Under review as a conference paper at ICLR 2025

VARIATIONAL LEARNED PRIORS FOR INTRINSICALLY
MOTIVATED REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Efficient exploration is a fundamental challenge in reinforcement learning, es-
pecially in environments with sparse rewards. Intrinsic motivation can improve
exploration efficiency by rewarding agents for encountering novel states. In this
work, we propose a method called Variation Learned Priors for intrinsic motiva-
tion that estimates state novelty through variational state encoding. Specifically,
we measure state novelty using the Kullback-Leibler divergence between a Varia-
tional Autoencoder’s learned prior and posterior distributions. When tested across
various domains, our approach improves the latent space quality of the Variational
Autoencoder, leading to increased exploration efficiency and better task perfor-
mance for the reinforcement learning agent.

1 INTRODUCTION

Effective exploration remains a key challenge in reinforcement learning, especially in environments
with sparse rewards. Improving the agent’s understanding of its environment in these scenarios can
significantly enhance exploration. One way to improve this understanding is to use intrinsic mo-
tivation (Schmidhuber, [1991}; [Barto et al., 2004; Barto, 2013). In psychology, intrinsic motivation
refers to “doing something because it is inherently interesting or enjoyable” (Ryan & Deci, 2000),
and in reinforcement learning, it has inspired various approaches to shape agent behavior. Leverag-
ing intrinsic motivation has enabled agents to exceed human performance on the widely recognized
Atari-57 benchmark (Badia et al., 2020).

Intrinsic motivation methods often model an agent’s understanding of the environment through an
intrinsic reward function that guides exploration. One approach involves using Variational Auto-
encoders (VAEs) (Higgins et al. 2017; |Ha & Schmidhuber, 2018; |Klissarov et al., [2019), where
states are encoded and a posterior distribution is learned. Klissarov et al.| (2019) proposed using
the KL divergence between a fixed prior (typically a standard Gaussian) and the posterior distri-
bution after observing a new state as an intrinsic reward to estimate state novelty. This measures
state novelty as the distance between the agent’s most recent experiences and the VAE’s encoded
representation of the environment, aiming to enhance exploration in stochastic environments. How-
ever, this approach has an important limitation. As the agent gathers more experiences, the fixed
prior struggles to accurately reflect the agent’s evolving understanding of the environment, leading
to regions in the latent space where the prior assigns high probability while the posterior assigns low
probability. Over time, this misalignment weakens the novelty measure, reducing the effectiveness
of exploration.

We illustrate this limitation in Figure [I} which shows data obtained from an agent in the Walker2d
domain that chose its actions uniformly randomly for 3000 decision stages. The figure compares the
latent representation of a VAE with a fixed standard prior to one using four learned priors trained on
the agent’s trajectory. The percentage below each plot represents latent space coverage, showing how
well the prior aligns with the encoded states (see Appendix [D|for calculation details). The heatmaps
display the prior probability densities, with white points representing the means of the encoded latent
states. White points closer to high-density regions suggest a better alignment between the prior and
the encoded states. In the Standard model, the misalignment between the prior and the encoded
states results in low prior density around frequently visited states, leading to a lower KL divergence,
this weakens the intrinsic reward, which can result in inefficient exploration. In contrast, the learned

Under review as a conference paper at ICLR 2025

priors, better align with the posterior distributions, and provide stronger KL divergence signals for
novel states, encouraging more effective exploration.

Fixed Standard Learned MoG Learned GTM

Learned Flow

Learned Vamp

-5 4 -50 -25 00 25 50 75 -

o 5 o 2 6 2 : 2
98.83% 92.82% 91.90% 94.38%

R 2
14.12%

Figure 1: Two-dimensional representations of a VAE’s latent space. Each VAE has been trained with
a fixed Standard prior and four learned priors in the Walker2d domain. The heatmaps display the
prior probability densities for each VAE, with lighter colors representing regions of higher density.
White points represent the posterior means of encoded states. The Standard prior shows misalign-
ment between the prior contours and posterior means, resulting in “holes” in the latent space. These
are regions of low prior density that do not align well with the latent variables, indicating a less opti-
mal fit to the data compared to learned priors. In contrast, the learned priors (MoG, GTM, Vamp, and
Flow) demonstrate better prior-posterior alignment, as indicated by a higher coverage percentage.
The coverage percentage below each plot quantifies how well the prior distribution aligns with the
encoded states, with higher values suggesting a more effective latent space representation achieved
by the learnable priors. Details of how this is calculated can be found in Appendix

We propose using learnable priors in the KL divergence of a VAE as an intrinsic reward to measure
state novelty. Unlike fixed priors, learned priors provide a more accurate reflection of the agent’s
experiences. This refined understanding of the agent’s experiences allows for a more accurate as-
sessment of state novelty, which in turn drives more efficient exploration and improves sample ef-
ficiency. Specifically, we introduce four new intrinsic reward functions using four types of learned
priors: Mixture of Gaussians, Generative Topographic Mapping, Variational Mixture of Posteriors,
and Flow-based. We evaluate the impact of these priors on the agent’s exploration in the Behavioral
Suite DeepSea and Minigrid environments, demonstrating that learned priors facilitate efficient ex-
ploration by accelerating first-time state visits and state space coverage. Additionally, we assess the
effectiveness of the proposed intrinsic rewards in continuous control MuJoCo and Atari environ-
ments, where our results show that the learned priors not only improve agent performance over fixed
priors but also outperform existing intrinsic motivation approaches in reinforcement learning.

2 BACKGROUND

A Markov decision process is a five-tuple (S, A, P, R,~), where S is a set of states, A is a set
of actions, P : § x A x & — [0, 1] describes the transition dynamics, R : S x A x S — [0, 1]
specifies the (external) reward, and +y is a discount factor. At decision stage ¢, ¢t > 0, the agent
observes state sy, takes action a;. It then transitions to state s;;; and receives reward ;4. A policy
m: S x A— [0,1] specifies how the agent selects actions. The agent’s objective is to maximize the
expected return G = Y= YT R ;.

In intrinsically motivated reinforcement learning, at each decision stage, the agent receives an in-
ternal reward in addition to the external reward. While the intrinsic reward is combined with the
extrinsic reward to update the agent’s behavior, the agent’s true objective remains the same: to
maximize the expected return based on the extrinsic rewards only.

Variational Autoencoders (VAE) are generative, latent-variable models that are a probabilistic
method for encoding data into a latent space. These models approximate the posterior probability
of the latent variables. Using this approximation, one can calculate a lower bound for the marginal
likelihood of a dataset.

For a vanilla VAE, the prior p(z), where z are latent variables, is fixed,; it is typically defined by a
standard Gaussian, A/ (0,1). The encoder compresses the input data x to the variational posterior
¢4(z|x). The decoder, gg(x|z), takes latent values sampled from the variational posterior and maps
them to an output with the same dimensions as the input data. Here, ¢ and 6 are the model parameters

Under review as a conference paper at ICLR 2025

for the encoder and the decoder, respectively. The loss function of a VAE is comprised of two
terms. The first is the reconstruction term, which gauges how well the model has reconstructed the
input. The second is the regularisation term that acts in the latent space. This regularisation term is
calculated using the Kulback-Leibler (KL) divergence of the variational posterior from the encoder
and the prior p(z). Mathematically, this is described as learning the lower bound on the marginal
likelihood of the generative model (Kingma & Welling, [2013)),

logpy(x|z) > L(0, ¢) = Ey, (z)x)logpe(x|z) — D 1(q4(z|x)||p(2)), (1)

where the £(0, ¢) term is known as the variational Evidence Lower Bound Objective (ELBO). The
D, represents the Kullback-Leibler divergence between the prior and the variational posterior. The
Dy, forces the VAE’s posterior distribution ¢(z|x) to be as close as possible to the prior distribution

p(z).

Rezende & Violal (2018) and [Tomczak & Welling| (2018) have shown that using a fixed standard
Gaussian A (0,1) prior can lead to over-regularization of the latent space, making it suboptimal
for learning meaningful representations. This is due to a fixed prior not having the flexibility to
accurately model the aggregate posterior distribution. The concept of the aggregate posterior was
introduced by |Hoffman & Johnson| (2016), where the authors deconstruct the ELBO objective in a
novel way,

’C(¢v 0, >‘) = Equ(x) [Eq¢(Z\X) [mPa(X\Z)H + Equ(x) [HQQb(Z‘X)} +]EZNq(Z) [—lnpA(z)}.)

The first term is the reconstruction error between the input and the reconstructed sample; the second

term is the expectation of the entropy H of the variational posterior; and the last term is the cross

entropy between the aggregate posterior, ¢(z) = & ZnN:1 g4(z|x,,) and the prior py(z). The ag-

gregate posterior is the mean of all encoded samples or a mixture of the variational posteriors of all
N samples (Makhzani et al.). The prior is learnable with parameters A. The third term is minimized
when the prior and the aggregated posterior match. This can be encouraged by parameterizing the
prior and learning these parameters during training. However, this is computationally expensive and
could lead to overfitting.

In reality, for a fixed prior, this leads to “holes” or regions in the latent space where the aggregated
posterior assigns low probability while the prior assigns (relatively) high probability. This results in
inaccurate latent representations that fail to capture important variations in the data, highlighting the
limitations of using a fixed prior for learning robust representations. An alternative to the standard
fixed prior is to have a learned prior, where the aggregate posterior and the prior are fit to each other.
During training, the prior’s parameters are optimized to minimize the KL divergence between the
aggregate posterior (over all states seen by the agent) and itself.

3 RELATED WORK

One common approach to intrinsic motivation in reinforcement learning is to enhance exploration
by rewarding agents for visiting novel or uncertain states. This formulation is particularly effective
in environments with sparse external rewards, where encouraging the agent to seek out unfamiliar
regions of the state space can lead to improved performance. They include prediction error-based
methods (Pathak et al.|[201°7;|Schmidhuber, |1991; Burda et al.,|2019; | Bougie & Ichise, [2020), which
measure surprise by the difference between predicted and observed outcomes. Agents are incen-
tivized to explore unfamiliar or unpredictable states by receiving higher rewards for high prediction
errors. Other approaches, such as information gain (Houthooft et al., 2016), encourage agents to
explore states where they can learn the most, while uncertainty estimates |Achiam & Sastry| (2017)
guide exploration by focusing on states where the agent’s knowledge is incomplete. Count-based
methods (Bellemare et al., 2016} [Lobel et al., 2023) reward agents based on how often states have
been visited, encouraging them to explore novel states. These strategies have proven effective in a
range of applications, from handling continuous state spaces to improving generalization and reduc-
ing training time.

Our work is most directly related to that of Klissarov et al.| (2019), who use the KL divergence
within the VAE loss function as an intrinsic reward to incentivize agent exploration. The authors
demonstrated that the KL intrinsic reward outperformed both the Intrinsic Curiosity Model baseline
(Pathak et al.l)2017) and A2C (Mnih et al.,|2016) method in MiniGrid, MuJoCo’s HalfCheetah, and
Hopper but failed to outperform A2C in the Walker2d environment.

Under review as a conference paper at ICLR 2025

4 PROPOSED INTRINSIC REWARD

We propose an approach to intrinsic motivation that uses the KL divergence of a VAE loss function
between a learned prior and the posterior distribution of the encoded state. The learned priors model
the aggregate posterior directly, leading to a more accurate encoded representation and allowing
the prior to better capture the agent’s history and latent space structure, ultimately improving state
novelty estimation (as shown in Figure[T). In pr1n01ple any probability den51ty estimator can be used
to model the aggregate posterior. However, since the variational posteriors in VAEs are typically
modeled as Gaussians, we use this assumption to guide our choice of learned priors. We selected
three priors that assume a Gaussian mixture model for the aggregate posterior and one that has no
prior assumptions of the aggregate posterior. We describe them below.

Mixture of Gaussians (MoG). Here the parameters of the mixture models are learned directly,
meaning that ug, and o, of each Gaussian component are optimized during training based on the
data, rather than being fixed or predefined. This allows the model to adapt more flexibly to the
structure of the data by learning the most suitable mixture components. Note the aggregate posterior
is a mixture of variational posteriors, each of them Gaussian. The MoG prior is

K
= wN (@, on), 3)

k=1

where K is the number of components, wy, is a learned weighting coefficient, and A is a normal
distribution parameterized by learnable parameters py and oy.

Generative Topographic Mapping (GTM). Here the parameters of the mixture models are learned
by transforming a low-dimensional fixed grid of K points to a higher-dimensional target domain, in
our case, a Gaussian mixture model, through a transformation g., learned during training of the VAE
(Bishop et al.,|1998). The GTM prior is

K
— ZwkN(ng(uk)»U}%(uk)), 4)

k=1

where y,(ug) and o7 (uy) are the outputs of the neural network g,. In this case, uy is the fixed
low-dimensional grid from which the prior is modeled, and K is the number of components in the
low-dimensional grid. Again, wy, is a learned weighting coefficient. In the GTM prior, the number
of Gaussian components is equal to the number of components in the low-dimensional grid.

Variational Mixture of Posteriors (Vamp). This is a more sophisticated Gaussian mixture model
that models the prior using a mixture of posterior models conditioned upon learnable pseudo-inputs
in the input space (Tomczak & Welling, |2018). The Vamp prior is

1 K
= = (), 5)
k=1

where K is the number of pseudo-inputs, uy is a learnable pseudo-input with the same dimension-
ality as the input data. The pseudo-inputs are learned through backpropagation and can be thought
of as hyperparameters of the prior, alongside parameters of the posterior. For K << N, the model
can avoid overfitting the data.

Flow-Based Density Estimator (Flow). This prior does not assume a particular structure for the
aggregate posterior distribution. Instead, it uses a normalizing flow approach, which refers to a
series of invertible transformations that map a simpler, known probability distribution (such as a
Gaussian) to a more complex target distribution of the same dimensionality. The term “flow” here
refers to the flow of data through these transformations. Specifically, we use a Real Non-Volume
Preserving (Real-NVP) transformation (Dinh et al., 2017)), a type of normalizing flow designed for
computational efficiency. This flow-based density estimator models the prior without assuming it
follows a Gaussian mixture model:

pa(z) = fa(z), (6)

where f) is an invertible flow-based neural network with learnable parameters .

Under review as a conference paper at ICLR 2025

Intrinsic rewards. We substitute each of the four learned priors into the following equation to
define four new intrinsic rewards:

Tintrinsic = DKL (q(Z|S) | |p)\ (Z)) . (7)

This results in our novel intrinsic method that we call Variational Learned Priors (VaLP). We name
each intrinsic reward with a learned prior: VaLPyog, VaLPgrm, VaLProw, and VaLPyym,. The
code for the learned priors is based on the jmt omczak /int ro_dgm GitHub repository (Tomczak,
2024). The complete algorithm can be seen in Appendix

5 EXPERIMENTAL METHODOLOGY

We evaluate the proposed approach empirically in a variety of environments. In the following sec-
tions, we explain the test environments, baseline methods, and evaluation metrics we use.

5.1 ENVIRONMENTS

To build intuition, we first evaluate the learned priors using supervised learning tasks on the MNIST
and FashionMNIST datasets. To train the VAE on these datasets, the images are pre-processed to be
normalized between 0 and 1.

To evaluate the VaLP methods we start with DeepSea from DeepMind’s Behaviour Suite (Osband
et al.| [2020). DeepSea is an N x N grid where the agent navigates from the top-left to the goal in
the bottom-right, deciding at each step to move diagonally left or right. The agent’s exploration in
this domain is limited to the lower diagonal of the grid. The episode ends after N steps. Rewards
are 0 for moving left, —0.01/N for moving right, and 1 for reaching the goal. The only way to reach
the goal is to move right at each step. The state is a one-hot vector input to the VAE.

Next, we use two Minigrid environments (Chevalier-Boisvert et al [2023)) to test how useful our
intrinsic rewards are. The first environment features rooms connected by doors, with the goal in
the final room. The second environment is a custom double spiral designed to test exploration and
detachment. No extrinsic rewards are given. In both, the state is a partially observable RGB image
input to the VAE.

Lastly, we evaluate our approach in MuJoCo (Brockman et al., |2016) and Atari (Bellemare et al.,
2013)) environments. These are common exploration benchmarks with continuous and discrete ac-
tion spaces, respectively. In MuJoCo, the state consists of raw observations provided by the envi-
ronment, which are directly input to the VAE. In Atari, the state is a preprocessed RGB image that
is similarly input to the VAE (see Appendix for pre-processing details.)

5.2 BASELINES

We compare our proposed intrinsic rewards to: ICM (Pathak et al.l [2017), VAE Standard Prior
(Klissarov et al., 2019), RND (Burda et al.,[2019), LBS (Mazzaglia et al., 2022), and DRND (Yang
et al.l 2024). Detailed descriptions of each intrinsic reward can be found in Appendix [C|

For the baseline non-intrinsic methods, we use Q-learning (Watkins & Dayan,[1992)) in the DeepSea
environments, PPO (Schulman et al., 2017) in the Minigrid environments, TD3 (Fujimoto et al.,
2018)) in the MuJoCo environments, and DQN (Mnih et al., 2015) in the Atari environments. Net-
work architectures any hyperparameters can be found in Appendix [K]and [[]

5.3 EVALUATION METRICS

Latent Space Quality. We use this metric exclusively for supervised learning tasks. The latent
space quality measures the ability of the priors to effectively represent generative features from
the input data. To evaluate this, we train Support Vector Machine (SVM) and K-nearest neighbors
(KNN) classifiers on the latent representations learned by the VAE from the training sets of the
MNIST and FashionMNIST datasets. The higher the classification accuracy on the test set, the
better the representation quality of the VAE’s latent space.

First visit to state. This metric records when the agent first visits a given state. In DeepSea, we
recorded the episode in which the state was first visited, assigning a value of 1000 if never visited.

Under review as a conference paper at ICLR 2025

In MiniGrid, we recorded the decision stage of the first visit. The plots show mean values across
different seed replications.

Coverage. This is the proportion of states visited by the agent in a fixed number of decision stages.

Detachment. This is measured by analyzing the first-time visits to states in a custom Minigrid
Double Spiral environment. The plots show whether the agent revisited high-potential rewards after
the initial exploration or left them unexplored.

Extrinsic Reward. We evaluate the agent’s performance by measuring extrinsic rewards over time;
plotting the mean return across seeds during training. For the Atari benchmark, we record the
extrinsic reward after the agent interacts with an environment for 100,000 frames. These evaluations
highlight the agent’s ability to maximize rewards, especially in sparse-reward environments.

6 RESULTS

We present our results in three sections. First, we analyze the latent space quality of VAEs trained
on fixed and learnable priors. Next, we examine the agent’s exploration behavior in DeepSea with
extrinsic rewards, followed by its behavior in MiniGrid with only intrinsic rewards. Finally, we
evaluate agent performance in the larger MuJoCo and Atari environments. We also evaluate the
exploratory behavior of our methods in a stochastic (noisy) environment using the MNIST dataset.
The results of this experiment provide further insight into the agent’s performance under stochastic
transition dynamics and can be found in Appendix

6.1 LATENT SPACE QUALITY

Figure 2] shows the two-dimensional latent representations of each prior distribution (contours) and
the encoded aggregate posterior distributions (red dots) of both MNIST (top row) and FashionM-
NIST (bottom row) test data. In both data sets, the Standard prior exhibits a much more dispersed
aggregate posterior compared to the learned priors, with the prior contours covering only a small
fraction of the posterior distribution. The “holes” between the prior and posterior are visible here.
For both MoG and Vamp, the alignment between the prior and aggregate posterior is more complete
compared to the Standard prior, with fewer gaps, but some “holes” are still present, indicating lim-
ited flexibility. The GTM and Flow priors, although more dispersed than MoG and Vamp, cover
a greater portion of the posterior compared to the Standard prior, suggesting that they model the
distribution more accurately and capture the structure of the latent space more effectively.

MNIST Standard ’s MoG w Vamp GTM Flow

FashionMNIST

Standard

i

Figure 2: Comparison of the two-dimensional latent representations of the prior distribution (con-
tours) and the aggregate posterior distributions (red dots) on the MNIST (top row) and FashionM-
NIST (bottom row) test data.

The quality of the latent representation is reflected in the classification performance on the encoded
samples, as shown in Figure 3] The Standard prior consistently performs the worst for both SVM
and KNN, highlighting its limitations. In contrast, the learned priors (Flow, Vamp, GTM, MoG)
significantly improve performance in both MNIST and FashionMNIST. These findings underscore
the importance of selecting effective priors to enhance downstream tasks such as classification.

Under review as a conference paper at ICLR 2025

FashionMNIST

Vamp ’:‘ ”I ----- Standard SVM
! [R Standard KNN
1 1
GTM ! ! S SVM
') ' H KNN
MoG : '
H b
Flow b 1
Standard é‘ : i |
i o
11 11
0.0 02 0.4 06 0.0 02 04 0.6

Accuracy

Figure 3: Classification accuracy (Mean + STD) for each prior is evaluated using both SVM (blue
bars) and KNN (orange bars) classifiers on the MNIST and FashionMNIST datasets. Results are
averaged over 10 bootstrapped buckets of the dataset. Detailed results can be found in Appendix [F}

6.2 EXPLORATION WITH EXTRINSIC REWARDS

We first evaluate the exploration behavior of intrinsic reward methods using fixed and learned priors
in the 24 x 24 DeepSea environment. Figure [shows the first visit to each state averaged over
three random seeds. Additional comparisons to other intrinsic methods can be found in Appendix
H] Figure 5] shows the state-space coverage achieved by different intrinsic reward methods in both
24 x 24 and 48 x 48 DeepSea environments.

No Intrinsic
VaLPgow Standard Reward 1000

1000 Episodes

Figure 4: Heatmaps of first visit to states in 24 x 24 DeepSea. The coloring is linearly scaled, red indicates
earlier first-time visitation and blue indicates later. The upper right section in grey is unreachable by the agent.
The agent with no intrinsic reward shows very limited exploration, with early visits concentrated in a small
region, far from the ideal uniform exploration across the grid. The intrinsic reward using a Standard prior
shows some improvement in exploration but still does not cover the grid effectively. In contrast, the flexible
priors, VaLPriow, VaLPwmog, and VaLPgrw, efficiently explore the environment and reach the goal in the
lower right-hand corner. While VaLPvamp also improves exploration, it, along with the Standard prior, fails to
reach the goal.

24 x 24 DeepSea 48 x 48 DeepSea

r/""")m —— ValProw
F /‘-‘_-__.—‘—) : v LPMOG
i —=— ValPgtm

r 60 Va I—PVamp
40

"
o
o

@
S

3
S

—— Standard

No Intrinsic
Reward

IS
S

20

State space coverage (%)

N
5
of =

10 40 50 o 10 40 50

20 30 20 30
Episodes x 100 Episodes x 100
Figure 5: State-space coverage percentage in 24 X 24 and 48 x 48 DeepSea, recorded every 100 episodes,
over 5000 episodes, averaged over three seeds. Shaded regions are the standard error of the mean. VaLPriow,
VaL.Puoc achieve nearly full coverage in both grids within 10 episodes. VaLLPgrm achieves full coverage in
10 episodes in the smaller grid but converges more gradually in the larger. VaLPvamp shows slower conver-
gence, particularly in the larger grid. The Standard prior and the agent with no intrinsic reward exhibit minimal
exploration, highlighting the advantages of using a learned prior for efficient state-space coverage.

Under review as a conference paper at ICLR 2025

6.3 EXPLORATION WITHOUT EXTRINSIC REWARDS

We next analyze the performance of each method in the absence of extrinsic rewards. Figure[6]shows
state visitation heatmaps in the Minigrid MultiRoomNG6 environment after 500,000 decision stages.

ValPriow ValLPgmm ValPyamp ValPuog Standard 500000

m 400000
. 00000
200000
100000

DRND 500000

400000
300000
200000
100000
0

Figure 6: State visitation heatmaps for Minigrid’s MultiRoomN6 environment after 500,000 decision stages
using only intrinsic rewards, averaged over three seeds. The color bar indicates the number of steps taken
before each state was visited for the first time, with blue representing earlier visits and red indicating later
visits. VaLPriow shows the most effective exploration, covering a wide range of states and reaching the fourth
room, while the Standard prior demonstrates limited exploration. LBS, ICM, and DRND display moderate
coverage, and RND achieves better coverage than the Standard prior but trails behind the learned priors such as
VaLPriow. Coverage Percentage (%) details can be found in Appendix [G]

6.3.1 THE DETACHMENT PROBLEM

Detachment occurs in exploration when agents fail to revisit promising areas they have previously
discovered (Ecoffet et al.| [2019). This typically happens when agents are more motivated by novel,
unexplored regions and neglect earlier areas that still have the potential for long-term rewards,
stalling exploration. Figure[7]visualizes how well the different VaLP methods and the fixed Standard
prior address this issue. In the double spiral environment, the agent starts in the center (blue cell)
and tries to explore both spirals equally. The state space is the agent’s position in the grid, and the
agent’s actions allow movement through each of the spirals. Detachment is measured by observing
how much of the environment remains unexplored, particularly in areas deeper in the spirals, which
might hold potential for future rewards. Agents exhibiting detachment will show uneven coverage,
neglecting deeper regions in the spiral. In contrast, non-detachment is characterized by balanced
exploration across the environment, where both spirals are more evenly visited.

VaLPriow ValPuog ValLPgrm ValPyamp Standard
150000
I __________| I T = & 125000
100000
GRlERlEEEE =R
| - S— — 50000
25000

Figure 7: First-time visit heatmaps for each of the VaLP methods and the fixed Standard prior in a custom
Minigrid Double Spiral environment after 400,000 decision stages, averaged over three seeds. The heatmaps
illustrate how agents explore the environment, with red colors indicating earlier first-time visits and grey areas
representing unvisited regions. VaLPriow demonstrates strong exploration across both spirals, avoiding de-
tachment. VaLPgTwm and VaLPvamp show slightly uneven coverage, indicating mild detachment. In contrast,
VaLPwoc and the fixed Standard prior exhibit even exploration but cover substantially less of the environment,
neglecting challenging regions deeper in the spirals. Coverage balance details of each method can be found in
Appendix [G]

Under review as a conference paper at ICLR 2025

6.4 AGENT PERFORMANCE

Figure [§] presents the learning curves for the HalfCheetah, Walker2d, Hopper, and Ant MuJoCo
environments. The agents are trained using both intrinsic and extrinsic rewards; the plotted results
reflect only extrinsic rewards.

HalfCheetah-v4 Walker2d-v4 Hopper-v4 Ant-v4

5000
3500

T 8000

—— VaLPron
ValPwoc

——— ValLPgm

—— ValPyamp

E 3000 —— Standard

b 2000 { -o- s

= / RND

s 10001 { DRND

s o 0 0 Ic™
0.0 0.2 0.4 0.6 0.8 10 0.2 0.4 0.6 0.8 10 0.2 0.4 0.6 0.8 10 0.2 0.4 0.6 0.8 10
s

Timestep e Timestep B Timestep e Timestep w |=-=- LBS

c©
% 7000
& 6000
L 5000
%)

C 4000

3000 4000

3000 2500

2000 3000
2000 1500
2000

1000
1000

5001 4 1000

Figure 8: Learning curves for HalfCheetah, Walker2d, Hopper, and Ant-v4 environments, showing
mean extrinsic rewards over time. Each curve is averaged across five seeds, with shaded areas
representing the standard error of the mean. The results have been smoothed using a moving average
with a window size of 10. The VaLP methods, particularly VaLPgjow and VaLPvamp, demonstrate
significant and reliable improvements over the Standard prior and baseline methods. In HalfCheetah,
VaLPvamp achieves a final mean reward of around 7500, outperforming the Standard method by
approximately 1000 points. In Walker2d, VaLPpj,, consistently outperforms the Standard prior
by about 500 points. In Hopper, VaLPpjoy shows dominant performance throughout training, with
VaLPyroq and VaL Py, also outperforming the Standard prior. Finally, in Ant-v4, VaLPpioyw
exhibits the strongest performance, with a final mean reward approximately 1000 points higher than
the Standard prior method and baseline methods such as RND and DRND. Detailed results with
Mean + STD can be found in Appendix [[]

6.4.1 ATARI 100K BENCHMARK

We test the Atari 100k benchmark on five environments: Enduro, Breakout, Gravitar, Private Eye,
and Pitfall. These environments, known for their complexity and sparse rewards, are ideal for eval-
uating exploration strategies and early learning capabilities. This benchmark measures how quickly
agents can explore and exploit environments with limited interaction. Detailed results with Mean +
STD can be found in Appendix I}

7 DISCUSSION AND FUTURE WORK

MNIST and FashionMNIST results show that learned priors, particularly Flow and GTM, better
capture the data structure compared to the Standard prior. These priors create latent spaces with no
significant “holes,” leading to more organized and compact representations. This improved align-
ment enhances downstream classification performance, showing higher accuracy scores for both
KNN and SVM classifiers when tested on the two-dimensional latent representation of MNIST and
FashionMNIST test datasets.

VaLP methods significantly outperform agents without intrinsic rewards across all tested environ-
ments. In DeepSea, extrinsic-only agents struggle with exploration, leading to poor state-space
coverage, whereas VaLP methods such as VaL.Pr)o and VaL.Py,q achieve near-complete cover-
age quickly. In more complex tasks like MuJoCo and Atari, extrinsic-only agents learn more slowly
and explore less effectively. By contrast, VaLP methods accelerate exploration, enabling agents to
reach higher rewards faster and achieve superior performance both in the short and long term.

VaLP methods also provide notable improvements over traditional intrinsic reward approaches such
as RND, DRND, ICM, and LBS. In the Minigrid MultiRoomN6 environment, VaL P, covers
more states and navigates deeper into the environment, whereas traditional methods such as ICM
and RND exhibit less effective exploration. This trend extends to MuJoCo environments, where
VaLP methods outperform traditional intrinsic motivation approaches by guiding agents to explore
more efficiently and optimize policies faster. In Atari, particularly in sparse-reward games such as

Under review as a conference paper at ICLR 2025

Enduro Breakout Gravitar PrivateEye Pitfall
VaLPgiow 45.16 188 0.18 0.18
VaLPyamp 54.00 2.12 0.18 0.28
ValPgmu -0.48]
VaLPyog -1.62[
Standard 0.10 -4.96
LBS 0.16 -8.94
ICM -5.6¢
DRND 0.14 -6.32
RND 0.04 -2.46
DQN -3.12 [

Mean Extrinsic Reward

Figure 9: Horizontal bar chart showing mean rewards obtained after 100,000 decision stages for
different agents and reward mechanisms across five Atari environments, displayed by increasing
difficulty. Each reward mechanism is averaged across five seeds. The comparison includes VaLP
methods, the Standard fixed prior, and traditional intrinsic motivation (IM) methods such as RND,
ICM, DRND, LBS, and DQN. The Standard prior consistently underperforms compared to other IM
methods. In Enduro, it only outperforms LBS, while all other IM methods surpass it. Standard ranks
the lowest in Breakout, performs moderately in Gravitar and Private Eye, and performs worst in
Pitfall. However, when a suitable learned prior is employed the performance dramatically improves.
In Enduro, VaLPvamp achieves the highest rewards, followed by VaLPgow and VaLPgTy. In
Breakout, VaLPv,,, again leads, while in the challenging Gravitar environment, VaLPgjoy, and
VaLPvamp outperform all non-VaLP approaches. In sparse-reward environments such as Private
Eye and Pitfall, VaLP methods excel, with VaL.Ppj,, emerging as the top performer in Pitfall.
Detailed results with Mean + STD can be found in Appendix [

Pitfall and Private Eye, VaL Py, excels in state-space coverage, outperforming traditional intrinsic
motivation approaches.

The limitations of a VAE with a Standard Gaussian prior become evident across multiple tasks. In
DeepSea, agents using the Standard prior fail to achieve the same level of state-space coverage as the
learned priors, showing slower convergence. Similarly, in the Minigrid environments, the Standard
prior leads to less efficient exploration, with agents failing to revisit promising regions of the state
space. In MuJoCo tasks, the fixed Standard prior results in lower policy optimization, especially
compared to flow-based priors. In Atari, agents using the Standard prior underperform, particularly
in games requiring extensive exploration such as Pitfall and Private Eye. Across all environments,
learned priors, particularly VaLPgyo, and VaLPy.q, consistently outshine the Standard prior in
both exploration efficiency and reward acquisition.

Among the four learned priors, VaL Py, emerges as the strongest performer across environments.
Its ability to model complex, non-linear dynamics, thanks to using a normalizing flow approach,
allows it to flexibly transform a simple initial distribution into a more complex one that better fits
the target data. This adaptability enables VaL.Ppjy, to excel across diverse tasks, leading to superior
exploration and policy optimization in environments like MuJoCo and Atari. VaLPvp,p, also shows
strong performance, particularly in games like Breakout and Private Eye, where it outperforms other
priors and traditional intrinsic motivation methods. VaLPgry and VaLPy.q perform well but
exhibit minor signs of detachment or reduced exploration in more challenging tasks.

The consistent improvement across benchmarks shows that flow-based priors enhance both repre-
sentation learning and exploration. The flow-based prior achieves better alignment between the
prior and the aggregate posterior, resulting in a more informative KL divergence. This provides a
more accurate measure of state novelty, which enhances exploration and leads to improved overall
performance in reinforcement learning tasks. These results highlight the value of learnable priors
for enhancing latent space modeling and exploration, positioning flow-based priors as a superior
alternative to fixed priors.

There are several exciting directions for future research. Investigating how these priors can be
adapted or transferred across different tasks could lead to more efficient learning strategies in re-
inforcement learning. Additionally, exploring how agents can autonomously learn to identify the
most effective learnable prior for each task would be valuable. Identifying priors like VaLPvamyp
and VaLPpiow, Which consistently perform well, could accelerate adaptation to new challenges and
improve generalization, advancing the development of more robust reinforcement learning agents.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Joshua Achiam and Shankar Sastry. Surprise-based intrinsic motivation for deep reinforcement
learning. arXiv preprint arXiv:1703.01732, 2017.

Adria Puigdomenech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvitskyi,
Zhaohan Daniel Guo, and Charles Blundell. Agent57: Outperforming the atari human benchmark.
In International conference on machine learning, pp. 507-517. PMLR, 2020.

Andrew G Barto. Intrinsic motivation and reinforcement learning. Intrinsically motivated learning
in natural and artificial systems, pp. 17-47, 2013.

Andrew G Barto, Satinder Singh, Nuttapong Chentanez, et al. Intrinsically motivated learning of
hierarchical collections of skills. In Proceedings of the 3rd International Conference on Develop-
ment and Learning, volume 112, pp. 19. Piscataway, NJ, 2004.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. Advances in neural information pro-
cessing systems, 29, 2016.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-

ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253-279, 2013.

Christopher M Bishop, Markus Svensén, and Christopher KI Williams. Gtm: The generative topo-
graphic mapping. Neural computation, 10(1):215-234, 1998.

Nicolas Bougie and Ryutaro Ichise. Skill-based curiosity for intrinsically motivated reinforcement
learning. Machine Learning, 109:493-512, 2020.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. In Seventh International Conference on Learning Representations, pp. 1-17, 2019.

Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo de Lazcano, Lucas Willems,
Salem Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld:
Modular & customizable reinforcement learning environments for goal-oriented tasks. CoRR,
abs/2306.13831, 2023.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real NVP. In
International Conference on Learning Representations, 2017. URL https://openreview.
net/forum?id=HkpbnH91x.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. Go-explore: a
new approach for hard-exploration problems. arXiv preprint arXiv:1901.10995, 2019.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587-1596. PMLR, 2018.

David Ha and Jiirgen Schmidhuber. Recurrent world models facilitate policy evolution. In
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc.,
2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/
file/2deb5d16682c3c35007e4e92982f1a2ba-Paper.pdfl

Irina Higgins, Arka Pal, Andrei Rusu, Loic Matthey, Christopher Burgess, Alexander Pritzel,
Matthew Botvinick, Charles Blundell, and Alexander Lerchner. DARLA: Improving zero-
shot transfer in reinforcement learning. In Doina Precup and Yee Whye Teh (eds.), Proceed-
ings of the 34th International Conference on Machine Learning, volume 70 of Proceedings
of Machine Learning Research, pp. 1480-1490. PMLR, 06-11 Aug 2017. URL https:
//proceedings.mlr.press/v70/higginsl7a.html.

11

https://openreview.net/forum?id=HkpbnH9lx
https://openreview.net/forum?id=HkpbnH9lx
https://proceedings.neurips.cc/paper_files/paper/2018/file/2de5d16682c3c35007e4e92982f1a2ba-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/2de5d16682c3c35007e4e92982f1a2ba-Paper.pdf
https://proceedings.mlr.press/v70/higgins17a.html
https://proceedings.mlr.press/v70/higgins17a.html

Under review as a conference paper at ICLR 2025

Matthew D Hoffman and Matthew J Johnson. Elbo surgery: yet another way to carve up the varia-
tional evidence lower bound. In Workshop in Advances in Approximate Bayesian Inference, NIPS,
volume 1, 2016.

Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel. Vime:
Variational information maximizing exploration. Advances in neural information processing sys-
tems, 29, 2016.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Martin Klissarov, Riashat Islam, Khimya Khetarpal, and Doina Precup. Variational state encoding as
intrinsic motivation in reinforcement learning. In Task-Agnostic Reinforcement Learning Work-
shop at Proceedings of the International Conference on Learning Representations, volume 15,
pp- 16-32, 2019.

Sam Lobel, Akhil Bagaria, and George Konidaris. Flipping coins to estimate pseudocounts for
exploration in reinforcement learning. In International Conference on Machine Learning, pp.
22594-22613. PMLR, 2023.

Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, and Ian Goodfellow. Adversarial autoencoders.

Pietro Mazzaglia, Ozan Catal, Tim Verbelen, and Bart Dhoedt. Curiosity-driven exploration via
latent bayesian surprise. In Proceedings of the AAAI conference on artificial intelligence, vol-
ume 36, pp. 7752-7760, 2022.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529-533, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928—-1937. PMLR, 2016.

Tan Osband, Yotam Doron, Matteo Hessel, John Aslanides, Eren Sezener, Andre Saraiva, Katrina
McKinney, Tor Lattimore, Csaba Szepesvdri, Satinder Singh, Benjamin Van Roy, Richard Sutton,
David Silver, and Hado van Hasselt. Behaviour suite for reinforcement learning. In International
Conference on Learning Representations, 2020. URL https://openreview.net/forum?
id=rygf-kSYwH.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International conference on machine learning, pp. 2778-2787.
PMLR, 2017.

Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-supervised exploration via disagreement.
In International conference on machine learning, pp. 5062-5071. PMLR, 2019.

Danilo Jimenez Rezende and Fabio Viola. Taming vaes. arXiv preprint arXiv:1810.00597, 2018.

Richard M Ryan and Edward L Deci. Intrinsic and extrinsic motivations: Classic definitions and
new directions. Contemporary educational psychology, 25(1):54—67, 2000.

Jiirgen Schmidhuber. A possibility for implementing curiosity and boredom in model-building neu-
ral controllers. In Proc. of the international conference on simulation of adaptive behavior: From
animals to animats, pp. 222-227, 1991.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/abs/
1707.06347.

Jakub Tomczak and Max Welling. Vae with a vampprior. In International Conference on Artificial
Intelligence and Statistics, pp. 1214-1223. PMLR, 2018.

Jakub M Tomczak. Deep Generative Modeling. Springer Cham, 2024.

12

https://openreview.net/forum?id=rygf-kSYwH
https://openreview.net/forum?id=rygf-kSYwH
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347

Under review as a conference paper at ICLR 2025

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8:279-292, 1992.

Kai Yang, Jian Tao, Jiafei Lyu, and Xiu Li. Exploration and anti-exploration with distributional
random network distillation. In Forty-first International Conference on Machine Learning, 2024.

13

Under review as a conference paper at ICLR 2025

APPENDIX

A PSEUDOCODE

Algorithm 1 Intrinsic Motivation with Different Learned Priors
Require: VAE encoder ¢4, VAE decoder p,;, policy mg
I: Lett =0
Collect D = {5} using random exploration policy
Pre-train VAE on D
Fit prior p(2) to latent encodings {114 (s(")}
forn =0,..., N — 1 steps do
Take action a,, get next state s, and extrinsic reward r, "
Compute intrinsic reward:
Titr,) = K L(qp(2]st41)Ip(2))
9: Store (s, at, St+1, Te(yin) ri(5t+1)> into replay buffer B
10: if mod(t,N) == 0 then
11: Train the Agent on return Q(s¢, ar) = Y, re(s¢) +YQ(5¢, ar) + Bri(se)
12: Train the VAE on random collected states from B
13: end if
14: end for
15: return solution

t+1)

B ENVIRONMENT DETAILS

B.1 DEEPSEA

=

Figure 10: Example of Deep-sea exploration

B.2 ATARI ENVIRONMENT WRAPPERS

We applied a series of commonly used preprocessing wrappers to the Atari environment to ensure
consistent and efficient learning conditions. These wrappers serve to standardize input states and
rewards, optimize memory usage, and handle specific dynamics of Atari games. Below are the key
preprocessing steps:

NoopResetEnv

. MaxAndSkipEnv
. EpisodicLifeEnv
. FireResetEnv

. WarpFrame

. PyTorchFrame

. ClipRewardEnv
. FrameStack

14

Under review as a conference paper at ICLR 2025

C BASELINE DETAILS

1. Standard Prior Klissarov et al.[(2019)

Uses the standard Gaussian fixed prior within a VAE’s KL-divergence to incentivize the
agent to explore novel states.

T’intrinsit)(s) = KL((p(Z‘S)Hp(Z)) (8)

2. RND|Burda et al.[(2019)

Uses the prediction error of a random network as an exploration bonus aiming to reward
novel states more than previously encountered ones.

Fintrinsic(S) = | (s) — £(5)]|2 ©9)

where f : S — R is a randomly initialised fixed mapping and f is trained to fit the output
of f

3. ICM |Pathak et al.| (2017)

By measuring prediction error in the latent space of an inverse dynamics model, the au-
thors aim to measure the reducible prediction error because the latent space of the inverse
dynamics model should only include information about what the agent can control.

Tintm’nsic(s) = gHQ?)(sH*l) - ¢(st+1)”§ (10)

where ¢(s;11) is the feature encoding of the next state s;11, and gZ;(sH_l) is the output of
the forward model that takes a + ¢(s) as input.

4. LBS Mazzaglia et al.|(2022)

Latent Bayesian Surprise leverages Bayesian inference in the latent space to quantify the
surprise of the agent when predicting the next state. The intrinsic reward is computed as
the KL divergence between the prior distribution, which represents the agent’s belief about
the latent space, and the posterior distribution after observing the actual state.

Tintrinsic(S) = Dxv [q0(Zi41 | St, ar, St+1)||po(Ze+1 | Sesa)] (11)

where p(z+1]st, at) is the prior distribution over the latent variable z;;1 given the current
state s; and action a¢, and ¢(z¢1|s¢+1) is the posterior distribution after observing the next
state s;41.

5. DRND |Yang et al.| (2024

Distributional Random Network Distillation (DRND) extends the Random Network Distil-
lation (RND) approach by using a distributional perspective to quantify prediction errors.
Instead of using a single value to represent prediction error, DRND captures the distribution
of prediction errors, providing a richer and more informative signal for exploration. This
helps the agent focus on states where there is significant uncertainty or novelty.

Tintrinsic(s) = MSE (E[f(s)] - frandom(s)) (12)
where E[f(s)] is the expected prediction from the learned model, and fiandom(s) is the

prediction from the randomly initialized network. The Mean Squared Error (MSE) is com-
puted between these two distributions.

15

Under review as a conference paper at ICLR 2025

D EVALUATION METRIC DETAILS

Latent Space Coverage Percentage The coverage percentage shown below each plot is calculated
by first estimating the prior density at each encoded state’s mean (posterior mean) using a Gaussian
KDE. Then, the proportion of posterior means that fall within the top 95% of the prior density distri-
bution is computed. This coverage percentage indicates how well the prior distribution aligns with
the latent space structure, with higher values suggesting a more effective latent space representation
achieved by the learnable priors.

E STOCHASTIC ENVIRONMENT: NOISY MNIST

We follow a similar approach to Pathak et al.|(2019) and Mazzaglia et al.| (2022)) by using the MNIST
dataset to conduct an experiment involving stochastic transitions. Using examples from the MNIST
test set, we implement a hypothetical environment where transitions always begin from either a
(randomly chosen) 0O-image or a 1-image. A 0-image always transitions into a 1-image, while a
1-image transitions into an image between 2 and 9 (see Figure [IT).

ORg |
n-BHEE
BHEE

Figure 11: MNIST Noisy transition dynamics as seen in Mazzaglia et al.| (2022)

o BS)

The results from our experiments on the MNIST dataset can be seen in Figure[T2] The plots represent
the ratio of intrinsic rewards, specifically comparing the rewards obtained from transitions starting
with 0 images to those starting with 1-images. The stochastic transitions provide insight into the
exploratory behavior of the different intrinsic motivation methods.

1.025

22 MMWM\A A P AN e s i A it N —— VaLPriow
ValLPyos
1.020
20 VaLPsmm
o —— VaLPvamp
" 18 1015 —— sStandard
g
= — RND
Q.. DRND
f‘ 8 1.010 IcM
o
o LBS
£ 14
(1)) 1.005
12
1.000
1.0
) 2000 4000 6000 8000 10000 o 2000 4000 6000 8000 10000
Examples Seen Examples Seen

Figure 12: MNIST Noisy baseline comparisons. Left plot: a comparison of all methods, showing
the smoothed ratio over the number of examples seen, including VaLP methods, Standard prior,
RND, DRND, ICM, and LBS. Right plot: zooms in on the lower part of the left plot to offer a
clearer view of the comparative performance of VaL.P)oy, DRND, ICM, and LBS over time.

In the left subplot, we see all of the VaLP methods compared to the other intrinsic method base-
lines; Standard prior, RND, DRND, ICM and LBS. Notably, VaL.P}., maintains a near-constant

16

Under review as a conference paper at ICLR 2025

ratio around 1.0, suggesting stable, conservative behavior with minimal exploratory spikes. In con-
trast, RND exhibits a significantly higher ratio, indicating a more aggressive exploration strategy
driven by its tendency to overvalue unpredictable transitions. The Standard prior exhibits moder-
ate performance but fails to match the adaptability of the VaLP methods, which dynamically adjust
their exploration strategy based on the observed transitions. This suggests that the learned priors in
the VaLP models allow for better handling of stochastic transitions, leading to more efficient and
controlled exploration with fewer unnecessary fluctuations.

The right plot zooms in to compare VaLPpjow, ICM, DRND, and LBS; highlighting more sub-
tle differences between the reward models. Here, ICM adapts well to the stochastic environment,
showing moderate exploration without overcommitting to high intrinsic rewards. VaLPgiq, re-
mains the most conservative, reaffirming its tendency to focus on stable transitions. DRND and
LBS both show slightly higher ratios than VaLPpj.y, suggesting slightly more exploration but still
within controlled bounds. These findings indicate that models like VaLPpoy, are better suited for
environments requiring controlled exploration.

F DETAILED MNIST RESULTS

Prior MNIST Fashion MNIST

SVM KNN SVM KNN
Standard | 0.5406 (+0.0055) | 0.5065 (+0.0049) | 0.5725 (+0.0057) | 0.5423 (+0.0054)
Flow 0.7148 (£0.0073) | 0.6969 (£0.0043) | 0.6768 (£0.0068) | 0.6587 (+0.0066)
MoG 0.7342 (£0.0071) | 0.7227 (£0.0054) | 0.6816 (+0.0068) | 0.6703 (+0.0067)
GTM 0.6789 (+0.0058) | 0.7125 (£0.0075) | 0.6820 (+0.0068) | 0.6732 (+0.0067)
Vamp 0.7165 (+0.0064) | 0.7083 (+0.0076) | 0.6840 (+0.0068) | 0.6741 (+0.0067)

Table 1: Classification accuracy (Mean *+ STD) for different priors evaluated using SVM and KNN
classifiers on the MNIST and FashionMNIST datasets. Results are averaged over 10 bootstrapped
samples for each prior. The Flow, MoG, GTM, and Vamp priors show consistently higher classifi-
cation accuracy compared to the Standard prior, demonstrating the advantages of learned priors in
capturing class-defining features.

G ADDITIONAL MINIGRID RESULTS

While running MiniGrid experiments for longer to allow agents to fully explore the environment
would be valuable, our methods are primarily focused on evaluating early exploration efficiency. To
strengthen the current evidence, we have included two additional metrics: Coverage (%) and the
Coverage Balance Index (CBI), which provide a more detailed assessment of exploration perfor-
mance within the constrained interaction budgets used in our study.

The coverage percentage was calculated as follows:

Number of visited states < 100
Total number of available states

Coverage = (
This metric evaluates how effectively each algorithm explores the environment, with higher values
indicating more comprehensive state visitation.

The Coverage Balance Index (CBI) was calculated as follows:

CBI left visits right visits

total visits total visits

Where: left visits is the total first-time visits in the left region, right visits is the total first-time visits
in the right region, and total visits = left visits + right visits. A CBI of 0 has perfectly balanced
exploration. A CBI of 1 has completely imbalanced (all visits in one region). Lower CBI values
indicate better evenness of exploration, avoiding detachment between regions. This quantifies the
evenness of exploration across two regions of the environment (e.g., left and right spirals). Results
for both Coverage Percentage and CBI can be found in Tables 2 + 3 (https://bit.ly/4fAbViG.)

17

Under review as a conference paper at ICLR 2025

Algorithm | Coverage (%)

Flow 62.07 (x0.0012)
GTM 52.87 (£0.0034)
VaMP 52.87 (+0.0036)
MoG 50.57 (£0.0029)
Standard 45.98 (+0.0021)
RND 55.17 (£0.0032)
ICM 44.83 (+0.0025)
DRND 45.98 (+0.0028)
LBS 35.63 (+0.0039)

Table 2: Coverage percentage (%) for Figure 6 (Minigrid’s MultiRoomN6) with adjusted standard
error of the mean. These have been run and averaged over 3 seeds.

Method | Coverage Balance Index (CBI)
VaLPgow 0.3096 (£0.0031)
VaLPyog 0.8290 (£0.0034)
VaLPgtm 0.2756 (£0.0026)
VaLPvamp 0.2368 (£0.0023)
Stadndard 0.5928 (£0.0021)

Table 3: Coverage Balance Index for Figure 7 (Double Spiral) with adjusted standard error of the
mean. Lower values indicate more balanced exploration across the environment. VaLPy,n, achieves
the best balance (CBI = 0.2368), outperforming the Standard prior (CBI = 0.5928) by maintaining
more even coverage between the two spirals.

H ADDITIONAL DEEPSEA RESULTS

24 X 24 DeepSea 48 X 48 DeepSea

"
o
S

—=— ValPgow
VaLPuoc
ValPgrm
—=— ValLPvamp
—— Standard
No Intrinsic Reward
RND
DRND
ICM
LBS

@
]

@
]

State space coverage (%)

) 10 20 30 40 50 0 10 20 30 40 50
Episodes Episodes

Figure 13: Percentage of state space covered. The figure shows mean values in three replications
with different seeds. Each replication was run for 5000 episodes; the percentage covered was
recorded every 100 steps. The proposed VaLP methods demonstrate efficient coverage, reaching
a higher coverage in fewer episodes than baselines.

18

Under review as a conference paper at ICLR 2025

Standard 1000

1000 Episodes

No Intrinsic
Reward RND DRND ICM LBS 1000

750
500
250
0

1000 Episodes

Figure 14: First visit to state in the 24 x 24 DeepSea environment depicted as heatmaps. Each plot
shows the results of a particular type of agent interacting with the environment for 1000 episodes,
with each episode terminating after 24 decision stages. The plots show means of 3 replications with
different seeds. The agent can access only the lower diagonal of the grid; thus the upper diagonal
has been blocked out with the color red.

VaL Priow Val Pmog Standard 1000

K E 750

; 500

'f". 250
= £ & o

No Intrinsic
Reward RND

DRND ICM LBS
750
500
250
0

Figure 15: First visit to state in the 48 x 48 DeepSea environment depicted as heatmaps. Each plot
shows the results of a particular type of agent interacting with the environment for 1000 episodes,
with each episode terminating after 24 decision stages. The plots show means of 3 replications with
different seeds. The agent can access only the lower diagonal of the grid; thus the upper diagonal
has been blocked out with the color red

1000 Episodes

1000 Episodes

19

Under review as a conference paper at ICLR 2025

I DETAILED MUJOCO RESULTS

Algorithm HalfCheetah Walker Hopper Ant

ValPriow | 6864.49 (£556.47) | 4188.37 (£309.09) | 3403.36 (+354.63) | 4611.13 (+642.27)
VaLPvamp | 7325.67 (£386.67) | 4036.92 (£323.58) | 2963.97 (+£202.82) | 3994.04 (+605.43)
VaLPgrym | 7184.02 (£357.72) | 3791.14 (£367.99) | 2992.92 (£283.92) | 4197.72 (£719.21)
VaLPyoa | 6728.41 (2478.21) | 3889.13 (£373.89) | 3201.25 (x194.11) | 4391.71 (£605.8)
Standard 6471.54 (£124.51) | 3805.04 (+415.91) | 2803.56 (£231.17) | 3808.84 (x741.31)
LBS 6138.04 (£710.19) | 3868.44 (£303.53) | 2882.44 (£306.94) | 3719.28 (£768.99)
ICM 6851.36 (£300.07) | 3770.62 (x188.43) | 2856.26 (£254.38) | 4000.46 (£633.93)
DRND 6748.67 (£ 51.48) | 3934.01 (x406.31) | 2787.83 (£345.67) | 3970.05 (£663.05)
RND 6101.69 (£248.81) | 3807.71 (£156.94) | 3145.64 (£182.89) | 4270.15 (£674.04)
TD3 6807.41 (£567.82) | 3677.68 (£366.67) | 2635.07 (£385.46) | 3251.45 (x696.04)

Table 4: Performance of MuJoCo environments (Mean+ SEM) for Figure 8.

J DETAILED ATARI RESULTS

Algorithm Enduro Breakout Gravitar Private Eye Pitfall
VaLPpiow 45.16 (£14.58) | 1.88 (0.39) | 0.18 (x0.04) | 0.18 (+0.31) -0.10 (+0.13)
VaLPvamp 54.00 (+30.98) | 2.12 (+0.5) | 0.18 (x0.16) | 0.28 (+0.39) -1.54 (£2.42)
VaLPgrm 44.15 (£15.03) | 1.36 (x0.21) | 0.12 (£0.12) | -0.48 (£1.56) -1.46 (£1.3)
VaLPyoc 33.64 (£11.5) | 1.70 (20.46) | 0.10 (£0.13) | -1.62(£3.76) | -1.12 (£1.24)
Standard 24.56 (£8.55) | 1.48 (x0.35) | 0.10 (£0.06) | -4.96 (x6.47) | -6.38 (£8.97)
LBS 1.14 (£2.23) | 1.98 (£0.39) | 0.16 (£0.05) | -8.94 (£17.93) | -0.58 (x0.79)
ICM 28.00 (£22.13) | 1.54 (£0.46) | 0.06 (+0.12) | -5.68 (£12.32) | -1.58 (+1.83)
DRDN 52.74 (£37.37) | 1.82(x0.44) | 0.14 (£0.1) | -6.32 (£13.89) | -2.76 (£1.4)
RND 37.96 (£24.85) | 1.64 (£0.68) | 0.04 (£0.05) | -2.46 (¥4.92) | -498 (£5.07)
DQN 47.88 (+0) 1.68 (£0.27) | 0.08 (+0.04) | -3.12 (£1.0) -3.44 (£3.33)
Random Uniform 0.00 (£0.0) 0.30 (£0.08) | 0.12 (£0.03) | -0.80 (x0.86) | -11.58 (+4.52)

Table 5: Performance of Atari environments (Mean £ SEM) for Figure 9.

K NETWORK ARCHITECTURES

K.1 DEEPSEA VAE
Layers Operation Input Shape Output Shape Activation

1 Conv2d (image_channels, H, W) (16, H/2, W/2) ReLLU

2 Conv2d (16, H/2, W/2) (32, H/4, W/4) ReLU

3 Linear (fc_mu) (32 * H/4 * W/4) latent_dim -

4 Linear (fc_log_var) (32 * H/4 * W/4) latent_dim -

5 Linear (fc2) latent_dim (32 * H/4 * W/4) -

6 ConvTranspose2d (32, H/4, W/4) (16, H/2, W/2) ReLU

7 ConvTranspose2d (16, H/2, W/2) (image_channels, H, W) Sigmoid

Table 6: Encoder-Decoder Network Architecture

20

Under review as a conference paper at ICLR 2025

Layers Operation Input Shape | Output Shape | Activation

1 Dense (Linear) state_dim 256 RelLLU

2 Dense (Linear) 256 256 ReLU

3 Dense (Linear) 256 action_dim Tanh

4 Scaling action_dim action_dim -

Table 7: TD3 Actor Network Architecture
Layers Operation Input Shape Output Shape | Activation

1 Dense (Linear) | state_dim + action_dim 256 ReLLU
2 Dense (Linear) 256 256 ReLLU
3 Dense (Linear) 256 1 -
4 Dense (Linear) | state_dim + action_dim 256 RelLU
5 Dense (Linear) 256 256 ReLLU
6 Dense (Linear) 256 1 -

Table 8: TD3 Critic Network Architecture (Q1 and Q2)

K.2 TD3 ACTOR + CRITIC NETWORK ARCHITECTURE

K.3 PPO ACTOR + CRITIC NETWORK ARCHITECTURE

K.4 DQN
Layer | Operation | Input Shape Output Shape Kernel Size | Stride
1 Conv2D (4, 84, 84) (16, 20, 20) 8 4, 4)
2 Conv2D (16, 20, 20) (32,9,9) 4 2,2)
3 Flatten (32,9,9) 2592 - -
4 Dense 2592 256 - -
5 Dense 256 action_dimensions - -

Table 11: DQN Network Architecture - The architecture is the same as that described in the neurips

DQN paper

K.5 LINEAR INTRINSIC REWARD

Layer Operation Input Shape | Output Shape
1 Dense (fcl) input_size fel
2 RelLU fel fcl
3 Dense (fc2) fcl fc2
4 RelLLU fc2 fc2
5 Dense (latent_dim) fc2 latent_dim

Table 12: MLP Network Architecture

K.6 CONVOLUTIONAL INTRINSIC REWARD

Layer | Operation Input Shape Output Shape | Kernel Size | Stride
1 Conv2D (input_channels, 84, 84) (16, 20, 20) 8 4
2 Conv2D (16, 20, 20) (32,10, 10) 2 2
3 Flatten (32, 10, 10) 3200 - -
4 Dense 3200 256 - -
5 Dense 256 latent_dim - -

Table 13: CNN Network Architecture

21

Under review as a conference paper at ICLR 2025

Table 14: MLP Network Architecture

K.7 LINEAR VAE NETWORK ARCHITECTURE

Layer Operation Input Shape | Output Shape
1 Dense (fcl) input_size fcl
2 ReLLU fcl fcl
3 Dense (fc2) fcl fc2
4 ReLU fc2 fc2
5 Dense (latent_dim x 2) fc2 latent_dim x 2
Table 15: VAE Encoder Network Architecture
Layer Operation Input Shape | Output Shape
1 Dense (fc2) latent_dim fc2
2 RelLU fc2 fc2
3 Dense (fcl) fc2 fcl
4 ReLLU fcl fcl
5 Dense (output_size) fcl output_size

Table 16: VAE Decoder Network Architecture

22

Layers Operation Input Shape Output Shape Activation
1 Input observation_dimensions | observation_dimensions -
2 Dense (MLP Layer) | observation_dimensions hidden_size_1 input_activation
3 Dense (MLP Layer) hidden_size_1 hidden_size_2 input_activation
4 Dense (MLP Layer) hidden_size 2 action_dimensions output_activation
Table 9: PPO Actor Network Architecture
Layers Operation Input Shape Output Shape Activation
1 Input observation_dimensions | observation_dimensions -
2 Dense (MLP Layer) | observation_dimensions hidden_size_1 input_activation
3 Dense (MLP Layer) hidden_size_1 hidden_size 2 input_activation
4 Dense (MLP Layer) hidden_size_2 1 output_activation
Table 10: PPO Critic Network Architecture
Layer | Operation | Input Shape | Output Shape
1 Dense (fcl) input_size fel
2 Dense (fc2) fcl fc2
3 Dense (out) fc2 output_size

Under review as a conference paper at ICLR 2025

K.8 CONVOLUTIONAL VAE NETWORK ARCHITECTURE

Layer Operation Input Shape Output Shape
1 Conv2d (encl) (batch_size, image_channels, height, width) (batch_size, 16, 32, 32)
2 ReLU (batch_size, 16, 32, 32) (batch_size, 16, 32, 32)
3 Conv2d (enc2) (batch_size, 16, 32, 32) (batch_size, 32, 15, 15)
4 RelLLU (batch_size, 32, 15, 15) (batch_size, 32, 15, 15)
5 Flatten (batch_size, 32, 15, 15) (batch_size, 32 * 15 * 15)
6 Dense (fc) (batch_size, 32 * 15 * 15) (batch_size, 256)
7 RelLU (batch_size, 256) (batch_size, 256)
8 Dense (fc_mu) (batch_size, 256) (batch_size, latent_dim)
9 Dense (fc_log_var) (batch_size, 256) (batch_size, latent_dim)

Table 17: Conv VAE Encoder Network Architecture

Layer Operation Input Shape Output Shape
1 Dense (fc) (batch_size, latent_dim) (batch_size, 256)
2 RelLU (batch_size, 256) (batch_size, 256)
3 Dense (fc2) (batch_size, 256) (batch_size, 32 * 20 * 20)
4 ReLLU (batch_size, 32 * 20 * 20) (batch_size, 32 * 20 * 20)
5 Reshape (batch_size, 32 * 20 * 20) (batch_size, 32, 20, 20)
6 ConvTranspose2d (decl) (batch_size, 32, 20, 20) (batch_size, 16, 42, 42)
7 ReLU (batch_size, 16, 42, 42) (batch_size, 16, 42, 42)
8 ConvTranspose2d (dec2) (batch_size, 16, 42, 42) (batch_size, image_channels, 84, 84)
9 Sigmoid (batch_size, image_channels, 84, 84) | (batch_size, image_channels, 84, 84)

Table 18: Conv VAE Decoder Network Architecture

L HYPERPARAMETERS

L.1

MuJoCo

23

Under review as a conference paper at ICLR 2025

Name | Description | Value
number of agents How many seed repetitions to run. 3
max timesteps Maximum time steps to run environment. le6
evaluation frequency | How frequent (time steps) we evaluate. 10000
evaluation episodes How many episodes we evaluate for. 10
start timesteps Time steps the initial random policy is used. 25000
exploration noise Standard gaussian exploration noise. 0.1
batch size Batch size for both actor and critic. 256
policy noise Noise added to target policy during critic update. 0.2
noise clip Range to clip target policy noise. 0.5
policy frequency Frequency of delayed policy updates. 2
intrinsic weight Weight to multiply intrinsic reward. 0.001
intrinsic update steps | How many steps to update the intrinsic reward module. 0.001
~ Discount factor. 0.99
T Target network update rate. 0.005
M Number of neurons in the hidden layers of the GTM prior. | 256
D Shape of the input data for the VAE, with dimensions (1. ob hape)
indicating channels, height, and width of the images. » ODS-Space.shape
lrvag Learning rate for pre-training the VAE. le-3
Maximum value that can be generated for each component
number of values in the VampPrior, impacting the range of outputs for the 1
latent representations
image channels Number of channels in the input images. 3
vae epochs Training epochs for VAE. 20
latent dimensions Size of the latent space in the VAE. See table
8 Weighting term for the KL Divergence 1 for standard, 5 for learned

Table 19: Hyperparameters for the MuJoCo Experiments

L.2 DEEPSEA

24

Under review as a conference paper at ICLR 2025

Name Description Value
number of episodes Total number of episodes used to train the agent. 5000
test reward period Frequency (in episodes) at which the agent’s performance is 100

evaluated.

states size

Total number of possible states.

np.prod(env.obs_space.shape)

actions size

Total number of possible actions.

env.action_space.n

Number of neurons in the hidden layer of the neural

hidden size 16
network.

ICM embedding size | Dimensionality of the embedding space used by ICM. 32

LBS action size Size of the action vector used in LBS. 1
Maximum value that can be generated for each component

number of values in the VampPrior, impacting the range of outputs for the 1
latent representations

vae epochs Training epochs for VAE. 20

latent dimension Size of the latent space in the VAE. See table 22

batch size Number of samples in each batch used during VAE training. | 32

image channels Number of channels in the input images. 1

input shape

Shape of the input images to the VAE.

(3, rows, cols)

OpUMIZET;,, 11 in sic Type of optimizer for the intrinsic model Adam
optimizery, 4 Type of optimizer for the VAE model Adam
Einitial Starting value for the exploration rate in the e-greedy policy. | 1.0
€ final Final value for the exploration rate in the e-greedy policy. 0.1
€ Fixed exploration rate. 0.1
~ Factor used to discount future rewards. 0.9
QQ—learning Learning rate for the Q-learning algorithm. 0.5
QDRND Scale of two intrinsic reward items. 0.9
NprND Number of DRND target networks. 10
Iryge Learning rate for pre-training the VAE. le-3
M Number of neurons in the hidden layers of the GTM prior. 256
D 'Shgpe pf the input data.for the VAE, with dimensions (1. rows, cols)
indicating channels, height, and width of the images.
Table 20: Hyperparameters for the DeepSea Experiment
L.3 ATARI

M LATENT DIMENSIONS

To identify the ideal latent dimensions of each test environment we conducted a grid search over the

following ranges:

* DeepSea: 2,4, 6, 8, 10
* Minigrid: 4, 8, 16, 32
e MuJoCo: 2,4,6, 8, 10

25

Under review as a conference paper at ICLR 2025

Name Description Value

replay buffer size Size of the replay buffer. 5000

lrpon Learning rate for the DQN Model. le-4

~y Discount factor for future rewards. 0.99

batch size Batch size for training. 32

learning starts Steps before the DQN learning begins. 10000

learning frequency Frequency of DQN updates. 1

target update frequency | Frequency of updating target networks. 1000

Estart Starting value of epsilon for exploration. 0.01

€end Final value of epsilon for exploration. 0.1

€ fraction Fraction of training over which e is decayed. 0.1

intrinsic weight Weight to multiply intrinsic reward. 0.001

intrinsic update steps Steps between intrinsic reward updates. 1000

number of agents How many seed repetitions to run. 5

number timesteps Maximum time steps to run environment. le5

evaluation frequency How frequent (time steps) we evaluate. le5

evaluation episodes How many episodes we evaluate for. 10

M Number of neurons in the hidden layers of the GTM prior. | 256

D Shqpe Qf the input data.for the VAE, with dimensions (4. 84. 84)
indicating channels, height, and width of the images.

Irvag Learning rate for pre-training the VAE. le-3
Maximum value that can be generated for each component

number of values in the VampPrior, impacting the range of outputs for the le-3
latent representations.

image channels Number of channels in the input images. 4

input shape Input shape of RGB image into VAE. (4, 84, 84)

vae epochs Training epochs for VAE. 20

latent dimensions Size of the latent space in the VAE. See table 22

B

Weighting term for the KL Divergence

1 for standard, 5 for learned

Table 21: Hyperparameters for the ATARI Experiments

* Atari: 8, 16, 32, 64, 128

26

Under review as a conference paper at ICLR 2025

Experiment | Environment | Latent Dimension

DeepSea 24 x 24 2
48 x 48 2

Minigrid Spiral 8
MultiRoomN6 | 8

MuJoCo Ant 10
Walker2d 10
Hopper 4
HalfCheetah

ATARI Enduro 64
Breakout 32
Gravitar 32
PrivateEye 8
Pitfall 128

Table 22: Latent dimensions for each experiment.

N DRND ABLATIONS

24 x 24 DeepSea

48 x 48 DeepSea

State space coverage (%)
& 0w 2 N © o
5 & 8 3 8 8

w
S

20 30

40 50 0 10 20 30 40 50
Episodes Episodes

Figure 16: DRND « ablation in the 24 x 24 and 48 x 48 DeepSea environment.

HalfCheetah-v4 Walker2d-v4 Ant-v4 Hopper-v4

- 4000
3000

2000

3000

2000

- 0.1

— 05
— 0.9

1000
1000

Mean Extrinsic Reward

0
0 200000 400000 200000 400000 200000 400000 200000 400000
Timestep Timestep Timestep Timestep

Figure 17: DRND « ablation in the MuJoCo environments with 10 target networks.

27

Under review as a conference paper at ICLR 2025

EnduroNoFrameskip-v4 BreakoutNoFrameskip-v4 GravitarNoFrameskip-v4 PrivateEyeNoFrameskip-v4 PitfalINoFrameskip-v4

13.12 0.

5 10 5 0 00 0z 04 06 08 000 00z 004 006 008 010 o0l2 S0 -0 -0 -20 -0 0 -la 12 o 8 5 -+ 2 0

Mean Values Mean Values Mean Values Mean Values Mean Values

Figure 18: DRND « ablation in the ATARI environments with 10 target networks.

28

	Introduction
	Background
	Related Work
	Proposed Intrinsic Reward
	Experimental Methodology
	Environments
	Baselines
	Evaluation Metrics

	Results
	Latent Space Quality
	Exploration with Extrinsic Rewards
	Exploration without Extrinsic Rewards
	The Detachment Problem

	Agent Performance
	Atari 100K Benchmark

	Discussion and Future Work
	Pseudocode
	Environment Details
	DeepSea
	ATARI Environment Wrappers

	Baseline Details
	Evaluation Metric Details
	Stochastic Environment: Noisy MNIST
	Detailed MNIST Results
	Additional MiniGrid Results
	Additional DeepSea Results
	Detailed MuJoCo Results
	Detailed Atari Results
	Network Architectures
	DeepSea VAE
	TD3 Actor + Critic Network Architecture
	PPO Actor + Critic Network Architecture
	DQN
	Linear Intrinsic Reward
	Convolutional Intrinsic Reward
	Linear VAE Network Architecture
	Convolutional VAE Network Architecture

	Hyperparameters
	MuJoCo
	DeepSea
	Atari

	Latent Dimensions
	DRND Ablations

