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ABSTRACT

Multi-agent reinforcement learning (MARL) has witnessed a remarkable
surge in interest, fueled by the empirical success achieved in applications of
single-agent reinforcement learning (RL). In this study, we consider a dis-
tributed Q-learning scenario, wherein a number of agents cooperatively solve
a sequential decision making problem without access to the central reward
function which is an average of the local rewards. In particular, we study
finite-time analysis of a distributed Q-learning algorithm, and provide a new
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under tabular lookup setting for Markovian observation model.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) aims to solve a sequential decision making
problem, where a number of agents sharing an environment collaborates. Accompanied by
advancements in algorithms (Sunehag et al., 2017; Rashid et al., 2020), MARL has shown
impressive success in various fields such as robotics (de Witt et al. [2020]) and autonomous
driving (Shalev-Shwartz et al. 2016). Beyond its empirical success, there has also been
notable interest in theoretical investigations (Zhang et al., 2018b} Dou et al., 2022).

MARL has been studied under various scenarios including an access to central reward
function (Tan) [1993; |Claus and Boutilier} |1998} Littmanl 2001). In particular, our interest
lies in the the distributed learning paradigm where agents collaborate to solve a shared
problem, constrained to communicate solely with their neighboring agents and does not
have access to central reward function. Such setting has came of interest due to its wide
applications (Blumenkamp et al., 2022; |[Prabuchandran et al., 2014; |Zhao et all [2021).
Compared to scenarios where a centralized coordinate exists, the distributed paradigm has
advantage in terms of privacy-preservation and scalability. One notable example is the
distributed adaptation of temporal-difference (TD) learning, as demonstrated in studies
by [Doan et al.| (2019)); Wang et al.| (2020); Lim and Lee| (2023), to name a few.

Meanwhile, in the literature of single-agent RL, Q-learning (Watkins and Dayanl [1992) is
one of the most important algorithms in RL. The non-linear max-operator in Q-learning
algorithm imposes difficulty in the analysis, and its non-asymptotic analysis has been an
active research area recently (Even-Dar et al., [2003; (Chen et al.| 2021; Lee et al., 2023}
. However, distributed learning framework for Q-learning has not been
studied in detail. In particular, distributed Q-learning has been studied in an asymptotic
sense (Kar et al|, [2013), i.e., the algorithm converges over time as it approaches infinity,
or in a non-asymptotic sense under additional assumptions on the problem
[2020; [Zeng et al.| [2022b)). [Wang et al| (2022)) studied a version of distributed Q-learning in
tabular setting but differs from the one in|Kar et al| (2013). This motivates our study to
understand its non-asymptotic behavior under tabular setup, i.e., all the state-action values
are stored in a table. Our contribution can be summarized as follows:

1. For Markovian observation model, we provide the sample complexity
O [ max b 16 I ,l VACIIE = in terms of the infinity norm under
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tabular setting. We derive, for the first time, the finite-time analysis of QD-learning
in its original form, which is one of the most fundamental and widely
used distributed Q-learning methods. While several works have addressed other types
of distributed Q-learning, the analysis of QD-learning has remained unexplored until
now. Furthermore, we also provide a sample complexity result for the independent and
identically distributed (i.i.d.) observation model.

2. Our analysis relies on switched system modeling of Q-learning, providing new insights
for interpretation of distributed Q-learning algorithms. We show that the distributed
Q-learning also allows switched system interpretation as in the single-agent case.

Related Works:

The non-asymptotic behavior of distributed TD-learning was studied in [Doan et al.| (2019);
[Sun et al.| (2020); Wang et al.| (2020); Lim and Lee| (2023)), which were motivated from the
distributed optimization and control literature (Nedic and Ozdaglar], 2009; [Wang and Elial
[2010; [Pu and Nedié, [2021). Distributed versions of various TD-learning algorithms were
investigated in [Macua et al. (2014); Lee et al|(2018)). As for actor-critic algorithm (Konda
and Tsitsiklis, [1999), its extension to distributed setting was studied in |Zhang et al|(2018aib));
Zhang and Zavlanos| (2019)); Zeng et al.| (2022a). Meanwhile, [Yang et al.| (2023) considered a
distributed policy gradient approach. Moreover, |Zhang et al| (2021) investigated distributed
algorithm for fitted Q-iteration, which is similar to solving a least squares problem. Fur-
thermore, a line of research has focused on dealing with exponential scaling in the action
space [Lin et al.| (2021); Qu et al. (2022); Zhang et al.| (2023); \Gu et al.| (2024).

The distributed Q-learning algorithm under the setting when only the local reward is observ-

able, was first studied by (2013)). They proposed the so-called QD-learning proving

asymptotic convergence using two-time scale stochastic approximation approaches.
let al.| (2022D); Heredia et al.| (2020) proved finite-time bounds of distributed Q-learning with
linear function approximation. However, the works require additional strong assumptions,
which may not hold even in the tabular setup. In particular, |Zeng et al|(2022b) considered a
strongly monotone condition to hold, and [Heredia et al.| (2020) posed a particular assumption
on the state-action distribution. Wang et al.| (2022) studied a distributed Q-learning model
motivated from the adapt-then-combine scheme (Chen and Sayed} [2012)) in the distributed
optimization literature and provided a sample complexity bound in terms of high-probability.

Considering a single-agent case, the non-asymptotic analysis of Q-learning has made great
success. An incomplete list is provided in the following: An early result by [Even-Dar et al.
studied the sample complexity under i.i.d. observation model. [Lee et al| (2023)
developed a switched system method to analyze the behavior of Q-learning. |(Qu and Wierman|
(2020) considered a shifted Martingale approach to deal with the Markovian observation
model. [Li et al.| (2024) proved the sample complexity using refined analysis under the
Markovian observation model.

Meanwhile, a separate line of research focusing on multi-agent problems is the federated
reinforcement learning literature (Khodadadian et al., 2022; [Woo et al [2023} |Zheng et al.l
. This approach differs from the distributed learning scenario in two key aspects: it
employs a centralized controller, and all agents share a common reward function.

The paper is organized as follows: Section [2] provides background for the MARL setting.
Section [3] provides result under i.i.d. observation model and sketch of the proof. The result
for Markovian observation model is provided in Section [4}

2 PRELIMINARIES

2.1 Murrt AGENT MDP

A multi-agent Markov ~decision process (MAMDP) consists of the tuple
(S {AMN L, P r YY), where S := {1,2,...,|S|} is the finite set of states, A; :=
{1,2,...,|A;|} is the finite set of actions for each agent i € V, P : S X Hfil A; xS —[0,1]
is the transition probability, and 7% : S x Hf\il A; x § — R is the reward function of agent
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i € V. We will use the notation A := [[X, A; = {1,2,...,|A|} where tuple of actions are
mapped to unique integer. v € (0, 1) is the discount factor.

At time k € N, the agents share the state s € S, and each agent i € V selects an action
a; € A; following its own policy 7* : S — AlAil. The collection of the actions selected by

each agents are denoted as @ = (ay,az,...,ay), and transition occurs to s’ ~ P(s,a,-).
Each agents receives local reward (s, a, s’), which is not shared with other agents.
The main goal of MAMDP is to find a deterministic optimal policy, 7* := (7!, 72,... 7N):

S — A such that the average of cumulative discounted rewards of each agents is
maximized: 7* := argmax,.qE {ZZO:() >N %Ti(Sk,ak,SkJrl)‘ﬂ'} , where 2 is the set
of possible deterministic policies, and {(sy,ar)}r>0 is a state-action trajectory gener-

ated by Markov chain under policy w. The Q-function for a policy 7 : S — A, de-
notes the average of cumulative discounted rewards of each agents following the policy

m, ie, Q"(s,a) := E [ZZOZQ Zfil %r}&l)w, (so,a0) = (&a)} for s € S,a € A, where
7y = 1r'(sk, ak, s}). The optimal Q-function, Q™ , which is the Q-function induced by the
optimal policy 7*, is denoted as Q*. The optimal policy can be recovered via a greedy policy
over Q*, i.e., 7*(s) = argmaxgea Q*(s,a) for s € S. The optimal Q-function, Q* satisfies
the following so-called optimal Bellman equation (Bellman, [1966]):

Q" (s,a) =E

N

1 .

NE rz(s,a,s’)+7r51€aj<Q*(s’,u)], Vs e S,a € A (1)
=1

Since each agent only has an access to its local reward r?, it is impossible to learn the central
optimal Q-function without sharing additional information among the agents. However,
we assume that there is no central coordinator that can communicate with all the agents.
Instead, we will consider a more restricted communication scenario where each agent can
share its learning parameter only with a subset of the agents. This communication constraint
can be caused by several reasons such as infrastructures, privacy, and spacial topology.
The communication structure among the agents can be described by an undirected simple
connected graph G := (V, &), where V denotes the set of vertices and &€ C V x V is the
set of edges. Each agent will be described by a vertex v € V := {1,2,..., N}, where N is
the number of agents. Moreover, each agent ¢ € V only communicates with its neighbours,
denoted as N; :={j € V| (i,5) € £}

To further proceed, we will use the following matrix and vector notations: P :=
T . , T .
[Pii Pz - P, R o= [RT - R| where Py € RIS and R; €

R are column vectors such that [Pigly = P(s,a,s’) for s € S, and [Rl], =
E [r(s,a,s') | s,a], respectively. We assume that || R'||oc < Riyax for some positive real num-
ber Ry.x.Throughout the paper, we will represent a policy in a matrix form. A greedy policy
over Q € RIS which is denoted as QS = A ie., Tg(s) = argmaxgeca(es @ eq) ' Q,
can be represented as a matrix as follows:

9 = [e1 @ exy) e2@exn — els @ens)] € RISXISIAL

where e; and e, represent the canonical basis vector whose s-th and a-th element is
only one and others are all zero in RISl and R, respectively, and ® denotes the
Kronecker product. We can prove that PII®Q for Q € RISIAI represents a transition
probability of state-action pairs under policy 7, i.e., (ey @ eq)' (PTI?)(e, ® €q) =
P((spt1,ak+1) = (s',a) | (s, ar) = (s,a),7g] for 5,8’ € S and a,a’ € A. Now, we can
rewrite the Bellman equation in (1)) using the matrix notations as follows: R*&+~yPII? Q* =
Q*, where R*& = L Zf\il R € RISIAI and Q* € RISIMI represents optimal Q-function,
Q*, ie., (es@eq) Q" = Q*(s,a) for s,a € S x A.

2.2  DISTRIBUTED Q-LEARNING

In this section, we discuss a distributed Q-learning algorithm motivated from [Nedic and
Ozdaglar| (2009). The non-asymptotic behavior of the algorithm was first investigated
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in [Heredia et al.| (2020); Zeng et al.| (2022b)) under linear function approximation scheme.
Instead, we consider the tabular setup with mild assumptions, and detailed comparisons are
given in Section [5, Each agent i € V at time k € N updates its estimate Q) € RIS upon
observing sy, ay, s, € S x A x S as follows:

Qi1 (skrax) = > W@l sk, ar) + (TZH + 7316855(??;(32, a) — Qj.(sk, ak:))
JEN; (2)

Q;H—l(sva’) = Z [W]ijQi(SvaL s,a € S x A\ {(Sk7a'k)}v

JEN;

where Qi (s,a) == (es®eq) ' QL for s,a € Sx A, a € (0,1) is the steps-size, and W € RV*¥
is a non-negative matrix such that agent i assigns a weight [W};; to its neighbour j € N;.
The agent ¢« € V sends its estimate Q}C to its neighbour j € A;, and receives Q7,, which is
weighted by [W1;;. The update is different from that of distributed optimization over an
objective function in sense that does not use any gradient of a function. Furthermore,
note that the memory space of each agent can be expensive due to exponential scaling in
the action space, but one can choose linear or neural network approximation (Zhang et al.,
2018b; |Sunehag et al.l [2017) to overcome such issue.

To ensure the consensus among the agents, i.e., Qi — Q* for all i € [N], where [N] :=
{1,2,..., N}, a commonly adopted condition on W is the so-called doubly stochastic matrix:

Assumption 2.1. For all i € [N], [W]; > 0 and [W];; > 0 if (4,5) € &, otherwise
[W];; = 0. Furthermore, Zjvzl[W]” = Zfil[W]ﬂ =1, and W' =W.

The assumption is widely adopted in the literature of distributed learning scheme (Heredia
et al., [2020; |Zeng et al. |2022b)). In Appendix Bl we provided a simple strategy to construct
the doubly stochastic matrix by communicating only with its neighbour.

2.3 SWITCHED SYSTEM

In this paper, we consider a system, called the switched affine system (Liberzon, [2005),
Tp1 = As i + by, xo €R", keEN, (3)

where x, € R™ is the state, M := {1,2,..., M} is called the set of modes, o, € M is
called the switching signal, {A, € R"*" | ¢ € M} and {b, € R" | 0 € M} are called the
subsystem matrices, and the set of affine terms, respectively. The switching signal can be
either arbitrary or controlled by the user under a certain switching policy. If the system
in evolves without the affine term, i.e., b,, = 0 for k € N, then it is called the switched
linear system. The distributed Q-learning algorithm in will be modeled as a switched
affine system motivated from the recent connection of switched system and Q-learning (Lee
and Hel 2020)), which will become clearer in Section

3 ERROR ANALYSIS : 1.I.D. OBSERVATION MODEL

In this section, we first consider i.i.d. observation model, which provides simple and clear
intuitive results. In the subsequent section, we will extend the result to the Markovian
observation model. By an i.i.d. observation model, we refer to a sequence of trajectory
{(sk,ar, s},) }k>0 where each (s, ax, s},) are an i.i.d. random variables. Suppose that each
state-action pair is sampled from a distribution d € AIS*Al ie. P[(s, ar) = (s,a)] = d(s,a)
and s}, ~ P(sg,ak,-). The pseudo-code of the algorithm is given in Algorithm [1|in the
Appendix [J] We will adopt the following standard assumption in the literature:

Assumption 3.1. For all s,a € S x A, we have d(s,a) > 0.

3.1 MATRIX NOTATIONS

Let us introduce the following vector and matrix notations used throughout the paper
to re-write in matrix notations: D, := diag(d(s,1),--- ,d(s,|A]) € RHAXA D =
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diag(Dy, Ds,...,Dg|) € RISIAXISIAL L wwhere diag(+) is a diagonal matrix whose diag-
onal elements correspond to the input vector or matrix, and we will denote dp.x =
maxs gesxAd(s,a) and dyin = ming qesxad(s,a). Furthermore, for ¢ € [N], o =

(s,a,5') €S x Ax S and Q € RISIIA we define
§'(0,Q) :==(e; @ €a)(r'(s,a,5") + eI?Q — (e, ea) ' Q),
A'(Q) :=D(R' +yPTI?Q - Q),

which denotes the TD-error and expected TD-error in vector representation. For simplicity
of the notation, we denote 0}, := 6" (ox, Q}.), A}, = A'(Q},), and

Q} el (0,.Q}) - A'(Q)
_ Qi S - _ 0% (or, Q1) — A*(Q})
k= : ) =" := 5 Ek(ok’an) = . ;
. Qﬁ .
QY 1 3V (01, Q) — AN (QY)
_15::IN®_P7 D::IN®D7 W:=W®I|3HA‘, R = [Rl R? ... RN]T,
(4)

where Iy is a N X N identity matrix, Q. is defined in . Moreover, we denote € :=
€x(or, Qr). With the above set of notations, we can re-write the update in as follows:

Qi1 = WQy +aD (R+1PIIQ; — Qi) + agy. (5)
3.2 DISTRIBUTED Q-LEARNING : ERROR ANALYSIS

In this section, we provide a sketch of the proof to bound the error of distributed Q-learning.
Let us first decompose the error Qx — 15 ® Q™ into consensus error and optimality error:

N N
Qk—1N®Q*:Qk—1N®(é;@;;)‘f'lN@(;[;QZ—Q*)’ (6)

Consensus Error Optimality Error

where 1y is a N-dimensional vector whose elements are all one. The consensus error measures
the difference of Q% and the overall average, % Ef\il Q.. As the consensus error vanishes,
we will have Q} = Q% = --- = QF . Meanwhile, the optimality error denotes the difference
between the true solution Q* and the average, % Z,ivzl Q.. Together with the consensus
error, as optimality error vanishes, we should have Q}, — Q* — 0 for all ¢ € [N].

3.3 ANALYSIS OF CONSENSUS ERROR

Now, we provide an error bound on the consensus error in @ We will represent the consensus
- ~ , N ,

error as OQy = Qi — 1N.®szg' where Q"% := ;1 Qi and (-) = Injs|a— v (An1y)®

I)s)|4)- Let us first provide an important lemma that characterizes the convergence of the

consensus error:

Lemma 3.2. For k € N, we have ||V_VkG)H2 < 0o(W)F, where a2(W) is the second largest
singular value of W, and it holds that oo(W') < 1.

The proof is given in Appendix Moving on, we show that Qj will be remain bounded,
which will be useful throughout the paper:

Lemma 3.3. For k € N, and o < min;epn)[W1ii, we have : HQ’CHOO < %ﬁw".

The proof is given in Appendix The step-size depends on min;e[n][W;;, which can be
considered as a global information. However, considering the method in Example in
Appendix, which requires only local information to construct W, we have min; e n[Wls > i

Therefore, it should be enough to choose o < % Furthermore, the step-size in many
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distributed RL algorithms (Zeng et all 2022b; Wang et al., 2020; [Doan et al., 2021} |Sun|
depend on go(W), which also can be viewed as a global information. Moreover,
we can use an agent-specific step-size, i.e., each agent keeps its own step-size, ;. Then, we
only require a; < [W1;;, which only uses local information.

Now, we are ready to analyze the behavior of ®Q). Multiplying © to , we get
— k —_ . — k — . — — — — — —
OQ)1 = H W'eQ, + « Z wk-ie (D (R +PII9Q; — Qj) + Ej) : (7)
i=0 §=0

The equality results from recursively expanding the terms. Now, we are ready to bound
©®Q.1 using the fact that ||WZ®||2 for i € N will decay at a rate of oo(W) from Lemma

and the boundedness of Q}, in Lemma
Theorem 3.4. For k € N, and oo < min;¢n)[Wlis, we have the following:

_ _ 8 R /NIS[IA
0Qusll. < o2(W)*H 0Qu], + e VIS

The proof is given in Appendix[D-3] As we can expect, the convergence rate of the consensus
error depends on the oo(W') with a constant error bound proportional to .. Furthermore,
we note that the above result also holds for the Markovian observation model in Section

3.4 ANALYSIS OF OPTIMALITY ERROR

Throughout this section, we analyze the error bound on the optimality error, Q}"® — Q*.
Multiplying 1 (1n1Y) ® Ijs|.4) on , we can see that Q}'® evolves via the following update:

N
QUE =Q)* +aD <R + LS Preig) - k) FoeH (0, Q) (®)
=1

where €*8(0, Q) := % (1n1}) ® I|s),4/€(0,Q) foroe S x A xS, Q c RNISIAI and €(-) is
defined in @ We will denote €;"® := €*'8(oy, Q). The update of resembles that of
Q-learning update in the single agent case, i.e., N = 1, whose Q-function is Q3 ®. However,
the difference with the update of single-agent case lies in the fact that we take average of the
maximum of Q-function of each agent, i.e., the term % Zf\: " 19 Q) in , rather than the
maximum of average of Q-function of each agents, .i.e., HQ;‘gQZVg. This poses difficulty in
the analysis since 1% Zf\il HQLQ}; cannot be represented in terms of le‘g’ . C01lse‘qt(1rently, it
makes difficult to interpret it as switched affine system whose state-variable is Q} ", which

is introduced in Section 23] To handle this issue, motivated from the approach in
(2013)), we introduce an additional error term % ZZVZ I19k Qz — I ng, which can be
bounded by the consensus error discussed in Section Therefore, we re-write as:

QU =Q* +aD (R £/ PIIAU QL% — Q) + el

N
+a (Xr > D (PHQ?; Qi — 'yPHQZVgQZVg)> . (9)

i=1

=E)

Now, we can see that Q}'® evolves via a single-agent Q-learning update whose estimator is
+'%, including an additional stochastic noise term, €; *, and an error term, Ej, that can be
bounded by the consensus error. In the following lemma, we use the contraction property of

the max-operator to bound E}, by the consensus error:
Lemma 3.5. For k € N, we have ||Ey||, < Ydmax H@QkHDO.

The proof is given in Appendix [D.4] We note that similar argument in Lemma has

been also considered in (2013)). However, (2013)) considered a different



Under review as a conference paper at ICLR 2025

distributed algorithm using two-time scale approach and focused on asymptotic convergence
whereas we consider a single step-size and finite-time bounds.

Now, we follow the switched system approach (Lee and He, |2020) to bound the optimality
error. In contrast to|Lee and He|(2020)), we have an additional error term caused by Ej, which

will be bounded using Theorem Using a coordinate transformation, szg =Q.* - Q"
we can re-write @ as

QZ‘fl —AngQk + abgave + aey’® + aEy,
where, for Q € RISIMI we let
Aq :=I+aD(PIQ - I) e RISIMIXISIALL by .= yDP(TI? — TI97)Q*.  (10)
We can see that € ® is a stochastic term, and we will bound the error caused by this term

using concentration inequalities. The consensus error, Ej, can be bounded from Theorem [3.4]
However, the affine term, bQng, does not admit simple bounds. The approach in|Lee and He

(2020) provides a method to construct a system without an affine term, making the analysis

simpler. In details, we introduce a lower and upper comparison system, denoted as Qavgl
and Q" respectlvely such that the following element-wise inequaltiy holds:

Qavgl < Qavg < (Qavg,u7 Yk € N, (11)

Letting Q&Vgl = ingl Q* and Q¥®" := Q¥®" — Q*, a candidate of update that
satisfies , which {8 without the affine term bg,, is

QZ‘_’Ell =Ag- Qavgl + a€;® + aEy, QZ‘f{" Agavs: qu VB + 0l + aFEy, (12)

where Q%! < Q&8 < Qi¥®". The detailed construction of each systems are given in

Appendix [E| Note that the lower comparison system, Qa"g ! follows a linear system governed
by the matrix Ag- where as the upper comparison system ,Q; *", can be viewed as a

switched linear system without an affine term. To prove the finite-time bound of QaLVg ,

we w111 instead derive the finite-time bound of Qavgl and Q}'®", and using the relation
in , we can obtain the desired result. Nonetheless still the switching in the upper
comparison system imposes difficulty in the analysis. Therefore, we consider the difference

of upper and lower comparison system Qavgl e which gives the following bound:
HQavg ‘ < HQZVngOO + HQZVflu - Z‘fllH . The sketch of the proof for deriving the

finite-time bound of each systems are as follows:

1. Bounding ing’l (Proposition in the Appendix): We recursively expand the equation
in . We have || Aql|_ <1— (1 —7)admn for any Q € RISIMI which is in Lernrna
in the Appendlx and the error induced by €;"® can be bounded using Azuma-Hoeffding
inequality in Lemma [C:4]in the Appendix. Meanwhﬂe the error term Ej can be bounded
by the consensus error from Lemma [3.5] which is again bounded by using Theorem [3.4]

2. Bounding Q""" — Qavg’ (Proposition in the Appendrx) Thanks to the fact that
both the upper an lower comparison systerns share €;"® and E}, if we subtract szg’l from
e in , both terms are eliminated. Therefore, the iterate can be bounded with an

avg,l

addltlonal error by Q

Now, we are ready to present the optimality error bound, [|Q;"® — Q*|__, as follows:

Theorem 3.6. For k € N, and o < min;en[Wli, we have the following result :
av k L3
EIQ - @'ll.] =0 ((1 - a(l = 7)duin)* +o—2<W>4)
+ @ (CM; dmameax +a rnax \V4 |SHA Rmax ’
(

—idd, =L - (W)

where the notation O(-) is used to hide the logarithmic factors.
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The proof is given in Appendix Note that even the logarithmic terms are hidden, due
to exponential scaling of the action space, In(|S||A]) could contribute O(N) factor to the

ﬁ) already dominates the O(N) if

|A;] > 2 for all ¢ € [N], hence we omit the logarithmic terms. Likewise O (|.4|) dominates
O (N), which is hided when both terms are multiplied.

error bound. However, noting that dyi, < m7 )]

3.5 FINAL ERROR

In this section, we present the error bound of the total error term Qi — 1y ® Q*. From @,
the bound follows from the decomposition into the consensus error and optimality error. In
particular, collecting the results in Theorem [3.4] and Theorem [3.6] yields the following:

Theorem 3.7. For k € N, and o < min¢n)[Wlis, we have
E[]|Qr— 1x © Q| ] =0 ((1 = a(l = )duin) ¥ +o2(W) )

+ (7) (a;dmax Rmax max V |SHA Rmax > ]

0 ial TP~ o (W)

The proof is given in Appendix One can see that the convergence rate has exponentially
decaying terms, (1 — (1 — 7)dmina)? and oo(W)%, with a bias term caused by using a
constant step-size. Furthermore, we note that the bias term depends on #(W) If we

construct W as in Example in the Appendix, then it will contribute O(N?) factor in
the error bound (Olshevsky, |2014]).

s — D in d Q=dhy, 2 (1=9)°dy,;, (1—02 (W)
Corollary 3.8. Suppose a = O | min R e o mx\/\SI\A\ € |. Then, the

Qr-1veQ*_ ] <
5 (m { PR R @2 /[STIA }) |
e (1-— €

following number of samples are required for E [

V)0l € (1= 7)1y, (1 = 02(W))

The proof is given in Appendix Section [F.3] E As the known sample complexity of (single- agent)
Q-learning, our bound depends on the factors, dmin, and ;. The result is improvabale in

W by Li et al. (2020)
Furthermore, we note that the dependency on the spectral property of the graph, <
is common in the literature of distributed learning as can be seen in Table |I

sense that the known tight dependency for single-agent case is

el— Uz(W)

4  ERROR ANALYSIS : MARKOVIAN OBSERVATION MODEL

Now, we consider a Markovian observation model instead of the i.i.d. model. Starting from
an initial distribution po € AISII4l] the samples are observed from a behavior policy 5 : S —
Al e, from (si,ay), transition occurs to sg41 ~ P(sk, ax, ) and the action is selected by
ai+1 ~ B(- | sk+1). This setting is closer to practical scenarios, but poses significant challenges
in the analysis due to the dependence between the past observations and current estimates.
To overcome this difficulty, we consider the so-called uniformly ergodic Markov chain (Paulin,
2015), which ensures that the Markov chain converges to its unique stationary distribution,
Hoo € AISIAL exponentially fast in sense of total variation distance, which is defined as
drv(p,q) =5 Y csxa l[Pls — [@lz| where p,q € AlSIMI That is, there exist positive real
numbers m € R and p € (0,1) such that we have max, qesx.a drv (i), foo) < mp”, where
py " = ((es®eq) " PF)T is the probability distribution of state-action pair after k number of
transition occurs starting from s,a € S x A, and Pg € RISIAIXISIAL i5 the transition matrix
induced by behavior policy 3, i.e., (€s ® eq) " Ps(es @ eq)| = (€5 ® eq) T Pey - B(a’ | 8').
Moreover, we will denote

T¥(e) :=min{t € N:mp' <€}, 7:=71"%(q), tmix = 75(1/4), (13)
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for € > 0, and 7 is the so-called mixing time. The concept of mixing time is widely used
in the literature (Zeng et al.l [2022b; Bhandari et al., |2018|). Note that 7 is approximately
proportional to log (= ), which is provided in Lemma in the Appendix. This contributes
only logarithmic factor to the final error bound. Furthermore, we will denote

Do =diag(p~), Dp® = diag(py®), (14)
where D;’* denotes the probability distribution of the state-action pair after k£ number of
transitions from s,a € S x A. € in will be defined in terms of D, instead of D, and

the overall details are provided in Appendix [G] To proceed, with slight abuse of notation,
we will denote dimax = Mmaxs aesxA[foo)s,a aNd dmin = Ming gesx.A[Moo]s,a-

Now, we provide the technical difference with the proof of i.i.d. case in Section The
challenge in the analysis lies in the fact that E [e}"*|{(s;, a;)}f_, Qo] # 0 due to Marko-
vian observation scheme. Therefore, we cannot use Azuma-Hoeflding inequality as in
the proof of i.i.d. case in the Appendix Instead, we consider the shifted sequence
as in |Qu and Wierman| (2020). By shifted sequence, it means to consider the error by
the stochastic observation at k with Qy_, instead of Qy, i.e., wr1 = 0*8(ok, Qk—r) —
AZ‘Z&TJC(Q;%T) where sz_gnk(Qk) = DT L fil (Ri +yPII?-Q} — Q}f) Then,
we have E [wkvl‘{(st, at)},’f;g, QO] = 0. Now, we separately calculate the errors induced by
{wrj111}jeqrenriti<ky for each 0 <1 <7 —1, and invoke the Azuma-Hoeffding inequality.
Overall details are given in Appendix [G] and we have the following result:

Theorem 4.1. For k > 7, and a < min {minie[N] (Wi, %}, we have
~ k1 k1
E(1Qk+1 — @ ll) =0 (1 = a(l = 1)din) =~ + 02(W) )
24 maxdmax V
+0|az dmaxﬁRnslax + R =7 [S11A .
(1—~)%dz. (1 —=7)3d5, (1 — 02(W))

The proof is given in Appendix Section [G.2}

- N5 g3
Corollary 4.2. Suppose o = O (ln(‘zl) %
are required for E [HQk —1yQ*

2(1 2 1
@<max {m (%) tand2,, (1) dinax /ST A] })

> . Then, the following number of samples

|oo] < e
e (1=7)0dp;” € (1=7)tdy;, (1 - 0a(W))

The proof is given in Appendix Section[G.3} As in the result of i.i.d. case in Corollary [3.8] we

have the dependency on > %, and #(W) with additional factor on mixing time. The

. . ’ ; . : SO , aan ja () 1 tmix
known tight sample complexity result in the single-agent case is O ((1 Vg T (177)611,.1.,)

by |[Li et al.| (2024)), and our result leaves room for improvement. Assuming a uniform
sampling scheme, i.e., dyin = dmax = m, and |A;| = A for all i € [N] and A > 2, the

(1-7)8 7 e I—m*(1—02(W))
exponential scaling in the action space is inevitable in the tabular setting unless we consider
a near-optimal solution (Qu et al.| [2022)). Lastly, to verify the convergence of our algorithm,
experiments are provided in Appendix Section [I}

- 2 42N S A
sample complexity becomes O (max { t‘e“z"‘ IS|2A % 5124 2 ) We note that the

5 DISCUSSION

I | Q-function | Assumption | Sample complexity I Bound type I Remarks |
Ours Tabular X max {te—f a 7”1%3”“ s % a 7@(&%‘“{)1{&”“ } Expectation
Wang et al.|(2022) Tabular X W + (l"%; High probability ec |0, ﬁ)
:chg et al. 7(2?)225} LFA 16 m Expectation -

Table 1: LFA stands for linear function approximation.
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In this section, we provide comparison with recent works analyzing non-asymptotic behavior
of distributed Q-learning algorithm. Our analysis relies on the minimal assumption in
sense that we do not require any assumption further than standard assumptions in the
literature, e.g., the state-action distribution induced by the behavior policy, is positive for
all state-action pairs in Assumption

Heredia et al.| (2020) considered linear function approximation scheme to represent the
Q-function with continuous state-space and finite-action space scenario. However, to prove
the convergence, it requires the following condition:

dmin > V22, := maxd(s, 7*(s)), (15)

which is difficult to be met even in the tabular case, and an example is given in Appendix [H]

Furthermore, |[Zeng et al. (2022b) considered a Q-learning model under linear function
approximation with continuous-state space and finite action space. The work also covered
the case when the features for linear function approximation is differently selected for each
agents. However, it requires the following condition to hold for all Q € RISIAI:

(YDP(IIRQ -TI?' Q") - D(Q - Q") (Q - Q) < —x[Q - Q*3, (16)

for some x > 0. We have provided examples where the above conditions in and are
not met even in the tabular case in Appendix Section [H]

Overall, the assumptions used in [Heredia et al| (2020); [Zeng et al.| (2022b]) allows the analysis
to follow similar lines to that of convex optimization literature. To the best of our knowledge,
there is no existing literature that demonstrates how to extend convex optimization analysis,
or an analogous approach, to the analysis of Q-learning under the tabular setup. This gap in
the literature makes the analysis challenging and is the primary reason we rely on switched
system analysis. Due to different settings, their sample complexity is not directly comparable
with ours.

[Wang et al.| (2022)) proposed a distributed Q-learning algorithm in the tabular setting,
which is motivated from the adapt-then-combine algorithm, whereas our algorithm considers
combine-and-adapt scheme (Chen and Sayed} [2012) in the distributed optimization literature.

The work presents a sharper bound on the sample complexity W compared to ours

W but it only holds for restricted range of ¢, i.e., € € |0, ﬁ while our results

do not have such restriction. More importantly, the algorithm proposed by
(2022)) requires two steps for a single update, whereas in our paper, we focus on a one-step
algorithm that is algorithmically simpler and more efficient. Specifically, we analyze the
traditional and widely adopted QD-learning algorithm proposed in [Kar et al.| (2013]), for
which a finite-time error analysis for the original form has been lacking in the literature.
Additionally, we enhance the efficiency of QD-learning by employing a constant step-size,
as opposed to the two-time-scale decaying step-size used in traditional QD-learning. This
modification can significantly improve the convergence speed empirically.

6 CONCLUSION

In this paper, we have studied distributed version of Q-learning algorithm. We provided a

1 1 VISIIA|

1
€2 (1—7)0dE . ¢ (1—02(W))(1—7)%d3

min min

sample complexity result of O (max { }), which appears

to be the first non-asymptotic result for tabular Q-learning. Future work would include
improving the dependency on ﬁ and dp,i, to match the known tightest sample complexity

bound of single-agent Q-learning (Li et all 2020). Furthermore, to resolve the scalability
issue, two promising approaches would be adopting a mean-field approach or exploring

convergence to sub-optimal point.
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A APPENDIX : NOTATIONS

R™: set of real-valued n-dimensional vectors; R™*" : set of real-valued n x m-dimensional
matrices; A™ for n € N : a probability simplex in R™; [n] for n € N: {1,2,...,n}; 1, :
n-dimensional vector whose elements are all one; 0 : a vector whose elements are all zero
with appropriate dimension; [A];; : i-th row and j-th column for any matrix A; e; : basis
vector (with appropriate dimension) whose j-th element is one and others are all zero; |S]
: cardinality of any finite set S; ® : Kronecker product between two matrices; a > b for
a,b e R" : [a]; > [b]; for all i € [n].

B APPENDIX : CONSTRUCTING DOUBLY STOCHASTIC MATRIX

Example B.1 (Lazy Metropolis matrix in [Olshevsky| (2014)). To construct the doubly
stochastic matric W with only local information, we can set [W;; = W for

i#j andi,j € [N], letting [Wy| =1 =3\ [Wlij. This uses only local information, and
does not require any global information sharing.

One can formulate a semi-definite program to construct a doubly stochastic matrix (Xiao|

and Boyd, [2004). It finds the doubly stochastic matrix with minimum possible o5 (W) but
it requires a centralized controller to solve such system, and distributed the computed the

result of each agents. Another choice is to use Sinkhorn-Knopp algorithm (Knight|, [2008]).
However, it also requires a centralized computation scheme. Moreover, to our best knowledge,
we are not aware of bound on the o9(W) of the output of Sinkhorn-Knopp algorithm.

C APPENDIX : TECHNICAL DETAILS

Lemma C.1. We have for Q € RISIAI
[Aqll <1 — (1 —7)dmmna.

Proof. For i € [|S||A|], we have

ISI1-A] ISI1Al
> |[Agll <1 - [Dlia+a[Dliy > [PTI?;

The last equality follows from the fact that PTI® is a stochastic matrix, i.e., the row sum
equals to one, and represents a probability distribution. Taking maximum over ¢ € [|S||.Al],
we complete the proof.

Lemma C.2. For k € N, we have
avg 4Rmax

€ < hmex

el < T
ey avg 1 N i i

Proof. From the definition of €,;® = & > ;_; 6;, — A}, in (), we have

Rmax + Rmax)
1= 1-9v

||ezvg||(><> <2 (Rmax +

 4Rpax
T,

where the first inequality comes from the bonundedness of Qy, in Lernma This completes
the proof. O
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Lemma C.3. Fora,be (0,1), and for k € N, we have

k
k—iyi . g 1
b"<az bz .

Furthermore, we have

k
k—irir k—r 1 E—r 1

b <aq 2 b2 .

Za R

Proof. We have

The last inequality follows from the summation of geometric series. As for the second item,
we have

4]
Zak 1bz T< Z ak ’Lbl T4 Z k ibi—T
=57
<ot s b
- 1-0 1—a
This completes the proof. O

Lemma C.4 (Azuma-Hoeffding Inequality, Theorem 2.19 in |Chung and Lu| (2006))). Let
{Sn}nen be a Martingale sequence with Sy = 0. Suppose |Sy, — Sk—1| < ¢x for k € N. Then,
for € >0, we have

2
P[|Sk| = €] < 2exp <—k> .
23,6

Lemma C.5. Suppose X > 0, P[X > ¢] < min{aexp (fbez) ,1}, and a > 2. Then, we

have
E[X] <2\/h2a

Proof. We have

IE[X}:/OOOIE”[X>3]ds

S/ min {aexp (—bs2) ,1}ds
0

Ina

g/ ' 1ds+/ aexp(—bs?)ds
: VA

< may !

o b 2vblna
Ina

<24 —

- b
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The last inequality follows from the fact that 4lna > 1/Ina. The third inequality follows
from the following relation:

(o) oo 1
/ _ aexp(—bs?)ds :a/lw NG exp(—bu)du

b

<5\ ma e exp(—bu)du
a b1 IS
9V 1nad [— exp(—bu)] Ina
1
“2vblna
where we used the change of variables s> = u in the first equality. O

Definition C.6 (Martingale sequence, Section 4.2 in [Durrett| (2019)). Consider a sequence
of random variables { X, }nen and an increasing o-field, F,, such that

1) E[|X5]] < oo;
2) X, is Fn-measurable;
3) E[Xps1|Fn] = Xn, VneN.

Then, X, is said to be a Martingale sequence.

Lemma C.7 (Proposition 3.4 in |Paulin| (2015))). For uniformly ergodic Markov chain in
Section [, we have, for e > 0,

1 1
7(€) < tmix (1 + 2log () + log (d )) ,
€ min

where T and tmix are defined in .

D APPENDIX : OMITTED PROOFS

D.1 PROOF OF LEMMA

Proof. From the definition of W in , we have
- - - - 1 1
(Wk@)TWke :WZk — QWkTN ((1]\]1}) X I\SH.A|) + N(].Nl;) 39 I\SH.A\

1
= (W2k — NlNlL) X I|5H-A|’

where the second equality follows from the fact that W (1x1n) ' ®@1js)4 = (In1n) " @1 5| 4)-
From the result, we can derive

|[w*e||, = \/Amx (WFO®)TW*O) = \/Amx <W2k — $1N1}> =o0(W)F < 1. (17)

To prove the inequality in , we first prove that 1 is the unique largest eigenvalue of W.
Noting that 1 is an eigenvector of W with eigenvalue of 1, and p(W) < ||W||s = 1 where
p(+) is the spectral radius of a matrix, the largest eigenvalue of W should be one. This
implies that oo(W) < 1. The multiplicity of the eigenvalue 1 is one, which follows from the
fact that W* is a non-negative and irreducible matrix and that the largest eigenvalue of
a non-negative and irreducible matrix is unique Pillai et al.| (2005) from Perron-Frobenius
theorem. Note that W is a non-negative and irreducible matrix due to the fact that the
graph G is connected.
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Next, we use the eigenvalue decomposition of a symmetric matrix to investigate the spectrum
of W2k — %1 ~1}. By eigendecomposition of a symmetric matrix, we have

N
W = )\1’01’0;r + Z)\jvjv;-r = ’I‘IXT'il7
j=2
where v; and A; are j-th eigenvector and eigenvalue of W, A\ = 1, v1 = ﬁlN, Aisa
diagonal matrix whose diagonal elements are the eigenvalues of W, and T and T~ are
formed from the eigenvectors of W. From the uniqueness of the maximum eigenvalue of W,
we have Ay =1 > \;,j € {2,3,..., N}. Therefore, we have

N
1 1
W2k = TAZT—1 = (1N> (1%) +) M)
A
VN VN =
Therefore, we have Apax (W2 — L£151)) = 02(W?2¥). This completes the proof. O

D.2 Proor or LEmMA B3]

Proof. Let us first assume that for some k € N,
considering (2)), for all i € [N], we have

Qi1 sk @) (Wi — o) Q3.+ > Wl

|Q;€HOO < ?mi;‘ for all ¢ € [N]. Then,

@]+ 0 (s + 1] @EL)

JEINI\{i}
Rmax Rmax
S(l—a)m+6¥1_’y
_Rmax
_1 _fy,

The first inequality follows from the fact that o < min;epnj[W1]i. The second inequality
follows from the induction hypothesis. For, s,a € § x A\ {s, ar}, we have

, ; R
|Q}€+1(s,a)| < Z (W1, Qi(s,a)’ < 1“‘7&"
: -7
JEN;
The last line follows from the fact that W is a doubly stochastic matrix, and the induction
hypothesis. The proof is completed by applying the induction argument.

O

D.3 PROOF oF THEOREM [3.4]

Proof. Taking infinity norm on @, we get

Qe <[WH0Qu],  aVNSTATY. [WH el | (D (R+-PI%@, - Q) +5)|.
§=0

k
x ~ I i 8]%max
<||[WHHeQul|, + a/NIS[IA > [[Whe|, T
Jj=0

k
~ ‘8Rmax
<oa(W)F|@Qu||, + a/NIS[JA] D oa(W)F Toy
Jj=0

- 8 Rmax V' N|S|JA|
<oy (W)Ft! ||l max .
<o2(W) H Q()f|2+a1_7 1= 0a(W)
The first inequality follows from the inequality ||Allc < +/NIS|JA|||A|]2 for A €

RNISIAIXNISIIAI - The second inequality follows from the bound on @ in Lemma
The third inequality follows from Lemma [3.:2] The last inequality follows from summation of
geometric series. This completes the proof.

O

17



Under review as a conference paper at ICLR 2025

D.4 PRrooF orF LEMMA [3.5]

Proof. From the definition of Ej, in @D, we get

o0

1Bkl < Z HDP(HQ?«QZ _ Hinngvg)H
=1

maXage.A Q;c(lv ) maXgeA Q;: ( 70’)
maXge.A Q;c(27 ) maXaEAQ g( 70’)

N
ma Z

maXagec A Q2(|8|7 ) maXageA Qavg(‘SL a)

vd a ;
<52 llal - ai.

i=1

Vdmax HG)QICHOO

oo

The third inequality follows from the fact that | max;ep,[®]; — max;[yl;| < max;cp,) |2 — i
for x,y € R" and n € N. The last inequality follows from the fact that

19k — @i%[l. < [1©Qkll.., Vi€ [N].
This completes the proof. O

E APPENDIX : CONSTRUCTION OF UPPER AND LOWER COMPARISON
SYSTEM

E.1 CONSTRUCTION OF LOWER COMPARISON SYSTEM
Lemma E.1. For ke N, ¢ avg’ < Qy"®, we have
)
"wg,l avg
Q. <Q.”.

Proof. The proof follows from the induction argument. Suppose the statement holds for
some k € N. Then, we have

Qv =@ +aD (Ravg +PI? QY — Q' l) + a€™E + aEy

<Q}’® +aD (Ra"g +yPIIO" Qe — dvg) + a€)® + aFE)

—Q®
=Sk41-
. . l * 7l *
Theavﬁgrst inequality follows from the fact that Q}'®" < @}"® and IIQ" Q"' <II?° Q'8 <
Q8. The proof is completed by the induction argument. O

E.2 CONSTRUCTION OF UPPER COMPARISON SYSTEM

Lemma E.2. For k € N, if Q3" > Q%'%, we have
avg,7 > Qavg,

Proof. As in the construction of the lower comparison system in Lemma in Appendix,
the proof follows from an induction argument. Suppose that the statement holds for some
k € N. Then, we have

Q15 =Qp* + aD (YPII%"Q1® - Q%) + ey DPM" Q" — 119 Q")
+ a€;® + aDE;
<(I +aD(HPO%%" — Q¥ 4+ ael® + aDEy,

__avg,u
=Qp1 -

18
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The inequality follows from the fact that the elements of I + ozD(’yPHQZvg — I are all non-
negative, and M9 Q* < IIQ"Q*. The proof is completed by the induction argument. [

F  APPENDIX : I.I.D. OBSERVATION MODEL

Proposition F.1. Assume i.i.d. observation model, and o < min;en)[W]i;. Then, we have,
for ke N,

E[|Qs!]_] =0 (1 - 0 = Mdnina)t +02(w)?)

A max Rmax\/ N S
+ O (aR—Fozdmax [SliAl ) .

(1—7)3d2 (1 = 7)2dmin(1 — 02(W))

min

-

[N

Let us first introduce a key lemma to prove Proposition [F-1}
Lemma F.2. For k € N, we have

ZAk 7 avg

In(2|S||A]).

3 1

(1 - ,Y)idfnina%

] . 82 Rimax
o0

Proof. For the proof, we will apply Azuma-Hoeffding inequality in Lemma[C.4] For simplicity,
let S; =3¢, Ak_i V8 for 0 <t < k. Let F; := o({(si,ai, s)) }i_y U{Qo}), which is the o-
algebra generated by {(sz, a;,si)}_o and Q. Letting [Si]s.a = (€s®eq) ' Sy, for s,a € Sx A,
let us check that {[S;]s.a}f—( is a Martingale sequence defined in Definition We can see
that

E[S¢|Fi—1] =E [Ak:tﬁavg + Stfl‘]:tfl]
=AL B [€]"8|Fioa] + Sea
_St717

where the second line is due to the fact that S;_; is F;_i-measurable, and the last line
follows from E [€]"#|F;_1] = 0 thanks to the i.i.d. observation model. Therefore, we have

E [[St]s,au:tfl] = [Stfl]s,(p

Moreover, we have

1

N
Z(eso ® €q,)(r} + es()”/HQUQU (es, ® eao)TQf’))}

N
N Z (R +~PTI%Qj, — Qo)}

The last line follows from that E [es, ® eq,] = D and E [(650 ® eq,)e, } DP.

Therefore, {[St]s.a}t_o is a Martingale sequence for any s,a € S x A. Furthermore, we have
k—t 4Rmax

L=~
where the last inequality comes from Lemma [C.1] and Lemma [C.2] Furthermore, note that
we have

1Stlsa = [St-tlsal < 181 = Si-alle = [AG"€™¥]| < (1= (1= )dminc)

k k
16 R2
| St 1 s, | - mma)QkiQt&
2l e (e
16R2,,,
(11— '7) dmine’

19
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Therefore, applying the Azuma-Hoeffding inequality in Lemma[C.4]in the Appendix, we have
° 1 - 3dmin
P[|[Skls.al > d < 2exp <_<>a> |

32RZ .
Noting that {[|Skl., > €} € Usacsxa{l[Sk]s,a| > €}, using the union bound of the events,
we get:
62 1-— Y 3dminOl
PlStl =< Y PlStleal > ¢ < 2|S||A]exp <_<32R>) .
max

s,aESXA
Moreover, since a probability of an event is always smaller than one, we have

. €2(1 — v)3dminc
PlISul 2 4 < min {254 exp (- 20 ) 1

max

Now, we are ready to bound Sy, from Lemma[C.5in the Appendix:

b 8v/2Rumax
BlISkl = [ Pl > oo < — 20
0 (1-7)>

In(2|S||A).

This completes the proof.

Now, we are ready prove Proposition

Proof of Proposition[F.1 Recursively expanding the equation in , we get

Qz\fl,l :AQ Qavg,l + aeavg + aE,

=AZ. avgl + ozAQ*ek L+ ozAQ*Ek 1+ a€r® + aEy,
:Alz;;l anl+OLZ zeavg+a2Ak 1E
Taking infinity norm and expectation on both sides of the above equation, we get
e
Il ]

< [Hw

ZA’“ e +aZHA
ZAk Ve

e e

(1 - (1 - )dmlna k+1 HQavg lH + aE

+ aE ZHAE;‘ oo||Ez-|oo]
=0
~ 8V2Rmax
<= (1= i)+ Qe +od 22 ITA
> (1_’7) dr2r11n
k .
+aE ZHAZ,—J OO||E,»|001
=0
~ 8vV2Rmax
(1= (U= )1 @ ad VPR s
2

o (1 77)§dmin
[0l (1= (1 = i) s + sl W) )

8 o/ NISTIA]

(1 = 7)2dmin(1 — 02(W))

+ aydmax
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The second inequality follows from Lemma The third inequality follows from Lemma[F.2]
The last line follows from bounding Ef:o Ag:i | E;||. as follows:

k
S
=0
k
i 3 A 8Rm&x N|S A
1 (1 (a0 0] 0 )

P 17"}/ 170’2(W)

il

E 1
1-— U2(W)

[SE

’ydmax H@Q_OH2 ((1 - (1 - ry)dmina) + U2(W)

8 Rmax/ N|S||A|
(1- 'V)Qdmin(l - UZ(W))'

The first inequality follows from Lemma [3.5 and Theorem [3:4] The second inequality follows
from Lemma [C.3]in the Appendix. This completes the proof. O

+ Ydmax

Now, we bound Q‘Wg’ in . It is difficult to directly prove the convergence of upper
comparison system. Therefore, we bound the difference of upper and lower comparison

system, QCWg g Q?g’l. The good news is that since Q5 *" and szg’l shares the same
error term € ® and Ej, such terms will be removed if we subtract each others.

Proposition F.3. For k € N, and o < min;epn)[Wlii, we have
avg,u av, A k k
E[l|lQis - Q| _] =0 (0 - alt = 1duin)® +o2(W)*)

~[ 1 NIS||A|Rmax
w(m wxBmix A/ NISTA] )

0 bl TP (L - 0a(W))

Proof. Subtracting Qi\fl’l from Q;"%" in , we have
Qz\jrgl,u _ szfl,l :AQavg Qavg,u _ AQ*Qan’l
—AQan( avg,u ng,l) (AQWg . AQ )Qavgl
=Age (QF avg,u _ avgl) + ayDPI" — 119 )Qa"gl (18)

The last equality follows from the definition of Agave and Ag- in .

Recursively expanding the terms, we get

avg,u avg l avg, avg,l
Qk+1 - k+1 I_IAQ”g Q")

k—1k—1
+ a7 Y [[ Ages PP —1)QM*! + ayDPMA™ - TI?)Qps".
i=0 j=i

Taking infinity norm on both sides of the above equation, and using triangle inequality yields

Bll|lers - @] ] < - ol = )| @5 - @i
k

+ 207dmax Z(l —a(l = 4)dmin)*'E [HQ?V&IHOJ . (19)
i=0

()
The first inequality follows from Lemma [C.1]

21
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Now, we will use Proposition to bound (%) in the above inequality. We have

-

k
Z(l — a(l = 7)dmn)*'E {HQ?V&[HOJ =0 Z(l —o(l - 'Y)dmin)]%% + (1= a(l = 7)dmin)*'o2(W)
i=0 =0
o B o/ NISTARRmas )

a% (1 — 'y)%di ( )3d12mn(1 - UQ(W))

+ @ Rmax + max V N‘SHA‘RmaX )
a-—piaz (1=7)d (1 - ox(W))
The last inequality follows from Lemma m Applying this result to (19)), we get

E[HQZ‘E’“— 21%11“ ] (1_a(1—y)dmin>§+az(w>%)

~ 1 Rmax l‘ﬂax N|S| IA Rmax
+ O 2 dmax = + « 33 '
(1_7)gd§1m ( ) dmm(l_O'g(ii ))
This completes the proof. -

F.1 PROOF OF THEOREM 3.6l

Proof. HQan can be bounded using the fact that Qavgl < Qe < Qe
o0
yavg,l yave,
e <msor]_Jar=]}
o0
< max { Hézvg,l ”ivg,l‘ + HQavg U szgJ H }
o0
SHQ;\/g,lH + avgui avng
o0
_ |l Aave,l avg,u avg,l
=ar=] e - e

The second inequality follows from triangle inequality. Taking expectation, from Proposi-
tion and Proposition [F-3] we have the desired result. O

F.2 PROOF OF THEOREM

Proof. Using triangle inequality, we have
ElQr—1veQ| ] <E[|@r -1y @ Qi ]+ E[I1y © Q" — 1y @ Q| ]
=E[[|@r - 1y @ Q8[| ] + E (Il — QI ]
_A K VNS Al Binax
- (“Z(W) M Uz(W))>
+0 (1= a1t = )duin) ¥ + az<W>%)

+ @ (Oéé dmameax + max V N|SHA Rmax
(1

«
- Py)%dim ( )Sd?nm(]' - UQ(W))
=0 ((1 —a(l— ’Y)dmin)% + 02(W)§>
+ O~ (a;d Rnlax Jr o IIlaX N|S‘ |'/4 Rmax > )

(1—piaz, (=), (1= 0a(W))

The first inequality comes from @ The second inequality comes from Theorem and
This completes the proof.

O
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F.3 PRroor orF COROLLARY [3.§

d? S||A|Rmax -
Proof. Let us first bound the terms a%dmax Bmax 4 o Cmax 2| 1Al in Theorem 3.7
(1—y) a2 (1-7)3d2,;,(1—02(W))

min

with e. We require

a = @ min (1 — ’\//)sd?nin €2 (1 — ’y)gdrznin(l — UQ(W))E ]
R12naxd12nax - Rmaxdg]ax |SHA|

Next, we bound the terms (1 — /(1 — 7)dmin)? + o2(W)%. Noting that

[NIE

(1= (1 — y)dmin) < exp (—a(l - w)dmin];) 7

we require

k=0 (W In (1) +n (1) /In (ffz(lVV)>>

B 2 2 2 /
=0 (hl (1) max{ 5 Rmaxdmax Rmaxdmax |S||A| }) .
€ €

(1 =)0y, €(1 =)y, (1 = 02(W))

This completes the proof. O

G APPENDIX : MARKOVIAN OBSERVATION MODEL

In this section, we provide the analysis tools for the Markovian observation model in Section [4]

Considering a sequence of state-action trajectory {(sg,ar)}ren induced by the behavior
policy S, the update of Q-function at time k becomes

Qi1 (sk.ar) = ) [W]i;Qf (s ax) + (7“?;+1 +ymax Qj (s41, @) — Qj (s, ak))
| g | (20)
Qii(s,a) = Y [W];;Ql(s,a), s,a €8x A\ {(sk, an)},
JEN;
where we have replaced s}, in with sx11. The overall algorithm is given in Algorithm [2|in
the Appendix Section [J]

We follow the same definitions in Section |3| by letting D to be D.,. That is, we have
Ag =I +aD,(yPII? —I), bg =~D,PI% -119)Q",
which are defined in (L0J).

Furthermore, let us define for Q € RISIAL Q@ e RNISIAIL and Q' e RISIMI such that
[Q; = [Qlis)14)(i—1)+; for j € [|S]|A]]:

_ 1 , L
avg _ . 1 Q i 7

A (Q)—DooNi_l(R +4PIIR Q Q),
1

A8 ) =5k Ck—7
(Q) =Dy

k—7,7

i (R +1PTI?'Q - Q).
=1

where D;*~7"%~7 ig defined in .

Note that we did not use any property of the i.i.d. distribution in proving the consensus
error. Therefore, we can directly use the result in Theorem [3.4] for the consensus error for
Markovian observation model. Hence, in this section, we focus on bounding the optimality
error, Q% — Q*. As in the case of 1.i.d. observation model in Section 3| we will analyze the
error bound of lower and upper comparison system in the subsequent sections.
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G.1 ANALYSIS OF OPTIMALITY ERROR UNDER MARKOVIAN OBSERVATION MODEL

As in Section we will analyze the error bound for Q3*®" and szg’l to bound the

optimality error, Q V€. 'We will present an error bound on the lower comparison system, szg l,
‘

in Proposition and the error bound on Qavg e avg’ in Proposition [G.6l Collecting
the results, the result on the optimality error, kv , w111 be presented in Theorem

Let us first investigate the lower comparison system. deg L evolves via where we replace

€, % with €*&(oy, Q) where o = (s, an,sk+1). To analyze the error under Markovian

observation model, we decompose the terms, for k > 7 as follows:

QZ\;»gi =Aq- Q"' + ael® (or, Qi) + 0By,
:AQ*QZVg"I + a€™8 (o, Qr—r) + a(e™(0k, Qi) — €8(0k, Qi—r)) + aEy,
=AQ-Q"! +a (87 (or, Qu—r) = AT, (Qi-r)) +a (A (Qur) = A™¥(Qs-r))
=wp,1 =wg,2
+a (€™ (or, Qi) — €5 (or, Qu—r)) +aEy.

::’u)kyg

(21)

The decomposition is motivated to invoke Azuma-Hoeffding inequality as explained in
Section 4} Recursively expanding the terms in , we get

k k k k
: k=741 Aave,l k—j k—j k—j k—j
QUE =AY +a )y AQTwii+ad Aglwis+ta) Aglwist+a) AGUE;.
j=r j=r j=r =
(22)

Now, let us provide an analysis on the lower comparison system.

We will provide the bounds of Z?:T Ak:jwjyl, Z AQ* Jwj o, and Z] ., AQ* wj 3 in

Lemma [G.2] Lemmal@, and Lemma |8£I|7 respectlvely We first provide an important
k—j

property to bound > 7 Ag. w; 1.

Lemma G.1. Fort > 7, let F; := 0({Qo, 50, @g, 51,@1,...,5:,a;}). Then,
E [wt71|]—'t,T] =0.

Proof. We have

E [w1,1] -] =E [§™%(0r, Q1) — AR, (Qk—r)

Fios]

N
1 i i i
:N ZE [(est ® eat)(rt""l + e;+17HQt77Qt—T - (est ® eat)TQt—T)

Fisl

s
Il
—

—_

N
— i Y (R 4P — Qi)
i=1

The second equality follows from the fact that Q¢ __ is F;_,-measurable. This completes the
proof. O

Lemma G.2. For k € N, and a < min {miniem] Wi, %}, we have

15\meax

k
E Y Ag w;, <2y/In(27|S]|A])
= 1-)¥ds;

o0

M»—-

24



Under review as a conference paper at ICLR 2025

Proof. For 0 < g <7 —1,let for t € N such that ¢ <7t +¢q < k:
]:;cz,t = .7:7—t+q.

Then, let us consider the sequence {Sg t}te{tengrtJrqgk} as follows:

q . k—1j—
Sk,t E :A TWrjtg,1-

Next, we will apply Azuma—Hoeffdmg inequality in Lemma [C.4] Let us first check that
{8} Jicqtenrt+q<k} is a Martingale sequence. We can see that

E [Sg,t ]:13725_1] =E |:Ag:7t7 Wrt4q,1

k—1j—
]:kt 1} +E ZA Ywrjyq0 ]:lg,t—l
j=1

:Sg,t—l'
The second equality follows from Lemma and the fact that S{, ;| is 7, ;-measurable.
Moreover, we have E [Sg 1 ‘fq} =0, and

_ AR max
[ste=st]| = [|a6 ™ wrraa || < (1= (0 = 9)dumma) =0,
thd 7 o0 — /7
where the last inequality follows from Lemma [C.I} Now, we have, for s,a € S x A,
—27)— 16f£1?n X
Y lSdeStyalal € 3 (1 ()
je{teNg<rt+q<k} Jje{teN:Tt+q<k} 7

1 16R?

< max .
(1= (1= (1= 7)dmine)?T) (1 —9)?
Therefore, we can now apply Azuman-Hoeffding inequality in Lemma [C.4] which yields

(1— (1= (1= 7)dnin®)?) (1—7)°
> < —
Pllstecol. > <o )
where t*(¢) = max{t € N: 7t + ¢ < k}. Considering that
Mo {||Stiwl| <e/rh c 1ISk <},

taking the union bound of the events,

P||Sk|l. = €] <min Z [Hskt*(q >e/7’} ,1
0<g<7-1
: (1= (1= (1 =7)dmin@)®) (1 —7)
<min {27’|S|A|exp <— 53 16R12nax> 71}.
Therefore, from Lemma we have
67 Rax
E [S4].] <2/ B ISTAD _
(1 - ’7)\/(1 - (1 - (1 - ’Y)dmina) )
<2 /MRS A e ,
(1= )20/ (2755 (1= (1= ) dminar))
67 Rmax

<2+/In(27|S||A])

3

(I1—v)2d? % Laz \/27' 1—(1—=7)dmina)?> 1
5\/>Rmax
<2+/In 27’\8||A ————————exp((1 = y)dmma(21 — 1))

_idia
1 max
< 1n<27\8||A\>5f+

(1 - V)Edrznina

Nl=

Nl=
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The second inequality follows from 1 — 22" = (1 —2)(1+z + 2?4+ -+ 22771) for r € R.
The third inequality follows from the fact that Z?;Bl(l — (1 = y)dmine)? > Z?;Bl(l —(1-
V)dmina)27—71 .

The second last inequality follows from the relation such that exp(—2x) < 1—z for z € [0, 0.75].

The condition a < 5= leads to exp((1 — 7)dminc(27 — 1)) < 3, yielding the last line. This
completes the proof. O

k k—j
Now, we bound szzT A wio

HOO

Lemma G.3. For k > 7, we have

k
; 8R
k=g, max
E ZAQ* ’UJ]’Q S 7(1 77)2d —
i=r . min

Proof. Recalling the definition of D, and D;’~"% " in , we have

Doo_DsjiT’ajiT = s a; TPT Tsa_ ocols,a
IDo Dyl = max [(es,-. ® €a, )P o~ [ioclsal
SQdTV(((esj,T ®eaj7T)TPT)Tuufoo)
<2mp"
<2a.

The first inequality follows from the definition of the total variation distance, and the second
and third inequalities follow from the definition of the mixing time in .

Now, we can see that

lo = H(D — Dijfﬂ“fff)% Z (R" + yPnQéQ;l — Q;)

[[w;.2
i=1 0o
1 al :
<y 1D =Dyl > R +POY%Q; - Q}
i=1 e}
<a 8Rmax 7
a7,
where the last inequality follows from Lemma [3.3]
Therefore, we have
k k
_ S8R : S8R
Al || < omax (1= (1l — 4)dmin)* ™7 < ——max
jz:;_ Q7 -~ jz:; (1 —7)2dmin
where the first inequality follows from Lemma[C.I] This completes the proof. O

Lemma G.4. For k > 7, we have

1 kot 1
(1 — fy)dmina + (1 - (1 - ’y)dmina) 2 1— UQ(W))

64Rmax N|SH'A| +4 2Z%max

(1= 7)2dmin(1 — 02(W)) (1= 7)2min’

k
> Aty <8 (@, (r2W)F
Jj=T7

oo

_|_
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Proof. Recalling the definition of w; 3 in 7 we get
wj 3 =0%(0;,Q;) — 6%(0;,Q;-) — A™E(Q;) + A™E(Q; )

N
Z ( €s; ® €a; 6;+1’y (HQJ Q; - HQJ?TQé'f‘r) - (esj ® eaj)(esj ® eaj)T( ; - ;'77'))

z:l

N
Qi — Qi--Qt QL
+DOON;1: (vPO?Q; - PO Q) + Q) - Q;_,).

Taking infinity norm, we get

;5] <% Zg Qi — Drmax 22 Qi — Q.||
4 N i , |
S Z(HQE—Q?V%HOOHIQ?“ Pl 9 - Qi)
é4H®QgH +4[0Q;--|., +4||Q”g Q% (23)

The first inequality follows from the non-expansive property of max-operator. The second
inequality follows from the triangle inequality. The term ||Q?Vg Q5 H can be bounded

as follows:
j—1

Qi - @il = > Qs - @il

t=j—7

j—1 1 N
<a ) ﬁZ
t=j—7 = i=1

2Rmax
T
I—v

€s,a, (7”2 +7max Qi (s141,a) — Qi (54, at)) H

oo

<« (24)

The second inequality follows from ([2). The last inequality follows from Lemma
Applying the result in Theorem 3 - 3.4] together with ( . to ( 7 we get

i—7 || O 8Rmax V N|SHA| 2Rmax
[wj sl < 8o2(W) ™" {|Qol|, + 8 T 1= o(W) +dart . (25)
Now, we are ready to derive our desired statement:
Z AQ* wi; 3
oo
k
_ A S8R N|S||A| 2R

< 1-(1- dmin k=i 8 w =T 8 max 4 max
—JZ::T( ( 20) @) <U2( ) HQ()H2+ a1_71_02(w)—|— 047'1_’y
<81Qll, (e2(W)* T (1= (1 = i) T
N 2 (1 - V)dmina 1 — O'Q(W)

64Rmax\/ N|S||A| Ly 2Rmax

(1= )2dmm(1— 03(W)) (1 =) 2’

The first inequality follows from Lemma and . The last inequality follows from
Lemma This completes the proof. O

Now, collecting the results we have the following bound for the lower comparison system:
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Proposition G.5. For k € N, and o < min {minie[N] (Wi, o }, we have

iy 57
E (| @] ] =0 (0 = 1= Dduine) T + 0a(W))
L5 (a; ViRmss | Rus/NISA )

(1-— »y)%diin =) 2dmin (1 — 02(W))

Proof. Collecting the results in Lemma Lemma, Lemma [G.4] and Lemma we
can bound as follows:

e [|ers] ]
<0 = (= i) B[ @]

3 L
_ s 72
v)2 dmin

+ 207 /In(27]S]] A])

8Rmax
(1 - V)Qdmin

+ 8 HQOHQ (O-Q(W) k;T ; + (1 - (1 - ’y)dmina)k;ra>

+ «

(1 - ’y)dmin 1-— JQ(W)
a 64Rmax V N|SHA| _|_ 40”_ 2]%max
(1 - 7)2dmin(1 - 02<W)) (1 - ’7)2dmin

+ Vmax HGQOH2 <(1 - (1 - ’V)dmina) k? S — + 02(W) k;T 1)

1-— O’Q(W) (1 - ’Y)dmin
8 Rmax /N |S||A]

+ « dmax .
O (T 2 (1 — 02 (W)
That is,
v, 2 k1 k—1
2[[G25]_] -0 (01~ ~ a5
+ @ a% \/;Rmax +a Rmax vV N|S||A| .
0o tal =) a1 — 02 (W)
This completes the proof. O

The rest of the proof follows the same logic in Section [3] We consider the upper comparison
system, and derive the convergence rate of Q7"*" — szg’l. As can be seen in QD if we

subtract QZ‘fl’l from Q"5", €;"® and E}, are eliminated. Therefore, we can follow the same
lines of the proof in Proposition [F-3}

Proposition G.6. For k € N, and o < min {miniem] Wi, %}, we have
avg,u av, 4 k=1 k—T1
Bfl|lers - @] ] =0 (- a1 = 1)dui) 7" + o2(w) 5

A 1 max dmameaX N|S
+O<a2dmax VPR Y/NISTIA )

G idl TP, (L= oa(W))

Proof. As from the proof of Proposition [F-.3] we have
B [Jaw - @] <ot - )T E (@2 - @]

+ 207 drma fj(l —a(l = )dwin) E [[ @] ] (0

i=T

()
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We will use Proposition to bound (%) in the above inequality. We have

+ @ (O(é \/;Rmax + Rmax V N‘SHA‘ )

(1-y)kaz (1=, (1 - 02(W))

min

=0 ((1 = a(l = 7)dpin) T + UQ(W)"’%)

+ @ <OZ§ \/FRmax Rmax \Y4 N‘SHA‘ )
(1

Ctah )= a(W))

The last inequality follows from Lemma Applying this result to (26]), we get
ve.u av ~ k=1 k=7
Efl|lis - @] ] =0 (- alt = 1)duwin) 7" + o2(W) 57

A 1 max max ‘\/ N
+0 <azdmax VT Fome i 514 > .

(177)%d§1m+ (1 =7)2d5n (1 = 02(W))

This completes the proof. [

Now, we are ready to provide the optimality error under Markovian observation model:
Theorem G.7. For k> 7, and o < min {minie[N] Wi, 27} we have

B (11"~ @*ll.] =0 (1 — (1 ~ 7)) 5 +02(W)*)
+@<aédmax VT Rumax Rinaxdmax/NIS[|A| )

0 ial TP, oa(W))

Proof. The proof follows the same logic as in Theorem using the fact that szg’l <
Q3% < QV®". Therefore, we omit the proof. O

G.2 PROOF OF THEOREM (1]

Proof. The proof follows the same line as in Theorem [3.7] From Theorem [3.4] and Theo-

rem [G.7] we get
EfQc—1ve @ ] <E[|Qr—1v o @8 ] +E[IQ" - Q7]

Runax VN|S[A| )

=0 g k (0%
‘0< W) = e (W)
+0 ((1 — a1 = 7)dmin) T + UQ(W)k%)

+ @ <Ot%d \/;Rmax Rmdxdmax V N|SHA|
(1-

Dt T, (T oa(W))

min

-0 ((1 —a(l = )dmin) T + UQ(W)’%T)

(
~ 1 dmax max Rmax max S
w(z( Yo VISTH] )

Dids AP0 = (W))

This completes the proof. O
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G.3 Proor or COROLLARY [4.2

Proof. For E H’Qk -1y Q"
We require

oo] < ¢, we bound the each terms in Theorem with 7.

L?a’; < 6/47
(1 _7)§d§1in

~ 2 1— 573 .
a = O € T ( /-Y) dlnln ,
ln (?) tmiXdIQIlaX
where 7 is bounded by tmix by Lemma [C.7] in the Appendix. Likewise, bounding

Rmaxdmaxy/[S||A|

1=7)%d3;,(1—02(W))

a=0 <mm{ e (1—9)%d3;, e(1—9)3d2;,(1—0a(W)) })
B ln( ’ :

1
0% dpax

which is satisfied if

ag < €/4, together with the above condition, we require

e%) T axtmix dmax/|S|[A]

Furthermore bounding the terms (1 — a(1 — y)dmin)k% + UQ(W)’C% in Theorem with
1, respectively, we require,

k2@<mm{1n2(232) il 10(2) dmaxm(w))}ﬂn(i)/ln( 1 >>

€ (1 —~)6a4 e (1—v)2d3. (1— o9 a2 (W)

min min

This completes the proof. [

H APPENDIX : EXAMPLES MENTIONED IN SECTION [0l

Let us provide an example where the condition used in |Heredia et al.| (2020) is not met
in tabular MDP. Since the condition only depends on the state-action distribution,consider
an MDP that consists of two states and single action, where S := {1,2} and A := {1}
with d(1,1) = 0.1, d(2,1) = 0.9, and v = 0.5 Then, dpin = 0.1 and dpax = 0.9, then
Aimin < Y2dmax Which contradicts the condition in .

Next, we provide an MDP where the condition required in |[Zeng et al.| (2022b)) is not
met:

1 0 0
0 1 0.1 1
P: 1 O I R: O 9 [D]S,G.ZZ,VS7G/€SXA,
0 1 0.1
9.9
Letting v = 0.99, we can check that Q* = ;% and TIQ" = [8 (1) 8 (ﬂ Consider
10
12
Q= }? . Then, we have
10

(YDP(M?Q -TI?' Q") - D(Q - Q")) (Q — Q") = 0.179,
which is contradiction to the condition in .

I EXPERIMENTS

The experiment used the MDP where and |.A4;| = 2 for each agent i € [N] where N denotes
the number of agents. For each run, we have randomly generated the transition and reward
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—— N=T
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num iterations
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(a) Experiment under ring graph

— N=3
— N=7

40000 60000 80000 100000

num iterations

20000

o4

(b) Experiment under star graph

Figure 1: a = 0.1. The result was averaged over five runs.

matrix. Each elements were chosen uniformly random between zero and one, and for the
transition matrix, each row is normalized to be a probability distribution. We can see that
the distributed Q-learning algorithm converges to close to @*, where the constant bias is
induced by using the constant step-size. As number of agents increase, the convergence rate

becomes slower.
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(a) Ring graph, |S| =2
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0 20000

(c) Star graph, |S| =2

|G =@l

18« — Q" |l
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num iterations

(b) Ring graph, |S| =5

20000

o

— ours
—— QD-learing
— ATC-Q

40000 60000 80000 100000

num iterations

(d) Star graph, |S| =5

L] 20000

Figure 2: a = 0.1. The result was averaged over five runs and N =7

The Figure[2]shows comparison with QD-learning developed in (2013). QD-learning
uses a two-time scale approach, and therefore we have set the two-step-sizes as 0.1 and 0.0.1,
where the faster time-scale matches the single-step-size of distributed Q-learning. As in
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the figure, distributed Q-learning shows faster convergence rate compared to QD-learning.
ATC-Q refers to the adapt-then-combine scheme in [Wang et al.| (2022]).

J APPENDIX : PSEUDO CODE

Algorithm 1 Distributed Q-learning : i.i.d. observation model

Require: Initialize Q} € RISIAL such that 11Qil < %“i;‘ for all i € [N], and 0 < a <
min; e ny [Wlii.
for k=0,1,..., do
Observe s, ax ~ d(-,-), s}, ~ P(sk, ag, ).
fori=1,2,...,N do
Update as follows:

Qi1 (s, ar) = > (W15 QL(sk, a) + <Ti+1 +7ymax Qi.(s),a) — QZ(%%)) :
JEN;

end for
end for

Algorithm 2 Distributed Q-learning : Markovian observation model

Require: Initialize Q) € RISIMI such that ||Q}|| < %‘;" for all i € [N], and 0 < a <

min {minie[N] (Wi, %}
Observe sg, ag ~ po.
for k=0,1,...,do
Observe sg11 ~ P(sk,ak, ) and agr1 ~ (- | sk).
fori=1,2,...,N do
Update as follows:

Qia(srar) = Y [Wi;Q(sk. ar) + <7”?§+1 +ymax Qi(s141,a) — Q};(sk,ak)) -
JEN;

end for
end for
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