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Abstract

Few-shot learning with Graph Neural Networks (GNNs) is an important challenge in expand-
ing the remarkable success that GNNs have achieved. In the transductive node classification
scenario, conventional (supervised) training methods for GNNs fail when only few labeled
nodes are available. Self-training, wherein the GNN is trained in stages by augmenting the
training data with a subset of the unlabeled data and the predictions of the GNN on this data
(pseudolabels), has emerged as a promising approach to few-shot transductive learning with
GNNs. However, multi-stage self-training significantly increases the computational demands
of GNN training. In addition, while the training set evolves considerably across the stages of
self-training, the GNN architecture, graph topology and training hyperparameters are kept
constant, adversely affecting the accuracy of the resulting model as well as the computational
efficiency of training. To address this challenge, we propose FASTRAIN-GNN, a framework
for efficient and accurate self-training of GNNs with few labeled nodes. FASTRAIN-GNN
performs four main optimizations in each stage of self-training: (1) Sampling-based Pseu-
dolabel Filtering removes nodes whose pseudolabels are likely to be incorrect from the
enlarged training set. (2,3) Dynamic Sizing and Dynamic Regularization find the optimal
network architecture and amount of training regularization to use in each stage, respectively,
and (4) Progressive Graph Pruning removes selected edges between nodes in the training set.
On few-shot node classification tasks using different GNN architectures, FASTRAIN-GNN
produces models that are consistently more accurate (by up to 4.4%), while also substantially
reducing the self-training time (by up to 2.1×) over the current state-of-the-art methods.
Code is available at https://anonymous.4open.science/r/FASTRAIN-GNN-EB4B.

1 Introduction

Advancements in supervised training of Graph Neural Networks (GNNs) have revolutionized the field of
graph-based learning. As a result, GNNs find wide-spread applications in several fields, ranging from friend
and product recommendations in social media networks to molecular property prediction for drug discovery.
However, real world graphs are often sparsely-labeled, and training GNNs in a few-shot setting remains
challenging. While conventional supervised training methods for GNNs (Kipf & Welling, 2017; Velickovic
et al., 2018; Hamilton et al., 2017) work well in the presence of large amounts of (labeled) training data,
their performance drops rapidly as training data becomes more scarce due to insufficient propagation of
information from labeled data.

Two main classes of semi-supervised training algorithms have been proposed to address this challenge in
the context of node classification using GNNs: pre-training and self-training. Pre-training is effective in the
inductive node classification setting (where new, unseen graphs are presented at testing time; the goal is to
label the unlabeled nodes in the new graphs). Since training GNNs with good generalization performance
is the key for effective inductive node classification, large amounts of non-targeted labeled data can be used
to pre-train the GNN, followed by a few iterations of fine-tuning on the limited task-specific data. As a
result, prior works on pre-training GNNs (Hu et al., 2020; Lu et al., 2021) have demonstrated significant
improvements on few-shot inductive node classification. On the other hand, the transductive node classifica-
tion setting (a small number of nodes in a large graph are labeled; the goal is to label the unlabeled nodes in
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the graph) benefits more from self-training. In particular, since the entire graph (consisting of both labeled
and unlabeled nodes) is available at training time, effective transductive node classification is achieved by
targeted training on the input graph (learning from the topology and vast amounts of unlabeled data in the
graph). Consequently, prior works on self-training (Li et al., 2018; Sun et al., 2020) have demonstrated good
performance on few-shot transductive node classification.

Figure 1: An overview of conventional self-training.

In this work, as outlined in
Fig. 1, we focus on self-
training GNNs for few-shot
transductive node classifica-
tion. Self-training is per-
formed in multiple stages,
where a GNN model is trained
in each stage using the current
training set. At the end of
each stage, the training set is
enlarged by adding nodes that
are likely to be predicted cor-
rectly by the trained GNN along with their associated pseudolabels. Typically, confidence is used as the
metric to assess correctness of predictions — if the confidence of the GNN in predicting a node is above a
threshold (Tc), the node is added to the training set for the next stage. The enlarged training set results
in a greater fraction of unlabeled nodes in the graph participating in the training process (through message
passing), leading to better node representations, and hence, better classification accuracy. While the con-
ventional self-training framework has led to substantial accuracy improvements over single-stage supervised
training (Li et al. (2018); Sun et al. (2020)), it presents significant computational overheads during training.
For example, on {Cora, Citeseer and Pubmed} datasets with 4 labeled nodes/class, 4-stage self-training
takes {4.6×, 5.2× and 5.4×} longer than single-stage fully-supervised training (not exactly 4× longer, since
the training set is also enlarged in each stage). In addition, while prior efforts have led to significant im-
provements in the accuracy of pseudolabels added to the training set in each stage, the GNN architecture,
graph topology and training hyperparameters (such as strength of regularization) have been kept constant
throughout self-training, thereby adversely impacting both the accuracy of the self-trained model and the
efficiency of the self-training process.

We present FASTRAIN-GNN, a framework for fast and accurate self-training of GNNs. FASTRAIN-GNN
adds four main optimizations to the conventional self-training loop. First, we observe that incorrect training
labels have a large detrimental effect on the accuracy of the trained model, and propose Sampling-based
Pseudolabel Filtering (SPF) to improve the accuracy of pseudolabels added to the training set. We also
propose Dynamic Regularization (DR) to reduce the impact of residual errors in training labels (after SPF)
during self-training. Second, we note that the "layer effect" in GNNs (Sun et al., 2020) plays a major
role during the different stages of self-training. Deep GNNs outperform shallow GNNs when training on
few labeled nodes due to larger message passing coverage (leading to better propagation of information from
labeled nodes) in deep GNNs. However, as the number of labeled nodes increases, the larger message passing
coverage leads to oversmoothing in deep GNNs, where nodes belonging to different classes acquire similar
representations (and become less discernible from each other). As a result, shallow GNNs outperform deep
GNNs when training on large numbers of labeled nodes. Based on this observation, we propose Dynamic
Sizing (DS) to adapt the network architecture across the stages of self-training. Finally, we observe that
inter-class edges in the graph add noise during message passing, and propose Progressive Graph Pruning
(PGP) to incrementally prune inter-class edges between nodes in the training set. In addition to producing
more accurate self-trained models, the four proposed optimizations also considerably improve the efficiency
of the self-training process. SPF reduces the size of the training set, while DS, DR and PGP result in smaller
GNNs being trained on sparser graphs.

We summarize our main contributions as follows:
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• We introduce FASTRAIN-GNN, a framework for fast and accurate self-training of GNNs. In particular,
FASTRAIN-GNN focuses on optimizing the GNN architecture, training data, training parameters, and
the graph topology during self-training.

• We propose Sampling-based Pseudolabel Filtering to generate smaller training sets with more accurate
pseudolabels in each stage.

• We propose Dynamic Sizing and Dynamic Regularization to overcome the layer effect in GNNs and reduce
the impact of incorrect training labels, respectively.

• We propose Progressive Graph Pruning to improve the information-to-noise ratio during message passing
and reduce the impact of the over-smoothing problem in GNNs.

• Across four different transductive node classification datasets using different GNN architectures and with
varying numbers of labeled nodes, we demonstrate that FASTRAIN-GNN simultaneously improves both
the accuracy of the self-trained models and the efficiency of self-training over the previous state-of-the-art.

2 Related Work

Prior work on self-training GNNs has almost exclusively focused on the problem of generating more accurate
training labels (pseudolables) in each stage of self-training. Li et al. (2018) proposed four different techniques
for generating more accurate training labels. Co-training trains a random walk model along with the GCN to
explore the graph structure, and adds the most confident predictions of the random walk model to the training
set. Self-training adds the most confident predictions from the GCN model to the training set. Union adds a
union of the most confident nodes found by the GCN and the random walk model, while Intersection adds the
common subset of most confident predictions of both models to the training set. Recent works have proposed
improvements to these original baselines. Some notable examples include DSGCN (Zhou et al., 2019), which
uses negative sampling and confidence-based weighting of samples to reduce the impact of incorrect training
labels. M3S (Sun et al., 2020) introduces a checking part based on DeepCluster (Caron et al., 2018) that
verifies the correctness of the most confident predictions before adding them to the training set. IFC-GCN
(Hu et al., 2021) rectifies incorrect pseudolabels based on feature clustering. GraphMix (Verma et al., 2021)
trains a fully-connected neural network along with the GNN to improve the accuracy of GNN predictions.
CGCN (Hui et al., 2020) validates pseudolabels based on predictions from a graph clustering network that
combines variational graph auto-encoders with Gaussian mixture models. Self-enhanced GNN (Yang et al.,
2021) enlarges the training set using the most confident predictions from an ensemble of GNNs. Finally,
the current state-of-the-art (to the best of our knowledge, see Table 6) method for self-training is CaGCN
(Wang et al., 2021), which uses confidence calibration (Guo et al., 2017) to improve the accuracy of the most
confident predictions. Complementary to these works, we focus on the problem of how the enlarged training
set can be used to efficiently self-train GNNs to high accuracies, with a specific focus on optimizing the GNN
architecture, training parameters and graph topology during self-training. In addition, we also propose a
simple filtering method that quickly identifies and removes nodes that are likely to be incorrectly labeled
from the enlarged training set. Our techniques are independent of the pseudolabeling method used, and
hence, our optimizations can be used in conjunction with all the aforementioned pseudolabeling strategies
to further improve accuracy.

3 The FASTRAIN-GNN framework

We present FASTRAIN-GNN, a framework for efficient and accurate self-supervised training of GNNs. Fig 2
presents an overview of the FASTRAIN-GNN framework. First, the appropriate GNN architecture is chosen
based on the current size of the training set (DS), and the model weights are randomly initialized. This
random initialization is different from the majority of previous works (such as Zhou et al. (2019); Li et al.
(2018) etc.) that initialize the model using the trained weights from the previous stage (see Appendix A).
Then, the GNN model is trained on the current training set, and the amount of regularization during training
is chosen based on the stage of self-training (DR). The training set is subsequently enlarged by predicting
the unlabeled nodes with the trained GNN, and adding nodes that are likely to be predicted correctly to the
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Figure 2: An overview of the FASTRAIN-GNN framework.

training set. Here, we use confidence-based pseudolabeling, where nodes that are predicted with confidence
above a threshold (Tc) are added to the training set along with their pseudolabels. The enlarged training
set is then filtered based on robustness of predictions to small perturbations in the graph topology (SPF)
to produce a smaller training set with more accurate labels. Finally, inter-class edges between nodes in the
training set are progressively pruned (PGP) to improve information-to-noise ratio during message passing
(when the pruned graph is used to train the GNN model) in the next stage. This process is repeated K
times, where each iteration of this loop constitutes one stage of self-training. FASTRAIN-GNN adds four
main optimizations to the conventional self-training loop – SPF, DS, DR and PGP – and we describe these
optimizations in greater detail in the following subsections.

Algorithm 1: Sampling-based Pseudolabel Filtering (SPF)
Input : Enlarged training set after confidence-based pseudolabel generation Tinit, graph G
Output: Filtered training set Tfiltered

1 spf_sampling_rate : sampling rate to test prediction consistency
2 spf_iterations: number of sampling iterations to test prediction consistency
3 Tfiltered = Tinit

4 Initial_predictions = predict(nodes(G))
5 for sampling iteration in range(spf_iterations) do
6 Gsampled = Sample(G, spf_sampling_rate)
7 Sampled_predictions = predict(nodes(Gsampled))
8 for each node in Tinit do
9 if Sampled_predictions[node] != Initial_predictions[node] then

10 Tfiltered = Tfiltered - node

11 return Tfiltered

Figure 3: Impact of incorrect training labels on GCN training. Results are reported based on
fully-supervised training of a 2-layer GCN model, following the settings described in (Rong et al., 2020). A
random subset of training labels are changed to an incorrect (random) class for this study.
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3.1 Sampling-based Pseudolabel Filtering (SPF)

Figure 4: Accuracy of consistent
predictions with different sampling
rates. Results are reported based on full-
supervised training of a 2-layer GCN model,
following the settings described in (Rong
et al., 2020). Here, ”consistent predic-
tions” indicates that node predictions do
not change when predicted from 10 different
randomly sampled graphs.

SPF is performed immediately after the training set is enlarged
by adding nodes with highly confident predictions and their
pseudolabels. Since the accuracy of the self-trained model de-
grades rapidly with decrease in accuracy of the training labels
(Fig. 3), it is vital to ensure that the pseudolabels are highly
accurate. While confidence is the current state-of-the-art met-
ric for quantifying the correctness of predictions, we observe
that the labels generated by confidence-based pseudolabeling
still contain substantial noise that has a detrimental impact
on the final model accuracy. SPF takes advantage of the fact
that correct predictions are significantly more robust to small
perturbations in the graph topology compared to incorrect pre-
dictions (Fig. 4) to filter out nodes that are likely to have in-
correct labels from the training set. Algorithm 1 describes the
procedure used to perform SPF. We randomly sample the input
graphs with a sampling rate of spf_sampling_rate (denoting
the fraction of edges that are retained). This is repeated across
spf_iterations, with each iteration testing on a different sam-
pled graph. Only those nodes whose predictions are invariant
under sampling are included in the filtered training set. As a
result, SPF produces a smaller training set with more accurate
training labels, leading to improvements in both the efficiency
of self-training and the accuracy of the self-trained model.

3.2 Dynamic Regularization (DR)

While SPF significantly improves the accuracy of training pseudolabels, incorrect labels are inevitable when
they are generated from the predictions of a neural network. DR aims to reduce the impact of residual errors
in pseudolabels, since even a small number of incorrect labels can lead to large deterioration in accuracy of
the trained model (Fig. 3). While overfitting to incorrect labels is problematic for all classes of deep neural
networks, we find that it is especially true for GNNs due to the effects of error propagation (Nagarajan
et al., 2022). Nodes that acquire representations that cause them to be incorrectly classified during training
adversely impact the classification of all their neighbors due to message passing. Therefore, it is vital to
incorporate techniques that minimize the impact of incorrect labels in the self-training loop to prevent error
propagation. We find that sampling (Hamilton et al., 2017; Chen et al., 2018) is an effective regularizer that
prevents overfitting to incorrect labels (Fig. 3). Furthermore, we note that the incidence of incorrect labels
is likely to increase as self-training proceeds due to the addition of more pseudolabels to the training set.
We propose DR to dynamically alter the sampling rate during self-training to account for noisy labels in
the enlarged training set. In the first stage of self-training, training labels are golden (100% accurate), and
hence, we use high sampling rates (most edges are retained in the graph). We then dynamically reduce the
sampling rate as more nodes are added to the training set, thereby restricting message passing to a smaller
subset of neighbors in each training epoch. In effect, DR provides the dual benefit of resilience to noisy
pseudolabels during self-training, and improved efficiency from training on sparser graphs in the later stages
of self-training.

3.3 Dynamic Sizing (DS)

DS overcomes the layer effect (Sun et al., 2020) in GNNs during the different stages of self-training. Deep
GNN models perform better than shallow GNN models when only a small number of labeled nodes are
available due to better propagation of label information. In particular, since all L-hop neighbors participate
in the prediction of a node through message passing in a L-layer GNN, more nodes participate in the training
process in deeper GNNs, leading to better node representations. As the number of training nodes increases,
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there is greater supervision during training, and hence, shallow GNN architectures start performing better
due to greater message passing coverage (Fig. 5). Eventually, under sufficient supervision, shallow GNNs
start outperforming deeper GNNs due to the oversmoothing problem in deeper GNNs (Chen et al., 2020).
Due to the smoothing effect of GNN layers, the representations of nodes belonging to different classes become
less distinguishable from each other when a large number of labeled nodes are used to train deep GNNs.
During self-training, as the training set is progressively enlarged, we observe that the layer effect plays a
major role. Initially, when the training set is small, deeper GNNs are more accurate. As the training set
is enlarged by generating more and more pseudolabels, shallow GNNs perform better. DS varies the model
architecture used in each stage of self-training based on the size of the training set. In particular, when the
size of the training set exceeds a threshold (DS_Threshold), a shallow GNN is used for all further stages.

Figure 5: Demonstration of the layer-effect in GNNs. Deeper (3-layer) GNNs perform better when
only few labeled nodes are available for training. As the number of labeled nodes increases, shallow (2-layer)
GNNs outperform deeper GNNs.

3.4 Progressive Graph Pruning (PGP)

Figure 6: Impact of pruning inter-class
edges between training nodes on ac-
curacy. Results are reported based on full-
supervised training of a 2-layer GCN model,
following the settings described in (Rong
et al., 2020). A random subset of inter-class
edges between labeled nodes are pruned.

Pruning edges from graphs used for transductive node clas-
sification can have a significant impact on training (and in-
ference) efficiency of GNNs due to the exponential complex-
ity of message passing (Chen et al., 2021; Nagarajan et al.,
2022). In addition, it has been proven that pruning inter-class
edges improves the information-to-noise ratio during message
passing and helps alleviate the over-smoothing problem to an
extent (Chen et al., 2020). In particular, message passing be-
tween nodes of different classes causes all nodes in the graph
to acquire similar representations (indistinguishable vectors).
When inter-class edges are pruned, nodes belonging to differ-
ent classes acquire distinct representations, thereby leading to
better class separation, and hence, better classification perfor-
mance (Fig. 6) When only few labeled nodes are available for
training, identifying inter-class edges is challenging. Hence, we
propose progressively pruning inter-class edges in each stage
based on the pseudolabels of nodes added to the training set.
Since nodes added to the training set are significantly more
likely to be predicted correctly compared to other nodes, re-
stricting PGP to operate only on nodes in the training set minimizes the risk of accidentally pruning intra-
class edges. Algorithm 2 demonstrates PGP. After SPF generates an enlarged training set with pseudolabels,
PGP then prunes inter-class edges between nodes in the training set. Since the training set is progressively
enlarged in each stage of self-training, PGP progressively prunes inter-class edges during self-training, thereby
making each iteration of the self-training loop faster than the previous iteration.

4 Experiments and Results
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Algorithm 2: Progressive Graph Pruning (PGP)
Input : Enlarged training set after SPF Tfiltered, graph G
Output: Pruned graph Gpruned

1 P redictions = predict(nodes(G))
2 Gpruned = G
3 for each node in Tfiltered do
4 for each neighbor of node do
5 if neighbor in Tfiltered then
6 if Predictions[node] != Predictions[neighbor] then
7 Gpruned = Gpruned - edge(node, neighbor)

8 return Gpruned

Table 1: Dataset characteristics.
Dataset Classes Nodes Edges Feature size

Cora 7 2708 5429 1433
Citeseer 6 3327 4732 3703
Pubmed 3 19717 44338 500
CoraFull 70 19793 126842 8710

We implemented FASTRAIN-GNN using DGL in PyTorch,
and evaluate it on a GeForce RTX 2080 Ti GPU with 11GB
memory. We randomly select (labels/class) nodes of each class
as training nodes, and report results on the rest of the nodes
in the graph (we do not require a separate held-out validation
set for any of the FASTRAIN-GNN optimizations). We repeat
this process 100 times for each value of (labels/class), and all results reported in this section are averaged
across 100 different training splits, unless otherwise specified. The datasets used for testing are summarized
in Table 4. Since some classes contain too few nodes to get a meaningful train-test split in CoraFull, we do
not present results with 16 labels/class.

Table 2: Results of training GCN with different label rates. The most accurate model without
confidence calibration is underlined, while the most accurate model overall is displayed in bold.

Dataset Labels/ GCN Co-train Union Intersection Self-train FASTRAIN Self-train FASTRAIN
Class -GCN -CaGCN -CaGCN

Cora

1 48.9 53.3 53.6 51.8 52.7 56.9 57.2 61.6
2 64.3 66.5 66.3 64.2 66.1 68.8 69.5 73.0
4 69.1 71.1 71.2 69.7 70.8 72.7 71.9 74.1
8 74.8 75.0 75.7 74.7 75.5 77.4 79.4 81.6
16 78.8 78.9 78.8 78.2 79.1 80.6 82.2 83.4

Citeseer

1 38.1 39.8 39.5 38.2 39.3 43.1 46.2 53.1
2 49.9 52.4 52.6 52.6 52.9 54.8 53.9 57.1
4 58.1 60.4 60.3 60.7 60.1 63.8 64.7 68.2
8 64.4 66.2 65.9 66.0 66.8 68.9 70.6 72.8
16 69.1 70.2 70.1 70.3 70.0 71.6 72.1 73.1

Pubmed

1 42.8 58.2 57.9 56.8 57.7 60.4 66.5 71.4
2 56.1 68.2 68.6 67.9 68.4 70.6 69.6 73.9
4 63.3 69.4 69.6 69.6 69.7 71.1 70.9 74.3
8 69.9 71.4 71.3 71.0 71.7 72.9 74.3 76.2
16 76.7 77.2 77.4 77.5 77.4 78.6 78.1 79.4

CoraFull

1 26.4 30.4 30.1 27.3 29.1 31.1 30.6 31.8
2 29.6 32.8 33.1 29.7 33.0 35.1 33.8 35.6
4 43.2 44.8 44.9 43.9 44.7 46.6 45.9 47.2
8 53.2 55.0 55.2 54.6 55.6 56.4 56.3 57.2

4.1 Primary Results

We present results on the Cora, Citeseer, Pubmed and CoraFull datasets with different label rates using
different GNN architectures – GCN in Table 2 and GAT in Table 3. To provide a fair comparison of
FASTRAIN-GNN with other methods (except CaGCN), we ensure the following – (1) the same set of nodes
are labeled for all training methods. (2) The confidence threshold Tc is fixed at 0.8. (3) 4 stages of self-
training are performed, with 500 epochs of training in each stage in all methods. For all experiments on
CaGCN, we follow the best hyperparameter settings described by the authors (Wang et al., 2021). We
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note that our implementation of the baseline self-training methods (Co-training, Union, Intersection, Self-
training) achieves significantly higher accuracy (by up to 10%) than previously reported (Li et al., 2018; Zhou
et al., 2019). This is because we optimize the baselines (see Appendix A) by choosing the optimal number of
GNN layers for different label rates, and by randomly initializing the GNN model at the start of each stage
of self-training (rather than initializing with the trained weights from the previous stage). We find that
FASTRAIN-GNN consistently outperforms conventional self-training methods under different label rates
(Tables 2, 3, 6). In addition to producing models that are up to 4.2% more accurate than these
optimized baselines, FASTRAIN-GNN also accelerates the self-training process, reducing the
wall-clock self-training time by {1.7×, 1.9×, 2.1× and 1.7×} on {Cora, Citeseer, Pubmed and
CoraFull} respectively compared to conventional self-training. In addition, we demonstrate that
FASTRAIN-GNN can be used in conjunction with the current (to the best of our knowledge) state-of-the-
art method for self-training – CaGCN (Wang et al., 2021), which uses confidence calibration to improve the
quality of pseudolabels generated in each stage – to achieve further accuracy gains of up to 4.4% using the
same hyperparameters and initial set of labeled nodes.

Table 3: Results of training GAT with different label rates. The most accurate model without
confidence calibration is underlined, while the most accurate model overall is displayed in bold.

Dataset Labels/ GAT Co-train Union Intersection Self-train FASTRAIN Self-train FASTRAIN
Class -GAT -CaGAT -CaGAT

Cora

1 49.7 54.8 54.5 53.6 53.9 57.1 59.3 63.3
2 65.1 67.6 67.7 66.4 66.3 69.6 70.4 74.1
4 70.2 71.8 71.6 70.6 71.9 73.2 72.9 75.8
8 75.4 76.2 76.7 75.0 76.3 78.4 79.8 81.7
16 79.1 79.4 79.8 78.8 80.0 82.1 83.0 84.2

Citeseer

1 36.9 38.7 38.8 37.7 38.3 40.2 44.8 48.9
2 49.0 51.6 51.7 51.9 51.7 53.6 52.5 55.8
4 56.4 58.8 58.2 59.1 59.2 61.9 62.3 65.7
8 62.8 64.9 64.3 65.2 65.2 66.6 67.4 69.5
16 66.8 68.7 68.8 69.3 69.0 70.2 70.8 72.0

Pubmed

1 40.7 55.4 55.9 54.8 54.5 57.2 59.9 63.7
2 52.6 64.7 64.6 63.8 65.1 68.4 68.6 72.4
4 62.1 68.4 68.1 68.6 68.5 70.3 70.1 73.6
8 69.0 70.9 71.2 71.1 71.4 72.5 73.7 75.6
16 76.3 76.9 77.0 77.1 77.2 78.4 77.9 79.0

CoraFull

1 28.6 31.8 32.1 29.7 31.6 32.7 33.1 34.6
2 31.2 33.7 34.2 32.9 33.8 35.5 34.2 36.7
4 45.4 47.2 47.4 46.6 46.9 48.3 47.7 49.0
8 53.4 55.6 55.7 55.0 55.7 56.5 56.2 57.4

4.2 Ablation Study: Breakdown of benefits from different FASTRAIN-GNN optimizations

We perform an ablation study to evaluate the impact of each optimization performed by the FASTRAIN-
GNN framework. The results are presented in Table 4. SPF improves accuracy by removing nodes whose
pseudolabels are likely to be incorrect from the training set in each stage, and it improves efficiency by
reducing the number of training samples in each stage. DS and DR improve accuracy by taking advantage
of the layer effect in GNNs (Sun et al., 2020), and by reducing the impact of incorrectly labeled nodes in the
training set, respectively. In addition, they improve efficiency by training smaller GNNs on sparser graphs
in later stages. Finally, PGP improves accuracy by reducing noise from inter-class edges (Chen et al., 2020),
and it improves efficiency by making the graphs more sparse. In the following subsections, we discuss and
analyze the contribution of each FASTRAIN-GNN optimization in improving the accuracy and efficiency of
the previous state-of-the-art self-training method (CaGCN).

4.2.1 SPF improves the quality of generated pseudolabels.

Confidence-based pseudolabeling can lead to noisy labels, even when the models are confidence-calibrated, as
seen in Fig. 7. By adding a second layer of filtering based on robustness to small perturbations in the graph
structure, SPF consistently generates more accurate pseudolabels than confidence-based pseudolabeling.
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Table 4: Accuracy and efficiency gains from the different FASTRAIN-GNN optimizations on
Cora. Speedup is computed over self-training of the more accurate among 2/3-layer models, and averaged
across different train/test splits and label rates.

Labels/Class Self-Training-CaGCN with SPF and DR with SPF, with SPF, DR,
(2-layer/ 3-layer CaGCN) (2-layer/ 3-layer CaGCN) DR and DS DS and PGP

1 55.8 / 61.2 57.1 / 62.3 64.4 65.6
2 64.4 / 69.5 66.1 / 70.9 72.2 73.0
4 68.2 / 71.9 69.1 / 72.6 73.4 74.1
8 79.4 / 77.6 80.3 / 78.9 80.9 81.6
16 82.2 / 80.3 82.7 / 81.5 82.7 83.4

Average Speedup 1X 1.3X 1.6X 1.7X

While the quality of confidence-based pseudolabels can be improved by increasing the confidence threshold,
we demonstrate that SPF produces (1) more accurate pseudolabels when both methods add the same number
of nodes to the training set, and (2) a smaller set of training nodes with more accurate pseudolabels for
different confidence thresholds in Fig. 7. In fact, with a confidence threshold of 0.99, SPF generates training
sets that are 1.2× smaller with 5.3% more accurate labels on Cora (4 labeled nodes per class) during self-
training. Similarly, with 8 labeled nodes per class, SPF generates training sets that are 1.2× smaller with
4.8% more accurate labels compared to training sets generated solely based on confidence. We find that
using 10 spf_iterations with a spf_sampling_rate of 0.9 works well in all our experiments. While the
accuracy of training labels can be marginally improved by using smaller values of spf_sampling_rate (Fig
4), the number of nodes added to the training set in each stage decreases greatly. For instance, on Cora
with 4 labels per class, 1801 nodes are added to the training set (label accuracy = 85.1%) over the course of
self-training with a spf_sampling_rate of 0.9. When a spf_sampling_rate of 0.8 is used, only 1206 nodes
are added to the training set (label accuracy = 85.4%). As a result, the accuracy gains from multi-stage
self-training are diminished when spf_sampling_rate is too small.

Figure 7: Accuracy of pseudolabels generated for different confidence thresholds with and with-
out SPF. Results shown are based on all the nodes added to the training set during self-training of a 3-layer
CaGCN model. The different points on the curves are obtained by varying the confidence threshold from
0.2 (far-right) to 0.99 (far-left). For SPF, 10 spf_iterations are used with a spf_sampling_rate of 0.9 to
test consistency of predictions.

4.2.2 DR reduces the impact of noisy training labels.

While SPF helps reduce noise in training labels by filtering out nodes that are likely to be incorrectly
classified, DR minimizes the impact of residual errors in training labels after SPF. We demonstrate that
dynamically altering the sampling rate is effective at reducing the impact of label noise in Fig 8. During the
first stage of self-training (when golden labels are used), higher sampling rates provide better accuracy. As
label accuracy decreases, lower sampling rates prevent overfitting to noisy labels. Therefore, we find that
dynamically reducing the sampling rate after the first stage of self-training leads to significant improvement
in accuracy of the final self-trained model (Fig. 8), and we empirically find that reducing the sampling rate
from 0.9 (10% of incident edges of node are randomly pruned in each training epoch) in the first stage to
0.8 after the first stage provides highest accuracy across datasets and GNN architectures.
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Figure 8: CaGCN accuracy across self-training stages with different sampling rates. Results are
obtained from self-training a 3-layer CaGCN model with confidence threshold 0.8 (stage 1 – far right to stage
4 – far left).

4.2.3 DS overcomes the layer effect across different self-training stages to improve final accuracy.

Prior research has demonstrated the "layer effect" in GNNs, where deeper GNNs are required for effective
information propagation in the presence of very few training nodes (Sun et al., 2020). As the number of
training nodes increases, GNNs with less layers tend to achieve higher accuracy due to the over-smoothing
problem (Chen et al., 2020) in deeper GNNs. Here, we demonstrate that the "layer effect" plays a significant
role during the different stages of self-training (Fig. 9). With 4 labeled nodes per class on Cora, the 3-
layer CaGCN outperforms the 2-layer CaGCN due to better propagation of label information. However,
we demonstrate that substantial accuracy gains can be achieved by switching to a 2-layer CaGCN model
after the first stage of self-training when more nodes are added to the training set (approximately 300 nodes
per class in this case). When starting with 8 labeled nodes per class, the 2-layer CaGCN model achieves
higher accuracy at the end of self-training, even though a 3-layer CaGCN model is more accurate (and hence,
generates more accurate pseudolabels) after the first stage. Since the accuracy gap between the models at
the end of the first stage is small, we find that the over-smoothing issue outweighs the advantages of a
more accurate training set in the 3-layer CaGCN model. Therefore, we find that using a 3-layer CaGCN
model in the first stage of self-training and a 2-layer CaGCN model in all subsequent stages enables reaping
the benefits of a more accurate training set without encountering the over-smoothing problem, leading to
the most accurate predictions on unlabeled nodes. Across different datasets and GNN architectures, we
empirically observe that when approximately 2.5% of all nodes in the graph are labeled, there is sufficient
supervision for 2-layer models to outperform 3-layer (and deeper) models in all stages of self-training. As a
result, when number of labeled nodes per class increases, the accuracy gains from DS diminish, since there
is sufficient supervision to cause over-smoothing in deep GNNs even in the first self-training stage (Table 4).

Figure 9: Stage-wise accuracy during self-training of CaGCN with confidence threshold of 0.8.
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4.2.4 PGP significantly outperforms single-shot pruning of inter-class edges.

Figure 10: CaGCN accuracy with dif-
ferent pruning methods. Results are ob-
tained from self-training a 3-layer CaGCN
model with confidence threshold of 0.8.

PGP only prunes inter-class edges between nodes in the train-
ing set in each stage. PGP improves accuracy over methods
that do not prune inter-class edges, since inter-class edges add
noise and exacerbate the over-smoothing problem (Fig. 10).
When only few training nodes are available, PGP also signifi-
cantly outperforms one-shot pruning (edges are pruned based
on predictions of all nodes after the first stage of self-training;
if the prediction of a node does not match the prediction of its
neighbor, then the edge between the node and its neighbor is
pruned). In fact, the difference in accuracy between PGP and
one-shot pruning can be as high as 15%, and this difference is
highest when the number of labeled nodes/class is minimum
(Fig. 10). In fact, we find that with 4 labels/class, one-shot
pruning prunes 54% of all inter-class edges in the graph, while
also incorrectly pruning 21% of all intra-class edges, thereby
leading to a large drop in accuracy. In contrast, PGP prunes
62% of all inter-class edges, while pruning only 7% of all intra-class edges at the end of self-training.

5 Conclusion

In this work, we presented FASTRAIN-GNN, a framework for fast and accurate self-supervised training
of GNNs. The framework introduced four major optimizations to conventional multi-stage self-training.
Sampling-based Pseudolabel Filtering was proposed to obtain smaller training sets with more accurate
training labels. Dynamic Regularization was proposed to reduce the impact of residual errors in training
labels after SPF. Dynamic Sizing was introduced to overcome the layer effect during self-training. Finally,
Progressive Graph Pruning incrementally removed inter-class edges from the graph to improve information-
to-noise ratio during message passing. We demonstrated that FASTRAIN-GNN simultaneously accelerates
the self-training process and improves the accuracy of the self-trained models over the current state-of-the-art
methods.
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A Optimized Baselines

We present two simple optimizations to the conventional self-training loop that improves the accuracy of
previously reported baselines by up to 10%.

GNN model architecture selection for different label rates. At low label rates, deeper GNNs are more
accurate due to better propagation of label information. At higher label rates, deeper GNNs suffer from the
over-smoothing problem, where nodes belonging to different classes acquire very similar representations. As
a result, shallow GNNs outperform deeper GNNs at higher label rates. Therefore, choosing the appropriate
GNN architecture for the given label rate is vital, and leads to substantial accuracy improvements over
previously reported baselines that always use 2-layer GNNs (Table 5).

Random initialization of the GNN model in each stage. The majority of previous works (such as Zhou
et al. (2019); Li et al. (2018) etc.) initialize the model using the trained weights from the previous stage (when
stage > 1), and randomly initialize the weights only in stage 1. However, we find that randomly initializing
the weights in all stages leads to more accurate models at the end of self-training (Fig 11). In particular,
we find that the total training loss is very small when weights are initialized from the trained model in the
previous stage (even after the training set is enlarged), since only nodes with highly confident predictions are
added to the training set. As a result, multi-stage self-training only leads to a small improvement in accuracy
over single-stage training. In contrast, randomly initializing the model in each stage enables the model to
make the best use of the enlarged training set (by effectively forgetting everything learnt in the previous stage,
and learning on the enlarged training set from scratch, leading to better node representations). However, we
also note that random initialization in all stages requires a larger number of training epochs in each stage
for convergence, and hence, incurs larger training overheads. In our experiments, we find that the number
of training epochs needed for convergence in each stage is approximately 50-100 with random initialization,
and 25-50 when initializing from the previous stage.
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Figure 11: Accuracy with and without random initialization in all stages. Accuracy is measured on
all unlabeled nodes in the graph (3-layer GCN model, 4-stage self-training, 500 training epochs per stage,
confidence threshold = 0.8).

Table 5: Results of training GCN with different label rates. GCN-opt chooses the appropriate GCN
architecture for the given label rate. Self-training initializes the GCN model in each stage using the trained
weights from the previous stage (random in stage 1), while Self-training-opt randomly initializes the GCN
model in all stages. Both versions of self-training train the GCN-opt model.

Dataset Labels/Class 2-layer GCN GCN-opt Self-training Self-training-opt

Cora

1 41.1 48.9 51.3 52.7
2 60.7 64.3 65.0 66.1
4 67.2 69.1 69.6 70.8
8 74.6 74.8 75.1 75.5
16 78.8 78.8 78.9 79.1

Citeseer

1 34.8 38.1 38.6 39.3
2 40.7 49.9 50.7 52.9
4 51.1 58.1 58.8 60.1
8 64.2 64.4 65.6 66.8
16 69.1 69.1 69.4 70.0

Pubmed

1 40.7 42.8 49.8 57.7
2 54.5 56.1 60.3 68.4
4 62.1 63.3 66.2 69.7
8 69.4 69.9 70.5 71.7
16 76.7 76.7 77.1 77.4

CoraFull

1 25.8 26.4 28.2 29.1
2 27.4 29.6 31.8 33.0
4 41.1 43.2 43.7 44.7
8 53.0 53.2 54.8 55.6
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B Comparison of previously proposed self-training methods

While the the optimizations proposed in FASTRAIN-GNN can be used in conjunction with different pseu-
dolabeling methods, we demonstrate that FASTRAIN-CaGCN produces more accurate models compared to
previously proposed self-training methods (Table 6). For M3S and CGCN, we report results directly from
the respective papers. For all other methods, we report the average accuracy across 100 different random
train-test splits.

Table 6: Results of training GCN with different self-training methods on Cora. The most accurate
model without using our FASTRAIN-GNN framework is underlined, while the most accurate model overall
is displayed in bold.

Self-training method Accuracy of self-trained model
2 Labels/Class 4 Labels/Class 8 Labels/Class

Co-train (Li et al., 2018) 66.5 71.1 75.0
Union (Li et al., 2018) 66.3 71.2 75.7

Intersection (Li et al., 2018) 64.2 69.7 74.7
Self-train (Li et al., 2018) 66.1 70.8 75.5

M3S (Sun et al., 2020) 61.5 67.2 75.6
DSGCN (Zhou et al., 2019) 68.9 72.6 77.6

CGCN (Hui et al., 2020) 64.3 72.4 76.8
Self-train-CaGCN (Wang et al., 2021) 69.5 71.9 79.4

FASTRAIN-CaGCN (Ours) 73.0 74.1 81.6
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