Based on our findings in
Fig. 2c, we propose to apply the kurtosis directly on W and
remove the constraint of matching a uniform distribution
originally used in (Shkolnik et al., 2020), to push W further
towards the endpoints. Such penalty is defined as

κ = E

[(
W − µW

σW

)4
]

(6)

where µW and σW denote the mean and standard devia-
tion of W . The final loss, combined with the original loss
function Lc against the ground truth during QAT is

LQ = Lc + λκ

∑
l

κl (7)

where λκ is a coefficient to balance different loss terms,
and l is an index for neural network layers. We provide an
analysis of the selection of λκ in Appendix A. Fig. 3a (top)
shows a comparison between the quantized weight without

and with incorporating κ. We see that the proposed method
successfully reshapes the weight distribution to have a much
larger variance, i.e., 4× more than the case without κ.

Impact of W-reshape and A-shift Fig. 3b summarizes the
results obtained by applying W-reshape and A-shift. We
can visually observe an increase in the variance of the ADC
input and an improved SQNR accordingly.

3.3. SQNR Adaptation for Neural Networks

Quantization fundamentally sacrifices information in ex-
change for model compression. While SQNR is improved
through Eq. 4 - Eq. 7, quantization imposed by the ADC
is observed to make SGD-based optimization more chal-
lenging due to its fixed quantization step and limited pre-
cision. Fig. 4 shows the loss surfaces of MobileNetV2 in
two randomly selected parameter dimensions for visualiza-
tion (Li et al., 2018). As seen, ADC quantization causes a
less smooth surface with additional local minima. These
attributes reduce the likelihood of arriving at preferred (low-
loss) minima during the training process. Approaches are
thus required to adapt the model to this extra quantization.

Bit augmentation (BitAug). We seek an approach that
facilitates a greater volume of information to be backpropa-
gated so that the model parameters can be optimized more
effectively. Inspired by NetAug (Cai et al., 2021) where a
tiny model is inserted into larger models during training, we
augment the network with ADCs of different bit precisions.
At each iteration, we first pass the desired ADC bit to the
model and then pass other bit precisions from a pre-defined
set B to the model. The general form of BitAug is

LA = L(θ, ba) + λb

B∑
i=1

L(θ, ba,i) (8)

5

Reshape and Adapt for Output Quantization (RAOQ): Quantization-aware Training for In-memory Computing Systems

0.2 0.1 0.0 0.1 0.2

0.2

0.1

0.0

0.1

0.2

1.600

2.100
2.600

3.100
3.

60
0

4.1
00

4.600

4.6
00

5.100

5.1
00

5.600
6.

10
0

6.600

6.600
7.100 7.100
7.600

7.600

(a) w/o ADC
0.2 0.1 0.0 0.1 0.2

0.2

0.1

0.0

0.1

0.2

1.600

2.100

2.6003.100

3.600

4.100

4.600

5.
10

05.
60

0
6.

10
06.600

6.600

6.600
7.100 7.600

(b) 8-bit ADC

0.2 0.1 0.0 0.1 0.2

0.2

0.1

0.0

0.1

0.2

2.100

2.600

3.100

3.600

4.100

4.600

5.100

5.600

6.1
00

6.100

6.6
00

6.600 7.100

7.6008.100

8.100
8.600

9.100
9.600

(c) 7-bit ADC
0.2 0.1 0.0 0.1 0.2

0.2

0.1

0.0

0.1

0.2

2.100
2.

60
0

3.100

3.
60

0

4.100

4.600

4.600

5.100 5.1
00

5.100

5.1
00

5.600

5.600 5.600
6.100 6.100

(d) 6-bit ADC

Figure 4. Loss surfaces with A-shift and W-reshape applied for
4-bit activations and weights.

where θ denotes network parameters, λb is the coefficient of
the BitAug loss, B is the size of B, and ba,i is a sample from
B. Elements in B are chosen to be neighbors of the target
ADC bit precision. Given the complexity of optimization
with ADC quantization, we employ the assistance of other
bit precisions. The information associated with the various
ADC bit precisions is then represented in their respective
gradients, which get accumulated during the backward path
for more optimal updating of model parameters, i.e.,

θt+1 = θt − η
∂L(θt, ba)

∂θt
− ηλb

B∑
i=1

∂L(θt, ba,i)
∂θt

(9)

where t indicates the current training step, η denotes the
learning rate. Following the insights from Fig. 4, our study
suggests that BitAug facilitates the learning process by miti-
gating getting stuck at local minima. We include our analy-
sis details in Appendix C.

However, such an aggregation of multiple augmented mod-
els is computationally expensive. Following a similar strat-
egy as (Cai et al., 2021), we randomly sample an ADC bit
precision for each iteration, i.e.,

LA = L(θ, ba) + λbL(θ, b̃a) (10)

where b̃a is a uniformly sampled bit precision from B. We
observe that doing this not only improves the computational
efficiency by a factor of B, but achieves better performance
than running all ADC bits simultaneously. Additionally, the
selection of B is also critical. For instance, if we only sample
lower precision ADC, we are essentially adding noise to
the training process, which causes performance degradation.
We include a quantitative study in Appendix D.

3.4. Training Overhead Reduction

Although the proposed methods are effective for handling
ADC quantization, they introduce additional training over-
head. While the overhead from A-shift and W-reshape is
negligible, BitAug requires ≥ 14% more GPU memory due
to the gradient accumulation of different ADC bits. This is
particularly an issue when the model size is scaled up.

To alleviate such training costs, we propose ADC-LoRA
that makes use of LoRA (Hu et al., 2021) techniques to
reduce the number of trainable parameters, thus reducing
the amount of gradient accumulation. Let Qw, Qx be the
quantizers of weights and activations, respectively, and QA

be the quantizer of ADC defined in Eq. 2. Given a pre-
trained weight W ∈ Rm×n, the ADC-quantized compute
output with LoRA applied has the form

Y = QA(Qx(X)Qw(W +AB)) (11)

where A ∈ Rm×r, B ∈ Rr×n are learnable low-rank matri-
ces with r ≪ min(m,n). By keeping W fixed, the number
of trainable parameters gets dramatically reduced as shown
in Table 4.

While the SVD-based approach has been shown as an ef-
fective initialization of LoRA for weight quantization (Li
et al., 2023; Guo et al., 2023), it does not apply to ADC
quantization due to the extra quantization (i.e., ADC quan-
tization) operated on LoRA parameters as indicated in Eq.
11. A more detailed discussion and comparison of different
methods are provided in Appendix E. Hence we propose
to initialize and warmup these parameters via an MSE opti-
mization:

argmin
A,B

∥Qx(X)Qw(W)− Y)∥2F (12)

where Y is defined in Eq. 11, and ∥·∥F denotes Frobenious
norm. This can be solved via gradient-based methods by
employing STE for the quantizers. We include a summary
of the overall RAOQ framework in Appendix I.

4. Experiments
We consider a general IMC architecture as shown in Fig.
1b. While exploring different IMC architectures is not the
focus of this paper, we include experiments on the impact
of RAOQ with various IMC configurations in Appendix F
for interested readers. In this section, we focus on an IMC
system with aggressive memory dimensions of 512× 512,
taking 4-bit inputs and processing 4-bit weights, with ADCs
having k = 4. Higher-precision activations and weights are
mapped to the IMC via matrix tiling.

The proposed methods are evaluated on both CNN and trans-
former models for various AI tasks: image classification on

6

Reshape and Adapt for Output Quantization (RAOQ): Quantization-aware Training for In-memory Computing Systems

Table 1. Evaluation accuracy of RAOQ on CNN models with various ADC bit precisions.

ba = 7 ba = 8 ba = 9

MODEL DATASET
FULL

PRECISION bx, bw
NO

ADC QAT∗ RAOQ QAT∗ RAOQ QAT∗ RAOQ

8,8 70.66 60.12 70.28 66.03 70.46 66.65 70.60RESNET18 IMAGENET 69.76 4,4 70.49 59.42 70.23 65.71 70.45 66.61 70.49

8,8 76.53 65.47 76.25 73.83 76.46 75.01 76.51RESNET50 IMAGENET 76.23 4,4 76.31 65.25 76.15 72.05 76.27 74.16 76.32

8,8 71.89 62.09 71.57 66.72 71.79 69.13 71.93MOBILENETV2 IMAGENET 71.81 4,4 70.47 61.51 70.22 66.67 70.46 68.55 70.45

8,8 74.31 61.27 73.58 68.11 74.08 68.85 74.21EFFICIENTNET-LITE0 IMAGENET 75.12 4,4 72.84 61.21 72.18 67.03 72.76 67.85 72.82

8,8 36.60 1.30 34.73 8.02 35.82 24.03 36.41YOLOV5S COCO2017 37.20⋄ 4,4 33.78 10.13 32.23 20.32 33.49 28.49 33.89
∗: Vanilla QAT. ⋄: Result trained by ourselves in FP32 rather than original mixed-precision.

Table 2. Evaluation of RAOQ on transformer models with various ADC bit precisions for 4-bit activations and weights. Encoder (BERT)
and decoder (OPT, BLOOM) models are measured in F1 score (larger is better) and perplexity (smaller is better), respectively.

ba = 7 ba = 8 ba = 9

MODEL DATASET
FULL

PRECISION
NO

ADC QAT∗ RAOQ QAT∗ RAOQ QAT∗ RAOQ

BERT-BASE SQUAD 1.1 ↑ 88.58 87.75 64.46 87.31 82.43 87.67 84.53 87.75

BERT-LARGE SQUAD 1.1 ↑ 91.00 89.57 64.02 88.89 79.52 89.28 84.10 89.52

WIKITEXT-2 ↓ 20.21 23.60 441.64 26.15 69.78 24.71 35.38 23.82OPT-125M WIKITEXT-103 ↓ 16.15 20.03 378.86 22.24 60.54 21.08 34.65 20.38

WIKITEXT-2 ↓ 17.80 19.17 621.12 22.07 384.95 19.88 27.15 19.45OPT-350M WIKITEXT-103 ↓ 15.09 17.56 590.28 19.78 110.36 18.34 27.56 17.89

WIKITEXT-2 ↓ 14.02 14.24 557.36 15.82 465.75 14.42 30.14 14.30OPT-1.3B WIKITEXT-103 ↓ 12.08 12.40 595.65 13.33 552.11 12.68 28.12 12.48

WIKITEXT-2 ↓ 22.38 23.87 464.31 26.53 77.64 24.94 32.55 24.16BLOOM-560M WIKITEXT-103 ↓ 16.52 18.62 425.08 20.88 69.26 19.20 30.02 18.95

WIKITEXT-2 ↓ 18.69 19.21 510.63 22.05 48.86 20.06 28.12 19.84BLOOM-1.1B WIKITEXT-103 ↓ 14.89 16.14 460.14 17.78 45.24 16.77 27.98 16.45

WIKITEXT-2 ↓ 15.44 16.75 852.65 18.26 387.98 17.06 26.76 16.88BLOOM-1.7B WIKITEXT-103 ↓ 13.64 14.28 743.68 15.85 208.56 14.74 26.10 14.44
∗: Vanilla QAT. ↑: larger results indicate better performance. ↓: smaller results indicate better performance.

ImageNet (Deng et al., 2009) with ResNet18/50 (He et al.,
2016), MobileNetV2 (Sandler et al., 2018), and EfficientNet-
lite0 (Tan & Le, 2019); object detection on COCO 2017 (Lin
et al., 2014) with YOLOv5s (Jocher et al., 2022); question-
answering on SQuAD 1.1 (Rajpurkar et al., 2016) with
BERT-base/large (Devlin et al., 2018); language modeling
on WikiText-2 and WikiText-103 (Merity et al., 2016) with
OPT-125M/350M/1.3B (Zhang et al., 2022b) and BLOOM-
560M/1.1B/1.7B (Workshop et al., 2022). The first and last
layers are kept in 8-bit for fidelity reasons. LoRA techniques
are applied on models with > 200M parameters to maintain
reasonable memory usage. We start from pre-trained full
precision models, and first perform QAT based on LSQ+
(Bhalgat et al., 2020) for activations and weights with the
proposed W-reshape and A-shift methods. The choice of

the QAT quantizer does not affect our conclusion, and we
include validation in Appendix G. We then add ADC quanti-
zation along with other RAOQ techniques for another stage
of finetuning. We treat QAT results without ADC quantiza-
tion as our baseline. All of them match SOTA results. For
a fair comparison, we also perform vanilla QAT (i.e., with-
out any proposed methods involved) for ADC quantization.
We sweep the ADC bit precision to demonstrate the robust-
ness and generality of our approaches. Experiments are
performed on Nvidia A100 GPUs. Further training details
are described in Appendix J.

4.1. Main Results

CNN models. Table 1 summarizes the results for 4-bit and

7

Reshape and Adapt for Output Quantization (RAOQ): Quantization-aware Training for In-memory Computing Systems

Table 3. Comparison of different methods for ADC quantization on CIFAR-10. M denotes the memory inner-dimension, and the column
IMC indicates accuracy under ADC quantization.

MODEL METHOD bx, bw, ba M FULL PRECISION NO ADC IMC DEGRADATION

RESNET20
(JIN ET AL., 2022) 4,4,7 9 − 91.60 91.00 -0.60b

4,4,3 9 81.70 -9.30b

RAOQ 4,4,7 9 92.32 92.23 92.32 +0.09b

4,4,3 9 89.34 -2.89b

RESNET18a (SUN ET AL., 2021) 4,4,4 256 88.87 − 86.55 -2.32c

RAOQ 4,4,4 256 92.10 92.13 90.48 -1.65c

RESNET18
(WEI ET AL., 2020) 2,2,4 9 92.01 89.62 83.37 -6.25b

2,2,4 36 87.56 -2.06b

RAOQ 2,2,4 9 93.21 92.26 91.90 -0.36b

2,2,4 36 91.81 -0.45b

a Channels are reduced to 1/4 of the original ResNet18. b Accuracy drop of IMC ADC quantization with respect to no-ADC
case. c Accuracy drop with respect to full precision.

8-bit activations and weights. As seen, the proposed RAOQ
successfully preserves the results to the baseline level and
significantly outperforms vanilla QAT in all cases, with
< 1% accuracy drop for image classification and < 2%
degradation in mAP for object detection.

Transformer models. Table 2 shows the results for 4-bit
activations and weights. Encoder models (BERT) exhibit
< 1% degradation in F1 score across multiple ADC bits.
Decoder models (OPT, BLOOM) are evaluated using per-
plexity, a metric known to be sensitive to quantization (Yao
et al., 2022). As seen, RAOQ restores the results to the base-
line level, which degrades significantly using only vanilla
QAT. For instance, OPT-1.3B sees a < 1.6 perplexity drop
using RAOQ, compared to a > 15 drop with vanilla QAT.

4.2. Comparison with Other IMC QAT Methods

As mentioned, previous works focus on ADC quantization
in IMC on small datasets. Table 3 shows a comparison of
our proposed RAOQ approach with other works on CIFAR-
10. These works are based on various memory technologies
(e.g., SRAM, ReRAM). For a fair comparison, we construct
the same model, following the same configurations as these
works (e.g., bit precisions, memory dimensions, applicable
hardware noise levels). We see that RAOQ outperforms
all other methods, leading to much less degradation regard-
less of IMC technology and configurations. We provide
additional comparisons on more complex tasks and datasets,
with prior works implemented by ourselves, shown in Ap-
pendix H for interested readers.

4.3. Effectiveness of ADC-LoRA

To demonstrate the impact of ADC-LoRA on our training
overhead, we show the reduction of trainable parameters as

summarized in Table 4. To obtain results shown in Table
2, we choose rank 8 for BERT-large and rank 32 for OPT-
1.3B and BLOOM 1.1B, implementing LoRA adaptors in
both attention layers and feed-forward layers. As seen,
such configuration allows us to achieve > 45× reduction
of the training parameters, which potentially enables IMC
systems to handle larger AI models with the assistance of
the proposed RAOQ.

Table 4. Impact of ADC-LoRA on trainable parameters.
BERT-LARGE OPT-1.3B BLOOM 1.1B

FULL SIZE 345M 1.3B 1.1B

ADC-LORA 3.5M 28M 13M

4.4. Ablation Study

We investigate the impact of each proposed technique in
RAOQ. In particular, we use BERT-base and ResNet50
with 4-bit activations and weights, and 8-bit ADCs for the
study. The results are summarized in Table 5. The first
row corresponds to the results of vanilla QAT. Each check
mark indicates the presence of a specific technique. As
seen, all of the proposed techniques improve the degraded
performance due to ADC quantization. Comparatively, A-
shift and BitAug exhibit more significant impacts on the
network performance, one contributing to boosting SQNR
and the other responsible for model optimization.

Furthermore, we evaluate the isolated impact of ADC-LoRA
on the model accuracy. Table 6 shows a comparison of mod-
els with and without ADC-LoRA applied. Similar to our
experiments above, results for BERT-large are measured in
F1 score (higher is better), while OPT 1.3B and BLOOM
1.7B are measured in perplexity (lower is better). The eval-

8

Reshape and Adapt for Output Quantization (RAOQ): Quantization-aware Training for In-memory Computing Systems

Table 5. Impact of different methods. The check mark indicates
the use of the corresponding method.

A-SHIFT W-RESHAPE BITAUG BERT-BASE RESNET50

82.43 72.05
√

84.24 75.77
√

83.06 75.01
√

85.10 75.65
√ √

86.12 76.02
√ √ √

87.67 76.27

uation is based on 4-bit activations and weights, and 8-bit
ADCs. As seen, our proposed RAOQ approaches success-
fully achieve high performance in various models regardless
of the application of ADC-LoRA. On the other hand, our
proposed ADC-LoRA is able to preserve such high perfor-
mance with a reduced training overhead.

Table 6. Isolated impact of ADC-LoRA on the model accuracy.

BERT-LARGE OPT-1.3B BLOOM-1.7B

NO ADC 89.57 14.24 16.75
NO ADC-LORA 89.08 14.39 17.05
ADC-LORA 89.28 14.42 17.06

5. Relation to Analog Noise
Although this work focuses on ADC quantization, we also
explore the impact of analog noise that is fundamentally
present, to complete our work. Techniques for addressing
analog noise have been well studied as mentioned in Section
2.1, which can potentially be integrated with our proposed
RAOQ approach. Table 7 shows examples of such an inte-
gration to tackle both ADC quantization and analog noise
with 4-bit weights and activations, and 8-bit ADCs. We
apply simple additive noise on the weights and outputs with
statistics from (Long et al., 2019) and (Lee et al., 2021),
respectively. We see that < 0.1 degradation is observed
even with analog noise present. Nevertheless, analog noise
can vary depending on specific memory technologies and
topologies and can have complex distributions. We leave
this for future study.

Table 7. Impact of analog noise on RAOQ.

RESNET50 MOBILENETV2 BERT-BASE

NOISE FREE 76.27 70.46 87.67
(LEE ET AL., 2021) 76.23 70.44 87.62
(LONG ET AL., 2019) 76.26 70.44 87.64

6. Conclusion
Analog IMC has shown substantial promise to simultane-
ously enhance compute efficiency and data-movement costs
for AI inference. However, the associated ADC quantiza-
tion restricts the performance of SOTA models applied to
challenging tasks. This work proposes RAOQ to tackle
such quantization. Specifically, we propose W-reshape and
A-shift, to maximize SQNR following ADC quantization
via adjusting the statistics of weights and activations. We
further propose BitAug to improve the optimization process
and introduce ADC-LoRA to mitigate the training overhead.
Our work has been evaluated on various datasets, models,
and bit precisions, achieving consistently high performance.
The generalizability and robustness of RAOQ demonstrate
the feasibility of applying IMC to challenging AI tasks.

Acknowledgements
This work is funded in part by the Defense Advanced Re-
search Projects Agency (DARPA) under the OPTIMA pro-
gram, agreement no. HR00112490300.

Impact Statement
IMC presents one of the most promising pathways to sub-
stantially improve AI compute efficiency, towards address-
ing the ultimate sustainability of AI applications adopting in-
creasingly large and complex models. This work addresses
the most critical current limiter of SOTA IMC, which is the
efficiency-vs.-SNR tradeoff set by ADC quantization. The
new algorithmic approaches presented for handling ADC
quantization enable IMC application, without degrading ef-
ficiency, to more advanced models than previously reported,
thereby advancing the pathway to IMC adoption for the
most compute intensive AI uses of interest.

References
Banner, R., Nahshan, Y., and Soudry, D. Post Training

4-Bit Quantization of Convolutional Networks for Rapid-
Deployment. Curran Associates Inc., Red Hook, NY,
USA, 2019.

Bengio, Y., Léonard, N., and Courville, A. C. Estimating
or propagating gradients through stochastic neurons for
conditional computation. ArXiv, abs/1308.3432, 2013.

Bhalgat, Y., Lee, J., Nagel, M., Blankevoort, T., and Kwak,
N. Lsq+: Improving low-bit quantization through learn-
able offsets and better initialization. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pp. 696–697, 2020.

Cai, H., Gan, C., Lin, J., and Han, S. Network augmentation

9

Reshape and Adapt for Output Quantization (RAOQ): Quantization-aware Training for In-memory Computing Systems

for tiny deep learning. arXiv preprint arXiv:2110.08890,
2021.

Choi, J., Venkataramani, S., Srinivasan, V., Gopalakrishnan,
K., Wang, Z., and Chuang, P. I.-J. Accurate and efficient 2-
bit quantized neural networks. In Conference on Machine
Learning and Systems, 2019. URL https://api.
semanticscholar.org/CorpusID:96438794.

Deaville, P., Zhang, B., and Verma, N. A 22nm 128-kb
mram row/column-parallel in-memory computing macro
with memory-resistance boosting and multi-column adc
readout. In 2022 IEEE Symposium on VLSI Technology
and Circuits (VLSI Technology and Circuits), pp. 268–
269, 2022. doi: 10.1109/VLSITechnologyandCir46769.
2022.9830153.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255. Ieee, 2009.

Dettmers, T., Pagnoni, A., Holtzman, A., and Zettlemoyer,
L. Qlora: Efficient finetuning of quantized llms. arXiv
preprint arXiv:2305.14314, 2023.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Dong, Q., Sinangil, M. E., Erbagci, B., Sun, D., Khwa, W.-
S., Liao, H.-J., Wang, Y., and Chang, J. A 351tops/w and
372.4gops compute-in-memory sram macro in 7nm finfet
cmos for machine-learning applications. In 2020 IEEE
International Solid- State Circuits Conference - (ISSCC),
pp. 242–244, 2020. doi: 10.1109/ISSCC19947.2020.
9062985.

Elfwing, S., Uchibe, E., and Doya, K. Sigmoid-weighted
linear units for neural network function approximation
in reinforcement learning. Neural Networks, 107:3–11,
2018.

Esser, S. K., McKinstry, J. L., Bablani, D., Appuswamy, R.,
and Modha, D. S. Learned step size quantization. arXiv
preprint arXiv:1902.08153, 2019.

Gonugondla, S. K., Sakr, C., Dbouk, H., and Shanbhag,
N. R. Fundamental limits on energy-delay-accuracy of
in-memory architectures in inference applications. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 41:3188–3201, 2020.

Guo, H., Greengard, P., Xing, E. P., and Kim, Y. Lq-
lora: Low-rank plus quantized matrix decomposition
for efficient language model finetuning. arXiv preprint
arXiv:2311.12023, 2023.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

He, Z., Lin, J., Ewetz, R., Yuan, J.-S., and Fan, D. Noise
injection adaption: End-to-end reram crossbar non-ideal
effect adaption for neural network mapping. In 2019 56th
ACM/IEEE Design Automation Conference (DAC), pp.
1–6, 2019.

Hendrycks, D. and Gimpel, K. Gaussian error linear units
(gelus). arXiv preprint arXiv:1606.08415, 2016.

Houshmand, P., Sun, J., and Verhelst, M. Benchmarking
and modeling of analog and digital sram in-memory com-
puting architectures. arXiv preprint arXiv:2305.18335,
2023.

Hsieh, S.-E., Wei, C.-H., Xue, C.-X., Lin, H.-W., Tu, W.-H.,
Chang, E.-J., Yang, K.-T., Chen, P.-H., Liao, W.-N., Low,
L. L., Lee, C.-D., Lu, A.-C., Liang, J., Cheng, C.-C.,
and Kang, T.-H. 7.6 a 70.85-86.27tops/w pvt-insensitive
8b word-wise acim with post-processing relaxation. In
2023 IEEE International Solid- State Circuits Conference
(ISSCC), pp. 136–138, 2023. doi: 10.1109/ISSCC42615.
2023.10067335.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation of
large language models. arXiv preprint arXiv:2106.09685,
2021.

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard,
A. G., Adam, H., and Kalenichenko, D. Quantization
and training of neural networks for efficient integer-
arithmetic-only inference. 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 2704–
2713, 2017.

Jia, H., Ozatay, M., Tang, Y., Valavi, H., Pathak, R., Lee, J.,
and Verma, N. Scalable and programmable neural net-
work inference accelerator based on in-memory comput-
ing. IEEE Journal of Solid-State Circuits, 57(1):198–211,
2022. doi: 10.1109/JSSC.2021.3119018.

Jin, Q., Chen, Z., Ren, J., Li, Y., Wang, Y., and Yang, K.
Pim-qat: Neural network quantization for processing-in-
memory (pim) systems. arXiv preprint arXiv:2209.08617,
2022.

Jocher, G., Chaurasia, A., Stoken, A., Borovec, J.,
NanoCode012, Kwon, Y., Michael, K., TaoXie, Fang,
J., imyhxy, Lorna, Zeng, Y., Wong, C., V, A., Montes,
D., Wang, Z., Fati, C., Nadar, J., Laughing, UnglvK-
itDe, Sonck, V., tkianai, yxNONG, Skalski, P., Hogan, A.,
Nair, D., Strobel, M., and Jain, M. ultralytics/yolov5:

10

https://api.semanticscholar.org/CorpusID:96438794
https://api.semanticscholar.org/CorpusID:96438794

Reshape and Adapt for Output Quantization (RAOQ): Quantization-aware Training for In-memory Computing Systems

v7.0 - YOLOv5 SOTA Realtime Instance Segmenta-
tion, November 2022. URL https://doi.org/10.
5281/zenodo.7347926.

Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal,
G., Bajwa, R., Bates, S., Bhatia, S., Boden, N., Borchers,
A., et al. In-datacenter performance analysis of a tensor
processing unit. In Proceedings of the 44th annual inter-
national symposium on computer architecture, pp. 1–12,
2017.

Lee, J., Valavi, H., Tang, Y., and Verma, N. Fully
row/column-parallel in-memory computing sram macro
employing capacitor-based mixed-signal computation
with 5-b inputs. In 2021 Symposium on VLSI Circuits,
pp. 1–2, 2021. doi: 10.23919/VLSICircuits52068.2021.
9492444.

Li, H., Xu, Z., Taylor, G., Studer, C., and Goldstein, T.
Visualizing the loss landscape of neural nets. Advances
in neural information processing systems, 31, 2018.

Li, Y., Yu, Y., Liang, C., He, P., Karampatziakis, N.,
Chen, W., and Zhao, T. Loftq: Lora-fine-tuning-aware
quantization for large language models. arXiv preprint
arXiv:2310.08659, 2023.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ra-
manan, D., Dollár, P., and Zitnick, C. L. Microsoft coco:
Common objects in context. In Computer Vision–ECCV
2014: 13th European Conference, Zurich, Switzerland,
September 6-12, 2014, Proceedings, Part V 13, pp. 740–
755. Springer, 2014.

Long, Y., She, X., and Mukhopadhyay, S. Design of reliable
dnn accelerator with un-reliable reram. In 2019 Design,
Automation & Test in Europe Conference & Exhibition
(DATE), pp. 1769–1774, 2019. doi: 10.23919/DATE.
2019.8715178.

Merity, S., Xiong, C., Bradbury, J., and Socher, R. Pointer
sentinel mixture models, 2016.

Murmann, B. ADC Performance Survey 1997-
2023. [Online]. Available: https://github.com/
bmurmann/ADC-survey.

OpenAI. Gpt-4 technical report. ArXiv, abs/2303.08774,
2023.

Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. Squad:
100,000+ questions for machine comprehension of text.
arXiv preprint arXiv:1606.05250, 2016.

Rasch, M. J., Mackin, C., Gallo, M. L., Chen, A., Fasoli,
A., Odermatt, F., Li, N., Nandakumar, S. R., Narayanan,
P., Tsai, H., Burr, G. W., Sebastian, A., and Narayanan,
V. Hardware-aware training for large-scale and diverse

deep learning inference workloads using in-memory
computing-based accelerators. Nature Communications,
14, 2023. URL https://api.semanticscholar.
org/CorpusID:256900830.

Sakr, C. and Shanbhag, N. R. Signal processing methods to
enhance the energy efficiency of in-memory computing
architectures. IEEE Transactions on Signal Processing,
69:6462–6472, 2021. doi: 10.1109/TSP.2021.3130488.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and
Chen, L.-C. Mobilenetv2: Inverted residuals and linear
bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520,
2018.

Shkolnik, M., Chmiel, B., Banner, R., Shomron, G.,
Nahshan, Y., Bronstein, A. M., and Weiser, U. C. Ro-
bust quantization: One model to rule them all. ArXiv,
abs/2002.07686, 2020.

Smith, S., Patwary, M., Norick, B., LeGresley, P., Rajbhan-
dari, S., Casper, J., Liu, Z., Prabhumoye, S., Zerveas, G.,
Korthikanti, V., et al. Using deepspeed and megatron to
train megatron-turing nlg 530b, a large-scale generative
language model. arXiv preprint arXiv:2201.11990, 2022.

Spetalnick, S. D., Chang, M., Konno, S., Crafton, B., Lele,
A. S., Khwa, W.-S., Chih, Y.-D., Chang, M.-F., and Ray-
chowdhury, A. A 2.38 mcells/mm2 9.81 -350 tops/w rram
compute-in-memory macro in 40nm cmos with hybrid
offset/ioff cancellation and icell rblsl drop mitigation. In
2023 IEEE Symposium on VLSI Technology and Circuits
(VLSI Technology and Circuits), pp. 1–2, 2023. doi: 10.
23919/VLSITechnologyandCir57934.2023.10185424.

Sun, H., Zhu, Z., Cai, Y., Zeng, S., Qiu, K., Wang, Y., and
Yang, H. Reliability-aware training and performance mod-
eling for processing-in-memory systems. In 2021 26th
Asia and South Pacific Design Automation Conference
(ASP-DAC), pp. 847–852, 2021.

Tan, M. and Le, Q. Efficientnet: Rethinking model scal-
ing for convolutional neural networks. In International
conference on machine learning, pp. 6105–6114. PMLR,
2019.

Team, G., Anil, R., Borgeaud, S., Wu, Y., Alayrac, J.-B., Yu,
J., Soricut, R., Schalkwyk, J., Dai, A. M., Hauth, A., et al.
Gemini: a family of highly capable multimodal models.
arXiv preprint arXiv:2312.11805, 2023.

Verma, N., Jia, H., Valavi, H., Tang, Y., Ozatay, M., Chen,
L.-Y., Zhang, B., and Deaville, P. In-memory comput-
ing: Advances and prospects. IEEE Solid-State Circuits
Magazine, 11(3):43–55, 2019. doi: 10.1109/MSSC.2019.
2922889.

11

https://doi.org/10.5281/zenodo.7347926
https://doi.org/10.5281/zenodo.7347926
https://github.com/bmurmann/ADC-survey
https://github.com/bmurmann/ADC-survey
https://api.semanticscholar.org/CorpusID:256900830
https://api.semanticscholar.org/CorpusID:256900830

Reshape and Adapt for Output Quantization (RAOQ): Quantization-aware Training for In-memory Computing Systems

Villalobos, P., Sevilla, J., Besiroglu, T., Heim, L., Ho, A.,
and Hobbhahn, M. Machine learning model sizes and the
parameter gap. arXiv preprint arXiv:2207.02852, 2022.

Wan, W., Kubendran, R., Schaefer, C., Eryilmaz, S. B.,
Zhang, W., Wu, D., Deiss, S., Raina, P., Qian, H., Gao,
B., et al. A compute-in-memory chip based on resistive
random-access memory. Nature, 608(7923):504–512,
2022.

Wang, N., Liu, C.-C. C., Venkataramani, S., Sen, S., Chen,
C.-Y., El Maghraoui, K., Srinivasan, V. V., and Chang,
L. Deep compression of pre-trained transformer models.
Advances in Neural Information Processing Systems, 35:
14140–14154, 2022.

Wei, W.-C., Jhang, C.-J., Chen, Y.-R., Xue, C.-X., Sie, S.-
H., Lee, J.-L., Kuo, H.-W., Lu, C.-C., Chang, M.-F., and
Tang, K.-T. A relaxed quantization training method for
hardware limitations of resistive random access mem-
ory (reram)-based computing-in-memory. IEEE Journal
on Exploratory Solid-State Computational Devices and
Circuits, 6:45–52, 2020.

Workshop, B., Scao, T. L., Fan, A., Akiki, C., Pavlick, E.,
Ilić, S., Hesslow, D., Castagné, R., Luccioni, A. S., Yvon,
F., et al. Bloom: A 176b-parameter open-access multilin-
gual language model. arXiv preprint arXiv:2211.05100,
2022.

Xu, Y., Xie, L., Gu, X., Chen, X., Chang, H., Zhang, H.,
Chen, Z., Zhang, X., and Tian, Q. Qa-lora: Quantization-
aware low-rank adaptation of large language models.
arXiv preprint arXiv:2309.14717, 2023.

Yao, Z., Yazdani Aminabadi, R., Zhang, M., Wu, X., Li,
C., and He, Y. Zeroquant: Efficient and affordable post-
training quantization for large-scale transformers. Ad-
vances in Neural Information Processing Systems, 35:
27168–27183, 2022.

Yin, S., Jiang, Z., Seo, J.-S., and Seok, M. Xnor-sram: In-
memory computing sram macro for binary/ternary deep
neural networks. IEEE Journal of Solid-State Circuits, 55
(6):1733–1743, 2020. doi: 10.1109/JSSC.2019.2963616.

Zhang, B., Deaville, P., and Verma, N. Statistical computing
framework and demonstration for in-memory computing
systems. In Proceedings of the 59th ACM/IEEE Design
Automation Conference, DAC ’22, pp. 979–984, 2022a.
doi: 10.1145/3489517.3530557.

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M.,
Chen, S., Dewan, C., Diab, M., Li, X., Lin, X. V.,
et al. Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068, 2022b.

12

Reshape and Adapt for Output Quantization (RAOQ): Quantization-aware Training for In-memory Computing Systems

A. Impact of W-reshape on Inference Accuracy
In Section 3.2 of the paper, we introduce a weight reshaping method (W-reshape) to adjust weight statistics to improve
SQNR following ADC quantization. In this section, we study the impact of W-reshape on inference accuracy. Specifically,
we use ResNet50 as an example in this study. We first visualize kurtosis with different λκ in Fig. 5a by computing the
kurtosis for quantized weights at each layer. As seen, increasing λκ reduces kurtosis, but saturates when λκ becomes too
large. We also observe that weights in the later layers are more resistive to the effects of kurtosis loss. As shown in Fig. 5b,
the blue dots represent the case when we apply a constant λκ to all layers, where we can observe larger kurtosis in later
layers. We can therefore adjust the kurtosis-loss coefficient for these layers, applying 4× higher weighting, i.e.,

LQ = Lc + λκ

(
J∑

l=1

κl + 4

L∑
l=J+1

κl

)
(13)

where L is the number of layers, and J is the boundary to split front layers and later layers. The result is illustrated as
orange dots in Fig. 5b, which show reduced kurtosis in later layers.

Table 8 and Table 9 show both the ResNet50 and MobileNetV2 accuracy of QAT (i.e., without ADC) and the accuracy
after incorporating ADC quantization under different strengths of the kurtosis loss. As we can see, there is clearly a
trade-off between QAT accuracy and the amount of kurtosis loss applied, which therefore impacts the overall accuracy with
ADC quantization. First, we can see that small λκ provides slightly higher accuracy for QAT without ADC quantization.
However, large kurtosis of the quantized-weight distribution leads to low variance of the IMC compute output (ADC input).
Consequently, accuracy after incorporating ADC quantization is low. An extremely large λκ starts to degrade accuracy of
QAT without ADC quantization, and thus limits the accuracy achievable after incorporating ADC quantization, despite larger
variance of the IMC compute output. This can be further understood by plotting the distributions of quantized weights for
each λκ, as shown in Fig. 5c-5e. As seen, a large λκ leads to significant clipping error, eliminating almost all information,
and thus resulting in degraded accuracy. Therefore, in this work, we choose λκ = 0.0005 for ResNet50 and 0.00065 for
MobileNetV2 to maximize the variance of quantized weights.

Table 8. ResNet accuracy with different λκ.
λκ 0 0.000025 0.00005 0.0005 0.005 0.01

ACCURACY (W/O ADC) 76.35 76.36 76.32 76.31 76.15 75.51

ACCURACY (W/ ADC) 75.91 75.92 76.05 76.27 75.77 75.02

Table 9. MobileNetv2 accuracy with different λκ.
λκ 0 0.00004 0.00065 0.0008 0.002 0.01

ACCURACY (W/O ADC) 70.44 70.51 70.47 70.33 69.98 69.05

ACCURACY (W/ ADC) 69.92 70.02 70.46 70.24 69.65 68.86

B. IMC Compatibility
All techniques in RAOQ are compatible generally across IMC hardware. W-reshape and BitAug simply impact the weight
parameters derived from neural network training. A-shift is a little different, in that it is affected by how activations are
mapped for IMC computation after training, and here we examine its impact from different IMC hardware approaches.
Previous IMC works employ different ways of encoding multi-bit activations and weights. For example, Dong et al. (2020)
follows conventional 2’s complement format, which we refer to as 0/1 representation, corresponding to the mathematical
value of individual binary-weighted bits. However, other works like (Lee et al., 2021) represent a multi-bit number with
individual binary-weighted bits taking mathematical values of -1 or 1, thus enabling multiplication simply by performing
logical XNOR operations. We refer to this format as -1/1 representation. These two types of number representations are
illustrated in Fig. 6, taking 2-bit as an example. In Section 3.2 of the paper, we show A-shift for 0/1 representation, which is
the default number representation in neural network training. In fact, our proposed A-shift can be easily adapted to -1/1

13

Reshape and Adapt for Output Quantization (RAOQ): Quantization-aware Training for In-memory Computing Systems

lay
er

 1
lay

er
 2

lay
er

 3
lay

er
 4

lay
er

 5
lay

er
 6

lay
er

 7
lay

er
 8

lay
er

 9
lay

er
 10

lay
er

 11
lay

er
 12

lay
er

 13
lay

er
 14

lay
er

 15
lay

er
 16

lay
er

 17
lay

er
 18

lay
er

 19
lay

er
 20

lay
er

 21
lay

er
 22

lay
er

 23
lay

er
 24

lay
er

 25
lay

er
 26

lay
er

 27
lay

er
 28

lay
er

 29
lay

er
 30

lay
er

 31
lay

er
 32

lay
er

 33
lay

er
 34

lay
er

 35
lay

er
 36

lay
er

 37
lay

er
 38

lay
er

 39
lay

er
 40

lay
er

 41
lay

er
 42

lay
er

 43
lay

er
 44

lay
er

 45
lay

er
 46

lay
er

 47
lay

er
 48

Layer index

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
Ku

rto
sis

= 0.00005
= 0.0005
= 0.005

(a) Kurtosis of each layer.

lay
er

 1
lay

er
 2

lay
er

 3
lay

er
 4

lay
er

 5
lay

er
 6

lay
er

 7
lay

er
 8

lay
er

 9
lay

er
 10

lay
er

 11
lay

er
 12

lay
er

 13
lay

er
 14

lay
er

 15
lay

er
 16

lay
er

 17
lay

er
 18

lay
er

 19
lay

er
 20

lay
er

 21
lay

er
 22

lay
er

 23
lay

er
 24

lay
er

 25
lay

er
 26

lay
er

 27
lay

er
 28

lay
er

 29
lay

er
 30

lay
er

 31
lay

er
 32

lay
er

 33
lay

er
 34

lay
er

 35
lay

er
 36

lay
er

 37
lay

er
 38

lay
er

 39
lay

er
 40

lay
er

 41
lay

er
 42

lay
er

 43
lay

er
 44

lay
er

 45
lay

er
 46

lay
er

 47
lay

er
 48

Layer index

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Ku
rto

sis

Constant for all layers
4X weight coefficient on later layers

(b) Comparison of different strategies to assign λκ to neural network layers.

6 3 0 3 60

1000

2000

3000

(c) λκ = 0.00005

6 3 0 3 60

1000

2000

(d) λκ = 0.0005

6 3 0 3 60

2000

4000

6000

(e) λκ = 0.005

Figure 5. Visualize the impact of W-reshape on quantized weights.

14

Reshape and Adapt for Output Quantization (RAOQ): Quantization-aware Training for In-memory Computing Systems

representation as well. This is because these two representations can be converted to each other via a linear transformation.
Let x0/1 and x−1/1 denote the IMC input for 0/1 representation and -1/1 representation, respectively, then:

x−1/1 = 2 x0/1 + 1 (14)

Therefore, A-shift for -1/1 representation can be expressed as:

xs = 2

⌊
clip

(
x− β

sx
, 0, 2bx − 1

)⌉
− (2bx − 1) (15)

= 2 x−1/1 − (2bx − 1) (16)

We can see that while A-shift for 0/1 representation shifts the range from {n : n ∈ Z and n ≥ 0 and n ≤ 2bx − 1} to
{n : n ∈ Z and n ≥ −2bx−1 and n ≤ 2bx−1 − 1}, A-shift for -1/1 representation shifts to {2n + 1 : n ∈ Z and n ≥
−2bx−1 and n ≤ 2bx−1 − 1}. Similar to the case of 0/1 representation, the extra offset introduced by A-shift can be
computed offline. In summary, all of our proposed approaches are compatible with various IMC types.

Number Representation

-2 1 0

-1 1 1

0 0 0

1 0 1

(a) 0/1 representation.

Number Representation

-3 -1 -1

-1 -1 1

1 1 -1

3 1 1

(b) -1/1 representation.

𝟏𝟏 𝟑𝟑 −𝟏𝟏

−𝟑𝟑 𝟏𝟏 𝟏𝟏

𝟑𝟑𝟏𝟏−𝟏𝟏

⋯

⋯

⋯

⋯ ⋯ ⋯

−𝟑𝟑

𝟏𝟏

𝟑𝟑

⋯

𝒚𝒚𝟏𝟏 𝒚𝒚𝟐𝟐 𝒚𝒚𝑵𝑵

Memory Array

⋯

+ + +

ADC

(c) IMC.

Figure 6. (a-b) Number representations of different IMCs. (c) Example IMC system using -1/1 representation.

40 20 0 20 40
0

500

1000

1500

2000

2500

(a)
20 0 200

1000

2000

3000

4000

(b)
20 10 0 10 20 300

1000

2000

3000

4000

5000

(c)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

46
.44

46.44

46
.3

8

46.38

46.38

46.
38

46.32

46.32

46.32
46.26

46.26

46.20

46.14

(d)
1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

52
.1

0

52.05

52.00

52.00

51.95

51
.95 51.95

51.90
51.9051.85

(e)
0.2 0.1 0.0 0.1 0.2

0.2

0.1

0.0

0.1

0.2

2.12.
6

3.13.6

4.1

4.
6

4.6

4.
6

4.6

5.1

5.
1

5.
6

5.6

5.
6

5.6

6.1

6.1

6.1

6.6

6.67.1

(f)

Figure 7. (a) Illustration of g(·). (b-c) Weight distribution collected at the last iteration without and with BitAug applied, respectively.
(d-e) Loss surfaces starting from pre-trained checkpoints without and with BitAug applied, separately. (f) Loss surface of a 6-bit ADC
with BitAug applied.

15

Reshape and Adapt for Output Quantization (RAOQ): Quantization-aware Training for In-memory Computing Systems

C. Analysis of BitAug
In this section, we provide a further study of BitAug. We argue that BitAug can assist the training process to avoid getting
stuck in local minima. To demonstrate this, we consider a toy example, i.e., a single layer neural network with randomly
generated input X ∈ RM×M and a randomly generated weight W ∈ RM×N , followed by a simple spiking function
g(x) = x2 − 60cos(x) (with global minimum at x = 0), as shown in Fig. 7a. We define the loss function as:

L =
∑
i,j

g(XW)i,j (17)

To study the effects of BitAug, we introduce quantizers for the activations, weights, and outputs of this network. Clearly, L
gets its global minimum when all weights are zero. We first perform training without BitAug. The statistics of the weight
parameters from the last iteration are shown in Fig. 7b with a standard deviation of 18.07. Rather than converging to zero,
most of the weights are concentrated at some negative value, which indicates a possible local minima. Comparatively,
the results after applying BitAug are shown in Fig. 7c with a standard deviation of 12.39. As seen, it shows a stronger
convergence towards zero compared to without BitAug, improving the ability to escape from the local minima.

We further plot the loss surfaces at the pre-trained checkpoints for both cases (i.e., without and with BitAug), illustrated in
Fig. 7d and Fig. 7e. We observe a reduction of the number local minimum after applying BitAug. Fig. 7f further confirms
this observation, which shows the loss surface with 6-bit ADC and with BitAug applied. Compared to Fig. 4d where BitAug
is not present, we can see a reduced number of local minimums.

D. Choosing Bit precision Candidates for BitAug

Table 10. Accuracy of different choices of candidate sets.

MODEL {} {−2,−1} {−1, 1} {+1,+2} {−1, 1, 2} {−2,−1,
+1,+2}

{−1,+1,
+2,+3}

MOBILENETV2 68.45 66.65 68.98 68.70 69.92 69.11 69.41
RESNET50 74.47 71.12 73.37 73.42 75.83 74.77 75.21
BERT-BASE 85.45 82.13 85.41 86.88 86.92 86.04 86.58

In this section, we first explore the impact of different candidate sets. Table 10 shows the model accuracy of different
candidates using MobileNetV2, ResNet50, and BERT-base as examples, with 4-bit activations/weights and 8-bit ADCs.
In order to see the more obvious effects from BitAug, we use ADCs with k = 1, i.e., more quantization noise. Each
candidate set is represented by the offset of element values from the target ADC bit precision ba, e.g., {−2,−1} implies
{ba − 2, ba − 1}. As seen, {−1, 1, 2} achieves the highest accuracy, and thus is used for our experiments in Section 4.

Table 11. Evaluation accuracy by executing BitAug in different modes.

MODE SAMPLE SINGLE BIT RUN ALL CANDIDATES

ACCURACY 69.92 69.04

We also explore the relationship between the train-
ing complexity and the model accuracy. Table 11
compares the accuracy achieved by randomly sam-
pling one element from the candidate set as well
as running all elements from the candidate set si-
multaneously. As seen, our proposed execution
of BitAug not only has lower computational com-
plexity compared to running all bits at once, but
demonstrates higher accuracy.

E. Discussion of LoRA Initialization
The initialization of LoRA-based techniques is aimed at initializing its parameters A and B in a way such that the model
behaves the same as before at the beginning of the finetuning, which prevents a drastic change of the model. Recent works
propose to employ SVD to approximate A and B (Li et al., 2023; Guo et al., 2023) for weight quantization. However,
such a method does not apply to IMC ADC quantization. The most important reason is that such an initialization only
considers weight quantization and does not account for any quantization effects on the computed output (i.e., the product of
activations and weights). After all, the ADC quantization is dependent on not only weight parameters but also activations.

16

Reshape and Adapt for Output Quantization (RAOQ): Quantization-aware Training for In-memory Computing Systems

Therefore, this work proposes an MSE-based approach to properly initialize the model for ADC quantization and minimize
such quantization errors, as indicated in Eq. 12. We use the first few iterations for this regression during the RAOQ stage,
and then switch back to the normal finetuning against the ground truth through the proposed methods. Our results in Section
4 have demonstrated the effectiveness of such an initialization method. Table 12 shows a comparison of our proposed
ADC-LoRA with other methods, with 4-bit activations and weights, and 8-bit ADC. BERT-large is measured in F1 score,
whereas OPT-1.3B and BLOOM-1.1B are evaluated in perplexity using the WikiText-2 dataset. While different approaches
tend to favor different models, our proposed method consistently demonstrates high performance.

Table 12. Comparison of ADC-LoRA with other initialization methods for IMC ADC quantization.
METHODS (HU ET AL., 2021) (LI ET AL., 2023) ADC-LORA

BERT-LARGE 89.19 89.10 89.28
OPT-1.3B 15.02 14.88 14.42
BLOOM-1.1B 21.11 20.09 20.06

F. Impact of IMC Configurations
In this section, we explore our proposed RAOQ under different hardware configurations. First, we choose ResNet50,
MobileNetV2, and BERT-base for different IMC rows, corresponding to the inner-product accumulation dimension. Table
13 shows the evaluation accuracy for different memory inner-product dimensions with 4-bit activations and weights, and
8-bit ADCs having k = 4, demonstrating the consistently high accuracy. As we can see, our proposed RAOQ is robust
across different memory sizes, indicating promise for deriving substantial benefits from in-memory computing. We can also
see that different models slightly favor different memory dimensions. For example, ResNet50 and MobileNetV2 degrade
slightly for the case of 256 rows, while BERT-base achieves the best accuracy in this case. This is related to the size of
different neural network layers and their mapping to IMC systems, which is out of the scope of this work.

Table 13. Evaluation accuracy of different memory inner-dimensions.
OF ROWS 128 256 512 768 1024

RESNET50 76.33 76.28 76.27 76.31 76.24
MOBILENETV2 70.53 70.40 70.46 70.45 70.43
BERT-BASE 87.45 87.81 87.67 87.59 87.32

Fig. 14 shows the performance of our proposed RAOQ with different values of k, i.e., the clipping set by hardware designers.
As observed, these models generally favor some clipping in exchange for finer ADC quantization steps. Despite employing
aggressive clipping with k = 8, these models preserve relatively high accuracy. This can be attributed to the fact that even
with the use of our proposed W-reshape and A-shift, the distribution of ADC-input data still concentrates within a narrow
portion of the entire ADC range. Therefore, ADC quantization error still dominates clipping error. However, a significant
degradation in model accuracy becomes apparent when k is set to 16, even with the help of our proposed RAOQ. At this
point, clipping errors start to dominant, leading to considerable loss of information.

Table 14. Evaluation accuracy of different k.
k 1 2 4 8 16

RESNET50 75.84 76.21 76.27 76.13 75.67
MOBILENETV2 69.92 70.36 70.46 70.48 69.47
BERT-BASE 86.74 86.97 87.67 87.28 6.62

G. Comparison of QAT methods
Table 15 shows a comparison between different QAT methods based on the BERT-base model with 4-bit weights and
activations, and 8-bit ADCs. The first column shows the name of each tested QAT method. The resting columns show
the accuracy without ADC present, with ADC present but without RAOQ techniques, with ADC present and with RAOQ

17

Reshape and Adapt for Output Quantization (RAOQ): Quantization-aware Training for In-memory Computing Systems

applied, respectively. As seen, RAOQ demonstrates a stable behavior on all of these methods, significantly restoring their
performance to baseline level.

Table 15. Comparison of different QAT methods.
METHODS QAT WITHOUT ADC QAT ONLY RAOQ

LSQ+ (BHALGAT ET AL., 2020) 87.75 82.43 87.67
LSQ (ESSER ET AL., 2019) 87.60 82.02 87.41
PACT+SAWB (CHOI ET AL., 2019) 87.49 80.88 87.34

H. Comparison with IMC QAT Methods on More Complex Tasks
Although prior IMC QAT works only demonstrated the results on simple tasks and datasets as mentioned in Section 4.2,
e.g., image classification on CIFAR-10, we implemented these methods by ourselves and made a comparison between
these works and our proposed RAOQ approach to complete our study. This is illustrated in Table 16-17. ResNet18/50,
MobileNetv2, and EfficientNet-lite0 are evaluated on ImageNet (accuracy); YOLOv5s is evaluated on COCO 2017 (mAP);
BERT family is evaluated on SQuAD 1.1 (F1 score). Higher values for these metrics indicate better results. On the other
hand, OPT and BLOOM models are evaluated on WikiText-2 (perplexity), where lower values indicate better results. As
seen, our proposed approach consistently outperforms in all cases.

Table 16. Comparison of different IMC QAT methods with 4-bit weights and activations, and 8-bit ADCs on CNN models.

RESNET18/50 MOBILENETV2 EFFICIENTNET-LITE0 YOLOV5S

(JIN ET AL., 2022) 68.98 / 75.14 67.67 68.54 30.24
(SUN ET AL., 2021) 69.24 / 75.58 66.02 67.46 31.84
(WEI ET AL., 2020) 66.64 / 74.32 10.06 14.75 30.12
RAOQ 70.45 / 76.27 70.46 72.76 33.49

Table 17. Comparison of different IMC QAT methods with 4-bit weights and activations, and 8-bit ADCs on transformer models.

BERT-BASE/LARGE OPT-125M/350M/1.3B BLOOM-560M/1.1B/1.7B

(JIN ET AL., 2022) 86.23 / 87.54 38.12 / 29.26 / 21.34 42.12 / 33.12 / 28.14
(SUN ET AL., 2021) 87.02 / 88.52 30.13 / 23.56 / 19.76 32.71 / 26.45 / 21.02
(WEI ET AL., 2020) 22.12 / 22.34 476.68 / 250.12 / 98.86 122.02 / 211.64 / 102.64
RAOQ 87.67 / 89.28 24.71 / 19.88 / 14.42 24.94 / 20.06 / 17.06

I. Framework
Algorithm 1 summarizes our training framework for IMC ADC quantization, including the proposed A-shift, W-reshape,
BitAug, and ADC-LoRA approaches. All implementations are done in PyTorch. Once the model is trained, it is employed
for inference using IMC, as shown in Fig. 8. For the IMC inference, the input data and model parameters are first transferred
to the IMC system. The output is then collected and sent back to the host for further processing.

J. Training Details
In this section, we describe the models, datasets, and hyperparameter settings used in our experiments. We implement our
models in the PyTorch framework. The first and last layers are kept in 8-bit, and are not mapped to the IMC. Mapping these
layers to IMC provides marginal benefit, since the first layers have few input channels and thus limited opportunity for
row parallelism, while the last layers have low data reuse, contributing a small number of total operations and restricting
amortization of the IMC weight-loading overheads. Also, to preserve the fidelity of critical information, we do not map
depthwise convolutions in the MobileNet family, and the second matrix-matrix multiplication in the self-attention module of
transformer models (BMM2) to the IMC system. This is justified as these layers account for a small number of computations

18

Reshape and Adapt for Output Quantization (RAOQ): Quantization-aware Training for In-memory Computing Systems

Algorithm 1 RAOQ for IMC ADC Quantization. J is the number of layers, QX(·) and QW (·) are conventional quantizers
for activations and weights, respectively, QA(·) is the ADC quantizer defined in Eq. 2, sw, sx, and β are quantization
parameters, τ denotes the initialization duration for ADC-LoRA, IQ and IA denote the total number of iterations for QAT
and ADC phases, separately.

Input: pre-trained floating-point model, input x
{QAT stage}
for i = 1 to IQ do
Lκ ← 0
for j = 1 to J do
x← QX(x, bx, sx, β)
w ← QW (w, bw, sw)
y ← MVM(x,w)
Lκ ← Lκ + κ(w) # κ is defined in Eq. 6 for W-reshape

end for
Compute the loss Lc against the ground truth
LQ ← Lc + λκLκ

Backprop based on LQ and update model parameters
end for
Collect updated model parameters
{RAOQ stage}
for i = 1 to τ do

Initialize LoRA parameters A and B via ADC-LoRA defined in Eq. 12
end for
for i = τ + 1 to IA do

for j = 1 to J do
x← QX(x, bx, sx, β)− 2bx−1 # for A-shift
w ← QW (w,A,B, bw, sw)
y ← IMC(x,w) # IMC(·) indicates performing computation in IMC systems
y ← QA(y, ba)

end for
Compute the loss Lc(ba) against the ground truth based on ba and backprop
Sample b̃a from candidate set B # prepare for BitAug
for j = 1 to J do
x← QX(x, bx, sx, β)− 2bx−1

w ← QW (w,A,B, bw, sw)
y ← IMC(x,w) # IMC(·) indicates performing computation in IMC systems
y ← QA(y, b̃a)

end for
Compute the loss Lc(̃ba) against the ground truth based on b̃a and backprop
LA ← Lc(ba) + λbLc(̃ba)
Accumulate gradients from BitAug and update model parameters (Eq. 8)

end for

Host IMC

Input data

Model parameters

Output data
Collect

Figure 8. Inference flow using IMC.

19

Reshape and Adapt for Output Quantization (RAOQ): Quantization-aware Training for In-memory Computing Systems

in the overall model (e.g., < 7% for depthwise convolutions in MobileNetV2 and < 1.5% for BMM2 in BERT), thus
giving minor energy-efficiency advantage by execution via IMC. λb for BitAug is initialized to be 1, and drops following a
cosine scheduling for all models. We first perform QAT for these models based on LSQ+ (Bhalgat et al., 2020) without
ADC quantization. Specifically, we perform per-tensor quantization for both activations and weights for CNN models and
encoder models. For decoder models (OPT and BLOOM), we apply per-tensor quantization for activations and per-channel
quantization for weights due to their high sensitivity to quantization. Then we perform our proposed RAOQ with ADC
quantization incorporated. In the following sections, we show the training curves for both QAT stage (without ADC
quantization) and the training stage with ADC quantization involved for each model, with 4-bit activations and weights, and
8-bit ADCs as examples.

J.1. Image Classification

We perform image classification using the ImageNet dataset (Deng et al., 2009). Our experiments consist of models from
the ResNet family and the MobileNet family, whose training settings are discussed in detail as follows.

ResNet18. For 4-bit QAT (i.e., 4-bit activations and weights), we perform training for 90 epochs, with a batch size of
256. We use SGD optimizer with a momentum of 0.9 and weight decay of 0.0001. The learning rate starts at 0.01 and
gradually drops, following a cosine annealing scheduler. λκ is set to 0.002. For 8-bit QAT, we follow the same optimizer
and batch size as the 4-bit case. We train for 30 epochs with an initial learning rate of 0.005. λκ is set to 0.0014. When
ADC quantization is added to the model, we perform another 30-epoch training, using the cosine annealing learning rate
scheduler with an initial learning rate of 0.004. The optimizer and batch size remain the same as those used in the previous
QAT stage. All experiments for ResNet18 are conducted on 2 Nvidia A100 GPUs.

0 20 40 60 80
Epoch

50.0

52.5

55.0

57.5

60.0

62.5

65.0

67.5

70.0

Ac
cu

ra
cy

 (%
)

(a) QAT without ADC

0 5 10 15 20 25 30
Epoch

50.0

52.5

55.0

57.5

60.0

62.5

65.0

67.5

70.0

Ac
cu

ra
cy

 (%
)

(b) RAOQ with ADC

Figure 9. Training curves for ResNet18.

ResNet50. During the QAT stage, we train for 80 epochs, with batch size 256 for 4-bit activations and weights. We use the
same optimizer and learning rate scheduler as used for ResNet18. λκ for ResNet50 is set to 0.0005. For 8-bit QAT, we
maintain the same optimizer and learning rate scheduler, but with a different initial learning rate of 0.002. We train for 40
epochs with a batch size of 256. λκ is set to 0.00011. For the next stage incorporating ADC quantization, we train for
another 40 epochs with an initial learning rate of 0.002. The rest of the settings are the same as those used for ResNet18. All
experiments for ResNet50 are performed on 2 Nvidia A100 GPUs.

MobileNetV2. We perform 4-bit QAT for 70 epochs with batch size 256. We use SGD optimizer with a momentum of 0.9
and weight decay of 0.00004. The initial learning rate is set to 0.01, with a cosine annealing scheduler. λκ is set to 0.00065.
For 8-bit QAT, we keep the same optimizer, scheduler, λκ, and batch size, training for 40 epochs with an initial learning
rate of 0.002. We then perform another stage of training with ADC quantization added for 50 epochs. We use the same
optimizer, scheduler, and batch size as used in QAT. The learning rate starts at 0.004. The entire training for MobileNetV2 is
on 2 Nvidia A100 GPUs.

EfficientNet-lite0. The settings are the same as MobileNetV2, except that λκ is set to 0.002. We perform training for 80
epochs with an initial learning rate of 0.01 for both 4-bit and 8-bit QAT. When ADC quantization is added for the subsequent
training phase, we use the same optimizer, scheduler, and batch size, running for 50 epochs. The initial learning rate is set to
0.004. Once again, we perform the experiments on 2 Nvidia A100 GPUs.

20

Reshape and Adapt for Output Quantization (RAOQ): Quantization-aware Training for In-memory Computing Systems

0 10 20 30 40 50 60 70 80
Epoch

55.0

57.5

60.0

62.5

65.0

67.5

70.0

72.5

75.0

Ac
cu

ra
cy

 (%
)

(a) QAT without ADC

0 5 10 15 20 25 30 35 40
Epoch

55.0

57.5

60.0

62.5

65.0

67.5

70.0

72.5

75.0

Ac
cu

ra
cy

 (%
)

(b) RAOQ with ADC

Figure 10. Training curves for ResNet50.

0 10 20 30 40 50 60 70
Epoch

50.0

52.5

55.0

57.5

60.0

62.5

65.0

67.5

70.0

Ac
cu

ra
cy

 (%
)

(a) QAT without ADC

0 10 20 30 40 50
Epoch

50.0

52.5

55.0

57.5

60.0

62.5

65.0

67.5

70.0

Ac
cu

ra
cy

 (%
)

(b) RAOQ with ADC

Figure 11. Training curves for MobileNetV2.

0 10 20 30 40 50 60 70 80
Epoch

55.0

57.5

60.0

62.5

65.0

67.5

70.0

72.5

Ac
cu

ra
cy

 (%
)

(a) QAT without ADC

0 10 20 30 40 50
Epoch

45

50

55

60

65

70

Ac
cu

ra
cy

 (%
)

(b) RAOQ with ADC

Figure 12. Training curves for EfficientNet-lite0.

21

Reshape and Adapt for Output Quantization (RAOQ): Quantization-aware Training for In-memory Computing Systems

J.2. Object Detection

We perform object detection on the COCO 2017 dataset (Lin et al., 2014). YOLOv5s is used to conduct the task.

YOLOv5s. We first retrain the floating point (FP) model by using hyperparameters indicated in (Jocher et al., 2022).
However, we remove the automatic mixed precision (AMP) features supported by PyTorch, since we would like to perform
quantization to the target bit precisions later on. Most of our hyperparameters remain the same as (Jocher et al., 2022)
suggested, and we specify those we customized for this work here. For 4-bit QAT, we train for 100 epochs with a batch
size of 64 with a weight decay of 0.0001. The initial learning rate is set to 0.004 following a cosine scheduler, and the
momentum for the optimizer is changed to 0.9 from 0.937 in (Jocher et al., 2022). The 8-bit QAT runs for 80 epochs with
the same optimizer, scheduler, and batch size as used for the 4-bit QAT, and an adjusted initial learning rate of 0.004. λκ is
set to 0.0001. For training with ADC quantization incorporated, we perform the training for 20 epochs for the 4-bit case,
with the initial learning rate of 0.0001 and weight decay of 0.00005. We train the 8-bit YOLO model with ADC quantization
for 90 epochs, using the same hyperparameters as used in the QAT stage except for the batch size increased to 128. Our
experiments are performed on 4 Nvidia A100 GPUs.

0 20 40 60 80 100
Epoch

10

20

30

m
AP

(a) QAT without ADC

0 5 10 15 20
Epoch

32.0

32.5

33.0

m
AP

 (%
)

(b) RAOQ with ADC

Figure 13. Training curves for YOLOv5s.

J.3. Natural Language Processing (NLP)

We perform the question-answering task on SQuAD 1.1 (Rajpurkar et al., 2016) for encoder models (BERT), and on the
language modeling task on WikiText-2 and WikiText-103 (Merity et al., 2016) for decoder models (OPT and BLOOM).
As only a small number of activations in the these models follow non-linear functions (e.g., GELU), we can apply A-shift
to only these layers. Activations from other layers are directly taken as the result of matrix multiplications. We find that
forcing their quantization to unsigned numbers causes accuracy degradation. For encoder models, we first finetune the
pre-trained FP models to the downstream SQuAD 1.1 dataset before quantization gets involved, as suggested by (Wang
et al., 2022). For decoder models, we skip the finetuning stage for FP models, directly quantizing the pre-trained model to
the downstream task. We use AdamW optimizer for the following experiments.

BERT-base/large. We use a batch size of 16, running for 4 epochs. The initial learning rate is kept at 0.00003, following a
linear decay. The dropout rate is raised to 0.2 for BERT-base. We observe that 4-bit QAT for BERT-large is sensitive to the
change in dropout rate. Thus, we start with a dropout rate of 0.1 for the first epoch and then raise to 0.2 for the rest of the
training. The RAOQ stage employs the same hyperparameters used in the QAT stage. Experiments are performed on 2
Nvidia A100 GPUs.

OPT-125m/350m/1.3B. During the QAT stage, we use a batch size of 8, 2, 2 for OPT-125m, OPT-350m, and OPT-1.3B,
respectively. To maintain reasonable memory usage, we apply LoRA for OPT-350m and OPT-1.3B, and initialize LoRA
parameters as a Gaussian and a zero tensor as Hu et al. (2021) suggested, with a rank of 64. The initial learning rate is
set to 0.00006 for OPT-125m and 0.0002 for the other two OPT variants. We train 6 epochs for WikiText-2 and 1 epoch
for WikiText-103. Additionally, we apply an extra dropout rate of 0.1 to the attention modules to prevent overfitting. In
terms of the RAOQ stage, hyperparameters maintain the same, tuning for another 3 epochs for WikiText-2 and 1 epoch
for WikiText-103. New LoRA parameters are introduced and tuned via the proposed ADC-LoRA with the rank of 32.
Experiments are performed on 2 Nvidia A100 GPUs.

22

Reshape and Adapt for Output Quantization (RAOQ): Quantization-aware Training for In-memory Computing Systems

0 5000 10000 15000 20000
Step

75

80

85

90

F1
 sc

or
e

(a) QAT without ADC

0 5000 10000 15000 20000
Step

86.0

86.5

87.0

87.5

F1
 sc

or
e

(b) RAOQ with ADC

Figure 14. Training curves for BERT-base.

1 2 3 4 5 6
Epoch

14.0

14.5

15.0

15.5

16.0

Pe
rp

le
xi

ty

(a) QAT without ADC

1 2 3 4 5 6
Epoch

14.5

15.0

15.5

Pe
rp

le
xi

ty

(b) RAOQ with ADC

Figure 15. Training curves for OPT-1.3B.

BLOOM-560m/1.1B/1.7B. We use a batch size of 2 for all BLOOM models and all training stages. During the QAT stage,
we apply LoRA with a rank of 64. The initial learning rate is set to 0.0001, training for 3 epochs for WikiText-2 and 1 epoch
for WikiText-103. The RAOQ stage uses the same hyperparameters as the QAT stage, training for another 3 epochs for
WikiText-2 and 1 epoch for WikiText-103. We set the rank of LoRA parameters to 32 for this stage, initialized using our
proposed ADC-LoRA. Experiments are performed on a single Nvidia A100 GPU.

1 2 3
Epoch

17.0

17.5

Pe
rp

le
xi

ty

(a) QAT without ADC

1 2 3
Epoch

17.5

18.0

Pe
rp

le
xi

ty

(b) RAOQ with ADC

Figure 16. Training curves for BLOOM-1.7B.

J.4. Code example

All models are implemented using the PyToch framework. Specifically, we customized nn.Conv2d and nn.Linear modules to
incorporate quantization of activations/weights/ADCs, mapping to IMC systems, and our proposed A-shift and W-reshape
methods. The proposed BitAug technique is integrated with top-level training. Fig. 17a-17b shows example code snippets
for a convolution layer with all quantization sources integrated and the implementation of our proposed approaches. Fig.
17c illustrates a screenshot of the training log of MobileNetV2.

23

Reshape and Adapt for Output Quantization (RAOQ): Quantization-aware Training for In-memory Computing Systems

(a) (b)

(c)

Figure 17. (a) Code for Conv2d module with all sources of quantization, proposed W-reshape and A-shift implemented. (b) Code for
top-level training with the proposed BitAug implemented. (c) Example training log for MobileNetV2.

24

