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Abstract

3D Gaussian splatting (3DGS) has shown promising results in image rendering and
surface reconstruction. However, its potential in volumetric reconstruction tasks,
such as X-ray computed tomography, remains under-explored. This paper intro-
duces R?-Gaussian, the first 3DGS-based framework for sparse-view tomographic
reconstruction. By carefully deriving X-ray rasterization functions, we discover
a previously unknown integration bias in the standard 3DGS formulation, which
hampers accurate volume retrieval. To address this issue, we propose a novel recti-
fication technique via refactoring the projection from 3D to 2D Gaussians. Our new
method presents three key innovations: (1) introducing tailored Gaussian kernels,
(2) extending rasterization to X-ray imaging, and (3) developing a CUDA-based dif-
ferentiable voxelizer. Experiments on synthetic and real-world datasets demonstrate
that our method outperforms state-of-the-art approaches in accuracy and efficiency.
Crucially, it delivers high-quality results in 4 minutes, which is 12x faster than
NeRF-based methods and on par with traditional algorithms. Code and models are
available on the project page https://github.com/Ruyi-Zha/r2_gaussian.

1 Introduction

Computed tomography (CT) is an essential imaging technique for noninvasively examining the
internal structure of objects. Most CT systems use X-rays as the imaging source thanks to their
ability to penetrate solid substances [20]]. During a CT scan, an X-ray machine captures multi-angle
2D projections that measure ray attenuation through the material. As the core of CT, tomographic
reconstruction aims to recover the 3D density field of the object from its projections. This task is
challenging in two aspects. Firstly, the harmful X-ray radiation limits the acquisition of sufficient
and noise-free projections, making reconstruction a complex and ill-posed problem. Secondly,
time-sensitive applications like medical diagnosis require algorithms to deliver results promptly.

Existing tomography methods suffer from either suboptimal reconstruction quality or slow processing
speed. Traditional CT algorithms [[13}12}55]] deliver results in minutes but induce serious artifacts. Su-
pervised learning-based approaches [32}133}110,135] achieve promising outcomes by learning semantic
priors but struggle with out-of-distribution objects. Recently, neural radiance fields (NeRF) [43] have
been applied to tomography and perform well in per-case reconstruction [67, 66} 48], 16| 154]]. However,
they are very time-consuming (> 30 minutes) because a huge amount of points have to be sampled
for volume rendering.
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Figure 1: We compare our method to state-of-the-art NeRF-based methods (IntraTomo [66], NAF [67],
SAX-NeRF [6]) in terms of visual quality, PSNR (dB), and training time (minute). Our method
achieves the highest reconstruction quality and is significantly faster than other methods.

Recently, 3D Gaussian splatting (3DGS) has outperformed NeRF in both quality and efficiency
for view synthesis [64), 38| [31]] and surface reconstruction [16] 18] 65]]. However, attempts to apply
the 3DGS technique to volumetric reconstruction tasks, such as X-ray tomography, are limited and
ineffective. Some concurrent works [[7, empirically modify 3DGS for X-ray view synthesis, but
they treat it solely as a data augmentation tool for traditional tomography algorithms. To date, there
is no 3DGS-based method for direct CT reconstruction.

In this paper, we reveal an inherent integration bias in 3DGS. This bias, despite having a negligible
impact on image rendering, critically hampers volumetric reconstruction. To be more specific, we
will show in Sec.[#.2.T|that the standard 3DGS overlooks a covariance-related scaling factor when
splatting a 3D Gaussian kernel onto the 2D image plane. This formulation leads to inconsistent
volumetric properties queried from different views. Besides the integration bias, there are other
challenges in applying 3DGS to tomography, such as the difference between natural light and X-ray
imaging and the lack of an effective technique to query volumes from kernels.

We propose R%-Gaussian (Rectified Radiative Gaussians) to extend 3DGS to sparse-view tomographic
reconstruction. R2-Gaussian achieves a bias-free training pipeline with three significant improve-
ments. Firstly, we introduce a novel radiative Gaussian kernel, which acts as a local density field
parameterized by central density, position, and covariance. We initialize Gaussian parameters using
the analytical method FDK and optimize them with photometric losses. Secondly, we rectify
the 3DGS rasterizer to support X-ray imaging. This is achieved by deriving new X-ray rendering
functions and correcting the integration bias for accurate density retrieval. Thirdly, we develop a
CUDA-based differentiable voxelizer, which not only extracts 3D volumes from Gaussians but also
enables voxel-based regularization during training. We evaluate R?-Gaussian on both synthetic and
real-world datasets. Extensive experiments demonstrate that our method surpasses state-of-the-art
(SOTA) methods within 4 minutes, which is 12x faster than the most efficient NeRF-based solution,
NAF [[67]] and comparable to traditional algorithms. It converges to optimal results in 15 minutes,
improving PSNR by 0.6 dB compared to SOTA methods. A visual comparison is shown in Fig.[T}

Our contributions can be summarized as follows: (1) We discover a previously unknown integration
bias in 3DGS that impedes volumetric reconstruction. (2) We propose the first 3DGS-based tomogra-
phy framework by introducing new kernels, extending rasterization to X-ray imaging, and developing
a differentiable voxelizer. (3) Our method significantly outperforms state-of-the-art methods in both
reconstruction quality and training speed, highlighting its practical value.

2 Related work

Tomographic reconstruction Computed tomography (CT) is widely used for non-intrusive inspec-
tion in medicine 22]), biology [12}39,24], and industry [11]]. Conventional fan-beam CT produces
a 3D volume by reconstructing each slice from 1D projection arrays. Recently, the cone-beam scanner
has become popular for its fast scanning and high resolution [52]], leading to the demand for 3D
tomography, i.e., recovering the volume directly from 2D projection images. Our work focuses on
3D sparse-view reconstruction where less than a hundred projections are captured to reduce radiation
exposure. Traditional algorithms are mainly grouped into analytical and iterative methods. Analytical



methods like filtered back projection (FBP) and its 3D variant FDK [13]] produce results instantly
(< 1 second) by solving the Radon transform and its inverse [46]. However, they introduce serious
streak artifacts in sparse-view scenarios. Iterative methods [2, 155} 40! |51]] formulate tomography as a
maximum-a-posteriori problem and iteratively minimize the energy function with regularizations.
They successfully suppress artifacts but take longer time (< 10 minutes) and lose structure details.
Deep learning methods can be categorized as supervised and self-supervised families. Supervised
methods learn semantic priors from CT datasets. They then use the trained networks to inpaint
projections [3} [15]], denoise volumes [10} 28 35| 37]] or directly output results [[19} 163} [1} 32} [33]].
Supervised learning methods perform well in cases similar to training sets but suffer from poor genera-
tion ability when applied to unseen data. To overcome this limitation, some studies [67} 166 48] 16, [54]]
handle tomography in a self-supervised learning fashion. Inspired by NeRF [43], they model the
density field with coordinate-based networks and optimize them with photometric losses. Although
NeRF-based methods excel in per-case reconstruction, they are time-consuming (>30 minutes) due
to the extensive point sampling in volume rendering. Our work can be put into the self-supervised
learning family, but it greatly accelerates the training process and improves reconstruction quality.

3DGS 3D Gaussian splatting [23] outperforms NeRF in speed by leveraging highly parallelized
rasterization for image rendering. 3DGS represents objects with a set of trainable Gaussian-shaped
primitives. It has achieved great success in RGB tasks, including surface reconstruction [16} 18} 65]],
dynamic scene modeling [60, 34} 61]], human avatar [36 [30, [27], 3D generation [57, |62, [9], etc.
Some concurrent works have extended 3DGS to X-ray imaging. X-Gaussian [7]] modify 3DGS to
synthesize novel-view X-ray projections. Gao et al. [14]] improve X-Gaussian by considering complex
noise-inducing physical effects. While they produce plausible 2D X-ray projections, they cannot
directly extract 3D density volumes from trained Gaussians. Instead, they first augment projections
with 3DGS, and then use traditional algorithms such as FDK for CT reconstruction, which is neither
efficient nor effective. Li et al. [29]] represent the density field with customized Gaussian kernels, but
they replace the efficient rasterization with existing CT simulators. In comparison, our work can both
rasterize X-ray projections and voxelize density volumes from Gaussians.

3 Preliminary
3.1 X-ray imaging

A projection I € R¥*W measures ray attenuation
through the material as shown in Fig.[2] For an X-
ray r(t) = o + td € R3 with initial intensity I, and
path bounds ¢,, and ¢ ¢, the corresponding raw pixel
value I’ ( ) is given w1th the Beer Lambert Law [20]
by: I'(r) = I exp(— ft Here, o(x)

is the isotropic density (or attenuatlon coefﬁ01ent in
physics) at position x € R3. Tomography typically I r(t) [>
transforms raw data to the logarithmic space for Source
computational simplicity, i.e.,
ty 7
I(r) =logly —logI'(r) = / o(r(t))dt, (1) Circular
tn Object o(x) Scanning

where each pixel value I(r) represents the density

integral along the ray path. Except otherwise spec- Figure 2: A detection plane captures the atten-
ified, we use the logarithmic projections as inputs. uation of X-rays emitted from different angles.
The goal of tomographic reconstruction is to esti-

mate the 3D distribution of o(x), output as a discrete volume, with X-ray projections {I; };—1 ... n
captured from NV different angles. Note that real-world projections contain minor anisotropic physical
effects such as Compton scattering. Following previous works [[13 2,155 167]], we do not explicitly
model them but treat them as noise during the reconstruction.

3.2 3D Gaussian splatting

3D Gaussian splatting [23]] models the scene with a set of 3D Gaussian kernels G3 = {Gf’}lzl M
each parameterized by position, covariance, color, and opacity. A rasterizer R renders an RGB image
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Figure 3: We represent the scanned object as a set of radiative Gaussians. We optimize them using
real X-ray projections and finally retrieve the density volume with voxelization.

Lo € RE>WX3 from these Gaussians, formulated as
Ly =R(G*) =CoPoT (G, )

where T, P, and C are the transformation, projection, and composition modules, respectively. First,
T transforms the 3D Gaussians into the ray space, aligning viewing rays with the coordinate axis
to enhance computational efficiency. The transformed 3D Gaussians are then projected onto the
image plane: G®> = P(G?). The projected 2D Gaussian retains the same opacity and color as its
3D counterpart but omits the third row and column of position and covariance. An RGB image is
then rendered by compositing these 2D Gaussians using alpha-blending [43]: I,.,, = C(G?). The
rasterizer is differentiable, allowing for the optimization of kernel parameters using photometric losses.
3DGS initializes sparse Gaussians with structure-from-motion (SfM) points [53]. During training, an
adaptive control strategy dynamically densifies Gaussians to improve scene representation.

4 Method

In this section, we first introduce radiative Gaussian as a novel object representation in Sec. @ Next,
we adapt 3DGS to tomography in Sec.[.2] Specifically, we derive new rasterization functions and
analyze the integration bias of standard 3DGS in Sec. [#.2.1] We further develop a differentiable
voxelizer for volume retrieval in Sec..2.2] The optimization strategy is elaborated in Sec.[d.2.3]

4.1 Representing objects with radiative Gaussians

As shown in Fig. [3| we represent the target object with a group of learnable 3D kernels G® =
{G3}i1,... v that we term as radiative Gaussians. Each kernel G defines a local Gaussian-shaped
density field, i.e.,

1 _
G3(x|pi, piy Bi) = pi - exp <2(X —pi) Z 1 (x— pz)> , 3)

where p;, p; € R? and 3; € R3*? are learnable parameters representing central density, position
and covariance, respectively. For optimization purposes, we follow to further decompose the
covariance matrix X; into the rotation matrix R; and scale matrix S;: X; = RiSZ-SiT RiT . The
overall density at position x € R? is then computed by summing the density contribution of kernels:

M
a(x) =Y GHxlpi, pi i) “
=1

Compared with standard 3DGS, our kernel formulation removes view-dependent color because
X-ray attenuation depends only on isotropic density, as shown in Eq. (T). More importantly, we
define the density query function (Eq. (@)) for radiative Gaussians, making them useful for both 2D
image rendering and 3D volume reconstruction. In contrast, the opacity in 3DGS is empirically
designed for RGB rendering, leading to challenges when extracting 3D models such as meshes from
Gaussians [[16] [8] [63]. Concurrent work also explores kernel-based representation but uses
simplified isotropic Gaussians. Our work employs a general Gaussian distribution, offering more
flexibility and precision in modeling complex structures.
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Figure 4: Training pipeline of R2-Gaussian. (a) Overall training pipeline. (b) X-ray rasterization for
projection rendering. (c) Density voxelization for volume retrieval. (d) Modified adaptive control.

Initialization 3DGS initializes Gaussians with SfM points, which is not applicable to volumetric
tomography. Instead, we initialize our radiative Gaussians using preliminary results obtained from
the analytical method. Specifically, we use FDK to reconstruct a low-quality volume in less than
1 second. We then exclude empty spaces with a density threshold 7 and randomly sample M points
as kernel positions. Following [23]], we set the scales of Gaussians as the nearest neighbor distances
and assume no rotation. The central densities are queried from the FDK volume. We empirically
scale down the queried densities with & to compensate for the overlay between kernels.

4.2 Training radiative Gaussians

Our training pipeline is shown in Fig. [d] Radiative Gaussians are first initialized from an FDK
volume. We then rasterize projections for photometric losses and voxelize tiny density volumes for
3D regularization. Adaptive control is used to densify Gaussians for better representation. After
training, we voxelize density volumes of the target size for evaluation.

4.2.1 X-ray rasterization

This section focuses on the theoretical derivation of X-ray rasterization R. As discussed in Sec.[3.1]
the pixel value of a projection is the integral of density along the corresponding ray path. We
substitute Eq. (@) into Eq. (I), yielding

M M
L) = [ Y G0 =>" [ GAx(olpnpi Zd, )
=1 =1

where I,.(r) is the rendered pixel value. This implies that we can individually integrate each 3D
Gaussian to rasterize an X-ray projection. Note that ¢,, and t; in Eq. (]I[) are neglected because we
assume all Gaussians are bounded inside the target space.

Transformation Since a cone-beam X-ray scanner can be modeled similarly to a pinhole camera,
we follow [69] to transfer Gaussians from the world space to the ray space. In ray space, the



viewing rays are parallel to the third coordinate axis, facilitating analytical integration. Due to the
non-Cartesian nature of ray space, we employ the local affine transformation to Eq. (9, yielding

M
L(r)~ ) / G2 (X|ps, d(p), TWE,W T I ) das, (6)
i=1 v
Pi =

where X = [z, 71, 22] " is a point in ray space, p; € R? is the new Gaussian position obtained
through projective mapping ¢, and 3; € R3*3 is the new Gaussian covariance controlled by local
approximation matrix J; and viewing transformation matrix W. Refer to Appendix [A]for determining
¢, J;, and W from scanner parameters.

Projection and composition A good property of normalized 3D Gaussian distribution is that its
integral along one coordinate axis yields a normalized 2D Gaussian distribution. Substitute Eq. (3)
into Eq. (6) and we have

- 1 1 1 -
I(r) ~ izwgzﬂ/ﬁex (—i—yTz.li—y)dm
(r) = > pi(2m) 7| %] GIE 5 (&= p) '3 (X = pi) | da

Normalized 3D Gaussian distribution
M 1 1
3. (L ~ N SN—1 7~ ~
= Zpi(%V 37 ———exp (—Q(X —p) XNk — pi))

Normalized 2D Gaussian distribution

N

M =
“ 2T 27 N S
= E GZQ(X| J |pi7p’i72i)a
i=1 |El|
Y
Pi

where X € R2, p € R2, 33 € R2*2 are obtained by dropping the third rows and columns of their
counterparts X, p, and X, respectively. Eq. (7) shows that an X-ray projection can be rendered by
simply summing 2D Gaussians instead of alpha-compositing them in natural light imaging.

Integration bias During the projection, a key difference between our
2D Gaussian and the original one in 3DGS is the central density (opacity)
pi. As shown in Eq. (7), we scale the density with a covariance-related v
factor y; = (27|3;|/[2:)/%: pi = pipi, while 3DGS does not. This P
implies that 3DGS, in fact, learns an integrated density in the 2D image

plane rather than the actual one in 3D space. This integration bias, though i’“
having a negligible impact on imaging rendering, leads to significant ‘_ e <
inconsistency in density retrieval. We demonstrate the inconsistency with

a simplified 2D-to- 1D projection in Fig.[5] When attempting to recover the ]
central density p in 3D space with p; = p; /11, we find different views i

(p5) lead to different results. This violates the isotropic nature of p;, ;= /l; Lot p=plus ?
preventing us from determining the correct value. In contrast, our method o
assigns the actual 3D density to the kernel and forwardly computes the F_1gure 5f Density incon-
2D projection, thus fundamentally solving the issue. While conceptually ~SIStency in 3DGS.
simple, implementing our idea requires substantial engineering efforts,

including reprogramming all backpropagation routines in CUDA.

4.2.2 Density voxelization

We develop a voxelizer V to efficiently query a density volume V € RX*Y*Z from radiative
Gaussians: V = V(G?). Inspired by voxelizers used in RGB tasks [57]], our voxelizer first partitions
the target space into multiple 8 x 8 x 8 3D tiles. It then culls Gaussians, retaining those with a 99%
confidence of intersecting the tile. In each 3D tile, voxel values are parallelly computed by summing
the contributions of nearby kernels with Eq. (). We implement the voxelizer and its backpropagation
in CUDA, making it differentiable for optimization. This design not only accelerates the query
process (> 100 FPS) but also allows us to regularize radiative Gaussians with 3D priors.



Table 1: Quantitative results on sparse-view tomography. We colorize the ' best, second-best , and
third-best numbers.

75-view 50-view 25-view
Methods PSNR1 SSIM{ Time, PSNR] SSIM{ Timel PSNRT SSIM{ Timel
Synthetic dataset
FDK [13] 2863 0.497 - 2650 0422 - 2299 0317 -
SART [2] 3606 0897 4mdls 3437 0875 3m36s  3L.14 0825 | Imd7s

ASD-POCS [55] 36.64 0.940 | 2m25s 34.34 0.914 1m52s 30.48 0.847 56s
IntraTomo [66] 3542 0.924 2h7m 35.25 0.923 2h9m 34.68 0914  2h19m
NAF [67] 37.84 0945 30m43s  36.65 0.932 32m4s 3391 0.893 31mls
SAX-NeRF [6] 38.07 0.950 13h5m 36.86 0.938 13h5m 34.33 0.905 13h3m
Ours (iter=10k) 38.29 0.954  2m38s 37.63 0.949 2m35s 35.08 0922  2m35s
Ours (iter=30k) 38.88 0.959 8m2l1s 37.98 0952  8ml4s 35.19 0.923 8m28s

Real-world dataset

FDK [13] 30.03 0.535 - 27.38 0.449 - 23.30 0.335 -

SART [2] 34.42 0.845 Smlls 33.61 0.827 3m?28s 31.52 0.790 1m47s
ASD-POCS [55] 36.33 0.868 2m43s 34.58 0.861 1m49s 31.32 0.810 56s
IntraTomo [66] 36.79 0.858  2h25m 36.99 0.854  2h19m 35.85 0.835  2h18m

NAF [67] 38.58 0.848  51m28s  36.44 0.818 5Im31ls 3292 0.772  51m24s
SAX-NeRF [6] 34.93 0.854 13h21m  34.89 0.840  13h23m  33.49 0.793  13h25m
Ours (iter=10k) 38.10 0.872 3m39s 37.52 0.866 3m37s 35.10 0.840  3m23s
Ours (iter=30k) 39.40 0.875 14ml6s | 38.24 0.864 13m52s  34.83 0.833  12m56s

4.2.3 Optimization

We optimize radiative Gaussians using stochastic gradient descent. Besides photometric L1 loss £
and D-SSIM loss Lgs;m [59]], we further incorporate a 3D total variation (TV) regularization [49]]
L, as a homogeneity prior for tomography. At each training iteration, we randomly query a tiny
density volume V,,, € RP*PXD (same spacing as the target output) and minimize its total variation.
The overall training loss is defined as:

£total - £1(I7'7 Im) + )\ssim['ssim (Ira Im) + A1t11£tv (Vtv)a (8)

where I, I,,,, Agsim and Ay, are rendered projection, measured projection, D-SSIM weight, and TV
weight, respectively. Adaptive control is employed during training to enhance object representation.
We remove empty Gaussians and densify (clone or split) those with large loss gradients. Considering
objects such as human organs have extensive homogeneous areas, we do not prune large Gaussians.
As for densification, we halve the densities of both original and replicated Gaussians. This strategy
mitigates the sudden performance drop caused by new Gaussians and hence stabilizes training.

S Experiments

5.1 Experimental settings

Dataset We conduct experiments on both synthetic and real-world datasets. For the synthetic
dataset, we collect 15 real CT volumes, ranging from organisms to artificial objects. We then use the
tomography toolbox TIGRE [5] to synthesize X-ray projections and add Compton scatter and electric
noise. For real-world experiments, we use three cases from the FIPS dataset [56]], each with 721 real
projections. Since ground truth volumes are unavailable, we use FDK [13]] to create pseudo-ground
truth using all views and then subsample views for sparse-view experiments. We set 75, 50, and 25
views for both synthetic and real-world data as three sparse-view scenarios. Refer to Appendix [B] for
more details of datasets.

Implementation details Our R2-Gaussian is implemented in PyTorch [44] and CUDA [50], and
trained with the Adam optimizer [25]] for 30k iterations. Learning rates for position, density, scale,
and rotation are initially set as 0.0002, 0.01, 0.005, and 0.001, respectively, and exponentially to
0.1 of their initial values. Loss weights are Agq;, = 0.25 and Ay, = 0.05. We initialize M = 50k
Gaussians with a density threshold 7 = 0.05 and scaling term k£ = 0.15. The TV volume size is
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Figure 6: Colorized slice examples of different methods with PSNR (dB) shown at the bottom right of
each image. The first three rows are from the synthetic dataset and the last row is from the real-world
dataset. Our method recovers more details and suppresses artifacts.

D = 32. Adaptive control runs from 500 to 15k iterations with a gradient threshold of 0.00005.
All methods run on a single RTX3090 GPU. We evaluate reconstruction quality using PSNR and
SSIM [59], with PSNR calculated in 3D volume and SSIM averaged over 2D slices in axial, coronal,
and sagittal directions. We also report the running time as a reflection of efficiency.

5.2 Results and evaluation

For fairness, we do not compare methods that require external training data but focus on those that
solely use 2D projections of arbitrary objects. We compare R%-Gaussian with three traditional methods
(FDK [13]], SART [2], ASD-POCS [33])) and three SOTA NeRF-based methods (IntraTomo [66]],
NAF [67], SAX-NeRF [6])). Tab. [T]reports the quantltatlve results on sparse-view tomography. Note
that we do not report the running time for FDK as it is instant. R%-Gaussian achieves the best
performance across all synthetic and most real-world experiments. Specifically, our method delivers
a 0.93 dB higher PSNR than SAX-NeRF, on the synthetic dataset, and a 0.95 dB improvement over
IntraTomo on the real-world dataset. It is also worth noting that our 50-view results are already
on par with the 75-view results of other methods. Regarding efficiency, our method converges to
optimal results in 15 minutes, which is 3.7 x faster than the most efficient NeRF-based method, NAF.
Surprisingly, it takes less than 4 minutes to surpass other methods, which is even faster than the
traditional algorithm SART. Fig. [ shows the visual comparisons of different methods. FDK and
SART introduce streak artifacts, while ASD-POCS and IntraTomo blur structural details. NAF and
SAX-NeRF are better than other baseline methods but have salt-and-pepper noise. In comparison, our
method successfully recovers sharp details, e.g., ovules of pepper, and maintains good smoothness
for homogeneous areas, e.g., muscles in the chest.



Table 2: Quantitative results of X-3DGS and our method on the synthetic dataset.

75-view 50-view 25-view
X-3DGS Ours X-3DGS Ours X-3DGS Ours

2D PSNRT 4997 50.54 4726 | 49.70 39.84 46.28
2D SSIM? 0.987 0.986 0.984 | 0.986 0.967 0.982
3D PSNR? 23.40 38.86 21.24 37.98 14.07 35.17
3D SSIM?T 0.660 0.959 0.562 | 0.952 0.408 0.923

5.3 Ablation study

Integration bias To demonstrate the impact of integration bias discussed in Sec.[#.2.1] we develop
an X-ray version of 3DGS (X-3DGS) that uses X-ray rendering while retaining the biased 3D-to-2D
Gaussian projection. We use the same voxelizer in Sec. d.2.2]to extract volumes. Before voxelization,
we divide the learned density of each Gaussian by the mean scaling factor y of all training views.
Tab. [2] shows that rectifying integration bias benefits both 2D rendering (+3.15 dB PSNR) and 3D
reconstruction (+17.77 dB PSNR). Fig. [/| visualize rendering and reconstruction results. While
X-3DGS renders reasonable 2D projections, its reconstruction quality is significantly worse than ours.
Besides, there are notable discrepancies in slices queried from different views. The conflicting 2D
and 3D performances indicate that X-3DGS, despite fitting images well, does not accurately model
the density field. In contrast, our method learns the actual view-independent density, eliminating
inconsistencies and ensuring unbiased object representation.

Component analysis We conduct ablation experiments to assess the effect of FDK initialization
(Init.), modified adaptive control (AC), and total variation regularization (Reg.) on performance. The
baseline model excludes these components and uses randomly generated Gaussians for initialization.
Experiments are performed under the 50-view condition, evaluating PSNR, SSIM, training time,
and Gaussian count (Gau.). Results are listed in Tab. @ FDK initialization boosts PSNR by 0.9 dB.
Adaptive control improves quality but prolongs training due to more Gaussians. TV regularization
increases SSIM by reducing artifacts and promoting smoothness. Overall, our full model outperforms
the baseline, improving PSNR by 1.51 dB and SSIM by 0.018, with training time under 9 minutes.

Parameter analysis We perform parameter analysis on the number of initialized Gaussians M,
TV loss weight A4, and TV volume size D. The results are shown in the last three blocks of Tab.
R2-Gaussian achieves good quality-efficiency balance at 50k initialized Gaussians. A TV loss weight
of A\¢, = 0.05 improves reconstruction, but larger values can lead to degradation. The training time
increases with TV volume size while the performance peaks at D = 32.

Convergence analysis Fig. [8|compares the results of NeRF-based methods and our R?-Gaussian
method at different iterations. Our method, both with and without FDK initialization, converges
significantly faster, displaying sharp details by the 500th iteration when other methods still exhibit
artifacts and blurriness. Notably, the FDK initialization offers a rough structure before training, which

Rendered Projections (30°) Reconstructed Volumes

X-3DGS (30°  X-3DGS (90°)  X-3DGS (150°) Ours Ground Truth

Figure 7: Results of X-3DGS and our method with PSNR (dB) indicated on each image. We show
slices of X-3DGS queried from three viewing angles. Although X-3DGS can produce plausible X-ray
projections, its reconstructed volume lacks view consistency and exhibits poor quality.
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Table 3: Ablation results with our choices in bold.
Synthetic PSNRT SSIMT  Timel  Gau.
Baseline (B) 36.47 0.934 4m57s 50k

1stiter

B+Init. 37.37 0.944 5m29s 50k ?
B+AC 37.33 0.942 7m33s 70k 2
B+Reg. 36.79 0.943 6m30s 50k

Full model 37.98 0.952 8m37s 68k 5
M=5k 37.44 0.946 9m18s 32k %

M=10k 37.56 0.948 8m59s 35k
M=50k 37.98 0.952 8ml4s 68k
M=100k 38.03 0.953 9m4s 112k
M=200k 37.82 0.949 9m54s 206k

Atv=0 37.66 0.948 Tm9s 68k
At=0.01 37.88 0.950 8m21s 68k
Atr=0.05 37.98 0.952 8ml4s 68k

Atu=0.1 37.73 0.951 8mlls 68k
Atv=0.15 37.40 0.949 8m27s 69k

1000t iter

750t iter

Final

D=8 37.74 0.949 Tm56s 68k

D=16 37.94 0.950 8m18s 68k

D=32 EEETIZEN 68K o5, 1omin 571208, 2 min 25908 753 85ad,domis 909048,
D=48 3790 0951 9m3d4s 67k Ejgyre 8: Results of NeRF-based methods and
D=64 37.82 0.949 11m35s 67k

our R2-Gaussian at different iterations.

further accelerates convergence and enhances reconstruction quality. Finally, our method outperforms
others in both performance and efficiency, achieving the highest PSNR of 38.90 dB in 9 minutes.

6 Discussion and conclusion

Discussion R2-Gaussian inherits some limitations from 3DGS, such as varying training time across
modalities, needle-like artifacts under extremely sparse-view conditions, and suboptimal extrapolation
for other tomography tasks. Besides, we have not considered calibration errors regarding the scanned
geometry and anisotropic physical effects such as Compton scattering. More details are discussed
in Appendix [E] Despite these limitations, our method’s superior performance and fast speed make it
valuable for real-world applications for medical diagnosis and industrial inspection.

Conclusion This paper presents R?-Gaussian, a novel 3DGS-based framework for sparse-view
tomographic reconstruction. We identify and rectify a previously overlooked integration bias of
standard 3DGS, which hinders accurate density retrieval. Furthermore, we enhance 3DGS for
tomography by introducing new kernels, devising X-ray rasterization functions, and developing a
differentiable voxelizer. Our R%2-Gaussian surpasses state-of-the-art methods in both reconstruction
quality and training speed, demonstrating its potential for real-world applications. Crucially, we
speculate that the newly found integration bias may be pervasive across all 3DGS-related research.
Consequently, our rectification technique could benefit more tasks beyond computed tomography.
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A Transformation module in X-ray rasterization

The configuration of a cone beam CT scanner is shown in Fig.[9] The X-ray source and detector
plane rotate around the z-axis, resembling a pinhole camera model. Therefore, we can formulate the
field-of-view (FOV) of a scanner as

D, D
FOV, :2'arctan(f),FOYy :2~arctan(2Ly ). )
SD 5D

Here, (D,, Dy) is the physical size of the detector plane, and Lgp is the distance between the source
and the detector. Following [23], we then use FOV's to determine the projection mapping ¢.

To get Gaussians in the ray space, we first transfer them from the world space to the scanner space.
The scanner space is defined such that its origin is the X-ray source, and its z-axis points to the
projection center. The transformation matrix T from the world space to the scanner space is

—sinf  cos@ 0 0
T:{W t},wzl 0 0 1],t=lo

(10)
0 1 —cosf) —sinf O Lso

Here, ¢ is the rotation angle, and Lgo is the distance between the source and the object. Next, we
apply local approximation on each Gaussian. The Jacobian of the affine approximation J; is the
same as Eq. (29) in [69]. Finally, we have the Gaussian in the ray space with new position p and
covariance 21' as

pi = ¢(p), T = L,WI,W'J/]. (1D

Figure 9: Configuration of a cone-beam CT scanner.

B Details of dataset

Synthetic data We evaluate methods with various modalities, covering major CT applications
such as medical diagnosis, biological research, and industrial inspection. The synthetic dataset
consists of 15 cases across three categories: human organs (chest, foot, head, jaw, and pancreas),
animals and plants (beetle, bonsai, broccoli, kingsnake, and pepper), and artificial objects (backpack,
engine, present, teapot, and mount). The chest and pancreas scans are from LIDC-IDRI [4] and
Pancreas-CT [47]], respectively. Broccoli and pepper are obtained from X-Plant [58]], and the rest are
from SciVis [26]. Following [67, 6], we preprocess raw data by normalizing densities to [0, 1] and
resizing volumes to 256 x 256 x 256. We then use the tomography toolbox TIGRE [5]] to capture
512 x 512 projections in the range of 0° ~ 360°. We add two types of noise: Gaussian (mean
0, standard deviation 10) as electronic noise of the detector and Poisson (lambda 1e5) as photon
scattering noise. All volumes and their projection examples are shown in Fig.

Real-world data We use FIPS [56], a public dataset providing real 2D X-ray projections. FIPS
includes three objects (pine [41], seashell [21], and walnut [42]). Each case has 721 projections in
the range of 0°-360°. We preprocess 2D projections by resizing them to 5602560 and normalizing
them to [0, 1]. Since ground truth volumes are unavailable, we use FDK to create pseudo-ground
truth with all views and then subsample 75/50/25 views for sparse-view experiments. The size of the
target volume is 256 x 256 X 256.
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Figure 10: Datasets used for experiments. We show half volume and projection examples for each
case.

C Implementation details of baseline methods

For fairness, we do not compare methods that require external training data but focus on those that
solely use 2D projections of arbitrary objects. We run traditional algorithms FDK, SART, and ASD-
POCS with GPU-accelerated tomographic toolbox TIGRE [J3]], and select three SOTA NeRF-based
tomography methods. IntraTomo models the density field with a large MLP. NAF accelerates the
training process by hash encoding. SAX-NeRF achieves plausible results with a line segment-based
transformer. We use the official code of NAF and SAX-NeRF and conduct experiments with default
hyperparameters. The IntraTomo implementation is sourced from the NAF repository. The training
iterations of NeRF-based methods are set to 150k (default of NAF and SAX-NeRF). All methods are
run on a single RTX 3090 GPU.

D More qualitative results

Main results We visualize more reconstruction results in Fig.[TT]and Fig.[T2] FDK and SART in-
troduce notable streak artifacts, while ASD-POCS and IntraTomo blur structural details. NeRF-based
solutions perform better than traditional methods but exhibit salt-and-pepper noise. In comparison,
our method successfully recovers sharp details and maintains smoothness in homogeneous areas.

Integration bias We show more qualitative comparisons of X-3DGS and ours in Fig. Our
method outperforms X-3DGS in both 2D rendering and 3D reconstruction.

Components and parameters We visually compare different components and parameters in Fig.
Our newly introduced components improve the reconstruction quality. Our parameter setting also
yields the best performance.

Convergence analysis We show the PSNR and SSIM plots in Fig. Our method converges
significantly faster than NeRF-based methods and outperforms them in only 3000 iterations.

E More discussion of limitation

Varying time We present the training times for all cases in Fig. The training time varies across
cases, primarily due to the different numbers of kernels used. Our method takes more time on objects
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Figure 11: Reconstruction results of NeRF-based methods and our method on the synthetic dataset.

with large homogeneous areas, such as the chest, pancreas, and mount, and less time on those with
sparse structures, such as the beetle, backpack, and present.

Needle-like artifacts While our method achieves the highest reconstruction quality, it introduces
needle-like artifacts, especially under the 25-view condition (Fig. [I7). This suggests that some
Gaussians may overfit specific X-rays. Similar artifacts are also observed in 3DGS [68].

Extrapolation ability While this paper focuses on sparse-view CT (SVCT), we also test R-
Gaussian on limited-angle CT (LACT), where the scanning range is constrained to less than 180°.
Unlike SVCT, which highlights the interpolation ability of methods, LACT challenges their extrapo-
lation ability, i.e., estimating unseen areas outside the scanning range. We generate 100 projections
within ranges of 0° ~ 150°, 0° ~ 120°, and 0° ~ 90°. The quantitative results in Tab. [4|show that
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Figure 12: Reconstruction results on the real-world dataset.

our method has slightly lower PSNR but higher SSIM than the NeRF-based method NAF. Visualiza-
tion results in Fig. [T8]indicate that our method recovers more details in scanned areas but exhibits
blurred artifacts in unseen areas. We attribute this performance drop to the nature of the networks
and kernels. Given the gradient of a ray, NeRF updates the entire network while 3DGS individually
optimizes intersected kernels. Thus, NeRF has better global awareness and consistency, while 3DGS
is more local-oriented and has suboptimal extrapolation ability.

Calibration error In real-world applications, calibration errors can affect reconstruction quality.
For example, tomography requires a reference image I, in Eq. () to represent the illumination pattern
without the object. This reference image may have artifacts, such as intensity dropoff towards the
image boundaries and other non-uniformities in illumination. Additionally, scanner extrinsics and
intrinsics may vary during scanning due to heat expansion and mechanical vibrations. Addressing
these practical challenges will be the focus of future work.

Anisotropic effects Following existing CT reconstruction methods, we work under the isotropic
assumption of X-ray imaging. However, in the real world, some X-ray transport effects, such as
Compton scattering, are anisotropic. We do not explicitly model them but treat them as noises on
X-ray projections. This is a necessary simplification for CT reconstruction but may induce inaccuracy
for novel-view X-ray synthesis. Readers may refer to [[7,[14]] for using 3DGS for X-ray view synthesis.

Table 4: Quantitative evaluation on limited-angle tomography. We colorize the best , second-best ,
and third-best numbers.

0° ~ 150° 0° ~ 120° 0° ~ 90°
Methods - - -
PSNRT SSIMT Time|/ PSNRT SSIM?T Timel PSNRfT SSIM{T  Timel
FDK [13] 26.83 0.570 - 24.00 0.566 - 21.22 0.547 -
SART [2] 33.34 0.883 7m9s 30.21 0.847  Tm8s 26.71 0.795 7m59s
ASD-POCS [55] 33.16 0.913 3m4ls 29.76 0.875 | 3m39s  26.34 0.812 4m8s
NAF [67] 36.29 0.940 27ml8s | 33.35 0.922 27mé6s | 29.89 0.884  27m25s
Ours 36.12 0.948 9m3s 32.68 0.923 8m36s 29.21 0.886  8m28s
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Figure 13: Qualitative comparison of X-3DGS and our method.

F Broader impacts

Impacts on real-world applications Computed tomography is an essential imaging technique that
is widely used in fields including medicine, biology, industry, etc. Our R%-Gaussian enjoys superior
reconstruction performance and fast convergence speed, making it promising to be implemented in
real-world applications such as medical diagnosis and industrial inspection.

Impacts on research community We discover a previously unknown integration bias problem in
currently popular 3DGS. we speculate that this problem could be universal across all 3DGS-related
works. Therefore, our rectification technique may apply to wider practical domains, not limited
to tomography but also other tasks such as magnetic resonance imaging (MRI) reconstruction and
volumetric-based surface reconstruction.
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Figure 14: Quantitative comparison of different components and parameters.
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Figure 15: PSNR-iteration and SSIM-iteration plots of case engine, 50-view.
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Figure 16: Training time on the synthetic dataset.
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Figure 17: 3DGS-based methods tend to introduce needle-like artifacts when there are insufficient
amounts of images. PNSR (dB) is shown at the bottom right of each image.
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Figure 18: Visualization of reconstruction results under limited-angle scenarios. PNSR (dB) is shown
at the bottom right of each image.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract and introduction, we clearly highlight our contribution and scope
as a discovery of integration bias problem in 3DGS and a novel 3DGS-based framework
for tomographic reconstruction. We discuss details of our claim in Sec. ] and validate it
in Sec.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss limitation in Sec. [6l We further show more quantitative and
qualitative analysis of limitations in Appendix [E]

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We carefully derive the X-ray rasterization functions with clear assumptions
and numbered formulas as shown in Sec. d.2.T]and Appendix [A]

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Our work is based on the 3DGS framework with crucial modifications clearly
described in Sec. 4] We provide implementation details, including all hyperparameters and
training strategies in Sec. [5.1] We also attach our code in the supplementary material for
reproducibility.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will release the data and code upon acceptance. We attach the code in the
supplementary material to reproduce experimental results.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify all training and testing details, including dataset setting, hyperpa-
rameters, and type of optimizer in Sec.[5.1] We discuss hyperparameter analysis in Sec.[5.3]

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: While our work and baseline methods involve some random operations, their
influence on final results is very limited, so we do not include the error bars. Besides,
baseline methods do not provide error bars in their papers for reference.
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8.

10.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We clearly provide details of computer resources for our method and baseline
methods in Sec.[5.1]and Appendix [C]

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research strictly follows the NeurIPS Code of Ethics. We ensure anonymity
for the submission.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [Yes]

Justification: We briefly introduce the potential societal impacts in Sec. [6|and discuss them
in detail in Appendix [F}

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly credit the original codes and datasets in our paper and code. The
license and terms of use are mentioned along with the code in the supplementary material.

Guidelines:

* The answer NA means that the paper does not use existing assets.
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13.

14.

15.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide a detailed readme file along with the code in the supplementary
material, which shows details about training, license, etc.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:[NA]

Justification: Our work does not involve crowdsourcing nor research with human subjects.
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Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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