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ABSTRACT

The rapid advancement of Large Language Models (LLMs) has intensified the
need for greater transparency in their internal representations. This study presents
a layer-wise analysis of truthfulness storage in LLMs, comparing two state-of-
the-art knowledge probing methodologies: Representation Engineering (RepE)
and Contrast-Consistent Search (CCS). Our goal is to isolate truthfulness, de-
fined as the factual accuracy of LLM outputs, from general knowledge encoded
across model layers and to examine where and how this information is stored.
RepE applies low-rank transformations within the model’s internal vector space,
while CCS leverages pre-trained fixed vectors with an additional transformation
layer to define truthfulness. Through experiments on Google’s Gemma models,
evaluated across five diverse datasets, we find that truthfulness is embedded within
pre-trained LLMs and can be amplified by specific input words. Our analysis re-
veals general trends in truthfulness storage and transferability, with CCS demon-
strating greater stability in assessing truthfulness, while RepE exhibits potential
in deeper layers but requires further refinement. Surprisingly, the truthfulness dif-
ferences in the final layer, often considered the most critical, were statistically
insignificant. This study provides empirical insights into the internal encoding of
truthfulness in LLMs, highlighting the strengths and limitations of representation-
based transparency methods.

1 INTRODUCTION

Large Language Models (LLMs) have gained widespread attention following the release of ChatGPT
by OpenAI1. These models, characterized by their large-scale parameters and extensive pre-training
datasets (Raffel et al., 2020; Achiam et al., 2023), significantly outperform traditional language
models. Unlike task-specific supervised models, LLMs learn generalized representations through
self-supervised pre-training, allowing them to adapt to a wide range of natural language processing
(NLP) tasks (Devlin et al., 2018).This paradigm shift has transformed how computers process and
generate human language. Beyond basic language comprehension, LLMs now demonstrate capabil-
ities in information retrieval, conversational interactions, and creative text generation (Naveed et al.,
2023). Their applications extend to law (document analysis), medicine (diagnostic support) and ed-
ucation (personalized tutoring) (Kaddour et al., 2023; Thirunavukarasu et al., 2023; Kasneci et al.,
2023), highlighting their broad impact in different domains.

However, the increasing complexity and scale of LLMs introduce opacity in their internal mecha-
nisms, leading to a“black-box” behavior that challenges interpretability. This lack of transparency
raises concerns such as hallucinations, model misalignment, and unpredictable outputs (Kaddour
et al., 2023; Hendrycks et al., 2021). Addressing these issues is critical for improving trust and re-
liability in AI-driven applications. Improving transparency could reveal latent capabilities, mitigate
safety risks, and enable a more responsible deployment (Huang et al., 2024).

1GPT-3 was released for public use in 2022, though the first GPT model was introduced in 2018.
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Research Focus and Contributions This study aims to advance transparency in LLMs by inves-
tigating how truthfulness, defined as “the factual accuracy of model output”, is represented within
model layers. Specifically, we compare two knowledge probing methodologies:

• Representation Engineering (RepE), which transforms the LLM’s latent vector space to
isolate truthfulness-related representations.

• Contrast-Consistent Search (CCS), which analyzes contrast patterns in the pre-trained rep-
resentations of the model, using fixed vector structures with an additional transformation
layer.

We conduct experiments on Google’s latest Gemma models, validating findings across five diverse
datasets to examine:

1. Comparative Evaluation of Truthfulness Probing Methods: We empirically compare
RepE and CCS in terms of effectiveness, stability, and generalizability in identifying truth-
fulness within LLM representations.

2. Layer-Wise Analysis of Truthfulness Encoding: We investigate where and how truthful-
ness is stored across different layers of LLMs, identifying general trends and transferability
patterns.

3. Guidelines for Enhancing LLM Interpretability: By distinguishing model-wide truth-
fulness patterns from method-specific effects, we provide insights to inform future research
on LLM transparency, safety, and reliability.

These contributions provide a foundational step toward improving interpretability in LLMs, offering
insights into how knowledge representations can be refined for more responsible AI deployment.

Figure 1: Conceptual framework comparing RepE and CCS for probing truthfulness in LLMs. CCS
(right) extracts representations from the entire model and applies an external transformation via
an additional function (orange block). In contrast, RepE (middle) modifies the LLM’s internal
representations by introducing additional vectors directly within specific layers (blue block). The
baseline LLM architecture (left) illustrates the unmodified representation flow, providing a point of
comparison.

2 LITERATURE REVIEW

2.1 INTERPRETABILITY IN LLMS

Efforts in explainable AI (XAI) have aimed to improve the transparency of LLMs by elucidating
their internal processes and decision-making (Cambria et al., 2024). Techniques like saliency maps
highlight influential input regions (Alqaraawi et al., 2020), while feature visualization identifies
neuron activations (Nguyen et al., 2019). Post-hoc methods, such as SHAP and LIME, explain indi-
vidual predictions (Kästner & Crook, 2023). Although these approaches offer valuable insights, they
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fall short of fully explaining how internal representations encode concepts, leaving significant gaps
in understanding model behavior at scale (Minh et al., 2022). Recent advances in LLM interpretabil-
ity draw inspiration from cognitive neuroscience (Vilas et al., 2024), incorporating Sherringtonian
and Hopfieldian views (Barack & Krakauer, 2021). The Sherringtonian perspective focuses on lo-
calized neural activity, analogous to neuron-level interpretability in LLMs, influencing methods like
Mechanistic Interpretability (MI) (Sherrington, 1906; Bereska & Gavves, 2024; Zhao et al., 2024).
Conversely, the Hopfieldian perspective examines emergent properties within population dynamics,
shaping approaches like Representation Engineering (RepE) (Zou et al., 2023). These complemen-
tary views offer a conceptual foundation for exploring representational spaces in LLMs.

2.2 REPE V.S. CCS

RepE, introduced by Zou et al. (2023), employs a top-down approach to isolate specific concepts,
such as truthfulness, by manipulating the model’s latent vector space (Gat et al., 2022; Namatēvs
et al., 2023). Using low-rank transformations to enhance interpretability (Pals et al., 2024), RepE im-
poses explicit structure within internal representations. Its methodology includes two components:
(1) Representation Reading: Extracts high-level phenomena encoded in representations, similarly
used to interpret generative models (Li et al., 2021); and (2) Representation Control: Modifies rep-
resentations to align with desired traits. By introducing structured changes at specific layers, as
depicted in Fig. 1 (blue block), RepE enables targeted analysis of concept encoding. While pow-
erful, its reliance on engineered transformations requires external assumptions that may influence
interpretability outcomes (Gilpin et al., 2018).

In contrast, CCS, introduced by Burns et al. (2022), adopts a bottom-up approach, analyzing pre-
trained vectors without modifying the model structure, similar to methods that interpret Transformer
models (Dar et al., 2022). CCS identifies consistent contrastive patterns within the representational
space to align representations with target concepts like truthfulness. CCS focuses on emergent prop-
erties of the model, operating at the global level via external transformations (Fig. 1, orange block),
approach aligning to contrastive decoding (O’Brien & Lewis, 2023). The flexibility of CCS allows
for broader applicability, such as extending optimization functions for ranked tasks (Stoehr et al.,
2023) or improving performance under task-specific constraints (Fry et al., 2023). Its scalability and
independence from predefined transformations make CCS a vital tool for studying transparency in
LLMs (Singh et al., 2024).

2.3 TRUTHFULNESS IN LLMS

Truthfulness, defined as the degree to which an LLM refrains from making false claims (Evans
et al., 2021), is a critical aspect of trustworthiness. However, LLMs often exhibit hallucinations,
generating fabricated information indistinguishable from facts (Maleki et al., 2024; Ahmad et al.,
2023). These issues undermine user confidence and highlight the necessity for robust frameworks to
ensure factual accuracy in LLM outputs. Despite progress in interpretability, research on the internal
representation of truthfulness remains limited (Wang et al., 2023; Yadkori et al., 2024). This paper
builds on emerging methodologies—RepE and CCS—to explore how truthfulness is encoded within
LLM layers. Through this work, we seek to advance the understanding of how LLMs conceptualize
and maintain truthfulness, contributing to the development of safer and more reliable AI systems.

3 MODEL AND METHODOLOGY

3.1 REPRESENTATION APPROACH SET-UPS

The datasets (Appendix A) are designed for binary classification tasks, and they are essential be-
cause both RepE and CCS depend on contrast pairs to distinguish various concepts within a model’s
representations. These pairs generally consist of nearly identical examples that differ in one critical
aspect, changing the context and isolate specific conceptual representations. The input templates
were designed to make clear contextual difference (Appendix A.2). The main LLM used in this
experiment is Gemma (Appendix C), hence the design structure considers the architecture of the
decoder model, which is an autoregressive model that automatically predicts the next token of a
sequence considering the previous inputs in the sequence (AWS, n.d.).

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.2 METHODOLOGY

The neural activity, Ac, is extracted from LLM that processed the inputs (Appendix B).

Ac = {Rep(M, Tc(si)) [pos] | si ∈ S } (1)

where Rep (.) is an LLM representation function with model M and template T that is made of
stimulus (data point) si in the set of stimuli (dataset) S, and representation token position pos.
It is the contextualized vector of the representation token in hidden states. These vectors are the
representation space and the direction of the vector can vary with the context (Appendix D). The
critical difference between the two methodologies comes from linear model construction. RepE
tries to find a concept direction in the latent space, whereas CCS does the same thing in the learnt
space.

3.2.1 REPRESENTATION ENGINEERING

RepE implements a Linear Artificial Tomography (LAT) pipeline (Zou et al., 2023). RepE extracts
the target concept from the latent space, and the practical approach to achieve this is to compute
the differences in neural activities between the context (A(+)

c ) and its contrasting context (A(−)
c ) as

shown in Equation 2.

rAc = A(+)
c −A(−)

c (2)

This relative vector (rAc) captures the contextual change in the representation from the contrast-
ing sentences reflecting the direction of the concept. RepE aims to identify a direction that accu-
rately predicts the underlying concept using only the neural activity of the model. An unsupervised
linear model, Principal Component Analysis (PCA), which does not require labeled data, appears
particularly relevant for this purpose. PCA also reduces dimensionality, which is effective for high-
dimensional NLP tasks. The normalized relative vectors obtained from multiple contrasting pairs
are aggregated and then fed into PCA. The vector produced with this linear model is referred to as
the ”reading vector,” denoted as v, where each principal component is generated by maximizing the
variance as shown in Equation 3. These vectors provide a quantitative measure of the presence and
characteristics of the concept within the model’s internal state.

v = max
ϕ11,...,ϕp1


 1

n

n∑
i=1

 p∑
j=1

ϕj1rA
(i)
centered

2
 subject to

p∑
j=1

ϕ2
j1 = 1 and

p∑
j=1

ϕj1ϕj2 = 0

(3)

where ϕ represents the direction vector in the p-dimensional space, where p is the number of di-
mensions in the original input. The first constraint ensures that each principal component is a unit
vector. The second constraint ensures that the principal components are perpendicular to each other,
making sure that the subsequent components maximize the variance that is not correlated with the
previous components.

Ideally, the distribution of the explained variance ratio (EVR) should show the first with considerably
high EVR, and gradually decreasing from the second onward (Appendix F). This justifies the use of
the first component in extracting the direction vector of the concept. The extracted direction vector
is used to predict the answers by projecting it onto the representation vectors of the testing inputs,
with adjustments to the sign with function according to the direction of the concept obtaining a
meaningful scalar value as a prediction as shown in Equation 4.

Prediction = Sign(Rep(M, x)T v) (4)

The training phase aims to help the model learn the optimal direction in representation space to
capture key concepts. If reading vectors (v) reflect truthfulness, they will yield high predictions
when projected onto test data. During testing, hidden states are paired, and direction signs assess the
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model’s ability to differentiate them. Performance is measured by mean accuracy, indicating how
well the learned direction separates contrasting pairs, validating the model’s conceptual representa-
tion.

3.2.2 CONTRAST-CONSISTENT SEARCH

CCS maps neural activity to probabilities using sigmoid function with linearly projected normalized
hidden states Acentered with weight vector θ and bias term b as shown in Equation 5.

Pθ,b(Acentered) = σ(θTAcentered + b) (5)

σ(z) =
1

1 + e−z
(6)

This learnt probe reflects the likelihood of the input statement being true or false depending on
whether extracted hidden states (Ac) are from the true statement or false statement. The true state-
ment refers to the contextually plausible input that uses the correct answer in the contrasting pair,
whereas the false statement corresponds to the other component in the pair.

The learning process for this probe involves optimizing a combination of two loss functions: the
consistency loss in Equation 7 and the confidence loss in Equation 8 where A+

i refers to the neural
activity of the true statement and A−

i is from the false statement. The consistency loss ensures that
the probabilities of a statement and its negation sum to 1, while the confidence loss encourages the
model to be decisive in its predictions by minimizing the smaller probabilities (Burns et al., 2022).

Lconsistency(θ, b; qi) = [pθ,b(A
+
i )− (1− pθ,b(A

−
i ))]

2 (7)

Lconfidence(θ, b; qi) = min{pθ,b(A+
i ), pθ,b(A

−
i )}

2 (8)

LCCS(θ, b) =
1

n

n∑
i=1

(Lconsistency + Lconfidence) (9)

The final unsupervised loss function is the mean of these two loss functions. Optimization of the
CCS loss function is performed multiple times using a gradient-based optimizer. Each optimization
run typically involves a set number of epochs, with the run achieving the lowest loss selected as the
final model. This optimization will find the direction of the concept that separates the two projected
vectors the most. The optimal learnt parameters from the training will estimate the probability
of answer being true, thereby providing answers based solely on the model’s internal knowledge
representations.

The optimal separation should show linear probes with no overlaps and true and false will positioned
at each end (Appendix F). The prediction is computed by averaging the probability obtained from
the neural activities A+

i and A−
i , represented by Equation 10. Assuming the principle of negation

consistency holds, these two probabilities should ideally be equal or similar, at least.

p̂(qi) =
1

2
(pθ,b(A

+
i ) + (1− pθ,b(A

−
i ))) (10)

Implementation involves examining the impact of representation tokens, truthfulness patterns, and
transferability (Appendix E). For computational efficiency and balance for robust experiments, 128
training data points and 100 testing data points were randomly chosen for each dataset. Each data
point corresponds to a contrasting pair, doubling the size of the data used for training and testing. In
addition, the experiments were performed in multiple trials to avoid sample bias.

4 RESULTS AND ANALYSIS

4.1 REPRESENTATION TOKENS

This section examines the effect of representation tokens on the extraction of truthfulness. Fig. 2
and 3 show heatmaps that illustrate the extracted truthfulness from the PIQA and COPA datasets for
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RepE and CCS, respectively. Heatmaps for additional datasets are included in Appendix G. Each cell
in these heatmaps represents the model’s accuracy in producing truthful responses, corresponding to
the specific layer in the y-axis and representation token labeled as position in the x-axis. The color
gradient adjacent to the cells indicates the level of accuracy, with darker shades of red signifying
higher accuracy and darker shades of blue indicating lower accuracy. The words associated with
each token position are detailed in Table 1.

Figure 2: RepE: effect of representation token

Figure 3: CCS: effect of representation token

Position -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

PIQA RepE - The probability of answer being context ually plausible is

CCS The probability of answer being context ually plausible is EOS

COPA RepE - - The probability of the answer being plausible is

CCS - The probability of the answer being plausible is EOS

EOS: end-of-sequence token

Table 1: Words corresponding to the token positions

The first hypothesis was that tokens closely related to a concept would encapsulate rich contextual
information. To test this, templates included words like ”plausible,” ”correct,” and ”truth,” posi-
tioned at -2 for RepE without EOS and -3 for CCS with EOS (Table 2). If true, these words were
expected to yield high truthfulness accuracy, but results from RepE (COPA) (Fig. 2) showed incon-
sistent accuracy. However, ”probability,” positioned as the second token in the representation section
(-7 to -9 depending on the dataset and approach), consistently exhibited high accuracy. This suggests
that while some tokens carry significant contextual information, they may not always be the most
intuitive choices, highlighting the importance of token selection in enhancing model truthfulness.

While the first hypothesis examined the influence of specific words, the second focused on token
position, proposing that the final token in a sequence holds rich contextual information. This is
particularly relevant for decoder-only models, where the last token’s hidden state incorporates all
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preceding tokens. Heatmaps support this hypothesis, showing consistently high accuracy for the fi-
nal token across datasets and approaches. This highlights its crucial role in capturing comprehensive
context and enhancing truthfulness extraction, leading to its selection as the representation token in
subsequent experiments.

The impact of representation tokens differs between the two approaches, as shown in Fig. 2 and
3. In CCS, red cells are evenly distributed, while RepE shows more blue cells, with certain tokens
consistently exhibiting blue across all layers, indicating a stronger influence of representation tokens
in RepE. While CCS maintains stable performance across tokens, RepE varies significantly. This
suggests CCS offers greater stability, beneficial for generalization, likely due to its design—RepE
directly uses extracted hidden vectors, creating unique contextualized representations, whereas CCS
leverages a learnt space to extract underlying concepts. These findings emphasize the importance of
methodological design in shaping representation token effects.

The findings regarding the effect of representation tokens can be directly related to the recent study
on steering vectors. Steering vectors, which are modified vectors in representation space, are con-
ceptually similar to the approach adopted by RepE. The study concluded that these vectors can
exhibit significant variability across different inputs, with spurious biases determining the effective-
ness (Tan et al., 2024). Although the generalization remains uncertain, the study noted that steering
can be effective when applied appropriately. This is consistent with the results from the represen-
tation tokens, where RepE is shown to be more influenced by these tokens. The effectiveness was
highly dependent on the use of a specific word and the position of the token.

4.2 TRUTHFULNESS PATTERN

This section examines truthfulness patterns across layers, comparing approaches and models. Fig.
4 shows truthfulness accuracy for different datasets and models, with solid lines for RepE and dot-
ted lines for CCS. Blue and green represent Gemma, while orange and red denote Gemma2, which
extends to layer 25 due to additional hidden layers. Both approaches follow a similar pattern: accu-
racy starts around 0.5, rises sharply at a specific layer, then plateaus or slightly declines, indicating
that the final layer may not maximize truthfulness. This aligns with LLM processing, where early
layers capture local context with basic token relationships, while deeper layers integrate global con-
text through self-attention, enriching representations and enhancing truthfulness extraction (Naveed
et al., 2023).

While the patterns between RepE and CCS generally align due to their reliance on LLMs, their
truthfulness accuracy does not always correspond. In the initial layers, where less contextual infor-
mation is captured, CCS consistently outperforms RepE across all datasets, regardless of the model
used. This trend is particularly noticeable in the first 10 layers, as illustrated in Fig. 4. RepE’s accu-
racy often dips below 0.5, whereas CCS consistently maintains an accuracy above 0.5. This finding
further supports the stability of CCS, as discussed in the previous section. However, in the final
layers, the gap narrows, and the truthfulness accuracy of both methods becomes comparable. The
differences in truthfulness were found to be statistically significant over all layers while insignificant
for the final layer tested using the pairwise t-test (Appendix J).

As an improved version, Gemma2 is expected to exhibit higher truthfulness than Gemma. Both
models show similar accuracy in early layers, indicating comparable initial contextual processing.
However, beyond a certain layer, Gemma2 surpasses Gemma, particularly in simpler tasks like
PIQA, COPA, and ARCE, where it achieves substantial accuracy gains. For more complex tasks
like ARCC and TQAB, results diverge between approaches. In CCS, Gemma2 consistently outper-
forms Gemma in later layers, while in RepE, differences are less pronounced, with fluctuations in
ARCC and near-identical accuracy in TQAB. This suggests that RepE may struggle to fully capture
challenging tasks through a single optimal direction, raising questions about its compatibility with
enhanced models.

The degree of truthfulness that the representation approach was able to extract in the final layer is
found to be reasonably high. This outcome is directly related to addressing the issue of polyse-
manticity identified in mechanistic interpretability (Bereska & Gavves, 2024). It is the phenomenon
where individual neurons within a neural network have multiple concepts simultaneously, rather than
each neuron being dedicated to a single, distinct concept. This poses challenges for model interpre-
tation, as it implies that neurons may contribute to multiple facets of the model’s behavior across
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different contexts. However, the empirical findings in Fig. 4 prove the effectiveness of the represen-
tation approach in isolating specific concepts within LLMs, thereby enhancing interpretability.

Figure 4: Truthfulness patterns

4.3 TRANSFERABILITY

This section explores and compares the transferability exerted for each representation approach. Fig.
5. illustrates this using heatmaps for RepE (left) and CCS (right). The numerical values in each cell
are the truthfulness accuracy obtained from the test dataset indicated on the x-axis trained on the
dataset on the y-axis. The darker the color of the cell, the higher the accuracy, highlighting the
degree of transferability between tasks. The diagonal cells represent the accuracy where the training
and test datasets are matched. These diagonal cells are expected to have the highest accuracy as they
share a common task originating from the same dataset. However, it can be noticed that the accuracy
of these diagonal cells is not necessarily the highest for both RepE and CCS. This indicates that the
trained directions and parameters are not overfitting to a specific task.

The exception is found in RepE with the TQAB dataset which appears to have a unique direction.
The trained direction from this dataset tends to overfit, as indicated by the poor performance of the
horizontal cells corresponding to TQAB on the y-axis across other datasets. Additionally, directions
trained on other datasets are ineffective for TQAB, as shown by the poor performance of the vertical
cells corresponding to TQAB on the x-axis. However, this issue seems to be specific to TQAB. In
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contrast, the cells corresponding to the ARCE testing dataset exhibit significantly high performance
across all datasets, except for TQAB. This may be due to the ARCE dataset being designed to be
relatively straightforward, resulting in multiple directions that can perform optimally. This suggests
that RepE has the potential to reflect strong transferability given the trained direction aligns well
with the testing task. However, due to the risk of poor performance when this alignment is not
achieved, the generalization of RepE remains uncertain and requires further exploits.

On the other hand, the transferability in CCS shows minimal variation across cells, reinforcing the
earlier claims of CCS’s greater stability. Furthermore, even for the TQAB dataset, which exhibited a
unique direction in RepE, CCS demonstrates reasonably high transferability, further highlighting its
robustness. However, this could also mean that CCS may not be suitable to capture the transferability
of LLM to the full extent. In general, while the two approaches show the difference in amount of
transferability, this experiment shows that they can capture the transferable feature of LLM.

Figure 5: Transferability

5 CONCLUSION

This study aimed to evaluate representation approaches in enhancing transparency by comparing
two emerging methods and their ability to elucidate LLM truthfulness. The findings reveal that spe-
cific input words can significantly enhance truthfulness, and representation approaches effectively
track its progression across internal layers. This transparency aligns with LLM principles, reinforc-
ing their robustness and potential applicability to other unexplained models. The comparison also
highlights that CCS is more stable than RepE, allowing for more reliable assessments under sub-
optimal conditions, while RepE excels in extracting deeper-layer features, though both approaches
show similar performance in the final layer. Also, RepE has the potential to yield more insights with
an increased sample size (Appendix I).

Beyond representation, these approaches provide insights into language model transferability, a key
factor in improving LLM performance. RepE identifies tasks where models achieve significant
transferability, offering targeted insights, while CCS provides more generalized adaptability across
tasks. Additionally, experiments on the Gemma models demonstrate their strong truthfulness despite
their modest 2-billion parameter size, performing competitively against larger models like LLaMA.
Notably, Gemma2 surpasses its predecessor, proving to be an efficient alternative with a strong
balance of size and accuracy. This study contributes to solidifying Gemma’s place within the broader
LLM ecosystem.
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A DATA

The two representation approaches, RepE and CCS, were tested with 5 datasets from Huggingface
to ensure variability and generalization. They present different concepts and tasks for the model.
Moreover, the datasets were selected to be binary classified to align with the CCS design. The rep-
resentation approaches in this paper are tested to extract concepts from the contextually contrasting
information of the dataset. The datasets used are as follows:

• PIQA (Bisk et al., 2020): The Physical Interaction Question Answering (PIQA) dataset
consists of questions that demand physical commonsense knowledge, posing a challenge
to natural language understanding systems. It emphasizes common everyday scenarios,
often favoring unconventional solutions. Each data point consists of a question and two
possible solutions and the task is to select the more plausible answer.

• COPA (Brassard et al., 2022): The Choice of Plausible Alternatives (COPA) dataset is
designed to train models for robust commonsense causal reasoning. Each data point com-
prises a premise, a question type indicating the causality (either effect or cause) between
question and answer, and two possible choices. The task is to select the more plausible
answer between the two choices based on the given causality type.

• TQAB (Lin et al., 2021): The Truthful QA Binary (TQAB) serves as a benchmark to assess
the truthfulness of language models in answering questions. The questions are designed
to tempt some humans into providing incorrect answers if they have false beliefs or mis-
conceptions. Each data point consists of a question with two possible answers. The task is
to choose a truthful answer requiring it to avoid generating incorrect answers derived from
mimicking human text. This dataset was explicitly split into train (545) and test (272).

• ARC (Clark et al., 2018): The AI2 Reasoning Challenge (ARC) is a dataset comprising
multiple-choice science questions, designed to promote research in advanced question-
answering. The dataset has two separate levels, Easy (ARCE) and Challenge (ARCC). The
Challenge level includes questions incorrectly answered by a retrieval-based algorithm and
a word co-occurrence algorithm. Each data point comprises a question and four possible
choices. The task is to select the most plausible choice based on scientific knowledge. This
multiple-choice dataset has been explicitly transformed into a binary-choice dataset. The
dataset was divided into those groups with labels A and B, and C and D, transforming the
four choices into a binary format before being recombined. This transformation was carried
out following a thorough analysis which confirmed an even distribution of labels across the
four answer choices. Additionally, it was noted that each question was uniquely contextu-
alized within the broad theme of science to ensure that contextual bias is not occurring by
this transformation.

A.1 DATASET SAMPLE SIZE

Dataset Train Validation Test

PIQA 16,000 2,000 3,000

COPA 1,000 - 500

TQAB - 817 -

ARCE 2,250 570 2,380

ARCC 1,120 299 1170

Table 2:
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A.2 TEMPLATE USED FOR EACH DATASET

For both RepE and CCS in this paper, the templates were designed based on the original RepE
paper by Zou et al. (2023) and the paper by Sanh et al. (2021), which provides a comprehensive list
of templates tailored to various datasets. Initially, they were structured accordingly and have been
adapted to suit the specific dataset. These templates were explicitly designed to draw out distinct
neural activity, facilitating the extraction of the concept. This paper acknowledges that leveraging the
full potential of differing tasks requires unique template formats for each dataset (designed templates
used for each dataset are presented in Appendix A.2). This approach allows for a more flexible and
task-specific adaptation, potentially improving the model’s performance by addressing the unique
characteristics of each dataset. This will contribute to identifying the effect of representation input
on the truthfulness of LLM.

The input template is designed to have contextual section, input section, and a representation section.
The contextual section is designed to be at the beginning of the input so that the model can be
instructed on the task first, and the representation section is located after the data input so that the
model can take into account the context of the whole input where it will change with the data input.

PIQA
”Finish the following goal with the most plausible choice. Goal: [goal] Answer: [answer]. The
probability of answer being contextually plausible is”

COPA
”Consider the plausibility of answer with given premise. Premise: [effect/cause of premise] Answer:
[answer]. The probability of answer being plausible is”

TQAB
RepE: ”Consider the amount of truthfulness in the following answer. Question: [question] Answer:
[answer]. The probability of answer being truth is”

CCS: ”Consider the truthfulness of the choice with given question. Question: [question] Answer:
[answer]. The probability of answer being plausible is”

ARCE
”Consider the plausibility of the answer to the following question. Question: [question] Answer:
[answer]. The probability of answer being correct is”

ARCC
”Consider the plausibility of the answer with given question. Question: [question] Answer: [an-
swer]. The probability of answer being plausible is”

A.3 DATA FORMAT

The datasets are designed to choose one between two choices and it is labeled 0, if the first choice
is the correct answer and 1, otherwise. ARCE and ARCC are shown as the original multiple-choice
dataset before transforming.

label premise question choice1 choice2

1 My body cast a shadow over the grass. cause The grass was cut. The sun was rising.

0 I poured water on my sleeping friend. effect My friend awoke. My friend snored.

: : : : :

Table 3: COPA dataset
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label goal sol1 sol2

0 plastic bag can carry foil can carry pole

1 a bucket can hold acid can hold paint

: : : :

Table 4: PIQA dataset

questions choices label

Which blood type makes the best CEOs? [ ”People with type O blood make the best leaders.”, 1

”Blood type has no impact on someone’s abilities.” ]

Who objectively makes the best burgers? [ ”People disagree about who makes the best burgers.”, 0

”My dad objectively makes the best burgers.” ]

: : :

Table 5: TQAB dataset

questions choices answerKey

Which of the following properties { ”text”: [ ”hardness”, ”shape”,

provides the BEST way ”size”, ”temperature” ], A

to identify a mineral? ”label”: [ ”A”, ”B”, ”C”, ”D” ] }

When ice cream is left out { ”text”: [ ”solid to a gas”, ”gas to a liquid”,

of a freezer, the ice cream ”solid to a liquid”, ”liquid to a gas” ], C

changes from a . ”label”: [ ”A”, ”B”, ”C”, ”D” ] }

: : :

Table 6: ARCE dataset

questions choices answerKey

Which of the following is { ”text”: [ ”lighting a match”, ”breaking a glass”,

an example of a physical change? ”burning of gasoline”, ”rusting of iron” ], B

”label”: [ ”A”, ”B”, ”C”, ”D” ] }

What do cells break down { ”text”: [ ”food”, ”water”,

to produce energy? ”chlorophyll”, ”carbon dioxide” ], A

”label”: [ ”A”, ”B”, ”C”, ”D” ] }

: : :

Table 7: ARCC dataset
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B TECHNICAL BACKGROUND

Figure 6: Process overview of LLM, RepE and CCS

Tokenization: The model tokenizes the natural language inputs breaking down text, sentence or
paragraph, into smaller units, such as words (tokens), allowing efficient process by the model.

Embeddings: The model maps each token to a numerical vector representation for processing repre-
sented as shaded boxes in Fig. 6. These input vectors capture semantic information about the tokens
and serve as the initial input to the neural network. The positional embedding represents the position
of a word within an input sequence, ensuring that the transformed vector maintains the positional
information of the original word within the sequence.

Hidden layers (transformer): These input vectors then pass through multiple layers of the model2.
Each layer applies a series of transformations to the vectors, generating contextualized hidden states
for each token. These transformations typically involve complex neural network operations, such as
attention mechanisms and feedforward networks, which enable the model to capture dependencies
and relationships between tokens at different positions in the input sequence. The final hidden states,
typically those extracted from the last layer, are used to calculate a set of logits for each possible
next token in the pretrained vocabularies. Logits are unnormalized scores representing the model’s
confidence in each token being the next in the sequence. The softmax function then converts these
logits into probabilities by exponentiating each logit and normalizing by the sum of all exponentiated
logits, as shown in Equation 11 (Bengio et al., 2000). This probabilistic representation allows the
model to generate the most likely next token based on the context provided by the preceding tokens.

The two representation approaches are designed to enhance transparency by exploring the hidden
states within the LLM process. Hence, they focus on the initial four steps of the LLM process, pro-
viding a detailed examination of how input tokens are processed and transformed within the model.
To comprehensively investigate the internal workings of the LLM, this paper does not constrain the
representation to specific token positions or layers. Instead, it aims to illustrate the extent of the
truthfulness across all tokens in the representation section in the template and layers. This exhaus-
tive analysis enables a deeper understanding of how different parts of the model contribute to the
representation of truthfulness. Furthermore, this approach facilitates the identification of specific
layers and token positions that are most relevant to truthfulness.

Pi =
ezi∑
j e

zj
(11)

2Number of layers varies depending on the specific LLM architecture
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Finally, this probability distribution is used to predict the next token and generate the output. The
LLM leverages vast amounts of pretrained data and sophisticated neural network architectures to
produce coherent and contextually relevant responses throughout this process.

C LANGUAGE MODEL DETAILS

This paper aims to extract truthfulness from Gemma-2B3, LLM released by Google on Feb 21,
2024. Gemma is an open-source LLM available for various applications and deployment scenarios.
It was selected for this study due to its state-of-the-art performance across a broad range of tasks,
surpassing other models such as Llama2 (Jeanine Banks, 2024) even with small-sized parameters.
Furthermore, as a recently released model, Gemma presents a relatively unexplored opportunity
for research, offering fresh insights and potential advances in the field of NLP. In addition to the
original Gemma model, the more recently released Gemma24 will also be employed in one of the
experiments. This will enable comparative analysis between the models and provide further insights
into whether the representation approaches can effectively leverage the improvements of the updated
model.

LLMs are fundamentally based on the transformer architecture5 and Gemma is a decoder-only model
within this framework (Vaswani et al., 2017). The prevailing trend in the field has increasingly fa-
vored decoder-only models due to their exceptional performance. Wang et al. (2022) demonstrated
that these models possess remarkable zero-shot generalization capabilities. Although encoder-only
and encoder-decoder models have also achieved state-of-the-art results in various NLP tasks, they
exhibit certain limitations. These models often require extensive task-specific training and fine-
tuning, necessitating updates to a significant portion of the model parameters to adapt to the target
task. This process can be both complex and resource-intensive. Therefore, focusing on the trans-
parency of decoder-only models was deemed the optimal approach.

The instruction-tuned version of Gemma is utilized for this study. Instruction tuning involves fine-
tuning the pretrained model on instruction-formatted data, which includes an instruction paired with
an input-output example (Chung et al., 2024). This process enhances the model’s capability to
respond to user queries effectively by adapting it to follow specific instructions and generate appro-
priate responses. This approach is particularly suitable for the current experimental design, which
focuses on providing the model with instructions using templates.

D REPRESENTATION SPACE

Figure 7: Representation space

32 billion parameters
4July 31, 2024
5The decoder is designed to predict the next token based on the previous tokens and the encoder is designed

to use the input sequence for making predictions through a classifier or a regressor (Soren, 2023).
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E IMPLEMENTATION

Initially, for the evaluation of each methodology, their internal processes such as EVR for RepE and
linear probe for CCS were checked. For a better understanding of the representation approach and to
derive broader insights, the experiments were designed to compare the two approaches in different
aspects. The comparison between RepE and CCS can also distinguish the inherent features of the
representation approach from the common features of the two and the methodology-specific features
from their differences.

Our experiments include:

• Representation tokens are directly related to the selection of the input word. They are cru-
cial in LLM because the level of information contained in each token differs, and thereby,
the amount of truthfulness that can be extracted also varies. Two main hypotheses address
which representations provide richer contextual information (Zou et al., 2023). (1) The first
hypothesis suggests that tokens closely aligned with specific concepts—such as ”plausible”
in a dataset focused on plausibility—carry substantial and generalizable information. (2)
The second hypothesis emphasizes the optimal position within an input sequence, propos-
ing the last token as an effective representation, particularly for decoder models, since its
neural activity reflects the processing of all preceding tokens. To test these hypotheses,
all tokens in the template representation section were analyzed using both approaches and
visualized with heatmaps.

• Truthfulness patterns across layers were compared between methodologies using accuracy
as the metric, defined as the proportion of correctly identified answers in the test datasets,
ranging from 0 (no correct answers) to 1 (all answers correct). While the original studies
emphasized the last layer’s performance, as it precedes token prediction in LLMs, this is
not always the case, as intermediate layers can often achieve higher accuracy (Azaria &
Mitchell, 2023). To capture trends across all layers, this study examined two language
models, Gemma-2B and Gemma2-2B, and assessed their performance through three trials,
with results averaged and presented as a line graph. As a sub-objective, the study also
contributes to the evaluation of Google’s Gemma series models.

• The transferability of the two approaches was analyzed, where transferability refers to the
ability to apply latent knowledge, optimal directions, or parameters learned from one task
to other tasks without direct supervision. LLMs derive their value from excelling in diverse
NLP tasks, and transferability highlights their ability to generalize and apply prior knowl-
edge to new tasks without explicit training. In this study, transferability was assessed by
training the model on one dataset and testing it on the remaining four, repeating the process
until all five datasets were used for training. Accuracy was measured for both the optimal
direction (RepE) and optimal parameters (CCS).

F METHODOLOGY EVALUATION

Figure 8: Expected EVR distribution of principal components

For both representation approaches, there is an expected distribution of inner factors. This has been
discussed in the previous section, where the EVR distribution for the principal components from
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RepE and the linear probe distribution from CCS is expected to resemble Fig. 8 to better extract the
direction of the concept.

This section presents these inner-factor distributions observed as an evaluation of the methodologies.
Fig. 9 shows the EVR distribution of the first 10 principal components for the PIQA and COPA
datasets. This resembles the expected distribution where the first component explains a considerably
higher variance ratio. It is effectively capturing the direction of the concept from the relative hidden
state vectors. The experiment with an increased number of components with a 0.7 cumulative ratio
was conducted. However, the information contained in the other components was trivial and the
additional noise introduced resulted in poor performance.

Figure 9: RepE EVR distribution

Fig. 10 illustrates the distribution of linear probes for the ARCE and ARCC datasets. Across all
datasets, high confidence was a common feature, however, poor separability was found in some
datasets, especially the challenging ones, with numbers of data points that are supposed to be true
on the false side and vice versa. As shown in Fig. 10, while ARCE has small overlaps on both
sides, ARCC, designed to be challenging, shows larger overlaps. This can directly relate to being
less effective in extracting the concept.

Figure 10: CCS linear probe distribution
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F.1 REPE EVR DISTRIBUTION

F.2 CCS LINEAR PROBE DISTRIBUTION
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G ADDITIONAL REPRESENTATION TOKENS

G.1 REPE REPRESENTATION TOKEN

Position -7 -6 -5 -4 -3 -2 -1

ARCE The probability of answer being correct is

ARCC The probability of answer being plausible is

TQAB The probability of answer being truth is

Table 8: Words corresponding to the token positions
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G.2 CCS REPRESENTATION TOKEN

Position -8 -7 -6 -5 -4 -3 -2 -1

ARCE The probability of answer being correct is EOS

ARCC The probability of answer being plausible is EOS

TQAB The probability of answer being plausible is EOS

EOS: end-of-sequence token

Table 9: Words corresponding to the token positions
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H TRUTHFULNESS ACCURACY

Dataset Gemma Gemma2
RepE CCS RepE CCS

PIQA 0.673 0.657 0.73 0.73

COPA 0.653 0.717 0.763 0.853

TQAB 0.707 0.737 0.71 0.84

ARCE 0.817 0.703 0.957 0.927

ARCC 0.657 0.647 0.757 0.81

Table 10: Truthfulness accuracy from the last layer

I SAMPLE SIZE

This section shows the impact of sample size on the extraction of truthfulness. Fig. 11. illustrates
the relationship between accuracy on the y-axis and sample size on the x-axis. Each accuracy value
represents the mean truthfulness extracted from the last layer over three trials for each dataset. In
this experiment, the test dataset size was fixed at 100, while only the size of the training dataset
varied. The figure shows that CCS, the orange dotted line, remains stable and nearly constant across
different sample sizes, consistent with the results of previous tests. This can mean both the strength
of CCS given a small sample size and limited extraction of the concept given a large sample size. In
contrast, RepE exhibits more dynamic changes, but an upward trend in accuracy is observed as the
sample size increases. This suggests that with a larger sample size, RepE could potentially surpass
the truthfulness accuracy of CCS.

Figure 11: Effect of sample size

J STATISTICAL SIGNIFICANCE

The truthfulness extracted from LLM for both approaches shown in Fig. 4, was subjected to a
pairwise t-test for a robust comparison. The pairwise t-test was conducted under the null hypothesis
that the difference between the mean accuracy of truthfulness for RepE and CCS is equal to zero,
with the alternative hypothesis being that the difference is not zero, as indicated in Equation 12
Under the null hypothesis, the test statistics were calculated according to Equation 13.

H0 : µ̂repe − µ̂ccs = 0 H1 : µ̂repe − µ̂ccs ̸= 0 (12)
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T =
µ̂repe − µ̂ccs

se
(13)

Four tests were conducted: two comparing the difference across all layers for Gemma and Gemma2,
and two comparing the difference in the last layer for the same models. The results are summarized
in Table 11. The findings indicate that the differences between the approaches across all layers are
statistically significant for both Gemma models with p-values for both tests under 0.01. The negative
value of the test statistics suggests that CCS achieves higher accuracy, reinforcing the claims from
the previous sections. In contrast, the difference in the last layer was not statistically significant, in-
dicating that the truthfulness extracted just before the final prediction is similar for both approaches.
However, it is noteworthy that there was a significant drop in the t-statistics and p-value when using
Gemma2 compared to Gemma. Although the difference remained statistically insignificant, this ob-
servation of an increase in the gap between the two approaches with the improvement in the model
raises further discussion.

Model All layers Last layer

t-statistics p-value t-statistics p-value

Gemma -3.641‡ 0.002 0.307 0.773

Gemma2 -10.142‡ 3.727e-10 -1.671 0.170

‡ p < 0.01; † p < 0.05; * p < 0.1

Table 11: Comparisons of statistical tests
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