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Abstract. Generating pseudo-healthy reconstructions of images is an
effective way to detect anomalies, as identifying the differences between
the reconstruction and the original can localise arbitrary anomalies whilst
also providing interpretability for an observer by displaying what the im-
age ‘should’ look like. All existing reconstruction-based methods have a
common shortcoming; they assume that models trained on purely nor-
mal data are incapable of reproducing pathologies yet also able to fully
maintain healthy tissue. These implicit assumptions often fail, with mod-
els either not recovering normal regions or reproducing both the normal
and abnormal features. We rectify this issue using image-conditioned dif-
fusion models. Our model takes the input image as conditioning and is
explicitly trained to correct synthetic anomalies introduced into healthy
images, ensuring that it removes anomalies at test time. This condition-
ing allows the model to attend to the entire image without any loss of
information, enabling it to replicate healthy regions with high fidelity. We
evaluate our method across four datasets and define a new state-of-the-
art performance for residual-based anomaly detection. Code is available
at https://github.com/matt-baugh/img-cond-diffusion-model-ad .
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1 Introduction

Supervised machine learning’s requirement for large quantities of labelled train-
ing data is a barrier, as for it to be effective the training data must compre-
hensively cover all pathologies that the model could encounter in clinical prac-
tice. This is not practical, as there is an ever-growing number of rare or out-of-
distribution conditions for which there is insufficient data available. This problem
is even more pertinent in pathology segmentation, as although imaging data may
be available, the cost of clinicians annotating samples is often prohibitive. Unsu-
pervised anomaly detection offers a solution, aiming to model the distribution of
healthy data itself, which enables the identification of any anomalous deviation
without the need for manual labels.
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The predominant paradigm for unsupervised anomaly detection in medical
imaging is to train models to reconstruct images from a normative distribution
[12,8,30,11], as taking the reconstruction error at test time provides a natural
way to localise anomalies. The resulting pseudo-healthy images can also provide
interpretability about the abnormality’s features. However, these methods rely
on two core assumptions; that models trained on only healthy data are (A1)
unable to reconstruct anomalous features which were not in their training data,
and (A2) capable of correctly reconstructing images from the normative dis-
tribution. Recently these assumptions have come into question, as such models
are often able to reconstruct anomalies unseen during training [37,6], as well as
predicting false-positives in healthy regions [5].

One of the most prominent solutions is restoration-based models, which edit
the image to increase its likelihood and produce a pseudo-healthy version of it
[6,12]. Adding this aspect aims to enforce (A1), that anomalies are not preserved
during the reconstruction process. Another recent paradigm is self-supervised
anomaly detection, which involves using a proxy task to train a model to iden-
tify synthetic anomalies [32,19,4]. By framing the proxy task as identifying an
anomaly within otherwise healthy data, models trained with this technique are
less sensitive to the natural variation of healthy images, which has resulted in
methods of this paradigm winning every iteration of the MICCAI Medical Out-
of-Distribution Analysis (MOOD) Challenge (2020-2023)[36].
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Fig. 1: We condition the diffusion model on the input image to produce a restored
pseudo-healthy version of it, and then compare that with the original using the
Structural Similarity Index Measure to localise anomalies.

Contributions. Our method uses diffusion models to produce high-fidelity,
pseudo-healthy restorations of test images by conditioning on the input image
at every timestep of the reverse diffusion process (Fig. 1). To train the diffusion
model we take our healthy training data as the target and use the self-supervision
tasks developed by [3] to generate anomalous images for conditioning. We guar-
antee that assumption (A1) holds by explicitly training the model to restore
the image. Other state-of-the-art methods jeopardise (A2) as they lose infor-
mation by noising or masking the input image. On the other hand, our use
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of image conditioning solidifies it as the model can attend to the entire image
thus maintaining healthy regions. By combining these aspects we achieve beyond
state-of-the-art performance, which we demonstrate on a challenging benchmark
across multiple image modalities.

Related Work. Reconstruction-based approaches involve training a genera-
tive model or autoencoder on a dataset of only normal images. At inference
time the model reconstructs the test sample and calculates the residual map
between the original and reconstructed image. Originally most methods were
based on either Variational Autoencoders [37] or Generative Adversarial Net-
works [30], although the success of diffusion models has led to them being in-
creasingly favoured [12,20]. Regardless of architecture, by using the reconstruc-
tion error to identify anomalies, all of these methods depend on assumptions
(A1) and (A2). However, the subtle distinction between healthy and unhealthy
image features in medical imaging means that autoencoders trained to reproduce
normative data can also reconstruct anomalies [6]. [37] found that models with
excessive capacity can maintain anomalous regions, requiring tuning with sam-
ples from the same distribution as the test set to enable regularisation through
limited capacity. Predictions from reconstruction-based methods often predict
false positives around complex structures or edges that they fail to accurately
replicate [26]. Post-processing can remove these errors, but this requires prior
knowledge about the type of anomalies expected at test time [5].

Masking regions of the input guarantees that the model can not use the infor-
mation in those regions to reconstruct any anomalies that may be present [15,34].
However, this loss of information also means that the fine-grain details of healthy
structures are also lost, resulting in false positives. Restoration-based methods
have been proposed that aim to explicitly edit an image or its corresponding
latent representation to increase its likelihood with respect to the normative
dataset distribution [8], which has been shown to consistently produce resid-
ual errors that are better at localising anomalies when compared with their
reconstruction-based counterparts [5]. [7] combined masking with image restora-
tion, using a two-stage process to identify potentially anomalous regions and
then inpaint those to produce a pseudo-healthy restoration.

A fundamental issue with reconstruction-based approaches stems from rely-
ing on the comparison of pixel-intensity values. This means that, even when a
model successfully corrects anomalies, the difference between the original and
reconstructed images will remain minimal if the anomaly exhibits low contrast
compared to healthy tissue [5]. [25] found that performing the reconstruction
in feature space resulted in a better measure of deviation when comparing the
input and output of the model. They also proposed using the Structural Simi-
larity Index Measure (SSIM) [35] in both training and inference, as it accounts
for structural and contrast differences between the original and reconstructed
image. Using SSIM for inference has since been shown to consistently improve
anomaly localisation for residual-based methods [18].

Self-supervised anomaly detection methods have adopted a completely differ-
ent paradigm, using a proxy task to directly train a model to identify anomalies
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within a normal image. An important work in this area was Poisson Image In-
terpolation (PII) [32] which trained a model to identify patches of other samples
blended into a target image. By directly identifying anomalies without using
residual error it does not suffer from the issues concerning pathologies of low
contrast or extreme texture. [28] better aligned this synthetic task with the imag-
ing modality whilst incorporating a probabilistic element to mirror the effect of
multiple different annotators. The most recent approaches use a combination of
multiple synthetic tasks to perform cross-validation and prevent model overfit-
ting to the synthetic training tasks [3]. Denoising autoencoders [16] combines
a proxy task (removing coarse additive noise) with residual-based anomaly de-
tection to train a model to directly restore an image, however recently this has
been shown to generalise poorly to other datasets as the scale of the noise was
chosen to match the scale of the anomalies it was evaluated on [18]. A not yet
fully available approach [24] suggests a patch-blending proxy task as a diffusion
process so that the learnt score function better generalises to medical anomalies.

2 Method

Our image diffusion model operates within the discrete-time Denoising Diffusion
Probabilistic Model (DDPM) framework [14], leveraging the ϵ-prediction objec-
tive. This approach models the forward diffusion process as a Markov chain,

p(x1:T |x0) =

T∏
t=1

p(xt|xt−1), (1)

where each diffusion step introduces Gaussian noise into the image, defined by
p(xt|xt−1) = N (xt;

√
1− βtxt−1, βtI). Here, βt is a pre-defined variance schedule

controlling the noise level at each step.
In the reverse process, a specially designed neural network aims to reconstruct

the original image by estimating the noise ϵ that was added at each diffusion
step. This estimation, ϵθ(xt, t), allows for the recovery of the denoised image
through the update equation:

xt−1 =
1√

1− βt

(
xt −

βt√
1− α2

t

ϵθ(xt, t)

)
, (2)

where αt and βt represent time-dependent scaling factors, xt denotes the noisy
image at time t, and ϵθ is the model predicting the noise. This reverse mech-
anism effectively guides the model in reconstructing the signal from its noised
state, step by step, until it recovers the original image x0. Introducing image-
conditioning into this changes the noise estimation function to include a condi-
tioning image c as ϵθ(xt, t, c).

In our method we take c to be the result of applying a synthetic anomaly
task to the original image x0, resulting in x̃0. By providing it as conditioning
during the reverse process (Fig. 2) we encourage the model to intelligently use



Image-conditioned Diffusion Models for Medical Anomaly Detection 5

Synthetic
Anomaly

Task

Noise
Scheduler

Attention
U-Net

Synthetic Anomaly Conditioning

Loss

Fig. 2: Training process for our model. At each time step the model is trained to
predict the residual which denoises xt, using the corrupted image x̃0 as guidance.

x̃0 to restore xt; by identifying the healthy regions of x̃0 it can use them to
accurately denoise those areas of xt, while for the corrupted areas it must use
a combination of xt and x̃0 to predict how to restore xt to be fully healthy.
The image conditioning is implemented by concatenating x̃0 to xt as additional
image channels. We generate our anomalous images using the tasks from the
extension of [3], consisting of 5 tasks covering image blending, deformation and
intensity addition. By using a wide range of subtly integrated tasks we ensure
the model learns to have a detailed understanding of the appearance of healthy
images, covering not just the general intensity distributions of the images but
also the intricacies of their structures. To avoid the model learning a prior that
every image requires some amount of correction we drop the synthetic task in
20% of training samples, i.e., x̃0 = x0.

For inference, we identify anomalies by using the test image as conditioning
throughout the entire reverse diffusion process, mapping a Gaussian noise sample
to a pseudo-healthy version of the test image. To produce an anomaly map we
measure the SSIM [35] between the restoration and original, allowing for fair
comparison with [18] which uses SSIM in all reported results. In line with [18]
the only post-processing we apply is to zero predictions in the background of
the MR images. We follow the cross-validation structure of [3], using three tasks
to train each model while the remaining two are used to monitor performance,
which means ten models are trained per dataset. Similarly, we ensemble our
models by averaging their pixel-wise predictions during inference, and take the
mean pixel-wise prediction as the sample-level prediction.

Implementation. Our PyTorch [29] code is publically available and integrated
into the existing code of the unsupervised pathology detection benchmark [18].
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Each model is trained over two A100 GPUs with a batch size of 32. This memory
footprint could fit on a single A100 but we opted to split it to speed up training.

3 Experiments

Data. We evaluate in line with the benchmark setting in [18]. Each dataset
features anomalies with varying characteristics, offering different perspectives
on the adaptability and potential limitations of our suggested approach. All
brain MRI models are trained using samples from the Cambridge Centre for
Ageing and Neuroscience dataset (CamCAN) [33] which consists of 653 scans of
healthy adult patients. Each patient has a T1-weighted and T2-weighted scan
which we use to train separate models. To test both T2 and T1 MRI models we
use scans containing tumours from the Multimodel Brain Tumor Segmentation
(BraTS) Challenge 2020 [27,1,2]. The pathologies in the T2-weighted images are
the easiest to identify as they appear as large, hyper-intense lesions. Conversely,
identifying anomalies in T1-weighted BraTS scans is more challenging due to
the lower contrast between lesions and healthy tissue, despite the anomalies
being the same size. To further scrutinise T1 MRI models, we evaluate them on
the Anatomical Tracings of Lesions After Stroke (ATLAS) dataset [22] which
includes 655 MR scans of stroke patients with small, hypo-intense lesions. We
also evaluate our method on retinal fundus images from the DDR dataset [21]
which consists of 6243 images of healthy individuals and 745 images taken from
patients with Diabetic Retinopathy. The lesions in DDR are both very small
and of a similar image intensity distribution to healthy tissue, making them very
difficult to detect. Here we follow the same train-test split as in [18], taking 5510
samples for training and validation while a disjoint set of 745 healthy and 745
unhealthy samples are used for testing. We use the same preprocessing pipeline
as [18], i.e., our models take 128× 128 images as input.

To assess our model’s performance at an image level we use the area under the
receiver operating characteristic curve (AUC) and image-wise average precision
(APi) which is the area under the precision-recall curve. Most of the datasets
are reasonably balanced so the APi and AUC values are similar, except for the
ATLAS dataset where the small size of the lesions means that only 30% of axial
slices contain a lesion. For pixel-level evaluation, we use pixel-wise average pre-
cision (APp) and the maximum Sørensen-Dice index over all possible thresholds
(⌈Dsc⌉), which both take into account that there is a large data imbalance at a
pixel level which favours the normal class.
Results. We achieve state-of-the-art performance across three of the bench-
mark datasets (Tab. 1). Our models are notably better at localising anomalies
regardless of their size. We consistently outperform the best existing method by
+0.24 APp on the large anomalies of BraTS-T2 and +0.09 APp on the small,
scattered anomalies of DDR. Our restorations also successfully maintain the
healthy regions of test samples (Fig. 3), which contributes to our high pixel-
wise performance. Other methods using local synthetic anomalies (PII [32] and
CutPaste [19]) struggle across all datasets, highlighting that our richer task of
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Table 1: Quantative detection and localisation results, comparing against image-
reconstruction (IR), feature-modeling (FS), attention-based (AB), and self-
supervised anomaly detection (S-S) methods. Best scores are bold, second best
are underlined, excluding the average result of each fold Oursavg., the best per-
forming individual model Oursmax. and standard deviation of folds Oursstd..

BraTS-T2 BraTS-T1 ATLAS DDR

image-level pixel-level image-level pixel-level image-level pixel-level image-level pixel-level

Method APi AUC APp ⌈Dsc⌉ APi AUC APp ⌈Dsc⌉ APi AUC APp ⌈Dsc⌉ APi AUC APp ⌈Dsc⌉

Random 0.48 0.50 0.06 0.11 0.48 0.50 0.06 0.11 0.30 0.50 0.02 0.03 0.50 0.50 0.004 0.01

IR

VAE [17] 0.68 0.73 0.28 0.33 0.64 0.70 0.13 0.19 0.57 0.76 0.11 0.20 0.48 0.48 0.02 0.05
r-VAE [8] 0.75 0.77 0.36 0.40 0.70 0.76 0.13 0.19 0.60 0.78 0.09 0.17 0.52 0.50 0.03 0.09
f-AnoGAN [30] 0.56 0.61 0.15 0.21 0.48 0.53 0.06 0.12 0.26 0.46 0.02 0.06 0.44 0.45 0.01 0.01
H-TAE-S [11] 0.68 0.70 0.21 0.12 0.54 0.57 0.06 0.12 0.29 0.49 0.01 0.03 0.51 0.51 0.01 0.01

F
M

FAE [25] 0.87 0.87 0.51 0.52 0.86 0.85 0.42 0.45 0.50 0.73 0.08 0.18 0.64 0.63 0.07 0.15
PaDiM [9] 0.66 0.68 0.34 0.38 0.60 0.65 0.21 0.28 0.34 0.56 0.05 0.13 0.55 0.55 0.02 0.07
CFLOW-AD [13] 0.71 0.72 0.31 0.35 0.65 0.69 0.16 0.24 0.40 0.62 0.04 0.10 0.51 0.51 0.03 0.08
RD [10] 0.85 0.85 0.47 0.50 0.81 0.83 0.36 0.42 0.55 0.77 0.11 0.22 0.66 0.64 0.10 0.19

A
B ExpVAE [23] 0.63 0.66 0.12 0.18 0.56 0.56 0.07 0.13 0.37 0.57 0.01 0.03 0.53 0.54 0.004 0.01

AMCons [31] 0.78 0.78 0.35 0.40 0.61 0.64 0.05 0.12 0.32 0.53 0.01 0.03 0.49 0.49 0.004 0.01

S
-S

PII [32] 0.57 0.62 0.13 0.22 0.54 0.64 0.13 0.22 0.37 0.60 0.03 0.07 0.62 0.63 0.01 0.01
DAE [16] 0.81 0.80 0.47 0.49 0.70 0.74 0.13 0.20 0.44 0.65 0.05 0.13 0.54 0.55 0.01 0.03
CutPaste [19] 0.59 0.63 0.22 0.26 0.61 0.65 0.07 0.13 0.37 0.58 0.03 0.06 0.64 0.60 0.02 0.06
Oursens. 0.89 0.88 0.74 0.69 0.75 0.77 0.30 0.36 0.55 0.75 0.25 0.34 0.73 0.73 0.19 0.27 Oursavg. 0.88 0.87 0.69 0.66 0.72 0.74 0.26 0.34 0.54 0.74 0.18 0.28 0.71 0.69 0.14 0.24

Oursmax. 0.89 0.89 0.77 0.71 0.75 0.76 0.34 0.39 0.60 0.78 0.31 0.38 0.74 0.72 0.17 0.27
Oursstd. 0.01 0.01 0.05 0.04 0.03 0.02 0.05 0.03 0.04 0.03 0.06 0.05 0.01 0.02 0.02 0.02

restoring synthetic anomalies gives more consistent performance than training
models to purely detect synthetic anomalies. Comparing against DAE [16], which
also combines self-supervised and reconstruction-based techniques, DAE fails to
effectively localise the anomalies of ATLAS and DDR (0.05 and 0.01 APp vs.
0.02 and 0.004 APp for a random classifier) while our method sets a new state-
of-the-art performance (0.25 and 0.19 APp).

Discussion. The performance on BraTS-T1 can be largely explained by the
low contrast between anomalies and healthy tissue. This is a limitation of all
residual-based methods [18]. Nevertheless, we are the best-performing method
in that category (0.30 APp vs. joint second-best method DAE’s 0.13). Fig. 3
illustrates that while our models effectively correct sample anatomy, the similar
pixel intensities of anomalies and healthy tissue limit the clarity of anomaly
maps produced by comparing restored images to the originals. Feature-modelling
methods [25,10] perform better in this case, as the difference in feature space
is more pronounced. However these methods do not produce a pseudo-healthy
restoration, hence lack an element of interpretability. Our method’s image-level
performance on ATLAS slightly trails the leading approaches, with a narrow
margin of 0.05 APi / 0.03 AUC from the top method. This discrepancy could
stem from the domain shift between the CamCAN training dataset and ATLAS,
attributed to differences in population samples and scanner types. Consequently,
all ATLAS images might be perceived as anomalous, diluting the distinction in
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Fig. 3: Qualitative examples of anomaly restorations along with their correspond-
ing anomaly maps. For BraTS datasets we take the same samples for each modal-
ity to highlight the difference in anomaly contrast between the modalities. The
ground truth segmentation is illustrated as a green contour on the input image,
except for DDR where we use an ellipse as the anomalies are so small (1-4 pixels)
that the boundary obscures the anomaly.

anomaly scores triggered by actual anomalies. Interestingly, the base VAE and r-
VAE models, despite lagging behind the state-of-the-art in other datasets, show
commendable performance on ATLAS. This suggests that factors other than the
model’s capability may be constraining the effectiveness across all methods.

To compare our final ensemble (Oursens. in Tab. 1) with the performance of
each individual model, the ensemble consistently outperforms the average met-
rics of each fold (Oursavg.). This shows that different models are learning to
correct different aspects of the images, otherwise the performance gain would be
negligible when ensembling the predictions. The maximum performance of any
individual model (Oursmax.) is marginally higher than the ensemble, however
we cannot know which models perform best apriori in a realistic setting. This
further shows that our ensemble Oursens. approximates the maximum potential
performance across various scenarios. Oursstd. shows the standard deviation of
the performance of each model, where the image-level performance is more con-
sistent than the pixel-level, which is expected as the pixel-level task is notably
more challenging.

4 Conclusion

We train image-conditioned diffusion models to correct synthetic anomalies and
demonstrate that these models can produce realistic, pseudo-healthy restora-
tions of images containing real-world, unseen pathologies. By comparing the
restored image with the original we can localise these anomalies with state-of-
the-art performance, outperforming all methods across three datasets covering
various modalities and anomaly types. By training our models to explicitly re-
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store anomalous regions and using image conditioning to avoid loss of informa-
tion, we guarantee the core assumptions of reconstruction-based anomaly detec-
tion to ensure our models maintain healthy regions whilst successfully replacing
anomalies.
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