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Abstract

This paper provides a unified view to explain different adversarial attacks and
defense methods, i.e. the view of multi-order interactions between input variables
of DNNs. Based on the multi-order interaction, we discover that adversarial attacks
mainly affect high-order interactions to fool the DNN. Furthermore, we find
that the robustness of adversarially trained DNNs comes from category-specific
low-order interactions. Our findings provide a potential method to unify
adversarial perturbations and robustness, which can explain the existing defense
methods in a principle way. Besides, our findings also make a revision of
previous inaccurate understanding of the shape bias of adversarially learned
features. Our code is available online at https://github.com/Jie-Ren/
A-Unified-Game-Theoretic-Interpretation-of-Adversarial-Robustness.

1 Introduction

Adversarial robustness of deep neural networks (DNNs) has received increasing attention in recent
years. Related studies include adversarial defense and attacks [48, 21]. In terms of defense, adversarial
training is an effective and the most widely-used method [34, 72, 54, 55, 60]. In spite of their fast
development, the essential mechanism of the adversarial robustness is still unclear. Thus, the
understanding of adversarial attacks and defense is an emerging direction in recent years. Ilyas
et al. [29] demonstrated adversarial examples could be attributed to the presence of non-robust yet
discriminative features. Some methods [20, 58] explored the mathematical bound for the model
robustness. Zhang and Zhu [73], Tsipras et al. [50] found adversarial training helped DNNs learn a
more interpretable (more shape-biased) representation. Besides the feature interpretability, Tsipras
et al. [50] further showed an inherent tension between the adversarial robustness and the generalization
power.

Unlike above perspectives for explanations, we aim to propose a unified view to explain the essential
reason why and how adversarial examples emerge, as well as essential mechanisms of various
adversarial defense methods. We rethink the adversarial robustness from the novel perspective of
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Figure 1: (Left) Adversarial attacks mainly affect high-order interactions in input samples. High-order
interactions in adversarially trained DNNs are more robust than those in standard DNNs. (Right)
Regions with strong low-order and high-order interactions, which are visualized by the method
extended from [70].

interactions between input variables of a DNN. It is because in an adversarial example, adversarial
perturbations on different pixels do not attack the DNN independently. Instead, perturbation pixels
usually interact with each other to form a specific pattern for attacking. Surprisingly, we find that
such interactions can explain various aspects of adversarial robustness. Specifically, this study aims
to answer the following three questions.

• How to disentangle feature representations that are sensitive to adversarial perturbations.
Based on the game-theoretic interactions, we aim to summarize the distinct property of feature repre-
sentations, which are sensitive to adversarial perturbations, among overall feature representations.

• How to explain the effectiveness of the adversarial training. The above summarized property of
sensitive feature representations also provides a new perspective to explain the utility of the adversarial
training, i.e. why and how the adversarial training penalizes such sensitive feature representations.

• How to unify various adversarial defense methods in a single theoretic system. Our research
provides a unified understanding for the success of adversarial defense methods [65, 15, 30].

As a prerequisite of analyzing the adversarial robustness, let us first revisit the interaction between
input variables in DNNs. Let a set of input variables collaborate with each other to form an inference
pattern, the Shapley interaction index [22] is a standard metric to measure the numerical benefits
to the inference from their collaborations. This metric can be further extended to the multi-order
interaction [70]. For the interaction between two input variables (i, j), the interaction order measures
the number of contextual variables that influence the significance of the interaction between i and j.
In other words, low-order interactions represent simple collaborations between input variables with
small contexts, while high-order interactions indicate complex collaborations over large contexts (see
Figure 1 (right)).

We further prove that the network output can be decomposed into the sum of multi-order interactions
between different pairs of input variables. Thus, the overall effects of adversarial perturbations on
the network output can be decomposed into elementary effects on different interaction components.
Therefore, we can explain adversarial robustness using such elementary interaction components.

(1) We discover and partially prove that adversarial perturbations mainly affect high-order
interactions, rather than low-order interactions (see Figure 1 (left)). In comparison, low-order
interactions are naturally robust to attacks. In other words, adversarial attacks mainly affect the
complex and large-scale collaborations among most pixels in the image. Based on this, we can
successfully disentangle sensitive feature representations, i.e. high-order interactions.

Interaction vs. frequency & rank. Some studies explained adversarial examples as high-frequency
features [66, 51, 23] and high-rank features [30]. We have conducted experiments to show that
high-order interactions can better explain the essential property of attacking-sensitive representations,
i.e. the complex and large-scale visual concepts.

(2) A clear difference between standard DNNs and adversarially trained DNNs is as follows. Adver-
sarial training significantly increases the robustness of high-order interactions. In other words,
attacks mainly affect complex collaborations in standard DNNs, while for adversarially trained DNNs,
complex collaborations are not so vulnerable w.r.t. simple collaborations.
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Then, we further explain the reason for the high robustness of adversarially trained DNNs. For
interactions of each order, we define the disentanglement metric to identify whether interactions
of this order are discriminative for the classification of a specific category, or represent common
knowledge shared by different categories. For example, in Figure 1 (left), interactions representing
the blue water may be shared by different categories, while interactions corresponding to the head
of the red-breasted merganser are discriminative for this category. Based on the disentanglement
metric, we discover that compared with standard DNNs, adversarially trained DNNs usually
encode more discriminative low-order interactions. Discriminative low-order interactions make
high-order interactions of adversarially trained DNNs robust to attacks, because contexts of
high-order interactions are composed of many small contexts of low-order interactions. For example,
if the simple (low-order) interactions for the red-breasted merganser are learned to be discriminative,
instead of being shared by the bicycle category, then it is difficult to attack this image towards the
bicycle category. It is because it is difficult to use the low-order interactions of the red-breasted
merganser’s head to construct high-order interactions of bicycles.

(3) Our research provides a unified understanding for the success of several existing adver-
sarial defense methods, including the attribution-based detection of adversarial examples [65], the
recoverability of adversarial examples to normal samples, the cutout method [15], and the rank-based
method [30] (which is proved by [30] to be related to frequency-based methods [66, 51, 61]).

Above findings also slightly revise the previous explanation of adversarially learned features [21,
50, 16, 73]. They claimed that adversarial training learned more information about foreground shapes.
We discover that these adversarially learned features are actually low-order interactions (usually local
shapes), instead of modeling the global shape of the foreground.

Explainable AI system based on game-theoretic interactions. In fact, our research group led by
Dr. Quanshi Zhang have proposed game-theoretic interactions, including interactions of different
orders [69] and multivariate interactions [71]. The interaction can be used as an typical metric to
explain signal processing in DNNs from different perspectives. For example, the game-theoretic
metric can be used to guide the learning of baseline values of Shapley values [41]. Furthermore,
we have built up a tree structure to explain the hierarchical interactions between words encoded by
NLP models [68]. We have also used interactions to explain the generalization power of DNNs [70].
The interaction can also explain how adversarial perturbations contribute to the attacking task [53],
and explain the transferability of adversarial perturbations [52]. Furthermore, we have also used the
interaction to formulate the visual aesthetics [12] and signal-processing properties of different types
of visual concepts [11] in DNNs. As an extension of the system of game-theoretic interactions, in
this study, we explain the adversarial robustness based on interactions.

2 Related work

Attacking methods can be roughly summarized into white-box attacks [48, 21, 31, 38, 8] and black-
box attacks [32, 39, 10, 6, 28, 59, 4]. For defense, adversarial training is one of the most effective
and widely-used defense methods [34, 72, 54, 55, 60]. Other defense methods include masking
gradients [39, 36], modifying networks [13, 19], and applying pre-processing on input images for
testing [14, 35, 62, 3].

Explanations for adversarial examples. Some previous studies focused on the reason for the existence
of adversarial examples. Goodfellow et al. [21] explained adversarial examples as a result of the high
linearity of feature representations. Gilmer et al. [20], Ma et al. [33] proved that the existence of
adversarial examples was due to the geometry of the high-dimensional manifold. Xie et al. [62], Xu
et al. [63, 64], Bai et al. [5] discovered that adversarial perturbations usually activated substantial
“noise” and semantically irrelevant features. Engstrom et al. [17] investigated the vulnerability of
DNNs to rotations and translations. Tsipras et al. [50], Ilyas et al. [29] demonstrated that adversarial
examples were attributed to non-robust yet discriminative features.

Understandings of adversarial training. Athalye et al. [2] suggested that adversarial training did
not cause the obfuscated gradients phenomenon, which boosted the robustness. Goodfellow et al.
[21], Dong et al. [16], Tsipras et al. [50], Zhang and Zhu [73] found that adversarially trained DNNs
learned more shape-biased features than standard DNNs. Chalasani et al. [9] proved that adversarially
trained DNNs w.r.t. the ℓ∞ attack exhibited more sparse attributions. Tian et al. [49] showed that
there is robustness imbalance among classes in adversarial training. Song et al. [46] considered the
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adversarial training as the enumeration of all potential adversarial perturbations. Wang et al. [54]
explained adversarial training from the perspective of min-max optimization. Yin et al. [66], Wang
et al. [56], Harder et al. [23] discovered adversarial training pushed DNNs to utilize low-frequency
components in inputs.

Understanding of the robustness. Szegedy et al. [48], Hein and Andriushchenko [25] computed
Lipschitz constant to explain the robustness. Ignatiev et al. [27], Boopathy et al. [7] investigated the
connection between network interpretability and adversarial robustness. Tsipras et al. [50] proved
the inherent tension between adversarial robustness and standard generalization power. Fawzi et al.
[18], Gilmer et al. [20], Weng et al. [58] proved lower/upper bounds on the robustness. Pal and Vidal
[37] proposed a game-theoretic framework to understand the adversarial robustness, by formulating
the game between attackers and defenders w.r.t. a trained DNN. Under the game-theoretic framework,
Pal and Vidal [37] theoretically proved that the FGM attack and the random smoothing defense
formed a Nash Equilibrium under some assumptions.

Unlike previous explanations of the existence of adversarial examples and adversarial robustness, we
explain adversarial examples and adversarial training from a new perspective, i.e. the complexity of
visual concepts that are learned by a DNN.

3 Decomposing attacking utility into interactions of multiple orders

Preliminaries: using Shapley values [44] and the Shapley interaction index [22] to explain a
DNN. The Shapley value [44] in game theory is widely considered as an unbiased estimation for
the importance or contribution of each player in a game. Given a trained DNN and the input with
n variables (e.g. an image with n pixels, a sentence with n words) N = {1, · · · , n}, we can take
input variables as players, and consider the network output as the reward. Shapley values can fairly
divide and assign numerical effects on the network output to each input variable. More specifically,
let 2N def

= {S|S ⊆ N} denote all potential subsets of N , and each subset S represents a specific
context (e.g. a set of pixels in an image). v(S) ∈ R represents the scalar network output when we
keep variables in S unchanged and mask variables in N \ S by following settings in [1] (i.e. setting a
masked variable to the average value over different input samples).4 In particular, v(N) refers to the
network output w.r.t. the entire input N (e.g. the whole image), and v(∅) denotes the output when we
mask all variables. In this way, the Shapley value ϕ(i) unbiasedly measures the importance of the
variable i to the network output.

ϕ(i) =
∑

S⊆N\{i}
p(S) [v(S ∪ {i})− v(S)] , p(S)

def
=

(n− |S| − 1)!|S|!
n!

(1)

In this way, the network output can be considered as the sum of elementary importances of input
variables, i.e. v(N) =

∑
i∈N ϕ(i)+v(∅). The Shapley value has been proved to satisfy four desirable

properties, i.e. linearity, nullity, symmetry and efficiency properties, thereby being regarded as a fair
method to allocate the network output to each input variable [57].

Input variables of a DNN do not contribute to the network output independently. Instead, different
variables collaborate with each other to affect the network output, and we use the interaction to
quantify the numerical utility of such collaborations. To this end, the Shapley interaction index [22]
measures the utility of the collaboration between two input variables (i, j) by examining whether
the absence/presence of an input variable j will change the importance of the other variable i.
Their interaction is defined as I(i, j) = ϕ̃(i)j always present − ϕ̃(i)j always absent, where ϕ̃(i)j always present

and ϕ̃(i)j always absent denote the importance of the variable i when j is always present and when j is
always absent, respectively (please see [22] for more details about I(i, j)).

Decomposition of the existing Shapley interaction index into multiple orders. Zhang et al. [70]
further decomposes the Shapley interaction index I(i, j) [22] into interactions of different orders.

I(i, j) =
1

n− 1

∑n−2

m=0
I
(m)
ij , I

(m)
ij = ES⊆N\{i,j},|S|=m [∆v(i, j, S)] (2)

where ∆v(i, j, S) = v(S ∪ {i, j})− v(S ∪ {i})− v(S ∪ {j}) + v(S).
4For the DNN trained for multi-category classification, we set

v(S) = log p(y = c|given an input with variables in N \ S masked), where c is selected as either the
ground-truth category of the input, or the incorrectly classified category after attacks.
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Figure 2: (Left) Computation of the m-order interaction between two input variables (m = 2).
(Right) Contexts of the m-order interaction I

(m)
ij . Variables (i, j) are indicated by red boxes. We

extend the visualization method in [71], which visualized contexts of the Shapley interaction index,
to show contexts of multi-order interactions (details in the supplementary material). Red (blue) colors
indicate pixels that frequently (infrequently) appear in contexts which cause significant interactions.

Proof of decomposing network output into multi-order interactions to explain adversarial
attacks. In this study, we successfully prove that the network output can be decomposed as the
weighted sum of multi-order interactions. This enables us to use such interactions to explain
adversarial attacks. Before the decomposition, let us first use interactions to understand the attack. As
Figure 2 (left) shows, the interaction component of each order I(m)

ij represents collaborations between
two input variables (i, j) with a specific contextual complexity. Let us consider input variables i, j and
an arbitrary set of m contextual variables. If I(m)

ij > 0, it indicates that the presence of the variable
j will increase the importance of the variable i. Thus, we consider variables (i, j) have a positive
interaction. If I(m)

ij < 0, it indicates a negative interaction.

The m-order interaction between two input variables (i, j) measures the average interaction between
(i, j) when we consider their collaborations with m contextual variables (m pixels). From another
perspective, the order m measures the number of contextual variables that influence the interaction
between i and j. For a low order m, I(m)

ij reflects the interaction between i and j w.r.t. simple contexts
of a few variables. For a high order m, I(m)

ij corresponds to the interaction w.r.t. complex contexts
with massive variables. Figure 2 (right) visualizes the contexts S corresponding to strong low-order
interactions and strong high-order interactions, respectively. Cheng et al. [11] has also proven that
low-order interactions (local collaborations) mainly reflect simple and common concepts (features),
and high-order interactions (global collaborations) usually represent complex and global features.

• Properties of multi-order interactions. We have proven that I(m)
ij satisfies linearity, nullity, commu-

tativity, symmetry, and efficiency properties (please see the supplementary material for details). In
particular, the efficiency property is given as follows.

Efficiency property: The output of the DNN given the entire input v(N) can be decomposed into
interactions of different orders, i.e. v(N) = v(∅) +

∑
i∈N ϕ(0)(i) +

∑
i,j∈N,i ̸=j

∑n−2
m=0 J

(m)
ij , where

J
(m)
ij

def
= n−1−m

n(n−1)
I
(m)
ij , and ϕ(0)(i)

def
= v({i})− v(∅).

• Decomposing the overall attacking utility into interactions of different orders. According to the
efficiency property of interactions, the output of the DNN w.r.t. the image x can be decomposed
into the sum of multi-order interactions between different pairs of input variables. Thus, we can
decompose the overall utility of adversarial perturbations on the network output into elementary
effects on interactions.

∆v(N |x) def
= v(N |x)− v(N |xadv) = ∆v(∅|x) +

∑
i∈N

∆ϕ(0)(i|x)︸ ︷︷ ︸
usually can be ignored

+
∑

i̸=j∈N

n−2∑
m=0

∆J
(m)
ij (x) (3)

where x ∈ Rn denotes the normal sample, and xadv = x+∆x ∈ Rn denotes the adversarial example.
v(N |xadv) denotes the network output given all variables in N of the adversarial example xadv. v(N |x)
corresponds to the normal sample. The first term ∆v(∅) = v(∅|x)− v(∅|xadv) = 0. In the second term,
∆ϕ(0)(i|x) def

= (v({i}|x)− v(∅|x))− (v({i}|xadv)− v(∅|xadv)) = v({i}|x)− v({i}|xadv). Because in most
applications, the importance of a single variable (e.g. a pixel) is usually small, we can ignore this
term. In the third term, ∆J

(m)
ij (x) denotes the attacking utility of the m-order interaction between

variables (i, j) in x. ∆J
(m)
ij (x)

def
= n−1−m

n(n−1)
∆I

(m)
ij (x), where ∆I

(m)
ij (x)

def
= I

(m)
ij (x)− I

(m)
ij (xadv) measures

the elementary effects of adversarial perturbations on the m-order interaction.
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Figure 3: The multi-order interaction I
(m)
nor and I

(m)
adv of standard DNNs and adversarially trained

DNNs. Adversarial perturbations mainly affected high-order interactions.

4 Explaining adversarial attacks and defense using interactions

To simplify the story, we only study the simplest and widely-used untargeted and targeted ℓ∞ PGD
attacks [34].

4.1 Attacks mainly affect high-order interactions

Attacking utility of m-order interactions. According to Eq. (3), effects of adversarial attacks
mainly depend on changes of interactions ∆I

(m)
ij (x) (or ∆J

(m)
ij (x)). Thus, in this section, we further

conduct experiments to show that adversarial attacks mainly affect ∆I
(m)
ij (x) of high orders. In

order to compare the multi-order interactions in normal samples and those in adversarial examples,
we measure the average interaction of a specific order m among different pairs of variables in
different input images, i.e. I(m) = Ex∈ΩEi,j [I

(m)
ij (x)], where Ω ⊆ Rn denotes the set of all samples.

We use the normal samples Ωnor to compute I
(m)
nor and use adversarial examples Ωadv to compute

I
(m)
adv . In this way, ∆I(m) def

= I
(m)
nor − I

(m)
adv represents effects of attacks on the m-order interactions.

Similarly, ∆J(m) def
= Ex∈ΩEi,j [∆J

(m)
ij (x)] = n−1−m

n(n−1)
∆I(m) measures the attacking utility of the m-

order interactions according to Eq. (3).

Comparing attacking utilities between interactions of different orders (in terms of I(m)).
In order to measure I

(m)
nor and I

(m)
adv , we conducted experiments on ResNet-18/34/50 [24], Wide-

ResNet50-4 [67], DenseNet-161 [26], and VGG-16 [45]. For each DNN, we obtained both the
standardly trained version and the adversarially trained version on the ImageNet dataset [42]5.
We also conducted experiments on PointNet++ [40] learned on the ModelNet10 dataset [61],
which is a 3D dataset. We measured the interaction I(m) by setting v(S|x) = log p(y =
ytruth|given variables in S in the input x and mask variables in N \ S), and x ∈ Ω was sampled from the
validation set. By following settings in [1], the masked variables in N \ S were set to the average
value over different input samples. However, the computational cost of I(m) was intolerable. To
reduce the computational cost, we applied the sampling-based approximation method in [70] and
computed interactions at the grid level, rather than the pixel level. Please see the supplementary
material for more discussions.

We considered both untargeted and targeted6 PGD attacks [34] with the ℓ∞ constraint ∥∆x∥ℓ∞ ≤ ϵ to
generate adversarial examples. We set ϵ = 32/255 by following the setting in [62]. The step size
was set to 2/255. For fair comparisons, we controlled the perturbation generated for each image
to have similar attacking utility of 8. The attacking utility in untargeted attacks was defined as
Uuntarget(x) = hytruth(N |x)− hytruth(N |xadv), where hytruth(N |x) and hytruth(N |xadv) denote network outputs
of the ground-truth category ytruth before the softmax layer, when taking the normal sample and the
adversarial example as input, respectively. The attacking utility in targeted attacks was defined as
Utarget(x) = (hytarget(N |xadv)− hytruth(N |xadv))− (hytarget(N |x)− hytruth(N |x)), where hytarget(·) denote the
network output of the target category6 ytarget.

Results. Figure 3 shows the multi-order interactions within normal samples and adversarial examples.
We found that adversarial perturbations significantly decreased high-order interactions, in both
adversarially trained DNNs and standard DNNs. For example, in Figure 3 (a), low-order interactions

5We used pretrained models released by Salman et al. [43].
6In the untargeted attack, we considered the misclassified category as the target category. In the targeted

attack, the target label was set as the misclassified category in the untarget attack. When we consider interaction
w.r.t. the target category, we set v(S) = log p(y = ytarget|given variables in S and mask variables in N \ S).
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(m < 0.5n) in standard ResNet-18 decreased a little, while the interaction of order m = 0.95n
dropped from 0.01 to −0.059. This phenomenon was consistent with the heuristic findings of Dong
et al. [16] that neurons corresponding to high-level semantics were ambiguous.

Additional experiments on the target category and other categories. Beyond above analysis about
interactions w.r.t. the ground-truth category, we also conducted experiments and found that high-order
interactions w.r.t. the target category6 increased significantly. Please see the supplementary material
for details. In sum, high-order interactions were much more sensitive than low-order interactions,
which verified our conclusions.

Theoretic explanation of the sensitivity of high-order interactions. Besides the above empirical
observation, we can also theoretically prove that high-order interactions are more sensitive than
low-order interactions.

Proposition 1 (equivalence between the multi-order interaction and the mutual information): Given
an input sample x ∈ X ⊆ Rn and the network output Y , we define XS = {xS |x ∈ X} where
S ⊆ N ; each xS represents the sample, where variables not in S are masked. If v(S) is set
as the entropy of classification v(S) = H(Y |XS) =

∑
xS

p(xS)H(Y |XS = xS), then I
(m)
ij =

ES⊆N\{i,j},|S|=mMI(Xi;Xj ;Y |XS). The conditional mutual information MI(Xi;Xj ;Y |XS) mea-
sures the remaining mutual information7 between Xi, Xj and Y , when XS is given. When XS (with
m pixels) is given, MI(Xi;Xj ;Y |XS) can be considered as the benefit to the inference from the
interaction between Xi and Xj . Please see the supplementary material for proofs.

Proposition 1 indicates that compared to low-order interactions, high-order interactions are condi-
tioned on larger contexts S, i.e. conditioned on more contextual perturbations, thereby suffering more
from adversarial perturbations.

Note that in Proposition 1, we set v̂(S) = H(Y |XS), which is slightly different from setting v(S) =
log p(y = ytruth|S, x) in Section 4.1. Nevertheless, the trend of v(S) can roughly reflect the negative
trend of v̂(S), which is discussed in the supplementary material.

Comparison with frequency-based methods. Previous studies [66, 51, 23] explained adversarial
perturbations as high-frequency features. Figure 6 (left) shows the difference in the frequency
between normal samples and adversarial samples. We find that high-order interactions can better
distinguish adversarial examples and normal samples, than the frequency of features, which indicates
that the interaction metric can better explain the essential property of adversarial perturbations. Please
see the supplementary material for more details.

4.2 Explaining specific interactions encoded by adversarially trained DNNs

Discovery. In order to understand the difference in signal-processing behaviors between adversarially
trained DNNs and standard DNNs, we have proven that the overall attacking utility Ex∈Ω[∆v(N |x)]
can be approximately decomposed as the sum of attacking utilities on multi-order interactions
∆J(m), according to Eq. (3). Figure 4 shows the attacking utility of multi-order interactions i.e.
∆J(m) = n−1−m

n(n−1)
∆I(m).

7Note that unlike the bivariate mutual information, MI(Xi;Xj ;Y |XS) can be negative.
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We noticed that for standard DNNs, adversarial attacks mainly affected high-order interactions.
For adversarially trained DNNs, although high-order interactions were usually sensitive to attacks,
low/middle-order interactions took up more attacking utilities. This phenomenon actually can also be
observed in Figure 3, which is discussed in the supplementary material. Considering Eq. (3), this
indicated that adversarial perturbations towards adversarially trained DNNs penalized both complex
features of global collaborations and simple features of local collaborations.

Explanation. We further explain the above phenomena, i.e. why high-order interactions in adversari-
ally trained DNNs are more robust to attacks than those in standard DNNs. To this end, we propose
the following disentanglement metric for the interaction of a specific order.

D(m)=Ex∈ΩEi,j∈N
i̸=j

|I(m)
ij (x)|

ES⊆N\{i,j},|S|=m|∆v(i, j, S|x)| =Ex∈ΩEi,j∈N
i ̸=j

|ES⊆N\{i,j},|S|=m∆v(i, j, S|x)|
ES⊆N\{i,j},|S|=m|∆v(i, j, S|x)|

(4)

The above disentanglement metric examines whether or not the m-order interactions represent
discriminative information for a specific category. The high value of D(m) indicates that the m-order
interactions relatively purely describe specific categories. In other words, the interactions between
(i, j) under different contexts S consistently have the same effects (either positive or negative) on
the inference of a specific category. Let us consider the following toy example. When the pair of
(i, j) consistently have positive interactions towards a specific category under different contexts, i.e.
∀S ⊆ N \ {i, j}, |S| = m,∆v(i, j, S|x) > 0, then we have D(m) = 1. This means that the m-th
interactions between i and j stably promote the output probability of this category. In contrast, a
low value of D(m) indicates that interactions between (i, j) represent diverse categories. I.e. given
different contexts S, interactions between (i, j) sometimes have positive effects on a specific category,
and sometimes have negative effects. Please see the supplementary material for more discussions.

Experiments. Figure 5 compares the interaction disentanglement D(m) of standard DNNs and the
disentanglement of adversarially trained DNNs. Interactions of adversarially trained DNNs were
more disentangled than those of standard DNNs, especially for low-order interactions. This indicated
that low-order interactions in adversarially trained DNNs encoded more category-specific information
for inference than low-order interactions in standard DNNs.

Based on this observation, we could explain the robustness of high-order interactions to attacks in
adversarially trained DNNs. Adversarial training learned more category-specific low-order interac-
tions, which boosted the difficulty of attacking high-order interactions. This was because high-order
interactions (usually global features) were usually constructed by low-order interactions (usually
local features). Let us take the peacock in Figure 2 (right) for example. In this image, low-order
interactions (simple features) represented the body of the peacock and the green garden. In this case,
it was difficult to attack this image to other categories (e.g. the bicycle category) by constructing
high-order interactions of the bicycle category using these peacock low-order features. Due to the
difficulty of attacking high-order interactions, the adversarial examples towards the adversarially
trained DNN had to attack low-order interactions, instead.

4.3 Unifying four existing adversarial defense methods

• Explaining the attribution-based method of detecting adversarial examples. Yang et al. [65]
proposed a method to use the attribution score of input variables to detect adversarial examples. In
order to prove the effectiveness of this method, we define the multi-order Shapley value just like
the multi-order interaction, as follows. ϕ(m)(i|x) def

= ES⊆N\{i},|S|=m[v(S ∪ {i}|x)− v(S|x)], where m
denotes the order of the Shapley value. Then, we can prove that the attribution score which was used
in [65] to detect adversarial exmaples, can be writtern as ϕ(n−1)(i|x) = v(N |x)− v(N \ {i}|x). We
further prove that ϕ(m)(i|x) can be decomposed into interactions of different orders.

v(N |x)−v(∅|x)= 1

n

∑
i∈N

n−1∑
m=0

ϕ(m)(i|x), ϕ(m)(i|x)=Ej∈N\{i}

[
m−1∑
k=0

I
(k)
ij (x)

]
+ ϕ(0)(i|x) (5)

According to the above equation, the overall adversarial effects can also be decomposed into ele-
mentary effects on ϕ(m)(i|x). ϕ(0)(i|x) = v(i|x)− v(∅|x) is usually small and can be ignored, as
discussed below Eq. (3). Among Shapley values of all orders, only the (n − 1)-order component
ϕ(n−1)(i|x) contains the interactions of the highest order, which are the most sensitive interactions,
according to Section 4.1. Therefore, the Shapley value component ϕ(n−1)(i|x) is supposed to be
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Table 1: Ratio of adversarial examples whose classification results were corrected.

Standard DNNs cutout ours
α = 0.1 α = 0.2 α = 0.3

ResNet-18 7.12% 19.62% 35.55% 44.14%
ResNet-50 10.63% 28.53% 45.53% 52.33%

DenseNet-161 11.32% 27.16% 46.15% 56.35%

Adversarially cutout ours
trained DNNs α = 0.1 α = 0.2 α = 0.3

ResNet-18 23.92% 22.46% 33.78% 39.18%
ResNet-50 24.27% 23.23% 35.23% 41.54%

DenseNet-161 35.65% 24.65% 39.25% 45.74%

the most sensitive to adversarial perturbations, which proves the effectiveness of the detection of
adversarial examples. Please see the supplementary material for related proofs and discussions.

• Explaining high recoverability of adversarial examples towards adversarially trained DNNs.
The adversarial recoverability of a DNN is referred to as whether the DNN’s adversarial examples can
be inverted back to the normal sample by minimizing the classification loss. Specifically, given an
adversarial example xadv generated by the untargeted attack [34] via max∥xadv−x∥p≤ϵ ℓ(x

adv, ytruth),
we conduct a targeted attack [34] on the adversarial sample to invert the classification result back to
its ground-truth label, i.e. minδ′ ℓ(x

adv + δ′, ytruth). Let x̂ = xadv + δ′ denote the recovered sample.
If ∥x̂− x∥2 ≤ ∥xadv − x∥2, it indicates a high recoverability; otherwise, a low recoverability.

We find that adversarial examples generated by adversarially trained DNNs usually exhibit higher
recoverability than those generated by standard DNNs. This phenomenon can be explained by
Proposition 1 in Section 4.1, i.e. low-order interactions correspond to the mutual information condi-
tioned on smaller adversarial perturbations, thereby suffering less from attacks. Therefore, we can
partially explain the high recoverability of adversarial examples towards adversarially trained DNNs.
It is because adversarially trained DNNs mainly focus on low-order interactions (see Section 4.2),
which leads to high recoverability.

Besides, we conducted experiments on ResNet-18/50 and DenseNet-161 trained on the ImageNet
dataset, which also validated the high recoverability of adversarial examples generated on adversarially
trained DNNs. Please see the supplementary material for details.

• Explaining the rank-based method. Jere et al. [30] discovered that standard DNNs paid certain
attention to high-rank (w.r.t. the Singular Value Decomposition) features, but adversarial training
put more attention on low-rank features. This implied that adversarial examples mainly contained
high-rank features.

We used [30] to reduce the SVD rank of an image (either a normal sample or an adversarial example)
to 1

4
k-rank image and 1

16
k-rank image, where k denoted the full rank of the image. Figure 6 (right)

shows that (1) compared with normal samples, the rank-reducing operation on adversarial examples
significantly increased high-order interactions. This indicated our conclusions in Section 4.1 could
explain that adversarial perturbations were mainly high-rank components in images. (2) When
the rank of images was further reduced from 1

4
k to 1

16
k, the rank-reducing operation affected both

low-order and high-order interactions. However, when we reduce the rank of either normal samples
or adversarial examples, they exhibited similar effects on low-order interactions, but exhibited
dramatically different effects on high-order interactions. This indicated that the most discriminative
factor of distinguishing adversarial examples from normal samples was high-order interactions,
rather than the rank-reducing operation. In other words, the game-theoretic interaction presents a
more essential property of adversarial attacks.

• Explaining the cutout method. DeVries and Taylor [15] proposed the cutout method to boost the
robustness of DNNs by masking out a square region of the input during training. This operation can
be roughly considered as applying a random dropout operation [47] to input images. The dropout
operation on input images has been proven to destroy interactions between input variables [70]. To
this end, we have further proven that the dropout operation mainly hurts high-order interactions,
rather than low-order interactions (please see the proof in the supplementary material). In this way,
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the cutout method can be considered as removing high-order interactions and pushing DNNs to learn
more insensitive low-order interactions. Therefore, the learned DNN is robust to adversarial attacks.

In experiments, we applied the dropout operation to the misclassified adversarial examples, in order to
verify the attacking-alleviating influence on the network output of removing high-order interactions.
If the removal of high-order interactions could alleviate the effects of adversarial attacks, it would
prove the attacking-alleviating influence of removing high-order interactions. Given ResNet-18/50
and DenseNet-161 trained on the ImageNet dataset, we selected normal samples that are correctly
classified in the validation set of the ImageNet dataset, and generated adversarial examples with the
ℓ∞ untargeted PGD attack based on [62]. The attack was stopped once it succeeded. We applied
the dropout operation with different dropout rates α at the pixel level, and the dropped pixels were
filled with the average value of surrounding pixels. For the cutout method, we set the length of the
side of the masked square regions as 112, which was half of the side length of the input sample
(dropping α = 25% pixels of the input), following settings in [15]. Table 1 reports the ratio of
adversarial examples whose classification results were corrected. When we applied dropout to
adversarial examples, the classification accuracy of adversarial examples significantly increased,
and even performed better than the cutout method. This indicated that the removal of high-order
interactions presented a more essential defense mechanism than the cutout method.

5 Conclusion

In this paper, we have used the multi-order interaction to provide a unified understanding for the
success of adversarial attacks and defense. Based on the multi-order interaction, we have explained
adversarial attacking as mainly affecting high-order interactions between input variables. Furthermore,
we have also explained the success of adversarial training, i.e. learning more category-specific low-
order interactions to boost the robustness. Besides, we have further provided a unified explanation for
some existing adversarial defense methods.
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