
Primphormer: Efficient Graph Transformers with Primal Representations

Mingzhen He 1 Ruikai Yang 1 Hanling Tian 1 Youmei Qiu 1 Xiaolin Huang 1

Abstract
Graph Transformers (GTs) have emerged as
a promising approach for graph representation
learning. Despite their successes, the quadratic
complexity of GTs limits scalability on large
graphs due to their pair-wise computations. To
fundamentally reduce the computational burden
of GTs, we propose a primal-dual framework that
interprets the self-attention mechanism on graphs
as a dual representation. Based on this frame-
work, we develop Primphormer, an efficient GT
that leverages a primal representation with lin-
ear complexity. Theoretical analysis reveals that
Primphormer serves as a universal approxima-
tor for functions on both sequences and graphs,
while also retaining its expressive power for
distinguishing non-isomorphic graphs. Exten-
sive experiments on various graph benchmarks
demonstrate that Primphormer achieves compet-
itive empirical results while maintaining a more
user-friendly memory and computational costs.

1. Introduction
Graph representation learning has been successfully ap-
plied in various fields, including social network analysis
(Li et al., 2023), traffic prediction (Dong et al., 2023),
drug discovery (Liu et al., 2023), and more. Much of the
research in graph representation learning has focused on
Message Passing Neural Networks (MPNNs) which rely
on local message-passing mechanisms. Although MPNNs
have emerged as a powerful approach to short-range tasks
that require information exchange among nodes in neigh-
borhoods, MPNNs face inherent limitations such as over-
smoothing (Nguyen et al., 2023), over-squashing (Giraldo
et al., 2023) in long-range tasks (Dwivedi et al., 2022b).

To overcome the limitations, Graph Transformers (GTs)

1Institute of Image Processing and Pattern Recognition,
Shanghai Jiao Tong University, Shanghai, China. Correspon-
dence to: Xiaolin Huang <xiaolinhuang@sjtu.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

which allow each node to globally attend to all other nodes
is proposed to enable the learning of long-range dependen-
cies within the graph (Rampasek et al., 2022; Chen et al.,
2022). While GTs are a promising approach, they suffer
from a significant drawback: their quadratic complexity
caused by pair-wise computations in self-attention mech-
anisms, which limits their practical applicability.

The key to reducing the quadratic complexity is to use com-
putationally efficient attention mechanisms. Linear atten-
tions like Performer (Choromanski et al., 2021) and Big-
Bird (Zaheer et al., 2020) have been integrated into GTs.
However, they need to introduce additional computational
overhead, which becomes the dominating source of com-
putation for medium-sized graphs (Rampasek et al., 2022).
An alternative approach is sparse attention. Shirzad et al.
(2023) introduced Exphormer whose efficiency benefits
from the sparsity of graphs. However, the complexity in-
creases to quadratic with the number of nodes as graphs
become denser, thereby still limiting its scalability.

To fundamentally enhance the scalability of GTs, it is cru-
cial to avoid pair-wise computations, prompting us to con-
sider the primal-dual relationship in kernel machines. Ex-
amples of models leveraging this relationship include the
support vector machine (Cortes & Vapnik, 1995), the least
squares support vector machine (Suykens & Vandewalle,
1999), and the kernel principal component analysis (Mika
et al., 1999). The primal-dual relationship represents pair-
wise and symmetric similarity in duality as an inner product
of feature mappings in the primal space. By solving opti-
mization problems in the primal space with these feature
mappings, quadratic complexity can be avoided.

When constructing the primal representation of the self-
attention mechanism, we encounter an essential problem
that attention scores are inherently asymmetric, violating
Mercer’s condition (Mercer, 1909), which causes the clas-
sical primal-dual discussion to fail. Recent research on
primal-dual relationships has sought to explore methods for
accommodating asymmetry in kernel machines (Suykens,
2016; He et al., 2023a; Chen et al., 2023). Chen et al.
(2023) interpreted the primal-dual relationship of the self-
attention on sequences through asymmetric kernel singular
value decomposition. This approach collects data informa-
tion through uniformly sampling the sequence under an in-

1

Primphormer: Efficient Graph Transformers with Primal Representations

ductive bias assumption that sequences are ordered. How-
ever, this assumption does not hold for graphs, as the struc-
ture of a graph is defined by its edges, and the arrangement
or ordering of nodes is not explicitly specified, leaving a
question about discussing the primal-dual relationship of
the self-attention on graphs.

Our contributions. We propose a novel primal representa-
tion for GTs, named Primphormer. This method supports
asymmetry in self-attention on graphs by introducing an
asymmetric kernel trick. It avoids costly pair-wise compu-
tations and storage overhead without introducing additional
heavy computational burden. The primal-dual analysis re-
veals that Primphormer can leverage graph information to
adaptively adjust the output basis, thereby potentially en-
hancing the model’s flexibility. Since Primphormer is a
new architecture for GTs, we are also interested in its the-
oretical properties. To explore this, we demonstrate that
Primphormer serves as a universal approximator for arbi-
trary continuous functions on a compact domain and that
it preserves expressive power in terms of distinguishing
non-isomorphic graphs. Through extensive experimental
evaluations on various graph benchmarks, we show that
Primphormer achieves competitive results while maintain-
ing more user-friendly memory and computational costs.

2. Methods
Notations. We consider a labeled graph G = (V,E, ℓ)
with the node and edge sets V,E and the labeling function
ℓ. |V | = N , |E| = M denote the numbers of nodes and
edges. [N] := {1, · · · , N}. A(G) ∈ {0, 1}N×N denotes
the adjacency matrix where Au,v = 1 iff {u, v} ∈ E. We
take b, b,B to be a scalar, a vector, and a matrix. The in-
ner product of two vectors is written as ⟨·, ·⟩. The infinite
norm of functions is written as ∥ · ∥∞. R denotes the set
of real numbers. R+ denotes the set of real and positive
numbers. Tr(S) denotes the trace of a square matrix S.
vec(B) denotes the vectorization of the matrix B, formed
by stacking the columns of B into a single column vec-
tor. ⊗ denotes the Kronecker product. 1 and 0 denote
vectors with all 1 and 0, respectively. Denote [a, b, c] as
column concatenation and [a; b; c] as row concatenation.
X := [x1, · · · ,xN] ∈ Rd×N is the embedding matrix
for nodes where xi ∈ Rd is the embedding of the i-th
node. For two graphs G and G′, a graph isomorphism is
a bijection φ(·) : VG → VG′ such that {i, j} ∈ EG iff
{φ(i), φ(j)} ∈ EG′ . Two graphs G and G′ are isomorphic
if there is a graph isomorphism φ(·) : VG → VG′ .

2.1. Attention mechanism on graphs

An attention mechanism on a graph G treats nodes V as
tokens and is modeled by a fully connected, directed graph
with the positional encoding (PE) that encodes the geome-

try of G. Its directed edges denote a directed interaction or
similarity between two nodes i, j, computed by the inner
product in the attention mechanism. Mathematically, we
define the attention mechanism ATTN as follows,


κ(xi,xj) = σ (⟨q(xi),k(xj)⟩)

oi =
∑N

j=1
v(xj)κ(xi,xj), i, j ∈ [N],

(2.1)

where κ(xi,xj) is the attention score from node i to node j
and oi is the attention output of vertex i. σ is an activation
function. We denote q(x) := Wqx,k(x) := Wkx, and
v(x) := Wvx for queries, keys, and values, respectively,
and Wq,Wk,Wv ∈ Rm×d are learnable weights. The
Transformer block T (Vaswani et al., 2017) is defined by
T (X) := FFN (X +ATTN(X)) where X and FFN are
token embeddings and a feed-forward layer, respectively.

It is worth noting that the attention score is computed for
every pair of nodes, leading to memory and computational
complexity ofO(N2), which becomes prohibitively expen-
sive for large-scale graphs. Many computationally efficient
attention mechanisms are proposed to tackle this issue (Za-
heer et al., 2020; Choromanski et al., 2021; Zhuang et al.,
2023; Shirzad et al., 2023). Exphormer (Shirzad et al.,
2023), a sparse GT, is specifically designed for graphs,
which facilitates information exchange across real and ex-
pander edges. However, Exphormer loses its efficiency
when dealing with denser graphs, as its computational
complexity increases to O(N2) again with the growth in
graph density, significantly limiting its scalability.

2.2. Primal-dual relationships in kernel machines

Such quadratic complexity also exists in kernel machines,
where Mercer’s kernels preserve pair-wise similarities in
the dual space (Mercer, 1909). For large-scale problems,
it is more practical to contemplate feature representation in
the primal space to circumvent quadratic complexity (Fan
et al., 2008). One can refer to the representer theorem
(Kimeldorf & Wahba, 1971), which delineates the optimal
solution between the primal and dual spaces,

g(xi) =
∑

j
αjκ(xi,xj) =

∑
j
αj⟨ϕ(xi),ϕ(xj)⟩

=
〈∑

j
αjϕ(xj),ϕ(xi)

〉
:= ⟨w,ϕ(xi)⟩,

(2.2)
where αj ∈ R and w ∈ Rp are variables in the dual and
primal spaces. ϕ(·) : Rd → Rp is the associated feature
mapping of the kernel κ. For vector dual variables αj , we
can apply (2.2) to each dimension of αj ∈ Rs. Mathemat-

2

Primphormer: Efficient Graph Transformers with Primal Representations

ically,

g̃(xi) =
∑

j
αjκ(xi,xj) =

∑
j
vec
(
αjϕ(xi)

⊤ϕ(xj)
)

(a)
=
〈∑

j
ϕ(xj)⊗α⊤

j ,ϕ(xi)
〉
:= ⟨W ,ϕ(xi)⟩,

(2.3)
where (a) comes from the vectorization property of the
Kronecker product (Graham, 2018) and W ∈ Rp×s. The
output g̃ in the dual space and the attention output share
a similar formulation, indicating that the attention mecha-
nism could potentially be represented in the primal space.

2.3. Primphormer

However, a unique characteristic of the attention score is
their asymmetry, denoted as κ(x,y) ̸= κ(y,x), which vi-
olates the Mercer condition. Several works studied this is-
sue and provided a mathematical foundation for allowing
asymmetry as follows,

Definition 2.1 (Asymmetric kernel trick, (Wright & Gon-
zalez, 2021; Lin et al., 2022; He et al., 2023a; Chen et al.,
2023)). An asymmetric kernel trick from reproducing ker-
nel Banach spaces (RKBS) with the associated kernel func-
tion κ(·, ·) : X × Z → R can be defined by the inner
product of two real measurable feature maps from a pair of
Banach spaces BX ,BZ on X ,Z:

κ(x, z) = ⟨ϕq(x),ϕk(z)⟩, (2.4)

where x ∈ X ,ϕq ∈ BX , z ∈ Z,ϕk ∈ BZ .

Based on (2.3) and Definition 2.1, an intuitive idea is to rep-
resent the attention output in the primal space. Chen et al.
(2023) introduced a primal representation of the attention
output specifically for sequence data. It collected sequence
information by uniformly sampling tokens and formed a
data-adaptive weight in the dual space. However, this ap-
proach has two main weaknesses. First, unlike sequences,
nodes in a graph are unordered, meaning the sampling op-
eration may break permutation equivariance, i.e., any per-
mutation of the nodes could result in a different output.
Second, the data-adaptive weight may not be sufficiently
flexible, potentially limiting the model’s flexibility.

To address this, we collect graph information by introduc-
ing a virtual node (Cai et al., 2023) that aggregates global
information. We then formulate a new optimization prob-
lem, which forms a data-adaptive basis in the dual space:

min
Θ

J =
1

2

N∑
i=1

e⊤i Λei +
1

2

N∑
j=1

r⊤j Λrj − Tr(W⊤
e Wr)

s.t. ei = fXWeϕq(xi), i ∈ [N],

rj = fXWrϕk(xj), j ∈ [N],
(2.5)

where Θ := {We,Wr, ei, rj} is the parameter set.
We,Wr ∈ RNs×p, ei, rj ∈ Rs, Ns ≪ N is a small
number, and Λ ∈ Rs×s

+ represents a diagonal regulariza-
tion coefficient matrix. ϕq(·),ϕk(·) : Rd → Rp corre-
spond to the feature maps of queries and keys, respectively.
fX ∈ Rs×Ns is a data-dependent projection defined as
fX := F + BX1N1⊤

Ns
. It serves as a virtual node that

aggregates information from all nodes in the graph. Here,
F ∈ Rs×Ns and B ∈ Rs×d are learnable weights.

The objective function J introduces the variational prin-
ciple, as discussed by Suykens (2016), which reproduces
asymmetric kernels in the dual space. We propose new pri-
mal representations for graph data, i.e., ei, rj in the con-
straints. The global aggregation fX preserves permutation
equivariance. Then, we incorporate the global information
into the projection weights We and Wr, rather than into the
feature mappings ϕq and ϕk, as done by Chen et al. (2023),
forming a data-adaptive basis in the dual space. The duality
of the optimization problem (2.5) is given as follows,
Theorem 2.2 (Duality). The dual problem of the optimiza-
tion (2.5) under the Karush-Kuhn-Tucker (KKT) conditions
is the following linear system,

KHrFX = HeΣ,

K⊤HeFX = HrΣ,
(2.6)

which collects the solutions corresponding to the non-
zero entries in Λ such that Σ := Λ−1. He :=
[he1 , . . . ,heN]⊤ ∈ RN×s, and Hr := [hr1 , . . . ,hrN]⊤ ∈
RN×s are dual variables. K corresponds to the attention
score, induced by Kij := ⟨ϕq(xi),ϕk(xj)⟩. The proofs,
Lagrangian, and KKT are provided in Appendix C.1.

Primal-dual relationship. The KKT conditions (C2)
yields a fact that the optimized projections Wr and We

in the primal space are composed of all the tokens,
We =

∑N

j=1
f⊤Xhrjϕk(xj)

⊤,

Wr =
∑N

i=1
f⊤Xheiϕq(xi)

⊤.

(2.7)

By applying (2.7) to the projection scores e, r, we can for-
mulate them in the following two ways: (a) the primal rep-
resentation, and (b) the dual representation as the standard
self-attention,

Primal :

{
e(x) = fXWeϕq(x),

r(x) = fXWrϕk(x),

Dual :


e(x) =

∑N

j=1
h̃rjκ(x,xj),

r(x) =
∑N

i=1
h̃eiκ(xi,x),

(2.8)

where FX := fXf
⊤
X contains the global information, and

h̃rj := FXhrj , h̃ei := FXhei are the so-called data-

3

Primphormer: Efficient Graph Transformers with Primal Representations

MPNN ATTN

FFN

𝝓𝑞(𝑋) 𝝓𝑘(𝑋) 𝝓𝑣(𝑋)

𝜿attn = 𝝓𝑞 𝑋 ,𝝓𝑘(𝑋)

𝒐 = 𝜿attn𝝓𝑣(𝑋)

𝑋Output from previous layer

𝝓𝑘(𝑋)

𝒆 = 𝒇𝑋𝑾𝒆𝝓𝑞 𝑋

𝒐 = 𝑾c 𝒆; 𝒓

𝑋

𝝓𝑞(𝑋) 𝒇𝑋

𝒓 = 𝒇𝑋𝑾𝒓𝝓𝑘 𝑋

OutputOutput Output
(a) (b) (c)

Figure 1 Illustrations of the architectures in one layer. (a) The GPS architecture. (b) The standard self-attention archi-
tecture. The attention score κattn involves pair-wise computations. (c) Primphormer eliminates the need for pair-wise
computations by introducing the primal representation, resulting in a new computationally efficient GT.

adaptive basis. In the primal space, we integrate token in-
formation into the projection weights Wr and We (2.7),
representing the self-attention without pair-wise computa-
tions. The global aggregation fX inside serves as a vir-
tual node, intended to introduce graph information to each
node. Correspondingly, the attention score is computed us-
ing an asymmetric kernel trick, denoted as κ(xi,xj) :=
⟨ϕq(xi),ϕk(xj)⟩, and values are the data-adaptive basis
h̃rj , h̃ei , forming the self-attention in the dual space.

In contrast, Chen et al. (2023) sampled sequence informa-
tion gX = CXsub where C ∈ Rp×d and Xsub is uni-
formly sampled from X , which is integrated into feature
mappings, forming a data-adaptive weight κ̃(xi,xj) :=
⟨g⊤Xϕq(xi), g

⊤
Xϕk(xj)⟩ and a self-attention output õ(x) =∑

j hj κ̃(x,xj). It is easy to check that õ is incapable of
adjusting the space that {hj} spans, limiting its flexibil-
ity. Our data-adaptive basis directly adjusts the output basis
thus potentially enhancing the model’s flexibility.

Model architecture. We replace the self-attention mod-
ule in the Transformer block with our primal representa-
tion (2.8) and name the resulting method Primphormer, de-
fined as TPri := FFN (X + Prim(X)). For a fair compar-
ison, we integrate Primphormer into GPS, a powerful GT
architecture that combines MPNN and Transformer blocks
(Rampasek et al., 2022). The architectures are illustrated
in Fig. 1, with algorithms provided in Appendix D.

Complexity analysis. The primal representation is a more
user-friendly approach in terms of both time and memory
costs. The dual representation requires O(N2s) time com-
plexity and O(N2 + Ns) memory complexity. In con-
trast, the primal representation only requires O(Nps) time
complexity andO(2Nss+2Np) memory complexity with
Ns ≪ N making an efficient self-attention mechanism fea-

sible. The final output is obtained by concatenating two
projection scores o(x) := [e(x); r(x)]. To align with
the user-dependent dimension do, a compatibility matrix
Wc ∈ Rdo×2s can be further applied to the output score.

In the implementation of Primphormer, our goal is to reach
the KKT points. Theorem 2.2 establishes that when the
KKT conditions are met, the dual representation of Prim-
phormer aligns with the standard self-attention formula-
tion. However, solving the linear system (2.6) in the dual
space introduces a cubic complexity. To efficiently ap-
proach the KKT points, we introduce the following lemma,

Lemma 2.3 (Zero-valued objective with stationary solu-
tions). The solutions of He,Hr,Σ in the dual space (2.6)
lead to a zero-valued objective J in the primal space (2.5).

Implementation. The essence of Lemma 2.3 lies in the
necessity for the primal objective value to be zero under
the KKT conditions, suggesting an alternative optimization
approach instead of solving the dual problem. Therefore,
we implement Primphormer by jointly minimizing an ad-
ditional loss towards zero as follows,

L = Ltask + η
∑

l
J2
l , (2.9)

where η ∈ R+ is a regularization coefficient, Ltask is the
task-oriented loss and the final term sums up the objec-
tive loss (2.5) across layer l. Through regularization of
this additional loss, the self-attention mechanism can be ef-
fectively represented in the primal space upon achieving a
zero-valued objective.

3. Theoretical Results
In this section, we provide the main theorems of Prim-
phormer. The proof details can be found in Appendix C.

4

Primphormer: Efficient Graph Transformers with Primal Representations

3.1. Universal approximation

By substituting the self-attention layer with our primal rep-
resentation, we obtain a new network architecture. Sub-
sequently, the first question that intrigues us concerns the
universal approximation property, delving into which func-
tions can be uniformly approximated utilizing our network.

Here, we demonstrate that Primphormer allows universal
approximation for continuous functions on both sequences
and graphs. The proofs rely on a mild assumption: let fea-
ture spaces be X ,Y ⊆ Rd and let X be a compact set. We
first introduce the concept of permutation equivariance and
then show that Primphormer is a universal approximator.

Definition 3.1 (Permutation equivariance, (Hutter, 2020;
Alberti et al., 2023)). A continuous sequence-to-sequence
function f : XN → YN is equivariant to the order of ele-
ments in a sequence if for each permutation π : [N]→ [N],

f
([
xπ(1), · · · ,xπ(N)

])
=
[
fπ(1)(X), · · · , fπ(N)(X)

]
,

where X = [x1, · · · ,xN] is a sequence of N tokens. De-
note f ∈ FN

eq(X ,Y) if f conforms to this definition.

We are now ready to state the universal approxima-
tion property of Primphormer on permutation equivariant
sequence-to-sequence functions.

Theorem 3.2. For any function f ∈ FN
eq(X ,Y) and for

each ϵ > 0 there exists a Primphormer TPri such that

sup
X∈XN

∥f(X)− TPri(X)∥∞ < ϵ. (3.1)

Next, we develop the theorem for any continuous sequence-
to-sequence function, stating that with a positional encod-
ing E ∈ Rd×N , a Primphormer TPE(X) = TPri(X +
E) can approximate any continuous sequence-to-sequence
functions on the compact domain.

Theorem 3.3. For any continuous function
f : [0, 1]d×N → Rd×N and for each ϵ > 0, there ex-
ists a Primphormer TPE with the positional encoding E
such that

sup
X∈XN

∥f(X)− TPE(X)∥∞ < ϵ. (3.2)

Theorems 3.2, 3.3 provide universal approximation proper-
ties for functions on sequences. In the realm of graph-based
learning, an interesting question arises: does the universal-
ity extend to functions on graphs?

Universal approximator for functions on graphs. To an-
swer the question, we construct node and edge Primphorm-
ers on graphs. For the edge Primphormer, we consider
the line graph (Cai et al., 2021) whose nodes are edges in
the original graph. The edge Primphormer processes input

as a sequence of ordered pairs ((i, j), σij) where i ≤ j,
i, j ∈ [N] and an edge indicator σij . It is evident that any
permutation on these pairs describes the same graph. Con-
sidering the set of functions f : RN×(N−1) → RN×(N−1)

with permutation equivariance, Theorem 3.2 asserts that
the function f can be approximated with arbitrary accu-
racy by Primphormer on edge input. Similarly, the node
Primphormer takes an identity matrix as input and the
padded adjacency matrix as a positional encoding which
can be interpreted as a one-hot encoding of each node’s
neighbors. Considering the set of continuous functions
f : [0, 1]N×N → RN×N , Theorem 3.3 states that f can be
approximated as closely as desired by an appropriate Prim-
phormer on node inputs. These ensure that Primphormer is
a universal approximator for functions on graphs.

3.2. Expressivity

Beyond approximation theory, the second question per-
tains to expressivity. We demonstrate that Primphormer
is as powerful as the 1-dimensional Weisfeiler-Lehman al-
gorithm (1-WL) (Weisfeiler & Leman, 1968; Xu et al.,
2019; Morris et al., 2019) in terms of distinguishing non-
isomorphic graphs as follows,

Theorem 3.4. Let G = (V,E, ℓ) be a labeled graph with
N nodes, and node feature matrix X(0) := H ∈ Rd×N

consistent with the label ℓ. Then, for all iterations t ≥ 0,
there exists a parameterization of Primphormer such that

C1
t (v) = C1

t (w) ⇐⇒ X(t)(v) = X(t)(w), (3.3)

for all nodes v, w ∈ V , where C1
t : V → N is the coloring

function of the 1-WL test at t-th iteration.

Corollary 3.5. Let G = (V,E, ℓ) be a labeled graph with
N nodes, and node feature matrix X(0) := H ∈ Rd×N

consistent with the label ℓ. Then, for all iterations t ≥ 0,
there exist parameterizations of Transformer and Prim-
phormer and a positional encoding such that

X
(t)
T (v) = X

(t)
T (w) ⇐⇒ X

(t)
Pri(v) = X

(t)
Pri(w), (3.4)

for all nodes v, w ∈ V , where X(t)
T and X

(t)
Pri are node fea-

tures of the output of Transformer and Primphormer mod-
els, respectively.

These results indicate that the primal representation pre-
serves expressivity, ensuring that Primphormer remains a
powerful graph learning model.

4. Experimental Results
In this section, we evaluate the empirical performance of
Primphormer on various graph benchmarks. To ensure di-
versity, datasets are collected from different sources, a de-
tailed description of which can be found in Appendix A.

5

Primphormer: Efficient Graph Transformers with Primal Representations

Table 1 Comparison of Primphormer with baselines on LRGB. Best results are colored in first, second, third.

MODEL
PASCALVOC-SP COCO-SP PEPTIDES-FUNC PEPTIDES-STRUCT PCQM-CONTACT

F1↑ F1↑ AP↑ MAE↓ MRR↑
GCN 0.1268 ± 0.0060 0.0841 ± 0.0010 0.5930 ± 0.0023 0.3496 ± 0.0013 0.3234 ± 0.0006
GINE 0.1265 ± 0.0076 0.1339 ± 0.0044 0.5498 ± 0.0079 0.3547 ± 0.0045 0.3180 ± 0.0027
GATEDGCN 0.2873 ± 0.0219 0.2641 ± 0.0045 0.5864 ± 0.0077 0.3420 ± 0.0013 0.3218 ± 0.0011
GATEDGCN+RWSE 0.2860 ± 0.0085 0.2574 ± 0.0034 0.6069 ± 0.0035 0.3357 ± 0.0006 0.3242 ± 0.0008

TRANS.+LAPPE 0.2694 ± 0.0098 0.2618 ± 0.0031 0.6326 ± 0.0126 0.2529 ± 0.0016 0.3174 ± 0.0020
SAN+LAPPE 0.3230 ± 0.0039 0.2592 ± 0.0158 0.6384 ± 0.0121 0.2683 ± 0.0043 0.3350 ± 0.0003
SAN+RWSE 0.3216 ± 0.0027 0.2434 ± 0.0156 0.6439 ± 0.0075 0.2545 ± 0.0012 0.3341 ± 0.0006
GRAPHGPS 0.3748 ± 0.0109 0.3412 ± 0.0044 0.6535 ± 0.0041 0.2500 ± 0.0005 0.3337 ± 0.0006
EXPHORMER 0.3975 ± 0.0037 0.3455 ± 0.0009 0.6527 ± 0.0043 0.2481 ± 0.0007 0.3637 ± 0.0020

PRIMPHORMER 0.4602 ± 0.0077 0.3903 ± 0.0061 0.6612 ± 0.0065 0.2495 ± 0.0008 0.3757 ± 0.0079

Table 2 Comparison of Primphormer with baselines on GNN benchmarks. Best results are colored in first, second, third.

MODEL
CIFAR10 MALNET-TINY MNIST CLUSTER PATTERN

ACCURACY↑ ACCURACY↑ ACCURACY↑ ACCURACY↑ ACCURACY↑

GCN 55.71 ± 0.381 81.0 90.71 ± 0.218 68.50 ± 0.976 71.89 ± 0.334
GIN 55.26 ± 1.527 88.98 ± 0.557 96.49 ± 0.252 64.72 ± 1.553 85.39 ± 0.136
GAT 64.22 ± 0.455 92.10 ± 0.242 95.54 ± 0.205 70.59 ± 0.447 78.27 ± 0.186
GATEDGCN 67.31 ± 0.311 92.23 ± 0.650 97.34 ± 0.143 73.84 ± 0.326 85.57 ± 0.088
PNA 70.35 ± 0.630 - 97.94 ± 0.120 - -
DGN 72.84 ± 0.417 - - - 86.68 ± 0.034

CRAWL 69.01 ± 0.259 - 97.94 ± 0.050 - -
GIN-AK+ 72.19 ± 0.130 - - - 86.85 ± 0.057

SAN - - - 76.69 ± 0.650 86.58 ± 0.037
K-SUBGRAPH SAT - - - 77.86 ± 0.104 86.85 ± 0.037
EGT 68.70 ± 0.409 - 98.17 ± 0.087 79.23 ± 0.348 86.82 ± 0.020
GRAPHGPS 72.30 ± 0.356 93.50 ± 0.410 98.05 ± 0.126 78.02 ± 0.180 86.69 ± 0.059
EXPHORMER 74.69 ± 0.125 94.02 ± 0.209 98.55 ± 0.039 78.07 ± 0.037 86.74 ± 0.015

PRIMPHORMER 74.13 ± 0.241 93.62 ± 0.242 98.56 ± 0.042 78.01 ± 0.162 86.68 ± 0.056

In particular, we conducted experiments on the bench-
mark datasets including the image-based graph datasets CI-
FAR10, MNIST, COCO-SP, and PascalVOC-SP; the syn-
thetic SBM datasets PATTERN and CLUSTER; the code
graph dataset MalNet-Tiny; the molecular datasets includ-
ing Peptides-Func, Peptides-Struct, and PCQM-Contact
(Dwivedi et al., 2022a; Freitas et al., 2021; Dwivedi et al.,
2022b; 2023); the large-scale ogbn-products dataset (Hu
et al., 2020), and the graph isomorphism benchmark BREC
(Wang & Zhang, 2024). In our experiments, we use feature
maps defined as ϕq(x) := q(x)/∥q(x)∥2 and ϕk(x) :=
k(x)/∥k(x)∥2 as used by Chen et al. (2023).

Long-range graph benchmark (LRGB). We conducted
experiments on LRGB (Dwivedi et al., 2022b) to evaluate
the models’ capabilities in learning long-range dependen-
cies within input graphs. Table 1 presents the results of
Primphormer with several baselines. Our approach outper-
forms the baselines on four of the five datasets while show-
ing competitive performance on the rest of the datasets.

GNN benchmark datasets. We also evaluate our method
with broader baselines on graph benchmark datasets,
namely CIFAR10, MNIST, CLUSTER, PATTERN, and the
code graph dataset MalNet-Tiny (Dwivedi et al., 2023; Fre-
itas et al., 2021), as reported in Table 2. It is observed that
Primphormer outperforms MNIST and ranks as the second-
best approach on two additional datasets, showcasing its
strong performance across various dataset types.

Efficiency validation. Primphormer leverages the primal
representation for GTs to reduce the computational burden.
As the aforementioned results demonstrate the promising
performance of Primphormer, we further validate its effi-
ciency by comparing it to other computationally efficient
attention mechanisms within the GPS architecture (Ram-
pasek et al., 2022). The selected mechanisms include lin-
ear attention models BigBird (Zaheer et al., 2020) and Per-
former (Choromanski et al., 2021), a sparse attention mech-
anism, Exphormer (Shirzad et al., 2023), the sequence-
specific Primal-Atten (Chen et al., 2023), and the full at-

6

Primphormer: Efficient Graph Transformers with Primal Representations

Table 3 Comparison of attentions in GPS. Best results are colored in first, second, third. OOM means out of memory.

MODEL CIFAR10 MALNET-TINY PASCALVOC-SP PEPTIDES-FUNC OGBN-PRODUCTS
GPS ACCURACY↑ ACCURACY↑ F1↑ AP↑ ACCURACY↑
MPNN-ONLY 69.95 ± 0.499 92.23 ± 0.650 0.3016 ± 0.0031 0.6159 ± 0.0048 74.25 ± 0.214S

+TRANSFORMER 72.31 ± 0.344 93.50 ± 0.410 0.3748 ± 0.0109 0.6535 ± 0.0041 OOM
+BIGBIRD 70.48 ± 0.106 92.34 ± 0.340 0.2762 ± 0.0069 0.5854 ± 0.0079 73.82 ± 0.412
+PERFORMER 70.67 ± 0.338 92.64 ± 0.780 0.3724 ± 0.0131 0.6475 ± 0.0056 74.30 ± 0.211
+PRIM-ATTEN 71.57 ± 0.256 92.97 ± 0.228 0.3173 ± 0.0055 0.6447 ± 0.0046 74.47 ± 0.134
+EXPHORMER 74.69 ± 0.125 94.02 ± 0.209 0.3975 ± 0.0037 0.6527 ± 0.0043 74.67 ± 0.179

+PRIMPHORMER 74.13 ± 0.241 93.62 ± 0.242 0.4602 ± 0.0077 0.6612 ± 0.0065 74.89 ± 0.281

Table 4 Efficiency comparisons on running time and peak memory consumption.

MODEL TIME (S/EPOCH) PEAK MEMORY USAGE (GB)

GPS CIFAR. MALNET. PASCAL. FUNC. PROD. CIFAR. MALNET. PASCAL. FUNC. PROD.

MPNN-ONLY 20.3 24.5 15.7 4.8 21.1 2.31 1.92 4.18 2.45 11.97

+TRANSFORMER 28.0 232.4 35.6 12.8 - 3.81 35.32 7.82 8.46 OOM
+BIGBIRD 55.2 325.6 52.3 51.9 93.9 2.81 2.71 4.99 4.99 17.29
+PERFORMER 50.8 73.5 49.7 21.7 22.7 10.5 11.59 6.14 7.71 16.14
+PRIM-ATTEN 32.1 62.5 25.7 7.9 22.6 2.74 2.58 4.74 3.38 13.63
+EXPHORMER 44.5 62.1 35.2 7.6 25.4 5.54 10.38 7.35 4.81 31.09

+PRIMPHORMER 32.6 61.9 25.3 7.7 22.1 2.74 2.86 4.72 3.41 13.35

tention mechanism. We conduct the experiments on CI-
FAR10, MalNet-Tiny, PascalVOC, Peptides-Func, and a
large-scale graph ogbn-products. Since ogbn-products is
too large to be loaded into GPU, we use the random parti-
tioning method previously used by Wu et al. (2022; 2023a).

As shown in Table 3, Primphormer demonstrates supe-
rior performance over other attention mechanisms such as
BigBird, Performer, and Prim-Atten, while also exhibiting
competitive performance with Exphormer. Table 4 presents
a comparison of running time and peak memory usage
across different methods. Primphormer demonstrates su-
perior performance in both running time and memory con-
sumption compared to other approaches. For example, in
the MalNet-Tiny dataset, linear attention mechanisms in-
troduce significant computational overhead. While Prim-
Atten offers good efficiency, its performance on graph tasks
lags due to its sequence-specific nature. Both Primphormer
and Exphormer, designed for graphs, exhibit similar run-
ning times. Nevertheless, Primphormer consumes less
memory as its complexity depends solely on the number
of nodes, whereas Exphormer’s complexity is controlled
by the number of nodes and edges. In the ogbn-products
dataset, which comprises approximately 2 million nodes
and 61 million edges, Primphormer showcases the most ef-
ficient results compared with other methods. In summary,
our experiments demonstrate that Primphormer exhibits
competitive performance while maintaining user-friendly
memory and computational costs.

Expressivity Tests. We evaluate the expressive power of
our approach on the BREC benchmark (Wang & Zhang,
2024), as shown in Tab. 5. For reference, we report the re-
sults of Graphormer (Ying et al., 2021) and APE-GT(Black
et al., 2024) as graph Transformer baselines, and 3-WL
(Müller & Morris, 2024), which serves as a potential ex-
pressivity upper-bound. We compare pure Primphormer to
the standard Transformer (Vaswani et al., 2017) and Prim-
Atten (Chen et al., 2023) using two positional encodings:
LAP/LapPE (Kreuzer et al., 2021) and SPE (Huang et al.,
2024), all evaluated without the MPNN layer. We find
that both Transformer and Primphormer outperform Prim-
Atten. And results show that Primphormer and the standard
Transformer achieve similar performance, consistent with
our theoretical results discussed in Sec. 3.2.

Table 5 Results on the BREC benchmark. Basic, Regular,
Extension, and CFI are subsets of the BREC benchmark.
Experiments are averaged over 5 runs.

MODEL PE BAS.↑ REG.↑ EXT.↑ CFI↑ ALL↑
GRAPHORMER 16 12 41 10 79
APE-GT 50.6 31.3 62.4 1 145.3
3-WL 60 50 100 60 270

TRANSFORMER 47.2 39 65.2 3 154.4
PRIM-ATTEN LAP 12.8 19 13.6 0.6 46
PRIMPHORMER 51.6 42 72.4 3 169

TRANSFORMER 59.8 49.4 98.6 5.2 213
PRIM-ATTEN SPE 46.4 49 73 3 171.4
PRIMPHORMER 60 50 100 9.4 219.4

7

Primphormer: Efficient Graph Transformers with Primal Representations

5. Related Work
Graph Transformers. Transformers have demonstrated
success in natural language processing (Vaswani et al.,
2017) and computer vision tasks (Liu et al., 2021). Re-
cently, researchers have explored the application of Trans-
formers in graph representation learning to address is-
sues such as over-smoothing (Nguyen et al., 2023) and
over-squashing (Giraldo et al., 2023) observed in MPNNs.
Graph Transformers operate on a fully connected graph
where nodes are pairwise connected, encoding the orig-
inal graph structure into positional encodings. Spectral
Attention Networks (SAN) (Kreuzer et al., 2021) intro-
duced conditional attention for both real and virtual edges
and implemented Laplacian positional encoding for nodes.
Graphormer (Ying et al., 2021) and GraphiT (Mialon et al.,
2021) incorporated relative positional encodings based on
pairwise graph distances and diffusion kernels, respec-
tively. GPS proposed a framework that combined MPNNs
with attention mechanisms (Rampasek et al., 2022).

The quadratic complexity in traditional GTs has moti-
vated the development of computationally efficient atten-
tion mechanisms. Linear attention mechanisms, such as
NodeFormer (Wu et al., 2022) and SGFormer (Wu et al.,
2023b), aim to reduce computational complexity by de-
composing or approximating the kernel matrix, operating
in the dual space. For example, NodeFormer uses a random
feature-based approach, while SGFormer drops the soft-
max activation to approximate the kernel matrix. Difformer
(Wu et al., 2023a) introduced a diffusion-based Trans-
former model with linear complexity, although their atten-
tion mechanisms are limited to nodes in randomly sam-
pled mini-batches. Another strategy is the sparse Trans-
former, which enhances computational efficiency by re-
stricting node interactions. Exphormer (Shirzad et al.,
2023) limited interactions across real and expander edges,
achieving linear complexity to the number of nodes and
edges. However, the efficiency of Exphormer diminishes
as graphs become denser. A survey on efficient Transform-
ers is given by Fournier et al. (2023).

Primal and dual representations. The quadratic com-
plexity also arises in kernel machines in duality and can
be circumvented by transferring a dual problem to its pri-
mal form. Models such as the support vector machine
(Cortes & Vapnik, 1995), least squares support vector ma-
chine (Suykens & Vandewalle, 1999), and kernel principal
component analysis (Mika et al., 1999) exhibit this char-
acteristic. The associated pair-wise kernels are symmet-
ric and positive-definite, whereas attention scores are in-
herently asymmetric, violating the Mercer condition (Mer-
cer, 1909). Recent research has explored a new primal-dual
perspective to accommodate such asymmetry in kernel ma-
chines. To incorporate asymmetric kernel functions, Lin

et al. (2022) proposed an asymmetric kernel trick from a
pair of RKBSs. He et al. (2023b) converted an asymmetric
kernel to a complex-valued Hermitian function by the mag-
netic transform. Suykens (2016) introduced a novel varia-
tional principle to dissect the primal-dual relationship con-
cerning the singular value decomposition of an asymmetric
kernel matrix, a concept further extended to classification
tasks by He et al. (2023a). This variational principle was
also leveraged by Chen et al. (2023) to interpret attention
mechanisms in sequences. However, due to the distinctions
between sequences and graphs, this model is unsuitable for
graph-based learning.

6. Conclusion
In this paper, we propose Primphormer, a new framework
for graph Transformers. Primphormer models the self-
attention mechanism on graphs in the primal space, avoid-
ing pair-wise computations, which enables an efficient vari-
ant of graph Transformers. Our primal-dual analysis shows
that Primphormer can be implemented by introducing an
additional primal objective loss. Due to its efficiency in
both runtime and memory storage, Primphormer has the
potential to support larger and deeper neural networks and
enable larger batch sizes, enhancing model capacity and
generalization ability. Primphormer also benefits from the
universal approximation property for functions on both se-
quences and graphs, potentially possessing strong general-
ization capabilities to unseen data or tasks. We exhibit that
its expressive power is as powerful as Transformers in dis-
tinguishing non-isomorphic graphs, showing that the pri-
mal representation can preserve expressivity. Experimental
results on various graph benchmarks demonstrate the effec-
tiveness and efficiency of the proposed Primphormer.

An interesting avenue for future work is exploring how
edge features can be incorporated into Primphormer’s
structure. Edge features can be added to attention scores in
an entry-wise manner as data-adaptive kernels (Liu et al.,
2020). Exploring the primal representation of these kernels
allows us to incorporate edge information into attention
mechanisms, potentially resulting in a stronger GT. Addi-
tionally, fine-tuning schemes like LoRA (Hu et al., 2022)
are promising for large models. Studying LoRA from a
primal-dual perspective may lead to more efficient fine-
tuning methods.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

8

Primphormer: Efficient Graph Transformers with Primal Representations

Acknowledgments
The authors would like to thank the anonymous reviewers
for their insightful comments.

The research leading to these results has received fund-
ing from the National Key Research Development Project
(2023YFF1104202) and the National Natural Science
Foundation of China (62376155).

References
Alberti, S., Dern, N., Thesing, L., and Kutyniok, G. Sum-

former: Universal approximation for efficient transform-
ers. In Topological, Algebraic and Geometric Learning
Workshops 2023, 2023.

Black, M., Wan, Z., Mishne, G., Nayyeri, A., and Wang,
Y. Comparing graph transformers via positional encod-
ings. In Forty-first International Conference on Machine
Learning, 2024.

Cai, C., Hy, T. S., Yu, R., and Wang, Y. On the connec-
tion between mpnn and graph transformer. In Interna-
tional Conference on Machine Learning, pp. 3408–3430.
PMLR, 2023.

Cai, L., Li, J., Wang, J., and Ji, S. Line graph neural net-
works for link prediction. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 44(9):5103–5113,
2021.

Chen, D., O’Bray, L., and Borgwardt, K. Structure-aware
transformer for graph representation learning. In Inter-
national Conference on Machine Learning, 2022.

Chen, Y., Tao, Q., Tonin, F., and Suykens, J. A. K. Primal-
attention: Self-attention through asymmetric kernel svd
in primal representation. In Thirty-seventh Conference
on Neural Information Processing Systems, 2023.

Choromanski, K. M., Likhosherstov, V., Dohan, D., Song,
X., Gane, A., Sarlos, T., Hawkins, P., Davis, J. Q., Mo-
hiuddin, A., Kaiser, L., Belanger, D. B., Colwell, L. J.,
and Weller, A. Rethinking attention with performers. In
International Conference on Learning Representations,
2021.

Cortes, C. and Vapnik, V. Support-vector networks. Ma-
chine Learning, 20(3):273–297, 1995.

Dong, G., Tang, M., Wang, Z., Gao, J., Guo, S., Cai,
L., Gutierrez, R., Campbel, B., Barnes, L. E., and
Boukhechba, M. Graph neural networks in iot: A sur-
vey. ACM Transactions on Sensor Networks, 19(2):1–
50, 2023.

Dwivedi, V. P., Luu, A. T., Laurent, T., Bengio, Y., and
Bresson, X. Graph neural networks with learnable struc-
tural and positional representations. In International
Conference on Learning Representations, 2022a.

Dwivedi, V. P., Rampášek, L., Galkin, M., Parviz, A.,
Wolf, G., Luu, A. T., and Beaini, D. Long range graph
benchmark. In Thirty-sixth Conference on Neural In-
formation Processing Systems Datasets and Benchmarks
Track, 2022b.

Dwivedi, V. P., Joshi, C. K., Luu, A. T., Laurent, T., Ben-
gio, Y., and Bresson, X. Benchmarking graph neural net-
works. Journal of Machine Learning Research, 24(43):
1–48, 2023.

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., and
Lin, C.-J. Liblinear: A library for large linear classifi-
cation. Journal of Machine Learning Research, 9:1871–
1874, 2008.

Fournier, Q., Caron, G. M., and Aloise, D. A practical sur-
vey on faster and lighter transformers. ACM Computing
Surveys, 55(14s):1–40, 2023.

Freitas, S., Dong, Y., Neil, J., and Chau, D. H. A large-scale
database for graph representation learning. In Thirty-fifth
Conference on Neural Information Processing Systems
Datasets and Benchmarks Track, 2021.

Giraldo, J. H., Skianis, K., Bouwmans, T., and Malliaros,
F. D. On the trade-off between over-smoothing and over-
squashing in deep graph neural networks. In Proceed-
ings of the 32nd ACM International Conference on In-
formation and Knowledge Management, 2023.

Graham, A. Kronecker products and matrix calculus with
applications. Courier Dover Publications, 2018.

Grohe, M. The logic of graph neural networks. In 2021
36th Annual ACM/IEEE Symposium on Logic in Com-
puter Science (LICS), pp. 1–17. IEEE, 2021.

He, M., He, F., Shi, L., Huang, X., and Suykens, J. A. K.
Learning with asymmetric kernels: Least squares and
feature interpretation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 45(8):10044–10054,
2023a.

He, M., He, F., Yang, R., and Huang, X. Diffusion rep-
resentation for asymmetric kernels via magnetic trans-
form. In Thirty-seventh Conference on Neural Informa-
tion Processing Systems, 2023b.

Hornik, K., Stinchcombe, M., and White, H. Multilayer
feedforward networks are universal approximators. Neu-
ral Networks, 2(5):359–366, 1989.

9

Primphormer: Efficient Graph Transformers with Primal Representations

Hu, E. J., yelong shen, Wallis, P., Allen-Zhu, Z., Li, Y.,
Wang, S., Wang, L., and Chen, W. LoRA: Low-rank
adaptation of large language models. In International
Conference on Learning Representations, 2022.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B.,
Catasta, M., and Leskovec, J. Open graph benchmark:
datasets for machine learning on graphs. In Thirty-fourth
International Conference on Neural Information Pro-
cessing Systems, 2020.

Huang, Y., Lu, W., Robinson, J., Yang, Y., Zhang, M.,
Jegelka, S., and Li, P. On the stability of expressive posi-
tional encodings for graphs. In The Twelfth International
Conference on Learning Representations, 2024.

Hutter, M. On representing (anti) symmetric functions.
arXiv preprint arXiv:2007.15298, 2020.

Khesin, B. A. and Tabachnikov, S. L. ARNOLD: Swim-
ming Against the Tide: Swimming Against the Tide, vol-
ume 86. American Mathematical Society, 2014.

Kimeldorf, G. and Wahba, G. Some results on Tchebychef-
fian spline functions. Journal of Mathematical Analysis
and Applications, 33(1):82–95, 1971.

Kreuzer, D., Beaini, D., Hamilton, W. L., Létourneau, V.,
and Tossou, P. Rethinking graph transformers with spec-
tral attention. In Advances in Neural Information Pro-
cessing Systems, 2021.

Li, X., Sun, L., Ling, M., and Peng, Y. A survey of
graph neural network based recommendation in social
networks. Neurocomputing, 549:126441, 2023.

Lin, R. R., Zhang, H. Z., and Zhang, J. On reproducing
kernel banach spaces: Generic definitions and unified
framework of constructions. Acta Mathematica Sinica,
English Series, 38(8):1459–1483, 2022.

Liu, F., Huang, X., Gong, C., Yang, J., and Li, L. Learning
data-adaptive non-parametric kernels. Journal of Ma-
chine Learning Research, 21(208):1–39, 2020.

Liu, Y. L., Wang, Y., Vu, O., Moretti, R., Bodenheimer,
B., Meiler, J., and Derr, T. Interpretable chirality-aware
graph neural network for quantitative structure activity
relationship modeling in drug discovery. In Proceedings
of the AAAI Conference on Artificial Intelligence, 2023.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin,
S., and Guo, B. Swin transformer: Hierarchical vision
transformer using shifted windows. In Proceedings of
the IEEE/CVF International Conference on Computer
Vision, 2021.

Ma, L., Lin, C., Lim, D., Romero-Soriano, A., Dokania,
P. K., Coates, M., Torr, P., and Lim, S.-N. Graph induc-
tive biases in transformers without message passing. In
International Conference on Machine Learning, 2023.

Mercer, J. Functions of positive and negative type, and their
connection with the theory of integral equations. Pro-
ceedings of the Royal Society of London. Series A, Con-
taining Papers of a Mathematical and Physical Charac-
ter, 83(559):69–70, 1909.

Mialon, G., Chen, D., Selosse, M., and Mairal, J. Graphit:
Encoding graph structure in transformers. arXiv preprint
arXiv:2106.05667, 2021.

Mika, S., Schölkopf, B., Smola, A., Müller, K.-R., Scholz,
M., and Rätsch, G. Kernel PCA and de-noising in fea-
ture spaces. In Proceedings of the 1998 Conference on
Advances in Neural Information Processing Systems II,
1999.

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen,
J. E., Rattan, G., and Grohe, M. Weisfeiler and leman go
neural: Higher-order graph neural networks. In Proceed-
ings of the AAAI conference on Artificial Intelligence,
2019.

Müller, L. and Morris, C. Aligning transformers with
weisfeiler-leman. In Forty-first International Conference
on Machine Learning, 2024.

Nguyen, K., Hieu, N. M., Nguyen, V. D., Ho, N., Osher, S.,
and Nguyen, T. M. Revisiting over-smoothing and over-
squashing using ollivier-ricci curvature. In International
Conference on Machine Learning, 2023.

Rampasek, L., Galkin, M., Dwivedi, V. P., Luu, A. T., Wolf,
G., and Beaini, D. Recipe for a general, powerful, scal-
able graph transformer. In Advances in Neural Informa-
tion Processing Systems, 2022.

Shirzad, H., Velingker, A., Venkatachalam, B., Sutherland,
D. J., and Sinop, A. K. Exphormer: Sparse transform-
ers for graphs. In International Conference on Machine
Learning, 2023.

Suykens, J. A. K. Svd revisited: A new variational princi-
ple, compatible feature maps and nonlinear extensions.
Applied and Computational Harmonic Analysis, 40(3):
600–609, 2016.

Suykens, J. A. K. and Vandewalle, J. Least squares support
vector machine classifiers. Neural Processing Letters, 9:
293–300, 1999.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L. u., and Polosukhin, I. Atten-
tion is all you need. In Advances in Neural Information
Processing Systems, 2017.

10

Primphormer: Efficient Graph Transformers with Primal Representations

Wang, Y. and Zhang, M. An empirical study of realized gnn
expressiveness. In Forty-first International Conference
on Machine Learning, 2024.

Weisfeiler, B. and Leman, A. The reduction of a graph to
canonical form and the algebra which appears therein.
nti, Series, 2(9):12–16, 1968.

Wright, M. A. and Gonzalez, J. E. Transformers are
deep infinite-dimensional non-mercer binary kernel ma-
chines. arXiv preprint arXiv:2106.01506, 2021.

Wu, Q., Zhao, W., Li, Z., Wipf, D., and Yan, J. Node-
former: A scalable graph structure learning transformer
for node classification. In Advances in Neural Informa-
tion Processing Systems, 2022.

Wu, Q., Yang, C., Zhao, W., He, Y., Wipf, D., and Yan,
J. DIFFormer: Scalable (graph) transformers induced by
energy constrained diffusion. In International Confer-
ence on Learning Representations, 2023a.

Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H.,
Bian, Y., and Yan, J. Sgformer: Simplifying and em-
powering transformers for large-graph representations.
In Proceedings of the 37th International Conference on
Neural Information Processing Systems, 2023b.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? In International Conference
on Learning Representations, 2019.

Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen,
Y., and Liu, T.-Y. Do transformers really perform badly
for graph representation? In Advances in Neural Infor-
mation Processing Systems, 2021.

Zaheer, M., Kottur, S., Ravanbhakhsh, S., Póczos, B.,
Salakhutdinov, R., and Smola, A. J. Deep sets. In Pro-
ceedings of the Thirty-first International Conference on
Neural Information Processing Systems, 2017.

Zaheer, M., Guruganesh, G., Dubey, K. A., Ainslie, J., Al-
berti, C., Ontanon, S., Pham, P., Ravula, A., Wang, Q.,
Yang, L., et al. Big bird: Transformers for longer se-
quences. In Advances in Neural Information Processing
Systems, 2020.

Zhuang, B., Liu, J., Pan, Z., He, H., Weng, Y., and Shen, C.
A survey on efficient training of transformers. In Pro-
ceedings of the Thirty-Second International Joint Con-
ference on Artificial Intelligence, 2023.

11

Primphormer: Efficient Graph Transformers with Primal Representations

Appendix

A. Data Descriptions
Here, we introduce the datasets in the experiments. A summary of the dataset statistics is shown in Tab. A1.

CIFAR10 and MNIST. CIFAR10 and MNIST are the graph equivalents of the image classification datasets of the same
name. A graph is created by constructing the 8-nearest neighbor graph of the SLIC superpixels of the image. These are
both 10-class graph classification problems (Dwivedi et al., 2023).

PascalVOC-SP and COCO-SP. These are similar graph versions of image datasets, but they are larger images and the
task is to perform node classification, i.e., semantic segmentation of super-pixels. These graphs are larger, and the tasks
are more complex than CIFAR10 and MNIST (Dwivedi et al., 2022a).

CLUSTER and PATTERN. PATTERN and CLUSTER are node classification problems. Both are synthetic datasets that
are sampled from a Stochastic Block Model (SBM), which is a popular way to model communities. In PATTERN, the
prediction task is to identify if a node belongs to one of the 100 possible predetermined sub-graph patterns. In CLUSTER,
the goal is to classify nodes into six different clusters with the same distribution (Dwivedi et al., 2023).

MalNet-Tiny. Malnet-Tiny is a smaller dataset generated from a larger dataset for identifying malware based on function
call graphs from Android APKs. The tiny dataset contains 5000 graphs, each with up to 5000 nodes. The task is to predict
the graph as being benign or from one of four types of malware (Freitas et al., 2021).

Peptides-Func, Peptides-Struct, and PCQM-Contact. These datasets are molecular graphs introduced as a part of
the Long Range Graph Benchmark (LRGB). On PCQM-Contact, the task is edge-level, and we need to rank the edges.
Peptides-Func is a multi-label graph classification task with 10 labels. Peptides-Struct is a graph-level regression of 11
structural properties of the molecules (Dwivedi et al., 2022a;b).

OGBN-products. The ogbn-products dataset is an undirected and unweighted graph, representing an Amazon product
co-purchasing network. Nodes represent products sold on Amazon, and edges between two products indicate that the
products are purchased together. Specifically, node features are generated by extracting bag-of-words features from the
product descriptions followed by a Principal Component Analysis to reduce the dimension to 100. The task is to predict
the category of a product in a multi-class classification setup, where the 47 top-level categories are used for target labels
(Hu et al., 2020). We use the random partitioning method with ten partitions as previously utilized in Wu et al. (2022;
2023a).

BREC. BREC is a dataset for GNN expressiveness comparison. It addresses the limitations of previous datasets, including
difficulty, granularity, and scale, by incorporating 400 pairs of various graphs in four categories (Basic, Regular, Extension,
and CFI). The graphs are organized pair-wise, where each pair is tested individually to return whether a GNN can distin-
guish them. We use the evaluation method, RPC (Reliable Paired Comparisons), with a contrastive training framework as
introduced in Wang & Zhang (2024).

Table A1 Dataset statistics.

DATASET GRAPHS AVG. NODES AVG.EDGES TASK LEVEL CLASS METRIC

MNIST 70,000 70.6 564.5 GRAPH 10 ACC
CIFAR10 60,000 117.6 941.1 GRAPH 10 ACC
PATTERN 14,000 118.9 3039.3 INDUCTIVE NODE 2 ACC
CLUSTER 12,000 117.2 2150.9 INDUCTIVE NODE 6 ACC
MALNET-TINY 5,000 1,410.3 2,859.9 GRAPH 5 ACC

PASCALVOC-SP 11,355 479.4 2710.5 INDUCTIVE NODE 21 F1
COCO-SP 123,286 476.9 2710.5 INDUCTIVE NODE 81 F1
PCQM-CONTACT 529,434 30.1 61.0 INDUCTIVE LINK LINK RANKING MRR
PEPTIDES-FUNC 15,535 150.9 307.3 GRAPH 10 AP
PEPTIDES-STRUCT 15,535 150.9 309.3 GRAPH 11 MAE
OGBN-PRODUCTS 1 2,449,029 61,859,140 NODE 47 ACC

12

Primphormer: Efficient Graph Transformers with Primal Representations

B. Hyperparameters
Our selection of hyperparameters was guided by the instructions in GPS (Rampasek et al., 2022) and Exphormer (Shirzad
et al., 2023). Further details can be found in Tables. A3- A4.

In our model, we introduced additional hyperparameters, the dimensions of the data-dependent projection, denoted as Ns

and its low rank s, and the regularization coefficient η. We utilized grid search to explore these hyperparameters across
Ns, s ∈ {20, 30, 40, 50, 60}, and η ∈ {0.1, 0.01}. For the remaining hyperparameters, we conducted a linear search for
each parameter to determine the best values. Throughout all experiments, we employed CustomGatedGCN as the MPNN
module alongside Primphormer except for ogbn-products dataset where we use GCN. To ensure fair comparisons, we
maintained a similar parameter budget to that of GraphGPS.

Table A4 presents the hyperparameters used in our efficiency experiments. To maintain consistency in our evaluations of
various attention mechanisms, we applied the same parameters for a fair comparison.

Table A2 Hyperparameters used in Primphormer for datasets: PascalVOC-SP, COCO-SP, Peptides-Func, Peptides-Struct,
PCQM-Contact.

HYPERPARMETER PASCALVOC-SP COCO-SP PEPTIDES-FUNC PEPTIDES-STRUCT PCQM-CONTACT

#LAYERS 6 7 4 4 7
HIDDEN DIM 80 56 96 96 64
#HEADS 1 2 4 4 4
DROPOUT 0.15 0.0 0.1 0.15 0.0
ATTENTION DROPOUT 0.5 0.5 0.1 0.5 0.56

PE LAPPE LAPPE RWSE RWSE LAPPE
PE DIM 16 16 16 20 16

BATCH SIZE 200 150 200 200 128
LEARNING RATE 1E-3 1E-3 1E-3 1E-3 3E-4
#EPOCHS 300 300 250 250 250
WEIGHT DECAY 1E-5 1E-2 1E-2 1E-2 0.0

Ns 30 20 30 40 30
η 0.1 0.1 0.1 0.1 0.1
s 30 20 30 40 30

#PARAMETERS 508305 315305 470693 468783 386526

Table A3 Hyperparameters used in Primphormer for datasets: CIFAR10, MNIST, MalNet-Tiny, PATTERN, CLUSTER,
BREC.

HYPERPARMETER CIFAR10 MNIST MALNET-TINY PATTERN CLUSTER BREC

#LAYERS 3 4 5 6 12 5
HIDDEN DIM 52 40 84 48 52 32
#HEADS 1 1 1 1 1 4
DROPOUT 0.15 0.1 0.15 0.0 0.15 0.0
ATTENTION DROPOUT 0.5 0.5 0.5 0.5 0.5 0.5

PE ESLAPPE ESLAPPE - ESLAPPE ESLAPPE LAPPE/SPE
PE DIM 8 8 - 8 10 16

BATCH SIZE 200 200 64 128 48 16
LEARNING RATE 1E-3 1E-3 1E-3 1E-3 1E-3 1E-3
#EPOCHS 300 300 300 200 300 25
WEIGHT DECAY 1E-2 1E-5 1E-3 1E-5 1E-5 1E-2

Ns 20 30 50 30 40 20
η 0.1 0.1 0.1 0.1 0.1 0.01
s 20 30 50 30 40 20

#PARAMETERS 112957 101714 519605 208387 499386 52238

13

Primphormer: Efficient Graph Transformers with Primal Representations

Table A4 Hyperparameters used in Table. 4.
HYPERPARMETER CIFAR10 MALNET-TINY PASVALVOC-SP PEPTIDES-FUNC OGBN-PRODUCTS

#LAYERS 5 5 4 4 2
HIDDEN DIM 40 64 96 96 128
BATCH SIZE 128 4 32 128 -

C. Proofs of theoretical results
In this section, we provide the proof of theoretical results in this paper.

C.1. Proof details of Theorem 2.2

The Lagrangian of (2.5) is defined by,

L(We,Wr, ei, rj ,hei ,hrj) =
1

2

N∑
i=1

e⊤i Λei +
1

2

N∑
j=1

r⊤j Λrj − Tr(W⊤
e Wr)

−
N∑
i=1

h⊤
ei

(
ei − fXWeϕq(xi)

)
− h⊤

rj

(
rj − fXWrϕk(xj)

)
,

(C1)

where hei ,hrj ∈ Rs are dual variable vectors corresponding to the equality constraints regarding the projection scores ei
and rj .

By taking the partial derivatives to the Lagrangian (C1), the Karush-Kuhn-Tucker (KKT) conditions lead to the following
equalities, 

∂L
∂We

= 0⇒Wr =

N∑
i=1

f⊤Xheiϕq(xi)
⊤

∂L
∂Wr

= 0⇒We =

N∑
j=1

f⊤Xhrjϕk(xj)
⊤

∂L
∂ei

= 0⇒ Λei = hei , i ∈ [N]

∂L
∂rj

= 0⇒ Λrj = hrj , j ∈ [N]

∂L
∂hei

= 0⇒ ei = fXWeϕq(xi), i ∈ [N]

∂L
∂hrj

= 0⇒ rj = fXWrϕk(xj), j ∈ [N].

(C2)

By eliminating the primal variables We and Wr, we have,

N∑
j=1

FXhrjϕk(xj)
⊤ϕq(xi) = Λ−1hei , i ∈ [N],

N∑
i=1

FXheiϕq(xi)
⊤ϕk(xj) = Λ−1hrj , j ∈ [N],

(C3)

where FX := fXf
⊤
X ∈ Ss×s

+ is the auto-correlation matrix. It can be expressed in the following matrix form,[
0N×N [ϕq(xi)

⊤ϕk(xj)]
[ϕk(xj)

⊤ϕq(xi)] 0N×N

] [
He

Hr

]
FX =

[
He

Hr

]
Λ−1, (C4)

with He := [he1 , . . . ,heN]⊤ ∈ RN×s, and Hr := [hr1 , . . . ,hrN]⊤ ∈ RN×s.

14

Primphormer: Efficient Graph Transformers with Primal Representations

Then it can be noticed that the optimization problem (2.5) in the dual space yields the following generalized eigenvalue
problem with an asymmetric kernel K,

KHrFX = HeΣ,

K⊤HeFX = HrΣ,
(C5)

which collects the solutions corresponding to the non-zero entries in Λ such that Σ := Λ−1. The asymmetric kernel matrix
K, induced by Kij := ⟨ϕq(xi), ϕk(xj)⟩, ∀i, j ∈ [N], corresponds to the attention matrix.

C.2. Derivation of scores (2.8) in the primal and dual spaces

With the derivations and KKT conditions of the primal-dual optimization above, the primal and dual representation for
self-attention can be formulated as follows,

Primal :

{
e(x) = fXWeϕq(x),

r(x) = fXWrϕk(x).
(C6)

Dual :


e(x) = fXWeϕq(xi) =

∑N

j=1
FXhrjϕk(xj)

⊤ϕq(x),

r(x) = fXWrϕk(xi) =
∑N

i=1
FXheiϕq(xi)

⊤ϕk(x).

(C7)

Then, the primal and dual representations for self-attention can be formulated as follows,

Primal :

{
e(x) = W⊤

e|Xϕq(x),

r(x) = W⊤
r|Xϕk(x),

Dual :


e(x) =

∑N

j=1
h̃rjκ(x,xj),

r(x) =
∑N

i=1
h̃eiκ(xi,x),

(C8)

where W⊤
e|X := fXWe ∈ Rs×p, W⊤

r|X := fXWr ∈ Rs×p and h̃rj := FXhrj , h̃ei := FXhei are values for self-
attention, respectively.

C.3. Proof details of Lemma 2.3

Proof. Based on the KKT conditions (C2) and (2.6), the objective on stationary points is,

J =
1

2

∑N

i=1
e⊤i Λei +

1

2

∑N

j=1
r⊤j Λrj − Tr

(
W⊤

e Wr

)
=

1

2

∑N

i=1

(
Λ−1hei

)⊤
ΛΛ−1hei +

1

2

∑N

j=1

(
Λ−1hrj

)⊤
ΛΛ−1hrj

− Tr

((∑N

j=1
ϕk(xj)h

⊤
rjfX

)
·
(∑N

i=1
f⊤Xheiϕq(xi)

⊤))
=

1

2

∑N

i=1
h⊤
eiΛ

−1hei +
1

2

∑N

j=1
h⊤
rjΛ

−1hrj − Tr
(∑

i,j
ϕk(xj)h

⊤
rjFXheiϕq(xi)

⊤
)

=
1

2
Tr
(
HeΣH⊤

e

)
+

1

2
Tr
(
HrΣH⊤

r

)
− Tr

(∑
i,j

ϕq(xi)
⊤ϕk(xj)h

⊤
rjFXhei

)
=

1

2
Tr
(
HeΣH⊤

e

)
+

1

2
Tr
(
HrΣH⊤

r

)
− Tr

(
KHrFXH⊤

e

)
=

1

2
Tr
(
KHrFXH⊤

e

)
+

1

2
Tr
(
K⊤HeFXH⊤

r

)
− Tr

(
KHrFXH⊤

e

)
=

1

2
Tr
(
K⊤HeFXH⊤

r

)
− 1

2
Tr
(
KHrFXH⊤

e

)
=

1

2
Tr
(
HeFXH⊤

r K⊤)− 1

2
Tr
(
KHrFXH⊤

e

)
=

1

2
Tr
((

HeFXH⊤
r K⊤)⊤)− 1

2
Tr
(
KHrFXH⊤

e

)
=

1

2
Tr
(
KHrFXH⊤

e

)
− 1

2
Tr
(
KHrFXH⊤

e

)
= 0.

(C9)

15

Primphormer: Efficient Graph Transformers with Primal Representations

C.4. Proof details of Theorem 3.2

Proof. The proof follows ideas in (Alberti et al., 2023). We first introduce the Sumformer S and we divide the approxima-
tion into two parts: 1) approximate f by a S and 2) approximate S by a Primphormer TPri.

Definition C.1 (Sumformer). Let d′ ∈ N and let there be two functions ξ : X → Rd′
, ψ : X ×Rd′ → Y . A Sumformer is

a sequence-to-sequence function S : XN → YN which is evaluated by first computing

Ξ :=

N∑
k=1

ξ(xk), (C10)

and then
S ([x1, · · · ,xN]) := [ψ(x1,Ξ), · · · , ψ(xN ,Ξ)] . (C11)

Lemma C.2 (Alberti et al. (2023), universal approximation of Sumformer). For each function f ∈ FN
eq(X ,Y) and for

each ϵ > 0 there exists a Sumformer S such that

sup
X∈XN

∥f(X)− S(X)∥∞ < ϵ. (C12)

We divide the approximation into two steps by the triangular inequality: 1) approximate f by a Sumformer S and 2)
approximate S by a Primphormer TPri.

sup
X∈XN

∥f(X)− TPri(X)∥∞ ≤ sup
X∈XN

∥f(X)− S(X)∥∞ + sup
X∈XN

∥S(X)− TPri(X)∥∞. (C13)

According to Theorem C.2, we know that there exists a Sumformer S which approximates f to an error of ϵ/2. This
Sumformer has the inherent latent dimension d′.

Secondly, we turn to the second term and construct a Primphormer that can approximate Sumformer to ϵ/2 error. The
structure of Transformer is X + FFN (X +Att(X)) where FFN and Att are the feed-forward and self-attention mod-
ules, respectively. The attention map Att(X) of Primphormer is calculated in the primal space (2.8) and the rest of the
architecture in Primphormer stays the same. Here, we follow the proof idea proposed in (Alberti et al., 2023) and refer
readers to this work for detailed information on the theoretical result.

We have the input X = [x1, · · · ,xN] ∈ XN with xi ∈ Rd. Set the attention in the first layers to zero, we obtain the
feed-forward layers without attention. We first map X with a feed-forward transformation to[

x1 · · · xN

x1 · · · xN

]
∈ R2d×N . (C14)

Then, a two-layer feed-forward network can be constructed to act as the identity on the first N components while approxi-
mating the function ξ in Sumformer (Hornik et al., 1989; Alberti et al., 2023). We have.

[
x1 · · · xN

ξ(x1) · · · ξ(xN)

]
∈ R(d+d′)×N . (C15)

Before getting to the second step, we add a linear mapping withW =

[
0d×1 Id 0d×d′ 0d×d′

0d′×1 0d′×d Id′ 0d′×d′

]⊤
∈ R(1+d+2d′)×(d+d′),

b =
[
1N 0N×(d+2d′))

]⊤ ∈ R(1+d+2d′)×N ,

(C16)

and get an output after the first step: 
1 · · · 1
x1 · · · xN

ξ(x1) · · · ξ(xN)
0d′×1 · · · 0d′×1

 ∈ R(1+d+2d′)×N . (C17)

16

Primphormer: Efficient Graph Transformers with Primal Representations

Secondly, we turn to the attention scheme to represent the sum Ξ =
∑N

i=1 ξ(xi) defined in the definition (C.1). Set
Wq = Wk = [e1,0(1+d+2d′)×(d+2d′)] with e1 = [1,01×(d+2d′)]

⊤. we have,

ϕq(X1) = ϕk(X1) =
[
1N×1,0N×(d+2d′)

]⊤ ∈ R(1+d+2d′)×N . (C18)

Let the data-dependent projection f(X) = BX1N1⊤
Ns

with B = [0d′×1,0d′×d, Id′ ,0d′×d′], we have,

f(X) =

Ns︷ ︸︸ ︷[
N∑
i=1

ξ(xi), · · · ,
N∑
i=1

ξ(xi)

]
= [Ξ, · · · ,Ξ] ∈ Rd′×Ns . (C19)

Let We = Wr = [e1,0(1+d+2d′)×(Ns−1)]
⊤, the projection scores in (2.8) are{

e(X1) = f(X1)Weϕq(X1) = [Ξ, · · · ,Ξ] ∈ Rd′×N .

r(X1) = f(X1)Wrϕk(X1) = [Ξ, · · · ,Ξ] ∈ Rd′×N .
(C20)

To fit the dimension of the output, we concatenate the projection scores [e(X1); r(X1)] ∈ R2d′×N , and choose a compat-
ibility matrix Wc = [0(1+d+d′)×2d′ ; 1

2Id′ , 12Id′] ∈ R(1+d+2d′)×2d′
, such that

o(X1) = Wc

[
e(X1)

r(X1)

]
=

[
0(1+d+d′)×1 · · · 0(1+d+d′)×1

Ξ · · · Ξ

]
∈ R(1+d+2d′)×N . (C21)

Then apply a residual connection and obtain the same output as outlined in (Alberti et al., 2023),
1 · · · 1
x1 · · · xN

ξ(x1) · · · ξ(xN)
Ξ · · · Ξ

 ∈ R(1+d+2d′)×N . (C22)

Because only the attention map Att(X) is changed in the architecture and the rest stays the same, the construction of ψ is
as same as that in (Alberti et al., 2023), i.e.,O(N(1ϵ)

dN/N !) feed-forward layers for approximating ψ in the discontinuous
case and two feed-forward layers for approximating ψ in the continuous case. Above all, we can construct a Primphormer
that approximates the Sumformer to ϵ/2 error.

C.5. Proof details of Theorem 3.3

Proof. The proof can be done in a similar way as Theorem 3.2. Firstly, let the target function f(X) :=
[g(x1, {x2, · · · ,xN}), · · · , g(xN , {x1, · · · ,xN−1})]. Since the target function f is continuous, its component func-
tions f1, · · · , fN , i.e., g, are also continuous. The compactness of X shows that XN is also compact and therefore g is
uniformly continuous. Without loss of generality, let the compact support of g be contained in [0, 1]d×N . Then we can
define a piece-wise constant function g by

g(X) =
∑

P∈Gδ

g(P)1{X ∈ CP }, (C23)

where the grid Gδ := {0, δ, · · · , 1 − δ}d×N for some δ := 1
∆ with ∆ ∈ N consisting of cubes CP =∏N

i=1

∏d
k=1[Pi,k,Pi,k + δ). Because g is uniformly continuous, for each ϵ > 0, there exists a δ > 0 such that

sup
X∈XN

∥g(X)− g(X)∥∞ < ϵ. (C24)

Secondly, choose the positional encoding

E =


0 1 2 · · · N − 1
0 1 2 · · · N − 1
...

...
...

...
0 1 2 · · · N − 1

 ∈ Rd×N . (C25)

17

Primphormer: Efficient Graph Transformers with Primal Representations

After applying the quantization, the output is in the following set,

Hδ :=
{
P +E ∈ Rd×N |P ∈ Gδ

}
. (C26)

Then the i-th column of X +E is in the range [i− 1, i)d, meaning that the entries corresponding to different tokens lie in
disjoint intervals. More precisely, for any H ∈ Gδ , its i-th column Hi ∈ [i− 1 : δ : i− δ].

Consider a vector u = 1−δ
Nδ−d+1 ×

(
1, δ−1, · · · , δ−d+1

)
∈ Rd. It is easy to check that for any H ∈ Gδ , the map

l(Hi) = u⊤Hi is one-to-one,

u⊤Hi ∈

[
(1− δ)(i− 1)

Nδ−d+1

d−1∑
k=0

δ−k :
(1− δ)
Nδ−d

:
(1− δ)i
Nδ−d+1

d−1∑
k=0

δ−k − (δ−d − 1)

Nδ−d−1

]
. (C27)

Therefore, for each column Hi, the image of l(Hi) is in an interval disjoint from the other columns. We can know that
l(Hi) can be thought as a “column id” for different columns, for any permutation π : [N]→ [N],

l
(
Hπ(1)

)
< l
(
Hπ(2)

)
< · · · < l

(
Hπ(N)

)
. (C28)

Besides, it can be easily checked that the image of l lies within the interval [0, 1],

0 ≤ l
(
Hπ(1)

)
< l
(
Hπ(2)

)
< · · · < l

(
Hπ(N)

)
< 1. (C29)

Next, we want to represent g using an appropriate S. Without loss of generality, we choose the k-th component of f ,
i.e., g(xk, {xi|i ̸= k, i ∈ [N]}). Assign each grid point H a coordinate χ(H) = b ∈ [0, 1]N by the construction of the
function l. Let b = [l(Hi)|i ∈ [N]] ∈ [0, 1]N . The map χ is bijective and there are finitely many b. We can enumerate all b
using a function µ : [0, 1]N → N. This function could be represented by the Kolmogorov-Arnold representation theorem,
as stated below,

Lemma C.3 (Kolmogorov-Arnold representation (Khesin & Tabachnikov, 2014; Zaheer et al., 2017)). Let f : [0, 1]N → R
be an arbitrary multivariate continuous function iff it has the representation,

f(x1, · · · ,xN) = ρ

(
N∑

n=1

λnϕ(xn)

)
(C30)

with continuous outer and inner functions ρ : R2N+1 → R and ϕ : R → R2N+1. The inner function ϕ is independent of
the function f .

Now, we can utilize Lemma C.3 to find the representation for the function µ,

µ(b) = ρ

(
N∑

n=1

λnϕ(bn)

)
. (C31)

Define Ξ :=
∑N

n=1 ξ(bn) =
∑N

n=1 λnϕ(bn) and a quantization function q such that bn = l(q(xn +En)). It is feasible
because bn varies for different indices, as claimed in “column id” (C28). Now we can recover the grid H ,

H = χ−1 ◦ µ−1 ◦ ρ(Ξ). (C32)

We then define the function ψ such that the related S is equal to g:

ψ(xk,Ξ) := g
(
ι(χ−1 ◦ µ−1 ◦ ρ(Ξ)−E)

)
, (C33)

with ι : P 7→ (Pk,Pi̸=k) to fit the input requirement of g. Since we chose g to uniformly approximate g, i.e., each
component of f up to ϵ error, it implies that S with a positional encoding uniformly approximates f up to ϵ error.

Thirdly, we need to prove the universal approximation between a Sumformer and a Primphormer after adding a positional
encoding. The proof (C.4) still holds because it only involves the architecture. We can claim that there exists a Primphormer
with a positional encoding TPE uniformly approximating a Sumformer S.

Above all, we end the proof by using the triangular inequality,

sup
X∈XN

∥f(X)− TPE(X)∥∞ ≤ sup
X∈XN

∥f(X)− S(X)∥∞ + sup
X∈XN

∥S(X)− TPE(X)∥∞ < ϵ. (C34)

18

Primphormer: Efficient Graph Transformers with Primal Representations

C.6. Expressivity of Primphormer

In this subsection, we prove the expressivity of Primphormer. According to the previous work (Müller & Morris, 2024),
which demonstrates that the standard Transformer can simulate the 1-WL test, we prove that Primphormer is also capable
of simulating the 1-WL test. This result indicates that the primal representation preserves expressivity, ensuring that
Primphormer remains a powerful graph learning model.

Lemma C.4 (Theorem VIII.4, (Grohe, 2021)). Let G = (V,E, ℓ) be a labeled graph with N nodes, adjacency matrix
A(G), and node feature matrix X(0) := H ∈ Rd×N consistent with the label ℓ. Assume a GNN that for each layer, t > 0,
updates the node feature matrix,

X(t) := FFN
(
X(t−1) + 2X(t−1)A(G)

)
. (C35)

Then, for all t ≥ 0, there exists a parameterization of FFN such that

C1
t (v) = C1

t (w) ⇐⇒ X(t)(v) = X(t)(w), (C36)

for all nodes v, w ∈ V , where C1
t is the coloring function of the 1-WL test at t-th iteration.

The previous work (Müller & Morris, 2024) has shown that the standard graph Transformer i.e., 1-GT, with sufficiently
adjacency-identifying structural embeddings such as LAP/LapPE (Kreuzer et al., 2021) and SPE (Huang et al., 2024) could
simulate the (C35), demonstrating the expressive power of the standard graph Transformer is as same as the 1-WL test.

Lemma C.5 (Theorem 2, (Müller & Morris, 2024)). LetG = (V,E, ℓ) be a labeled graph withN nodes, and node feature
matrix X(0) := H ∈ Rd×N consistent with the label ℓ. Then, for all iterations t ≥ 0, there exists a parameterization of
1-GT such that

C1
t (v) = C1

t (w) ⇐⇒ X(t)(v) = X(t)(w), (C37)

for all nodes v, w ∈ V , where C1
t is the coloring function of the 1-WL test at t-th iteration.

In our approach, we replace the standard attention module with the primal representation “Prim”, forming a model structure
FFN(X + Prim(X)). Our goal is to show that the primal representation preserves the expressivity of the standard
Transformers. To ensure a fair comparison, we follow the same setup used by Müller & Morris (2024). Let G = (V,E, ℓ)
be a labeled graph with N nodes, and node feature matrix X(0) := H ∈ Rd×N consistent with the label ℓ. Then, we
initialize N node embedding X(0) := H + P , where P ∈ Rd×N is the structural embeddings, encoding structural
information for each node. For each node v,

P (v) := FFN (deg(v) + PE(v)) , (C38)

where deg : V → Rl is a learnable embedding of the node degree, PE : V → Rl is a node-level PE such as LAP and SPE,
and FFN : Rl → Rd is a feed-forward layer.

Definition C.6 (LAP and SPE (Müller & Morris, 2024)). Let (λ,V) denotes the eigensystem of the graph Laplacian L
of graph G with N nodes where λ := (λ1, · · · , λn) is the vector of the n smallest eigenvalues and V ∈ RN×n is the
corresponding matrix of eigenvectors. Then the LAP and SPE are defined as follows,

LAP(λ,V) = ρ1
(
[ψ(V ⊤

1 , λ), · · · , ψ(V ⊤
N , λ)]

)
SPE(λ,V) = ρ2

(
[V ϕ1(λ)V

⊤, · · · ,V ϕm(λ)V ⊤]
)
,

(C39)

where LAP: ψ : R2 → Rl is a feed-forward layer applied row-wise and ρ1 : RN×l → RN×l is a permutation-equivariant
neural network; SPE: m is a hyper-parameter, ϕ1, · · · , ϕm : Rn → Rn and ρ2 : RN×N×m → RN×l are permutation-
equivariant neural networks. The graph Laplacian is defined as L := D−A where D and A are the diagonal degree matrix
and the adjacency matrix of graph G, respectively. The normalized graph Laplacian is defined as L̃ := I −D− 1

2AD− 1
2 .

According to Definition C.6, there exists a parameterization of LAP and SPE to represent the original graph Laplacian.
This intuition is also proven in Sec. 3.5 in Kreuzer et al. (2021), Sec. 3.4 in Huang et al. (2024), and Theorems. 20 and 22
in Müller & Morris (2024).

Lemma C.7 (Initialization of input (Müller & Morris, 2024)). Let G be a graph with node features H ∈ Rd×N with the
degree function deg : V → N. For every tokenization X(0) = H + P , there exists a parameterization of X(0) such that
for node v ∈ V ,

X(0)(v) =
[
H ′(v);0; deg′(v);P ′(v)

]
∈ Rd, (C40)

19

Primphormer: Efficient Graph Transformers with Primal Representations

with P ′(v) = FFN′ (deg′(v) + PE(v)
)
, such that H ′(v) ∈ Rs,0 ∈ Rs, deg′(v) ∈ Rr, and FFN′ : Rd → Rk for

d = 2s+ r + k, and for every v, w ∈ V , it holds,

H(v) = H(w) ⇐⇒ H ′(v) = H ′(w)

deg(v) = deg(w) ⇐⇒ deg′(v) = deg′(w)

P (v) = P (w) ⇐⇒ P ′(v) = P (w).

(C41)

Moreover, if structure embedding P can recover the graph Laplacian, so does P ′.

Using the above Lemma, we can integrate node and structure information to a parameterization of X(0) with a proper
dimension while maintaining unchanged common features.

Next, we give the proof of Theorem 3.4 in the main body.

Theorem C.8. Let G = (V,E, ℓ) be a labeled graph with N nodes, and node feature matrix X(0) := H ∈ Rd×N

consistent with the label ℓ. Then, for all iterations t ≥ 0, there exists a parameterization of Primphormer such that

C1
t (v) = C1

t (w) ⇐⇒ X(t)(v) = X(t)(w), (C42)

for all nodes v, w ∈ V , where C1
t : V → N is the coloring function of the 1-WL test at t-th iteration.

Proof. According to Lemma C.7, there exists a parameterization of the initialization X(0) such that

X(0)(v) =
[
H ′(v);0; deg′(v);P ′(v)

]
,

for each v ∈ V and
H(v) = H(w) ⇐⇒ H ′(v) = H ′(w)

deg(v) = deg(w) ⇐⇒ deg′(v) = deg′(w)

P (v) = P (w) ⇐⇒ P ′(v) = P (w).

with d = 2s+ r + k. We use the induction method to prove it.

First, according to the definition, we have

C1
0 (v) = C1

0 (w) ⇐⇒ H(v) = H(w).

Denote H(t)(v) as the representation of the color of node v at iteration t. We set H(t)(v) = H ′(v), Demb ∈ Rr×N such
that for i-th column Demb,i = deg′(vi) where vi is the i-th node in a fix but arbitrary node ordering. Then, X(0) can be
rewritten as

X(0)(v) =
[
H(0)(v);0; deg′(v);P ′(v)

]
,

and in matrix form,
X(0) =

[
H(0);0;Demb;P

′
]
∈ Rd×N .

Secondly, suppose the statement holds to iteration t, t ≥ 0. For the induction, we want,

C1
t+1(v) = C1

t+1(w) ⇐⇒ H(t+1)(v) = H(t+1)(w),

which means that the first element of X(t+1) should match the 1-WL-equivalent aggregation,

X(t+1) =
[
H(t+1);0;Demb;P

′
]
∈ Rd×N . (C43)

Recall Lemma C.4, we know the 1-WL-equivalent aggregation follows,

H(t+1) := FFNWL

(
H(t) + 2H(t)A(G)

)
, (C44)

where FFNWL is the feed-forward layer to update colors. Then we only need to show that our Primphormer can simulate
(C44) to match (C43),

o(x) = Wc

[
e(x)

r(x)

]
with

{
e(x) = fXWeϕq(x),

r(x) = fXWrϕk(x),
fX = F +BX1N1⊤

Ns
. (C45)

20

Primphormer: Efficient Graph Transformers with Primal Representations

By setting Wc = [I,0], Ns = s, B = 0, and F = I (the identity matrix), we can parameterize Primphormer as follows:

o(x) = e(x) = Weϕq(x), (C46)

where we set ϕq(x) := q(x)/∥q(x)∥2 and ϕk(x) := k(x)/∥k(x)∥2 with q(x) = Wqx and k(x) = Wkx. We re-state
the projection weight Wq and Wk with expanded sub-matrices to fit X(t) as

Wq =
[
W 1

q ,W
2
q ,W

3
q ,W

4
q

]
∈ Rd×d,

Wk =
[
W 1

k ,W
2
k ,W

3
k ,W

4
k

]
∈ Rd×d,

(C47)

where W 1
q ,W

1
k ∈ Rd×s, W 2

q ,W
2
k ∈ Rd×s, W 3

q ,W
3
k ∈ Rd×r, and W 4

q ,W
4
k ∈ Rd×k. Then, we define the correspond-

ing output,

o(X(t)) := Weϕq(X
(t)) = Weq(X

(t))diag(∥q(X(t))∥2,col)−1 = WeWqX
(t)diag(∥WqX

(t)∥2,col)−1, (C48)

where ∥A∥2,col := [∥A1∥2, · · · , ∥AN∥2] denotes the l2-norm of the each column of A. According to the KKT condi-
tions (C2), we have We =

∑N
j=1 hrjϕk(xj)

⊤, in matrix form We = Hrjϕk(X
(t))⊤, indicating that the row space of

We is spanned by {ϕk(xj)
⊤}j . Thus, we can re-parameterize We in the row space such that

We = Hϕk(X
(t))⊤ =


h1
1 · · · h1

N

h2
1 · · · h2

N

h3
1 · · · h3

N

h4
1 · · · h4

N

ϕk(X
(t))⊤ (C49)

where h1
i ∈ Rs,h2

i ∈ Rs,h3
i ∈ Rr,h4

i ∈ Rk, ∀i ∈ [N] are weight vectors. Now we can formulate the output of our primal
representation,

o(X(t)) = Hϕk(X
(t))⊤ϕq(X

(t))

= Hdiag(∥WkX
(t)∥2,col)−1X(t)⊤W⊤

k WqX
(t)diag(∥WqX

(t)∥2,col)−1.
(C50)

By setting W 1
q ,W

2
q ,W

3
q ,W

1
k ,W

2
k ,W

3
k to zeros, we have

o(X(t)) = Hdiag(∥W 4
kP

′∥2,col)−1P ′⊤W 4
k
⊤
W 4

q P
′diag(∥W 4

q P
′∥2,col)−1. (C51)

Since the LAP and SPE are permutation-invariant functions, they can universally approximate the eigenfunction f(M) =

V λ
1
2M with a permutation matrix M where {V ,λ} is the eigensystem of the (normalized) graph Laplacian. According to

Lemma C.7, we know that the structure embedding P ′ can also recover the (normalized) graph Laplacian, i.e., P ′⊤P ′ =
L. By setting W 4

q ,W
4
k as [Ik;0d−k], we have W 4

q P
′ = [P ′;0d−k] and W 4

kP
′ = [P ′;0d−k]. Then o can be re-

parameterized by,
o(X(t)) = Hdiag(∥P ′∥2,col)−1P ′⊤P ′diag(∥P ′∥2,col)−1. (C52)

Recall the adjacency matrix A(G) without self-loop and L = D−A, we know that Lii = Dii, i.e., P ′⊤
i P

′
i = Dii, such

that diag(∥P ′∥2,col) = D
1
2 :

o(X(t)) = HD− 1
2P ′⊤P ′D− 1

2 = HD− 1
2LD− 1

2 = H
(
I −D− 1

2A(G)D− 1
2

)
. (C53)

By setting h1
i ,h

3
i , and h4

i to zeros and h2
i =

√
|N(i)|H(t)(i), we can obtain the output of the “Prim” module as,

Prim(X(t)) = o(X(t)) =
[
0;H(t)

(
D

1
2 −A(G)D− 1

2

)
;0;0

]
. (C54)

Finally, recalling the model structure FFN(X + Prim(X)), Primphormer computes the next representation X(t+1) as
follows:

X(t+1) = FFN
(
X(t) + Prim(X(t))

)
= FFN

([
H(t);0;Demb;P

′
]
+
[
0;H(t)

(
D

1
2 −A(G)D− 1

2

)
;0;0

])
= FFN

([
H(t);H(t)

(
D

1
2 −A(G)D− 1

2

)
;Demb;P

′
])
,

(C55)

21

Primphormer: Efficient Graph Transformers with Primal Representations

and for each node v ∈ V ,

X(t+1)(v) = FFN

([
H(t)(v); |N(v)| 12H(t)(v)−

∑
w∈N(v)

|N(v)|− 1
2H(t)(w); deg′(v);P ′(v)

])
. (C56)

We can define deg′(v) := [|N(v)| 12 ;0r−1]. The domain is obviously compact, thus there exists choices of
fFFN, flin2

, flin1
, fdeg : Rd → Rd is continuous. We can use a feed-forward layer FFN to approximate fFFN ◦ flin2

◦
flin1 ◦ fdeg arbitrarily close. We define fFFN, flin2 , flin1 , fdeg as follows,

fdeg

([
H(t)(v); |N(v)| 12H(t)(v)−

∑
w∈N(v)

|N(v)|− 1
2H(t)(w); deg′(v);P ′(v)

])

=

H(t)(v)︸ ︷︷ ︸
(a)

;H(t)(v)−
∑

w∈N(v)
|N(v)|−1H(t)(w)︸ ︷︷ ︸

(b)

; deg′(v);P ′(v)

 , (C57)

where fdeg multiplies the degree |N(v)|− 1
2 in to the second component. Next, flin1 conducts a linear transformation such

that (b) = 2× ((b)− (a)),

flin1

([
H(t)(v);H(t)(v)−

∑
w∈N(v)

|N(v)|−1H(t)(w); deg′(v);P ′(v)

])

=

H(t)(v)︸ ︷︷ ︸
(a)

;−2
∑

w∈N(v)
|N(v)|−1H(t)(w)︸ ︷︷ ︸
(b)

; deg′(v);P ′(v)

 . (C58)

Next, flin2 conducts a linear transformation such that (a) = (a)− |N(v)|(b) and (b) = 0,

flin2

([
H(t)(v);−2

∑
w∈N(v)

|N(v)|−1H(t)(w); deg′(v);P ′(v)

])

=

H(t)(v) + 2
∑

w∈N(v)
H(t)(w)︸ ︷︷ ︸

(a)

;0; deg′(v);P ′(v)

 . (C59)

Finally, fFFN updates the first component in the same way as FFNWL does in (C44),

fFFN

([
H(t)(v) + 2

∑
w∈N(v)

H(t)(w);0; deg′(v);P ′(v)

])
=

[
FFNWL

(
H(t)(v) + 2

∑
w∈N(v)

H(t)(w)

)
;0; deg′(v);P ′(v)

]
=
[
H(t+1)(v);0; deg′(v);P ′(v)

]
.

(C60)

In matrix form,

X(t+1) = fFFN ◦ flin2 ◦ flin1 ◦ fdeg
([

H(t);H(t)
(
D

1
2 −A(G)D− 1

2

)
;Demb;P

′
])

=
[
H(t+1);0;Demb;P

′
]
,

(C61)

which completes the proof.

According to Lemma C.5 and Theorem C.8, we know that both Transformer and Primphormer can simulate the 1-WL test
in terms of distinguishing non-isomorphic graphs.

22

Primphormer: Efficient Graph Transformers with Primal Representations

D. Pseudo-code

Algorithm 1 PyTorch-like Pseudo-Code for Primphormer Module.

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_geometric.nn import global_mean_pool
from torch_geometric.utils import to_dense_batch

class Primphormer(nn.Module):
def __init__(self, in_dim, out_dim, n_heads, Ns, low_rank):

super().__init__()
self.d_keys = out_dim // n_heads # key dimension.
self.q_proj = nn.Linear(in_dim, out_dim) # query
self.k_proj = nn.Linear(in_dim, out_dim) # key
self.vn_proj = nn.Linear(in_dim, out_dim) # virtual node
self.n_heads = n_heads

self.We = nn.Parameter(nn.init.orthogonal_(torch.Tensor(Ns, n_heads, self.d_keys)))
self.Wr = nn.Parameter(nn.init.orthogonal_(torch.Tensor(Ns, n_heads, self.d_keys)))
self.Lambda = nn.Parameter(nn.init.uniform_(torch.Tensor(n_heads, low_rank)))
self.concate_weight = nn.Linear(2*low_rank, self.d_keys)

def feature_map(self, Q, K):
Q = F.normalized(Q, p=2, dim=-1)
K = F.normalized(K, p=2, dim=-1)
return Q, K

def propagate_vn(self, batch, h):
h = self.vn_proj(h)
h_vn = global_mean_pool(h, batch.batch).unsqueeze(1) # aggregate by the virtual node.
fx = h_vn + batch.fx # update f_X by the virtual node.
return fx

def forward(self, batch):
x = batch.x
x_dense, mask = to_dense_batch(x, batch.batch)
B, M = mask.shape # batch, maximal #nodes
fx = self.propagate_vn(batch, x)
Q = self.q_proj(x_dense).view(B, M, self.n_heads, -1)
K = self.k_proj(x_dense).view(B, M, self.n_heads, -1)
Q, K = self.feature_map(Q, K)

compute data-dependent projections
We_X = torch.einsum(’bdv,vhe->bdhe’, fx.transpose(2, 1), self.We)
Wr_X = torch.einsum(’bdv,vhe->bdhe’, fx.transpose(2, 1), self.Wr)

compute projection scores
escore = torch.einsum(’bmhd,bhde->bmhe’, Q, We_X.permute(0, 2, 3, 1))[mask]
rscore = torch.einsum(’bmhd,bhde->bmhe’, K, Wr_X.permute(0, 2, 3, 1))[mask]

score = torch.cat((escore, rscore), dim=-1)
out = self.concate_weight(score).contiguous()
out = out.view(-1, self.n_heads * self.d_keys) # final output
batch.fx = fx #update for the next layer

loss_escore = (torch.einsum(’nhd,hd->nhd’, escore, self.Lambda).norm(dim=-1,p=2)**2).mean() / 2
loss_rscore = (torch.einsum(’nhd,hd->nhd’, rscore, self.Lambda).norm(dim=-1,p=2)**2).mean() / 2
loss_trace = torch.einsum(’dhe,ehk->dhk’, self.We.permute(2, 1, 0), self.Wr).mean(dim=1).trace()
loss_svd = (loss_escore + loss_rscore - loss_trace) ** 2

return out, loss_svd

23

Primphormer: Efficient Graph Transformers with Primal Representations

Algorithm 2 Algorithm for Primphormer in the GPS architecture.

Input: GraphG = (V,E) withN nodes andM edges; Adjacency matrix A ∈ RN×N ; Node features X ∈ Rdn×N , Edge
features E ∈ Rde×M ; Node and edge encoders; Local message passing model instance MPNNe; Primphormer model
instance Prim; Positional encoding function fPE; Layers l ∈ [L− 1].

Output: Node representations XL ∈ Rd×N and edge representations EL ∈ Rd×M for downstream tasks.
1: Pnode,Pedge ← ∅;
2: Pnode,Pedge ← fPE(X,E)
3: X1 ←

⊕
node (NodeEncoder(X),Pnode)

4: E1 ←
⊕

edge (EdgeEncoder(E),Pedge)
5: for l = 1, · · · , L− 1 do
6: X̂ l+1

M ,El+1 ← MPNNl
e

(
X l,El,A

)
7: X̂ l+1

P ← Priml
(
X l
)

8: X l+1
M ← BatchNorm

(
Dropout

(
X̂ l+1

M

)
+X l

)
9: X l+1

P ← BatchNorm
(
Dropout

(
X̂ l+1

P

)
+X l

)
10: X l+1 ← MLPl

(
X l+1

M +X l+1
P

)
11: end for
12: Return: XL and EL

E. Additional experiments
We also conduct experiments to compare against more models (Ma et al., 2023). We report the experimental results in
Table A5.

Table A5 Comparisons between our method and GRIT(Ma et al., 2023).

MODEL CIFAR10 MNIST

GPS ACC↑ TIME(S/EPOCH) MEMORY(GB) ACC↑ TIME(S/EPOCH) MEMORY(GB)

PRIMPHORMER 74.13 ± 0.241 32.6 2.74 98.56 ± 0.042 43.7 1.71

GRIT(MA ET AL., 2023) 76.46 ± 0.881 158.8 22.8 98.11 ± 0.111 70.1 7.69

We report the performance drop of removing fX in the following table,

Table A6 The removal impact performance of fX .

PASCALVOC COCO PEPTIDES-FUNC PEPTIDES-STRUCT PCQM

PRIMPHORMER 0.4602 ± 0.0077 0.3903 ± 0.0061 0.6612 ± 0.0065 0.2495 ± 0.0008 0.3757 ± 0.0079

NO fX 0.4513 ± 0.0089 0.3758 ± 0.0082 0.6509 ± 0.0072 0.2576 ± 0.0011 0.3516 ± 0.0126

24

	Introduction
	Methods
	Attention mechanism on graphs
	Primal-dual relationships in kernel machines
	Primphormer

	Theoretical Results
	Universal approximation
	Expressivity

	Experimental Results
	Related Work
	Conclusion
	Data Descriptions
	Hyperparameters
	Proofs of theoretical results
	Proof details of Theorem 2.2
	Derivation of scores (2.8) in the primal and dual spaces
	Proof details of Lemma 2.3
	Proof details of Theorem 3.2
	Proof details of Theorem 3.3
	Expressivity of Primphormer

	Pseudo-code
	Additional experiments

