

DIRICHLET-PRIOR SHAPING: GUIDING EXPERT SPECIALIZATION IN UPCYCLED MOES

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

ABSTRACT

011 Upcycling pre-trained dense models into sparse Mixture-of-Experts (MoEs) effi-
012 ciently increases model capacity but often suffers from poor expert specialization
013 due to naive weight replication. Our analysis reveals that upcycled MoEs, even with
014 conventional regularization, exhibit low-confidence, weakly differentiated routing,
015 hindering performance. We introduce Dirichlet-Prior Shaping Loss (DPSL), a
016 novel router regularization technique that directly shapes routing probability distri-
017 butions by matching expert assignments to a target Dirichlet prior. DPSL offers
018 fine-grained control over expert balance and specialization, and enables encoding
019 of inductive biases such as encouraging experts to focus on specific modalities or
020 tasks, without requiring manual intervention; notably, DPSL is a general tool appli-
021 cable to any module that outputs categorical probability distributions, extending
022 its utility beyond MoE training. Experiments on upcycled MoE vision-language
023 models (with Qwen2, Phi3, Llama3.2 LLM backbones) show DPSL consistently
024 outperforms upcycling strategies and regularization techniques across standard
025 vision-language benchmarks, addressing the critical issue of poor specialization
026 and fostering more adaptive, higher-performing models.
027

1 INTRODUCTION

028 Recent advances in large language models (LLMs) and multimodal LLMs (MLLMs) have transformed
029 natural language and vision-language tasks. Model scaling drives this success (Kaplan et al., 2020;
030 Hoffmann et al., 2022), enhancing accuracy and unlocking new capabilities, albeit with significant
031 increases in training and inference costs. Sparse Mixture-of-Experts (MoE) architectures offer a
032 solution by increasing model capacity while maintaining computational efficiency, activating only
033 a subset of parameters (“experts”) for each input token (Jacobs et al., 1991; Eigen et al., 2013).
034 Concurrently, sparse upcycling offers an efficient training strategy by initializing an MoE with
035 a pre-trained dense model, thereby accelerating convergence and leveraging existing knowledge
036 (Komatsuzaki et al., 2023), particularly effective for instruction-tuning. The combination of MoE
037 architectures and upcycling is particularly well-suited for advancing MLLMs, enabling more capable
038 multimodal systems, without prohibitive computational overhead. Recent efforts like LLaVA-MoE
039 demonstrate this direction, using MoE structures to enhance MLLM efficiency (Lin et al., 2024).
040

041 However, sparse upcycling introduces specific challenges in expert specialization. Naively initializing
042 all MoE experts by replicating the dense model’s feedforward network (FFN) weights (Komatsuzaki
043 et al., 2023) leads to weight homogeneity, impeding the router’s ability to differentiate experts
044 and fully utilize its capacity, resulting in suboptimal performance (Nakamura et al., 2025). Drop-
045 Upcycling (Nakamura et al., 2025) addresses this by partially re-initializing a random subset of
046 parameters within each expert to promote diversity, but its benefits typically emerge only after
047 extensive training, often exceeding practical instruction-tuning budgets. Specialized upcycling
048 methods such as Branch-Train-MiX (BTX) (Sukhbaatar et al., 2024) fine-tune separate model copies
049 on different datasets to create diverse experts, which are then merged into an MoE and further
050 fine-tuned with a learned router. However, BTX may yield experts specialized in suboptimal ways
051 for MoE routing and can miss positive knowledge transfer, leading to inefficiencies and suboptimal
052 convergence. In addition, standard MoE regularization, such as load-balancing loss (Shazeer et al.,
053 2017; Fedus et al., 2022) and z-loss (Zoph et al., 2022) aim to stabilize training and prevent expert
collapse, but do not directly induce specialization from identically initialized experts. Hence, they are
unable to overcome the specialization challenges in upcycled MoEs, especially under limited data.

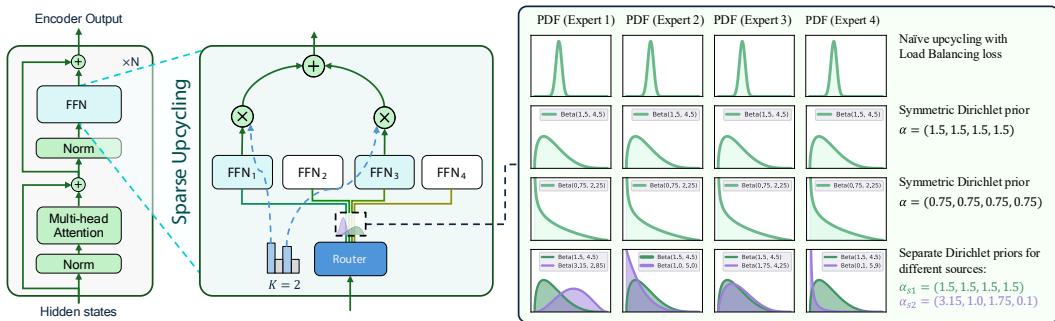


Figure 1: Sparse upcycling (left) initializes identical experts, yielding homogeneous routing probabilities and limited specialization. (right) Our proposed Dirichlet-Prior Shaping Loss guides routing towards desired distributions fostering balanced and confident selection (via symmetric priors) or targeted, modality-/task-aware specialization (via asymmetric priors).

To address the specialization challenges in upcycled MoEs, we first analyze routing behavior and find that, even with conventional regularization, upcycled MoEs exhibit low-confidence, weakly differentiated routing distributions. Expert assignment probabilities remain sharply peaked near $1/N$ (where N is the number of experts), indicating a persistent lack of specialization throughout training.

To overcome this, we propose Dirichlet-Prior Shaping Loss (DPSL), a principled router regularization technique that directly shapes the distribution of routing probabilities using Dirichlet priors (see Figure 1). DPSL generalizes the Batch Shaping Loss (Bejnordi et al., 2020) by matching the empirical distribution of expert assignments to a target Dirichlet prior enabling fine-grained control over both expert balance and specialization. Symmetric priors promote balanced expert utilization, while asymmetric priors allow targeted specialization. In this work, we focus on Vision-Language Models (VLMs), which present novel opportunities for expert specialization in MoEs. In VLMs, the coexistence of distinct modalities and data sources naturally exposes domain structure that MoE routers can harness, creating opportunities for experts to specialize along meaningful axes such as modality, dataset provenance, or task family. By doing so, our framework paves the way for more adaptive and efficient vision-language models. Our main contributions are:

- We analyze the routing dynamics in upcycled MoEs, demonstrating that naive upcycling results in restricted routing probability ranges, and that standard regularization methods fail to effectively promote expert specialization in this setting.
- We propose Dirichlet-Prior Shaping Loss (DPSL), a powerful and flexible tool to instill a wide array of desired statistical properties and behaviors into the learning process of any module that outputs categorical probability distributions. Applied to MoE routers, DPSL enables fine-grained control over expert utilization and specialization.
- We show that asymmetric Dirichlet priors can guide experts towards desired specialization patterns (e.g., modality- or task-specific), without manual intervention or pre-training.
- Through extensive experiments on upcycled MoE variants of state-of-the-art LLMs (Qwen2 (Bai et al., 2023), Phi3 (Abdin et al., 2024), Llama3.2 (Dubey et al., 2024)), we demonstrate that our method significantly outperforms existing upcycling and regularization techniques on standard vision-language understanding benchmarks.

2 METHOD

2.1 DIRICHLET PRIORS FOR CATEGORICAL DISTRIBUTIONS

Let a model component output a probability vector $\mathbf{p} = [p_1, p_2, \dots, p_K]$ over K distinct categories, where $\sum_{k=1}^K p_k = 1$ and $p_k \geq 0$. **As the conjugate prior for categorical distributions, the Dirichlet distribution is the natural choice to model beliefs over such probability vectors.** We model \mathbf{p} as drawn from a Dirichlet distribution, $\mathbf{p} \sim \text{Dir}(\boldsymbol{\alpha})$, where $\boldsymbol{\alpha} = [\alpha_1, \dots, \alpha_K]$ are positive concentration parameters that define the prior. The joint probability density function (PDF) of the Dirichlet distribution is:

108

$$f(\mathbf{p}; \boldsymbol{\alpha}) = \frac{1}{B(\boldsymbol{\alpha})} \prod_{k=1}^K p_k^{\alpha_k - 1}, \quad (1)$$

112 where the multivariate Beta function is $B(\boldsymbol{\alpha}) = \frac{\prod_{k=1}^K \Gamma(\alpha_k)}{\Gamma(\sum_{k=1}^K \alpha_k)}$ and $\Gamma(\cdot)$ is the Gamma function. A
 113 key property of the Dirichlet distribution is that each marginal p_k follows a Beta distribution (see
 114 Appendix A for derivation): $p_k \sim \text{Beta}(\alpha_k, A - \alpha_k)$, where $A = \sum_{k=1}^K \alpha_k$. The Beta distribution
 115 with parameters (α, β) has the following probability density and cumulative distribution functions:
 116

$$f_{\text{Beta}}(x; \alpha, \beta) = \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha, \beta)}; \quad F_{\text{Beta}}(x; \alpha, \beta) = \int_0^x \frac{t^{\alpha-1}(1-t)^{\beta-1}}{B(\alpha, \beta)} dt, \quad (2)$$

$$120 \text{ where } B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}.$$

121 The shape of each p_k 's distribution depends on both α_k and the total A , reflecting dependencies
 122 among categories. For symmetric Dirichlet distribution, where all of the elements of the concentration
 123 parameter have the same value, larger α_k concentrates p_k near its mean; smaller values yield more
 124 dispersed or even U-shaped distributions (see Appendix A.3 for visualizations). By tuning $\boldsymbol{\alpha}$, we
 125 can flexibly control the expected distribution over categories: setting all $\alpha_k = 1$ yields a uniform
 126 prior, while asymmetric choices (e.g., $\boldsymbol{\alpha} = (\alpha_{\text{high}}, \alpha_{\text{low}}, \dots)$) bias the distribution toward specific
 127 categories. This enables fine-grained control over categorical outputs, as detailed in the next section.
 128

129 2.2 DIRICHLET-PRIOR SHAPING LOSS

130 To align the empirical distribution of categorical probabilities with a target Dirichlet prior, we adapt
 131 the Batch Shaping Loss from Bejnordi et al. (2020), based on the Cramér–von Mises criterion
 132 (Anderson, 1962). This criterion measures the squared difference between the empirical cumulative
 133 distribution function (CDF), $F_N(x)$, and the target theoretical CDF, $F(x)$:

$$134 \omega^2 = \int_{-\infty}^{\infty} [F_N(x) - F(x)]^2 dF(x). \quad (3)$$

135 For each of the K categories, we match the empirical distribution of assigned probabilities p_k (over a
 136 batch of samples) to the theoretical Beta distribution, $\text{Beta}(\alpha_k, A - \alpha_k)$, defined by Dirichlet prior.
 137

138 Let $p_k^{(b)}$ denote the probability assigned to category k for the b -th sample in a batch of B total samples.
 139 The empirical CDF for the probabilities of category k , denoted as $F_N^{(k)}(x)$, is constructed from these
 140 probability values. The Dirichlet-Prior Shaping Loss (DPSL), \mathcal{L}_{DPS} , is then computed as the sum of
 141 squared differences between the empirical CDF and the target Beta CDF for each category:
 142

$$143 \mathcal{L}_{\text{DPS}} = \lambda \sum_{k=1}^K \frac{1}{B} \sum_{j=1}^B \left[F_N^{(k)}(p_{k,(j)}) - F_{\text{Beta}}(p_{k,(j)}; \alpha_k, A - \alpha_k) \right]^2, \quad (4)$$

144 where $p_{k,(j)}$ denotes the j -th value in the sorted list of probabilities, $p_{k,(1)} \leq p_{k,(2)} \leq \dots \leq p_{k,(B)}$,
 145 assigned to category k across the B samples in the batch. $F_{\text{Beta}}(p; \alpha_k, A - \alpha_k)$ is the theoretical CDF
 146 of the Beta distribution with parameters $(\alpha_k, A - \alpha_k)$, and $F_N^{(k)}(p_{k,(j)}) = j/B$ is the value of the
 147 empirical CDF at $p_{k,(j)}$. The hyperparameter $\lambda > 0$ controls the strength of this regularization.
 148

149 Figure 2 illustrates DPSL in practice. For two data sources (S1 in green, S2 in purple) and three
 150 output categories, independent Dirichlet priors shape the output distributions. The first two rows
 151 show, for each category, empirical CDFs (dashed) and target Beta CDFs (solid) for both sources, at
 152 initialization and convergence, respectively; DPSL minimizes the distance between the empirical
 153 and target CDFs, thereby encouraging the model's output probabilities for each source to conform to
 154 the desired statistical profile. The rightmost bottom plot tracks DPSL convergence during training.
 155 The remaining bottom plots show, for each source, the empirical probability histograms per category,
 156 overlaid with the target Beta PDFs. For S1, a symmetric Dirichlet prior, $\boldsymbol{\alpha} = (1.5, 1.5, 1.5)$, yields
 157

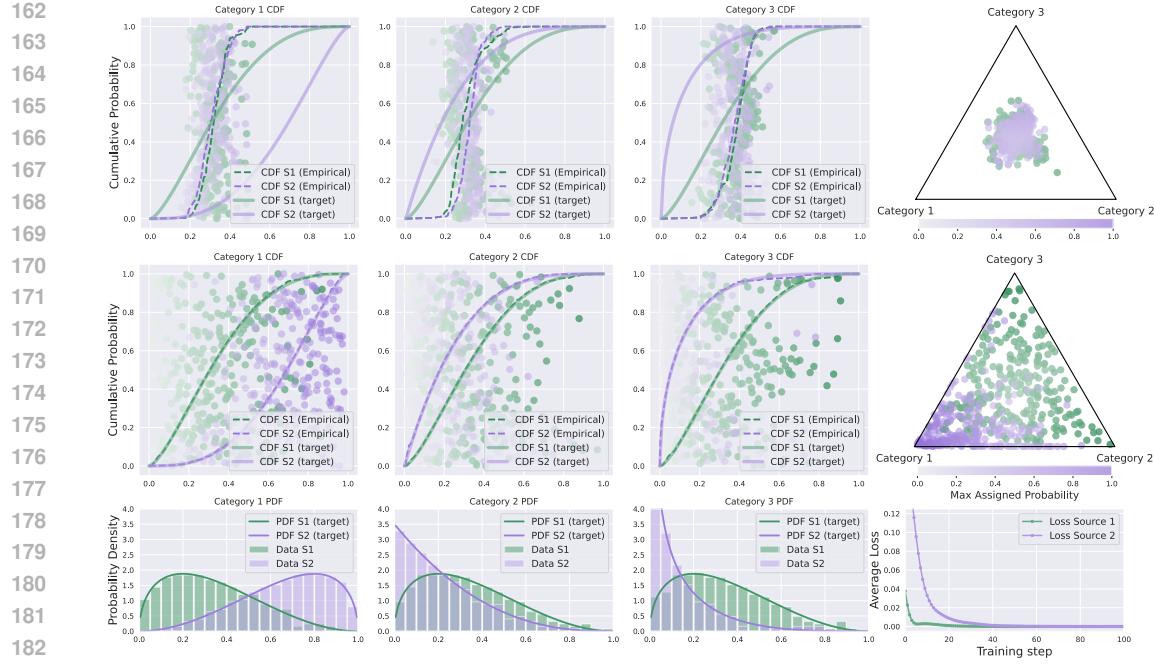


Figure 2: Dirichlet-Prior Shaping Loss (DPSL) shapes categorical probability distributions from two data sources (S1, S2). Top and middle rows show the empirical (dashed) vs. target (solid) CDFs for each category, at initialization and after convergence, respectively, along with simplex of assignment probabilities. Bottom row presents data histograms of assignment probabilities overlaid with target Beta PDFs, and learning curves showing DPSL minimization during training.

balanced probabilities. In contrast, for S2, an asymmetric Dirichlet prior, $\alpha = (3, 1, 0.5)$, induces specialization predominately toward Category one. We provide the training details of this experiment, along with an additional example in Appendix C.1.

In essence, as demonstrated by the example in Figure 2, our Dirichlet-Prior Shaping method offers a powerful and flexible tool to instill a wide array of desired statistical properties and behaviors into the learning process of any module that outputs categorical probability distributions.

2.3 DPSL FOR UNSUPERVISED CLUSTERING: A GENERAL APPLICATION

DPSL is fundamentally a general-purpose regularization technique applicable to any module that outputs categorical probability distributions. To demonstrate this broad applicability, we consider a small unsupervised deep clustering problem where a neural network outputs a distribution over $K = 3$ clusters for 2D inputs. As baselines, we adopt SwAV (Caron et al., 2020) and SeCu (Qian, 2023), both of which implicitly promote balanced partitions through an equipartition Sinkhorn–Knopp step (SwAV) or a global entropy constraint (SeCu). On top of these methods, DPSL is added as an auxiliary loss on the cluster assignment probabilities to encode asymmetric Dirichlet priors on cluster sizes, without modifying the underlying clustering objective.

Table 1: Impact of DPSL on unsupervised clustering accuracy.

Setting	SwAV	SwAV+DPSL	SeCu	SeCu+DPSL
Non-overlapping	$84.42 \pm 0.83\%$	$99.35 \pm 0.14\%$ (+14.9%)	$88.40 \pm 11.4\%$	$94.31 \pm 5.49\%$ (+5.91%)
Overlapping	$86.71 \pm 1.13\%$	$94.09 \pm 0.17\%$ (+7.4%)	$70.69 \pm 3.8\%$	$83.28 \pm 1.69\%$ (+12.6%)
Elongated	$87.73 \pm 0.67\%$	$92.28 \pm 0.46\%$ (+4.6%)	$76.84 \pm 7.1\%$	$87.66 \pm 3.86\%$ (+10.8%)

We evaluate three challenging synthetic 2D regimes with three clusters and 1500 points per setting: (i) non-overlapping imbalanced clusters with size ratio 4:1:1, (ii) overlapping imbalanced clusters with ratio 5:2:1, and (iii) overlapping elongated clusters with ratio 5:3:1.

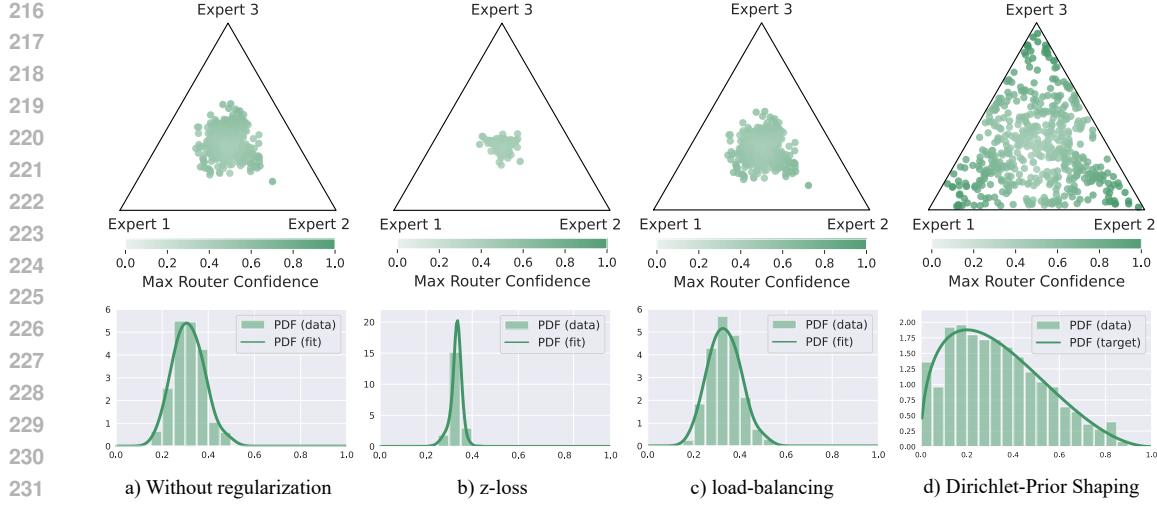


Figure 3: Router output distributions for three experts in an upcycled MoE with top-1 routing. Each panel shows the simplex of routing probabilities under (a) no regularization, (b) z-loss, (c) load-balancing loss, and (d) Dirichlet-Prior Shaping (symmetric prior).

To encode only soft prior knowledge about cluster proportions and overlap, we use moderate asymmetric Dirichlet priors. We report clustering accuracy averaged over three random seeds. As can be seen in Table 1, across all three regimes, adding DPSL substantially improves clustering accuracy for both SwAV (by 4.6%–14.9%) and SeCu (by 5.9%–12.6%), demonstrating that shaping categorical output distributions with Dirichlet priors is a beneficial and general-purpose technique (Qualitative clustering results are presented in Figure 5, Appendix B). Complete experimental details, prior selection rationale, and robustness analysis to prior misspecification are provided in Appendix B.

2.4 MOTIVATIONAL STUDY: UNDERSTANDING ROUTER BEHAVIOR IN UPCYCLED MOEs

To motivate the need for a more nuanced control over router learning, especially in the context of upcycled MoE models, we first briefly review MoE fundamentals and then present an empirical study of router output distributions under various common regularization schemes.

2.4.1 MIXTURE-OF-EXPERTS BACKGROUND

Mixture-of-Experts (MoE) architectures increase model capacity and efficiency by activating only a subset of specialized subnetworks, or “experts”, for each input token. Each MoE layer replaces a standard feed-forward network (FFN) with N expert FFNs (E_1, E_2, \dots, E_N) and a router module that assigns tokens to experts (see Figure 1 for an example with 4 experts and top-2 routing).

Given a token representation x , the router (with weights \mathbf{W}_g) computes logits $\mathbf{x}\mathbf{W}_g$, which are converted to routing probabilities $\mathbf{g}(\mathbf{x}) = \text{softmax}(\mathbf{x}\mathbf{W}_g)$. Sparse MoEs typically employ top- K gating: only the K experts with the highest routing probabilities $\mathbf{g}_i(\mathbf{x})$ are selected to process the token. Let $\mathcal{T}_k(\mathbf{x})$ be the set of indices corresponding to these top- K experts for token \mathbf{x} . The MoE output is:

$$\mathbf{y}(\mathbf{x}) = \sum_{i \in \mathcal{T}_k(\mathbf{x})} \mathbf{g}_i(\mathbf{x}) \cdot E_i(\mathbf{x}). \quad (5)$$

Recent MoE designs introduce “shared experts” (Dai et al., 2024): in addition to routed experts, shared experts $E_s(\mathbf{x})$, processes all input tokens, akin to a standard FFN. Throughout this paper, we employ MoE architectures with shared experts.

2.4.2 ANALYZING ROUTER OUTPUT DISTRIBUTIONS IN UPCYCLED MOEs

Upcycling a pre-trained dense model into an MoE creates challenges for the router: all experts start as identical FFNs, while the router must learn to differentiate token assignments to foster expert

270 specialization. We analyzed router output distributions in an upcycled MoE with three experts and
 271 top-1 routing, comparing the effects of common regularization techniques.
 272

273 Figure 3 visualizes the router’s output probability distribution for a specific MoE layer, plotted
 274 on a simplex where each point represents the probabilities (p_1, p_2, p_3) for a given input. Without
 275 regularization (a), router outputs cluster near the center, reflecting low confidence and limited expert
 276 differentiation. Applying z-loss (b) (Zoph et al., 2022) further compacts the distribution, stabilizing
 277 training but reducing the range and specialization of expert assignments. Load-balancing loss
 278 (c) (Fedus et al., 2022) distributes load more evenly but neither improves routing confidence nor
 279 encourages a wider probability dynamic range; notably, imbalanced load is often less critical in
 280 upcycled MoE training.

281 In contrast, our proposed Dirichlet-Prior Shaping Loss, illustrated in (d) with a symmetric prior
 282 ($\alpha_k = 1.5$), explicitly shapes the router’s output distribution, allowing confident and diverse expert
 283 assignments while utilizing the full probability range. By choosing appropriate Dirichlet priors, we
 284 can flexibly encourage distributions that are confidently skewed or evenly spread as needed, unlike
 285 the low-confidence regime of conventional methods.
 286

3 EXPERIMENTS AND RESULTS

289 This section evaluates our proposed Dirichlet-Prior Shaping Loss for training upcycled VLM MoEs.
 290 We base our study on the LLaVA framework (Liu et al., 2024b). For the language modeling backbone,
 291 we selected Qwen2-1.5B (Bai et al., 2023), Phi3-mini 3.8B (Abdin et al., 2024), and Llama3.2-1B
 292 (Dubey et al., 2024) due to their strong performance and manageable size. Following the setup
 293 outlined in LLaVA (Liu et al., 2024b) and MoE-LLaVA (Lin et al., 2024), we utilize CLIP Large
 294 (Radford et al., 2021) as the visual encoder.

295 In the following, we first provide training and implementation details in Section 3.1, then describe
 296 the baselines and present downstream evaluation tasks and results in Section 3.2 and Section 3.3. We
 297 compare our method to modality- and task-specialized upcycling methods in Section 3.4. Finally,
 298 we present ablation studies on the impact of the DPSL’s hyperparameters on model performance in
 299 Section 3.5 and examine router output distributions and expert specialization patterns in Section 3.6.
 300

3.1 TRAINING STAGES AND IMPLEMENTATION DETAILS

301 We upcycle pre-trained LLMs within the LLaVA framework into MoE architectures, while keeping
 302 the vision encoder intact. We investigate two primary MoE configurations: (1) a standard MoE,
 303 where each expert is a full FFN replica, and (2) a granular MoE, where each expert is partitioned into
 304 multiple smaller ones, allowing more granular experts per token while maintaining constant active
 305 parameters (He et al., 2024; Dai et al., 2024; Ludziejewski et al., 2024). The standard configuration
 306 corresponds to a granularity of 1, resulting in a 4-expert setup with top-2 routing (2in4). In contrast,
 307 the granular MoE configuration uses a granularity of 4, yielding 16 experts (each $\frac{1}{4}$ the size of
 308 a full FFN) with top-8 routing (8in16). Despite the increased number of experts, the total and
 309 activated parameter count remains constant across configurations. We further discuss the details of
 310 the implementation of the upcycling of FFNs into granular experts in Appendix C.2.
 311

312 **Training stages.** The training consists of three stages. Initially, we train the MLP projector to map
 313 visual tokens into the LLM’s embedding space. The subsequent *warm-up stage* aims to bolster
 314 the model’s general visual-language understanding using a large corpus, predominantly captioning
 315 datasets. This stage comprises two phases: first, the dense model with the aligned projector is
 316 fine-tuned; second, we introduce the MoE experts and fine-tune the complete MoE architecture,
 317 including the experts, router, and other existing parameters. The final *finetuning stage*, involves
 318 training on diverse task-specific datasets. This stage aims to refine the experts’ capabilities, enabling
 319 them to learn the nuances and intricacies of specific tasks. The detailed breakdown of the datasets
 320 used in every stage can be found in Appendix C.3 along with implementation details in Appendix
 321 C.4. We maintain the same training pipeline and stages for all baselines and our method. Finally, we
 322 provide a profiling of the computational overhead introduced by DPSL in Appendix C.5.
 323

Dirichlet-Prior Shaping Loss for Upcycled MoE Training. Dirichlet-Prior Shaping Loss (DPSL) is
 324 computed at the token level across the entire batch, resulting in an effective sample size of $B = S \times T$,
 325 where S denotes the number of sequences and T represents the average sequence length. For each

324 MoE layer, let $g_i^{(t)}$ be the router’s output probability for expert i (among N experts) for the t -th token
 325 in the batch. DPSL is applied to each router as defined in Equation 4. In our setup, with $S = 128$ and
 326 T ranging from 576 to 1024, the effective batch size exceeds 73,000 tokens. We apply DPSL and
 327 other router regularization baselines only in the second phase of *warm-up stage*.

328 3.2 BASELINES AND DOWNSTREAM EVALUATIONS

330 We categorize our baselines into two groups. The first comprises upcycling methods without explicit
 331 regularizers: Sparse Upcycling (Komatsuzaki et al., 2023), which directly copies dense model
 332 weights to initialize experts, and Drop-Upcycling (Nakamura et al., 2025), which introduces partial
 333 weight re-initialization with random noise. The second group includes methods with additional
 334 router regularizations: load-balancing loss (Shazeer et al., 2017; Fedus et al., 2022); z-loss (Zoph
 335 et al., 2022), and the loss-free DeepSeek balancing procedure (Wang et al., 2024; Liu et al., 2024a).
 336 We describe the hyperparameters of these methods in Appendix C.4. Additionally, in Section 3.4,
 337 we extend our comparison to include specialized upcycling techniques for various tasks including
 338 Branch-Train-MiX (BTX) (Sukhbaatar et al., 2024) as well as a manual routing strategy involving
 339 modality-specific warmup to pre-specialize experts for vision and language tokens. For a fair and
 340 rigorous comparison, we fine-tuned these baselines for their strongest possible performance, as
 341 detailed in Appendix C.4. Finally, we subjected our dense baselines to the exact same enhanced
 342 training protocol as our MoE models which resulted in significantly stronger reference accuracies
 343 beyond standard practices used in LLaVA (Liu et al., 2024b) and MoE-LLaVA (Lin et al., 2024).

344 We evaluate our method across six benchmarks. For VQA-style tasks, models are tested on GQA
 345 (Hudson & Manning, 2019), TextVQA (Singh et al., 2019), and VizWiz (Gurari et al., 2018).
 346 Instruction-following capabilities are assessed using MME (Fu et al., 2023) (consisting of MME-
 347 Perception and MME-Cognition), MM-Vet (Yu et al., 2024) and MMBench (Liu et al., 2025). Due to
 348 the constraint on the number of submissions for VizWiz evaluation and our large number of baselines
 349 and models, we have evaluated all models on the Test-Dev2024 split.

350 3.3 DOWNSTREAM TASK EVALUATION RESULTS

351 Table 2 summarizes the downstream evaluation results across all evaluated models and upcycling
 352 methods. Standard sparse upcycling without regularization shows minimal performance gains, and
 353 in some cases, performs worse than the dense baseline, underscoring the challenge of effective
 354 expert specialization in naive upcycling. Our Dirichlet-Prior Shaping approach consistently achieves
 355 the highest average performance across all models and MoE configurations, including both the
 356 standard 2in4 and granular 8in16 expert settings, while the second-best method is a moving target.
 357 This consistency demonstrates the effectiveness of our method in promoting expert specialization
 358 and robust downstream performance, regardless of backbone or architecture making DPSL a more
 359 reliable and generalizable choice. Among the baselines, DeepSeek balancing and Drop-Upcycling
 360 are generally strong performers, but their effectiveness varies by model and architecture. For instance,
 361 DeepSeek balancing achieves high scores with Phi-MoE 2in4 and Qwen 8in16, but underperforms on
 362 Llama 2in4 and Qwen 2in4. Drop-Upcycling performs robustly across most settings, ranking among
 363 the top two for Qwen 2in4, but not consistently leading elsewhere. Overall, these results establish
 364 Dirichlet-Prior Shaping as the most consistent and broadly effective upcycling regularization strategy
 365 among those evaluated.

366 3.4 MODALITY- AND TASK-SPECIALIZED UPCYCLING

367 This section evaluates our method against specialized upcycling and expert allocation strategies. All
 368 experiments here utilize the Upcycled Llama3.2-1B model with 4 experts and top-2 routing.

369 **Modality-Specific Expert Specialization.** We compare a manual modality-specific routing baseline,
 370 where experts are hard-assigned to vision or language tokens during *warm-up*, with mixing allowed
 371 only in *finetuning stage*, to our DPSL approach. For the latter, we use modality-aware priors:
 372 $\alpha^{(\text{vision})} = (\alpha_b + \alpha_s, \alpha_b + \alpha_s, \alpha_b, \alpha_b)$ for vision tokens and $\alpha^{(\text{language})} = (\alpha_b, \alpha_b, \alpha_b + \alpha_s, \alpha_b + \alpha_s)$ for
 373 language tokens, where α_b denotes the base α value and α_s is the additive term to promote increased
 374 specialization for the corresponding experts. This encourages soft, learned modality preferences
 375 throughout training. As shown in Table 3, manual specialization yields the lowest performance, likely
 376 due to its rigidity and lack of early cross-modal sharing. In contrast, our modality-specific DPSL
 377 achieves the best results, even slightly outperforming our symmetric DPSL, highlighting the benefit
 378 of flexibly integrated, informed priors for MLLMs, whereas suboptimal manual approaches might

378
 379 Table 2: Downstream task performance comparison of upcycled VLM MoEs methods across various
 380 backbone LLMs and MoE configurations. Highest accuracy is marked in bold, 2nd best is underlined.
 381 We also report the average accuracy ([unweighted mean across seven metrics](#)) for MME-P and MME-C,
 382 the scores were normalized over the maximal possible scores (2000 and 800, respectively).

	Setup	TextVQA	GQA	MM-Vet	MME-P	MME-C	VizWiz	MMB	Avg
383 384 385 386 387 388 389 390 391 392	Dense	54.28	61.43	34.3	1442.67	266.07	38.80	66.31	36.60
	Sparse Upcycling	53.14	61.65	32.9	1418.53	<u>296.07</u>	39.38	65.07	36.17
	Drop-Upcycling	53.23	62.10	34.9	1389.21	287.86	<u>46.01</u>	65.70	<u>37.57</u>
	Load-balancing	53.66	61.42	33.0	1412.83	298.57	41.22	64.96	36.48
	Z-loss	<u>53.80</u>	61.81	36.3	1417.29	265.00	39.04	65.86	36.84
	DeepSeek balancing	53.30	61.68	33.2	1420.25	293.92	41.87	65.92	36.72
	DPSL	53.01	<u>62.01</u>	<u>35.3</u>	1459.06	289.71	49.55	<u>66.26</u>	38.17
	Sparse Upcycling	53.74	62.01	33.8	1393.42	270.00	40.74	65.75	36.72
	Drop-Upcycling	54.16	61.80	<u>34.1</u>	1435.91	<u>280.35</u>	41.30	66.36	36.97
	Load-balancing	53.93	62.10	34.6	<u>1418.28</u>	266.78	38.16	65.80	36.52
393 394 395 396 397 398 399 400 401 402	Z-loss	<u>53.95</u>	61.36	29.2	1394.94	266.79	39.48	<u>65.86</u>	35.84
	DeepSeek balancing	54.49	61.97	32.3	1444.88	310.71	43.70	65.74	<u>37.04</u>
	DPSL	53.32	<u>61.86</u>	34.0	1421.90	265.00	<u>43.54</u>	65.98	37.25
	Dense	51.19	60.18	30.5	1295.99	253.93	35.81	61.71	34.19
	Sparse Upcycling	51.20	61.00	30.0	1309.71	251.43	40.81	60.31	34.85
	Drop-Upcycling	50.50	60.43	29.8	1293.02	236.78	43.00	<u>62.61</u>	<u>35.33</u>
	Load-balancing	49.49	59.79	<u>31.3</u>	<u>1331.86</u>	247.14	40.54	59.30	34.48
	Z-loss (2in4)	51.00	60.67	30.7	1318.65	246.07	39.62	61.49	34.92
	DeepSeek balancing	<u>51.50</u>	60.64	29.5	1265.25	220.00	36.65	62.39	34.51
	DPSL	52.82	<u>60.98</u>	31.7	1334.78	<u>253.21</u>	<u>42.19</u>	62.78	35.92
403 404 405 406 407 408 409 410 411 412	Sparse Upcycling	51.47	60.78	28.5	1285.61	223.57	38.66	61.88	34.92
	Drop-Upcycling	51.75	60.70	32.0	1352.30	267.40	39.50	63.30	35.47
	Load-balancing	49.80	59.97	28.1	1312.68	227.50	45.53	61.32	35.09
	Z-loss (8in16)	52.06	60.92	33.5	<u>1340.57</u>	246.43	38.74	62.84	35.5
	DeepSeek balancing	52.89	61.32	<u>32.2</u>	1321.10	228.21	38.74	63.17	<u>35.61</u>
	DPSL	<u>52.10</u>	<u>61.09</u>	29.7	1294.50	<u>247.86</u>	<u>44.03</u>	<u>63.23</u>	35.87
	Dense	57.32	61.78	36.5	1491.31	301.07	44.32	66.76	38.18
	Sparse Upcycling	<u>56.90</u>	62.64	35.4	1440.94	333.21	44.79	71.97	38.98
	Drop-Upcycling	56.55	63.01	40.3	1451.90	333.21	42.42	72.50	39.42
	Load-balancing	56.57	62.78	35.1	1449.07	322.50	43.43	73.00	38.86
413 414 415 416 417 418	Z-loss (2in4)	56.60	62.40	40.6	1467.90	311.40	<u>46.10</u>	<u>73.10</u>	<u>39.99</u>
	DeepSeek balancing	56.80	<u>62.81</u>	<u>41.5</u>	<u>1481.90</u>	361.40	43.10	73.80	39.89
	DPSL	56.73	62.47	42.4	1472.80	<u>350.00</u>	46.20	72.31	40.18

420
 421 prematurely dismiss such strategies. Following Section 3.5 results, for both modality-specific and
 422 task-specific priors, we set $\alpha_b = 0.75$ and $\alpha_s = 0.5$.

423
 424 **Task-Specific Expert Specialization.** We compare DPSL to Branch-Train-MiX (BTX) (Sukhbaatar
 425 et al., 2024) where experts are pre-specialized by fine-tuning separate dense model copies on different
 426 data subsets (details in Appendix C.6) before MoE integration. DPSL, instead, applies data-subset-
 427 conditional priors during standard upcycled MoE training: for tokens from subset \mathcal{M} (targeting
 428 specialization for expert E_m), its prior $\alpha^{(m)}$ has a higher m -th component (e.g., $\alpha_m^{(m)} = \alpha_b + \alpha_s$)
 429 compared to other priors (e.g., $\alpha_j^{(m)} = \alpha_b$, $j \neq m$). This encourages expert E_m to focus on domain
 430 \mathcal{M} while allowing continuous knowledge sharing. While both task-specific methods outperform the
 431 dense baseline (Table 3), they underperform our symmetric DPSL strategy. This suggests that for the
 432 defined vision-language modeling data subsets, explicitly enforced task specialization might be less

432 effective than a more general, symmetrically guided approach, possibly due to [multi-faceted nature](#)
 433 of [VLM tasks](#), non-optimal data subsets, or over-constraining experts compared to allowing more
 434 data-driven specialization.

436 Table 3: Performance comparison of modality- and task-specific expert specialization strategies on
 437 Llama3.2-1B (2in4) performance.
 438

Model	TextVQA	GQA	MM-Vet	MME-P	MME-C	VizWiz	MMB	Avg
Dense	51.19	60.18	30.5	1295.99	253.93	35.81	61.71	34.19
DPSL (symmetric-prior)	52.82	60.98	31.7	1334.78	253.21	42.19	62.78	35.92
Manual (modality)	51.60	60.82	30.3	1323.09	242.14	37.37	61.49	34.65
DPSL (modality-prior)	51.83	61.40	32.1	1304.96	285.00	42.88	64.01	36.18
BTX (task)	50.69	60.64	31.0	1330.64	247.50	40.22	63.62	35.31
DPSL (task-prior)	51.99	60.73	27.8	1301.12	238.21	43.82	62.16	35.35

3.5 ABLATION STUDY

450 **Concentration parameter.** We ablate the symmetric Dirichlet concentration α to assess sensitivity
 451 of DPSL to prior sharpness, where smaller α encourages sparser, corner-biased routing and larger α
 452 favors more uniform, center-biased assignments, with $\alpha = 1$ corresponding to the flat Dirichlet over
 453 the simplex. We present results and detailed discussion in Appendix D.1 (Table 8 for Llama3.2-1B
 454 and Table 9 for Qwen2-1.5B). Taken together, the ablation indicates that Llama3.2-1B benefits from
 455 a modestly lower concentration ($\alpha = 0.75$), whereas larger backbones such as Qwen2-1.5B are
 456 comparatively robust across a wider range of α values. In practice, we adopt backbone-specific
 457 defaults for all experiments: $\alpha = 1$ for Qwen and Phi models, and $\alpha = 0.75$ for Llama.
 458

459 **Concentration parameter in the specialization setting.** We analyze the concentration parameter
 460 within the modality-specialization setup, varying both the number of experts per modality and the
 461 prior allocations, and report all results and discussion in Appendix D.2 (Table 10). In brief, DPSL
 462 remains stable under small changes to the symmetric base prior, while deliberately unbalanced
 463 allocations across modalities materially reduce overall accuracy.
 464

465 **Regularization weight λ .** We ablate the regularization weight λ of DPSL over the range
 466 $\{0.001, 0.01, 0.1\}$ and provide complete results in Table 11 in Appendix D.3. The best result
 467 is achieved with $\lambda = 0.01$, which is used as the default for all experiments.
 468

469 **Practical guidelines for selecting α .** We view the Dirichlet concentration α as a semantic prior for
 470 the desired routing profile. Based on our experiments, we recommend a symmetric unit prior ($\alpha = 1$)
 471 as a robust universal default. This setting inherently provides a balanced loading profile for all experts
 472 and yields competitive performance across diverse LLM architectures and transfers zero-shot to
 473 completely different domains, such as unsupervised clustering (Section 2.3). We observe that slightly
 474 smaller values (e.g., $\alpha \approx 0.75$) can be used on smaller backbones to encourage marginally stronger
 475 specialization.
 476

477 For asymmetric priors, where a specific expert or cluster k is preferred (e.g., due to known modality
 478 imbalance or domain importance), we recommend starting from the base value (e.g., 1.0) and adding
 479 a moderate scalar bias of ≈ 0.5 to that component’s concentration (e.g., $\alpha = (1.5, 1, 1)$). This
 480 approach, which we successfully verified in MoE and unsupervised learning experiments, softly
 481 biases probability mass toward the target component without enforcing rigid hard constraints.
 482

3.6 ROUTING DISTRIBUTIONS AND EXPERT SPECIALIZATION PATTERNS

483 We qualitatively analyze the distributions of router scores resulting from training with various
 484 regularization techniques, including router z-loss, load-balancing loss, and the loss-free DeepSeek
 485 balancing method. Appendix D.4 visualizes these output score distributions for a Llama3.2-1B model
 486

486 configured with 4 experts and top-2 routing. As can be seen, most conventional methods yield router
 487 score distributions that are sharply peaked around the uniform selection probability of 0.25 (i.e., 1/4
 488 for four experts). This clustering suggests that these approaches often result in low router confidence
 489 when selecting among experts. In contrast, the model trained with our DPSL exhibits a noticeably
 490 broader and more varied distribution of routing scores.

491 We further examine the expert specialization patterns by computing pairwise cosine similarity
 492 between expert activations across layers, see Appendix D.6 for detailed analysis for LLama3.2-1B
 493 2in4. Our DPSL maintains the lowest average similarity compared to load-balancing loss and z-loss,
 494 demonstrating superior expert specialization.

495 We additionally analyze the expert utilization by measuring the Coefficient of Variation (CoV) of
 496 expert loads at different layers. We present our finding in the Appendix D.5 (Table 12) for Llama3.2-
 497 1B 2in4 model. We can observe that even without explicit enforcing of expert balancing, DPSL loss
 498 intrinsically encourages a balanced load distribution consistently visible across layers.

500 4 RELATED WORK

501 Our work builds upon advancements in upcycling pre-trained dense models into MoE architectures, a
 502 technique to efficiently enhance model capacity (Komatsuzaki et al., 2023; Lin et al., 2024). Naive
 503 sparse upcycling typically involves replicating feed-forward network weights, which can lead to
 504 initial expert homogeneity and low specialization. To address this, methods like Drop-Upcycling
 505 (Nakamura et al., 2025) introduce partial re-initialization to promote expert diversity from the start.
 506 Further refinement in upcycling enables the creation of fine-grained MoE architectures, notably
 507 through the “virtual group” initialization proposed by He et al. (2024), which we leverage for our
 508 granular MoE variants. While these methods focus on initialization, our Dirichlet-Prior Shaping Loss
 509 offers a distinct approach by providing continuous, fine-grained control over expert specialization
 510 throughout the training process by directly shaping the router’s output probability distributions.

511 Effective MoE training also relies on managing router behavior and expert utilization. Common
 512 strategies include load-balancing losses to encourage uniform expert activation (Shazeer et al., 2017;
 513 Fedus et al., 2022) and router z-loss to improve training stability by penalizing large logits (Zoph et al.,
 514 2022). Entropy-based regularization mechanisms (Chen et al., 2025) are applied per token and push
 515 each individual routing distribution toward high entropy, thereby discouraging confident assignments
 516 and typically shrinking all router outputs toward the center of the simplex. More recent developments
 517 include auxiliary-loss-free load balancing, such as dynamically adjusting expert-wise biases used in
 518 DeepSeek v3 model Wang et al. (2024); Liu et al. (2024a). Unlike these methods that primarily target
 519 even load distribution or numerical stability, our DPSL directly models and regularizes the entire
 520 categorical distribution of routing probabilities. DPSL exposes explicit, interpretable control knobs
 521 via the Dirichlet concentration parameters. By varying the magnitude and asymmetry of the prior,
 522 practitioners can smoothly interpolate between uniform routing, confident but balanced specialization,
 523 and targeted specialization (e.g., modality-aware or task-aware), without changing the underlying
 524 architecture or adding hand-crafted heuristics.

525 5 CONCLUSION

526 In this paper, we introduce Dirichlet-Prior Shaping Loss (DPSL), a novel and principled regularization
 527 technique that empowers fine-grained control over modules outputting categorical probabilities
 528 by aligning their empirical distributions with a target Dirichlet prior. Applied to upcycled VLM
 529 MoEs, DPSL demonstrates robust, consistently superior performance across diverse models and MoE
 530 configurations. Our results further reveal the promise of modality-specific priors for multimodal
 531 learning, enabling more adaptive and effective expert allocation in MLLMs. While this work focused
 532 on upcycled MoEs, the principles of DPSL extend naturally to training MoEs from scratch and poten-
 533 tially to a wider array of machine learning systems, opening exciting future directions for instilling
 534 desired statistical behaviors directly into the learning process. Specifically, we envision DPSL playing
 535 a critical role in stabilizing early-stage MoE training by preventing expert collapse through symmetric
 536 prior shaping. Despite broad improvements across backbones and MoE configurations, a primary
 537 limitation of our work is the inability to perform multiple seeds across the full matrix of backbones,
 538 granularities, and priors due to the expense of upcycled MoE training.

540 6 ETHICS AND REPRODUCIBILITY STATEMENTS
541542 We adhere to the ICLR Code of Ethics. This paper focuses on training methodology to enhance MoE
543 upcycling, however, the model itself incorporates an LLM that may perpetuate biases present in the
544 training data, potentially affecting fairness and reliability. Therefore, we recommend adhering to
545 standard ethical guidelines for the use of LLMs to mitigate these risks.546 During the preparation of this manuscript, we utilized large language models (LLMs) to assist with
547 grammar correction and refinement of the writing.
548549 In this paper, we provide all the necessary details to ensure the reproducibility of the presented method.
550 We provide the theoretical justification of the method in Section 2 and Appendix A, implementation
551 details and training protocols in Section 3.1, Appendix C.2 and Appendix C.4, and data description
552 in Appendix C.3.553 REFERENCES
554555 Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen Bach,
556 Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, et al. Phi-3 Technical Report: A
557 Highly Capable Language Model Locally on Your Phone. *arXiv preprint arXiv:2404.14219*, 2024.558
559 Theodore W Anderson. On the Distribution of the Two-Sample Cramer-von Mises Criterion. *The*
560 *Annals of Mathematical Statistics*, pp. 1148–1159, 1962.561 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
562 Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu,
563 Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan,
564 Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin
565 Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng
566 Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou,
567 Xiaohuan Zhou, and Tianhang Zhu. Qwen Technical Report. *arXiv preprint arXiv:2309.16609*,
568 2023.569 Babak Ehteshami Bejnordi, Tijmen Blankevoort, and Max Welling. Batch-Shaping for Learning
570 Conditional Channel Gated Networks. In *International Conference on Learning Representations*,
571 2020.572 Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.
573 Unsupervised learning of visual features by contrasting cluster assignments. *Advances in neural*
574 *information processing systems*, 33:9912–9924, 2020.575 Guiming Hardy Chen, Shunian Chen, Ruifei Zhang, Junying Chen, Xiangbo Wu, Zhiyi Zhang,
576 Zhihong Chen, Jianquan Li, Xiang Wan, and Benyou Wang. ALLaVA: Harnessing GPT4V-
577 Synthesized Data for a Lite Vision-Language Model. *arXiv preprint arXiv:2402.11684*, 2024.578 Xuanze Chen, Jiajun Zhou, Jinsong Chen, Shanqing Yu, and Qi Xuan. Mixture of decoupled
579 message passing experts with entropy constraint for general node classification. *arXiv preprint*
580 *arXiv:2502.08083*, 2025.581 Damai Dai, Chengqi Deng, Chenggang Zhao, R.x. Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
582 Zeng, Xingkai Yu, Y. Wu, Zhenda Xie, Y.k. Li, Panpan Huang, Fuli Luo, Chong Ruan, Zhifang
583 Sui, and Wenfeng Liang. DeepSeekMoE: Towards Ultimate Expert Specialization in Mixture-
584 of-Experts Language Models. In *Proceedings of the 62nd Annual Meeting of the Association for*
585 *Computational Linguistics (Volume 1: Long Papers)*, pp. 1280–1297. Association for Computational
586 Linguistics, 2024.587 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
588 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The Llama 3 Herd of Models.
589 *arXiv preprint arXiv:2407.21783*, 2024.590 David Eigen, Marc’Aurelio Ranzato, and Ilya Sutskever. Learning Factored Representations in a
591 Deep Mixture of Experts. *arXiv preprint arXiv:1312.4314*, 2013.

594 William Fedus, Barret Zoph, and Noam Shazeer. Switch Transformers: Scaling to Trillion Parameter
 595 Models with Simple and Efficient Sparsity. *Journal of Machine Learning Research*, 23(120):1–39,
 596 2022.

597 Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu
 598 Zheng, Ke Li, Xing Sun, et al. MME: A Comprehensive Evaluation Benchmark for Multimodal
 599 Large Language Models. *arXiv preprint arXiv:2306.13394*, 2023.

600

601 Danna Gurari, Qing Li, Abigale J Stangl, Anhong Guo, Chi Lin, Kristen Grauman, Jiebo Luo, and
 602 Jeffrey P Bigham. VizWiz Grand Challenge: Answering Visual Questions from Blind People.
 603 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 604 3608–3617, 2018.

605 Ethan He, Abhinav Khattar, Ryan Prenger, Vijay Korthikanti, Zijie Yan, Tong Liu, Shiqing Fan,
 606 Ashwath Aithal, Mohammad Shoeybi, and Bryan Catanzaro. Upcycling large language models
 607 into mixture of experts. *arXiv preprint arXiv:2410.07524*, 2024.

608

609 Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
 610 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. An
 611 Empirical Analysis of Compute-Optimal Large Language Model Training. *Advances in Neural
 612 Information Processing Systems*, 35:30016–30030, 2022.

613 Drew A Hudson and Christopher D Manning. GQA: A New Dataset for Real-World Visual Reasoning
 614 and Compositional Question Answering. In *Proceedings of the IEEE/CVF Conference on Computer
 615 Vision and Pattern Recognition*, pp. 6700–6709, 2019.

616

617 Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive Mixtures of
 618 Local Experts. *Neural Computation*, 3(1):79–87, 1991.

619

620 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
 621 Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling Laws for Neural Language Models.
 622 *arXiv preprint arXiv:2001.08361*, 2020.

623

624 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
 625 Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment Anything. In *Proceed-
 626 ings of the IEEE/CVF International Conference on Computer Vision*, pp. 4015–4026, 2023.

627

628 Aran Komatsuzaki, Joan Puigcerver, James Lee-Thorp, Carlos Riquelme Ruiz, Basil Mustafa, Joshua
 629 Ainslie, Yi Tay, Mostafa Dehghani, and Neil Houlsby. Sparse Upcycling: Training Mixture-
 630 of-Experts from Dense Checkpoints. In *The Eleventh International Conference on Learning
 631 Representations*, 2023.

632

633 Bin Lin, Zhenyu Tang, Yang Ye, Jiaxi Cui, Bin Zhu, Peng Jin, Junwu Zhang, Munan Ning, and
 634 Li Yuan. MoE-LLaVA: Mixture of Experts for Large Vision-Language Models. *arXiv preprint
 635 arXiv:2401.15947*, 2024.

636

637 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 638 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 Technical Report. *arXiv preprint
 639 arXiv:2412.19437*, 2024a.

640

641 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved Baselines with Visual Instruction
 642 Tuning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 643 pp. 26296–26306, 2024b.

644

645 Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi
 646 Wang, Conghui He, Ziwei Liu, et al. MMBench: Is your Multi-Modal Model an All-Around
 647 Player? In *European Conference on Computer Vision*, pp. 216–233. Springer, 2025.

648

649 Jan Ludziejewski, Jakub Krajewski, Kamil Adamczewski, Maciej Pióro, Michał Krutul, Szymon
 650 Antoniak, Kamil Ciebiera, Krystian Król, Tomasz Odrzygóźdż, Piotr Sankowski, Marek Cygan,
 651 and Sebastian Jaszczur. Scaling Laws for Fine-Grained Mixture of Experts. In *Proceedings of the
 652 41st International Conference on Machine Learning*, volume 235 of *Proceedings of Machine
 653 Learning Research*, pp. 33270–33288. PMLR, 2024.

648 Taishi Nakamura, Takuya Akiba, Kazuki Fujii, Yusuke Oda, Rio Yokota, and Jun Suzuki. Drop-
 649 Upcycling: Training Sparse Mixture of Experts with Partial Re-Initialization. In *The Thirteenth*
 650 *International Conference on Learning Representations*, 2025.

651

652 Qi Qian. Stable cluster discrimination for deep clustering. In *Proceedings of the IEEE/CVF*
 653 *international conference on computer vision*, pp. 16645–16654, 2023.

654 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 655 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning Transferable Visual
 656 Models from Natural Language Supervision. In *International Conference on Machine Learning*,
 657 pp. 8748–8763. PMLR, 2021.

658

659 Babak Saleh and Ahmed Elgammal. Large-Scale Classification of Fine-Art Paintings: Learning the
 660 Right Metric on the Right Feature. *arXiv preprint arXiv:1505.00855*, 2015.

661

662 Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
 663 Jeff Dean. Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer.
International Conference on Learning Representations, 2017.

664

665 Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh,
 666 and Marcus Rohrbach. Towards VQA Models That Can Read. In *Proceedings of the IEEE/CVF*
 667 *Conference on Computer Vision and Pattern Recognition*, pp. 8317–8326, 2019.

668

669 Sainbayar Sukhbaatar, Olga Golovneva, Vasu Sharma, Hu Xu, Xi Victoria Lin, Baptiste Roziere,
 670 Jacob Kahn, Shang-Wen Li, Wen tau Yih, Jason E Weston, and Xian Li. Branch-Train-MiX:
 671 Mixing Expert LLMs into a Mixture-of-Experts LLM. In *First Conference on Language Modeling*,
 2024.

672

673 Junke Wang, Lingchen Meng, Zejia Weng, Bo He, Zuxuan Wu, and Yu-Gang Jiang. To See is to Be-
 674 lieve: Prompting GPT-4V for Better Visual Instruction Tuning. *arXiv preprint arXiv:2311.07574*,
 2023.

675

676 Lean Wang, Huazuo Gao, Chenggang Zhao, Xu Sun, and Damai Dai. Auxiliary-Loss-Free Load
 677 Balancing Strategy for Mixture-of-Experts. *arXiv preprint arXiv:2408.15664*, 2024.

678

679 Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Zicheng Liu, Xinchao Wang,
 680 and Lijuan Wang. MM-Vet: Evaluating Large Multimodal Models for Integrated Capabilities.
International Conference on Machine Learning, 2024.

681

682 Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean, Noam Shazeer, and
 683 William Fedus. ST-MoE: Designing Stable and Transferable Sparse Expert Models. *arXiv preprint*
arXiv:2202.08906, 2022.

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

APPENDIX

A MARGINALS OF THE DIRICHLET DISTRIBUTION

In this appendix, we provide proof that the marginal distribution of each component p_k of a Dirichlet random vector $\mathbf{p} = (p_1, \dots, p_K) \sim \text{Dir}(\boldsymbol{\alpha})$ follows a Beta distribution. We first establish the aggregation property of the Dirichlet distribution, then use it to derive the marginal.

A.1 AGGREGATION PROPERTY OF THE DIRICHLET DISTRIBUTION

Statement: If $\mathbf{p} = (p_1, \dots, p_i, \dots, p_j, \dots, p_K) \sim \text{Dir}(\alpha_1, \dots, \alpha_i, \dots, \alpha_j, \dots, \alpha_K)$, then the vector \mathbf{p}' obtained by aggregating components p_i and p_j into a single component $p'_i = p_i + p_j$, i.e., $\mathbf{p}' = (p_1, \dots, p_i + p_j, \dots, p_{j-1}, p_{j+1}, \dots, p_K)$, follows a Dirichlet distribution with parameters $(\alpha_1, \dots, \alpha_i + \alpha_j, \dots, \alpha_{j-1}, \alpha_{j+1}, \dots, \alpha_K)$.

Proof: Without loss of generality, we aggregate the first two components, p_1 and p_2 . We want to find the marginal distribution of $\mathbf{p}' = (y, p_3, \dots, p_K)$, where $y = p_1 + p_2$, by integrating the joint PDF of $(p_1, p_2, p_3, \dots, p_K)$ over the region defined by $p_1 + p_2 = y$, keeping p_3, \dots, p_K fixed. We integrate with respect to p_1 , while substituting $p_2 = y - p_1$. Based on Equation (1) in Section 2.1, the PDF for (y, p_3, \dots, p_K) is:

$$f(y, p_3, \dots, p_K) = \int_0^y \frac{1}{B(\boldsymbol{\alpha})} p_1^{\alpha_1-1} (y - p_1)^{\alpha_2-1} \left(\prod_{k=3}^K p_k^{\alpha_k-1} \right) dp_1 \quad (6)$$

$$= \frac{1}{B(\boldsymbol{\alpha})} \left(\prod_{k=3}^K p_k^{\alpha_k-1} \right) \int_0^y p_1^{\alpha_1-1} (y - p_1)^{\alpha_2-1} dp_1 \quad (7)$$

Applying a change of variables $p_1 = yt$, and evaluating the integral:

$$\int_0^y p_1^{\alpha_1-1} (y - p_1)^{\alpha_2-1} dp_1 = \int_0^1 (yt)^{\alpha_1-1} (y - yt)^{\alpha_2-1} (ydt) \quad (8)$$

$$= y^{\alpha_1+\alpha_2-1} \int_0^1 t^{\alpha_1-1} (1-t)^{\alpha_2-1} dt \quad (9)$$

The remaining integral is the definition of the Beta function $B(\alpha_1, \alpha_2)$. Substituting this back in Equation 7:

$$f(y, p_3, \dots, p_K) = \frac{B(\alpha_1, \alpha_2)}{B(\boldsymbol{\alpha})} y^{\alpha_1+\alpha_2-1} \prod_{k=3}^K p_k^{\alpha_k-1} \quad (10)$$

The constant term $\frac{B(\alpha_1, \alpha_2)}{B(\boldsymbol{\alpha})}$ is:

$$\frac{B(\alpha_1, \alpha_2)}{B(\boldsymbol{\alpha})} = \frac{\frac{\Gamma(\alpha_1)\Gamma(\alpha_2)}{\Gamma(\alpha_1+\alpha_2)}}{\frac{\Gamma(\alpha_1)\Gamma(\alpha_2)\Gamma(\alpha_3)\dots\Gamma(\alpha_K)}{\Gamma(\alpha_1+\alpha_2+\alpha_3+\dots+\alpha_K)}} = \frac{\Gamma(\alpha_1 + \alpha_2 + \alpha_3 + \dots + \alpha_K)}{\Gamma(\alpha_1 + \alpha_2)\Gamma(\alpha_3)\dots\Gamma(\alpha_K)} \quad (11)$$

This is the reciprocal of the multivariate Beta function for parameters $(\alpha_1 + \alpha_2, \alpha_3, \dots, \alpha_K)$. Let $\boldsymbol{\alpha}' = (\alpha_1 + \alpha_2, \alpha_3, \dots, \alpha_K)$. Then the constant is $\frac{1}{B(\boldsymbol{\alpha}')}$. So, the PDF becomes:

$$f(y, p_3, \dots, p_K) = \frac{1}{B(\boldsymbol{\alpha}')} y^{(\alpha_1+\alpha_2)-1} \prod_{k=3}^K p_k^{\alpha_k-1} \quad (12)$$

Therefore, the marginal distribution of \mathbf{p}' is exactly a Dirichlet distribution $\text{Dir}(\alpha_1 + \alpha_2, \alpha_3, \dots, \alpha_K)$. This proves the aggregation property for summing two components. The argument can be extended by induction to summing any number of components.

756 A.2 MARGINALS OF THE DIRICHLET DISTRIBUTION ARE BETA DISTRIBUTIONS
757758 Using the aggregation property proven above, we can derive the marginal distribution of a single
759 component p_i . Aggregate all components except p_i into a single component:

760
$$p_{-i} = 1 - p_i = \sum_{k \neq i} p_k. \quad (13)$$

761
762

763 By the aggregation property, we have:

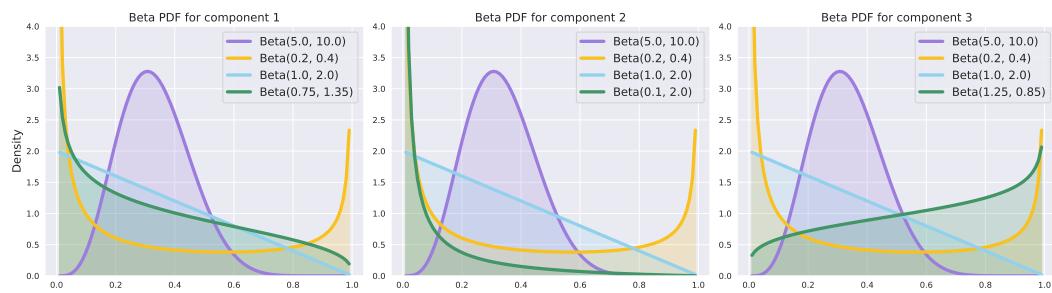
764
$$(p_i, p_{-i}) \sim \text{Dir}(\alpha_i, A - \alpha_i), \quad (14)$$

765

766 where $A = \sum_{k=1}^K \alpha_k$. Since, the 2-dimensional Dirichlet distribution is equivalent to a Beta
767 distribution, it follows that:

768
$$p_i \sim \text{Beta}(\alpha_i, A - \alpha_i). \quad (15)$$

769

770 This proves that the marginals of a Dirichlet distribution are Beta distributed, as stated in Section 2.1.
771772 A.3 VISUALIZATION OF THE MARGINAL BETA DISTRIBUTIONS
773774 Figure 4 visualizes the marginal Beta distributions for each component of a Dirichlet distribution.
775 For a symmetric Dirichlet distribution, where all of the elements of the concentration parameter have
776 the same value, larger α_k concentrates p_k near its mean (e.g. $\text{Dir}(5.0, 5.0, 5.0)$); smaller values yield
777 more dispersed or even U-shaped distributions (e.g. $\text{Dir}(0.2, 0.2, 0.2)$); while an $\alpha = 1$ known as the
778 flat Dirichlet distribution corresponds to a uniform distribution over the simplex ($\text{Dir}(1.0, 1.0, 1.0)$).
779 Finally, we present the marginal beta distributions when an asymmetric concentration parameter is
780 used ($\text{Dir}(0.75, 0.1, 1.25)$) in which the last component has the biggest value placing more mass at
781 this component.792 Figure 4: Visualization of the marginal Beta distributions for the following Dirichlet distributions:
793 — $\text{Dir}(5.0, 5.0, 5.0)$, — $\text{Dir}(0.2, 0.2, 0.2)$, — $\text{Dir}(1.0, 1.0, 1.0)$, and — $\text{Dir}(0.75, 0.1, 1.25)$.
794795 B PRIOR-GUIDED UNSUPERVISED CLUSTERING EXPERIMENT
796797 To demonstrate the applicability of DPSL beyond MoE routing, we design a synthetic unsupervised
798 clustering task where a small network outputs 3-way cluster-assignment probabilities for 2D inputs.
799 For each of three regimes, we sample 1500 points from a mixture of three Gaussian-like clusters with
800 distinct means and covariances.
801802 B.1 DATA GENERATION
803

- **Non-overlapping imbalanced clusters:** The points distributed across three clusters with size ratios 4:1:1, sampled from isotropic Gaussian distributions with standard deviation $\sigma = 0.8$ and fixed centroids $\mu_1 = (0, 0)$, $\mu_2 = (5, 5)$, and $\mu_3 = (-5, 5)$.
- **Overlapping imbalanced clusters:** The data points with size ratios 5:2:1 were sampled from anisotropic Gaussian distributions centered at the vertices of an equilateral triangle (radius 2.4), with varying standard deviations $\sigma \in \{1.0, 0.8, 0.6\}$ and elongation factors $\{1.0, 2.5, 1.5\}$ oriented to induce complex boundary overlaps.

810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863

- **Overlapping elongated clusters:** The data points with size ratios 5:3:1 were sampled from highly anisotropic Gaussian distributions centered at the vertices of an equilateral triangle (radius 3.8), with distinct elongations $\{3.0, 4.0, 2.0\}$ and standard deviations $\sigma \in \{0.7, 1.0, 0.5\}$.

B.2 TRAINING DETAILS

For each setting, we trained an MLP with architecture $2 \rightarrow 64 \rightarrow 32 \rightarrow 3$ with ReLU activations. The final output is passed through a softmax function to produce cluster assignment probabilities. The model is trained for 50 epochs using the Adam optimizer with a learning rate of 0.01 and full-batch gradient descent ($N = 1500$). We use SwAV (Caron et al., 2020) and SeCu (Qian, 2023) unsupervised clustering methods as baselines.

To allow the intrinsic clustering structure to emerge before imposing prior constraints, we implement a warm-up schedule. The model is trained solely with the baseline clustering loss for the first 40 epochs. For the remaining epochs, DPSL is added to the objective with a λ set to 0.01 to shape the distribution of the learned cluster assignments towards the target Dirichlet prior.

B.3 CHOICE OF DIRICHLET PRIORS FOR CLUSTERING

The idea cluster-size ratios and the amount of cluster overlap are generally not known exactly a priori, and even when approximate ratios are available, the effective proportions in the learned representation can deviate due to overlap or elongated cluster geometry. For this reason, we use moderate asymmetric Dirichlet priors that provide soft inductive bias toward approximate proportions without rigid enforcement. In particular, we set $\alpha = (2, 1, 1)$ for the 4:1:1 non-overlapping setting, and $\alpha = (1.5, 1.0, 0.5)$ for both the 5:2:1 overlapping and 5:3:1 elongated settings. The clustering accuracy results for our aligned priors are presented in Table 1 in the main paper.

As qualitatively shown in Figure 5, while the SwAV baseline fails to distinguish smaller or overlapping clusters, adding DPSL effectively guides the model to recover the true cluster structure across all three regimes.

B.4 ROBUSTNESS TO PRIOR MISSPECIFICATION

To test robustness to prior misspecification, we intentionally used a fixed sub-optimal prior $\alpha = (1.5, 1, 1)$ for all settings which no longer encodes differences between the medium and smallest clusters. Even under these misspecified priors, DPSL consistently improves performance. The results in Table 4 indicate that DPSL remains beneficial even with coarse or partially incorrect prior.

Table 4: Impact of DPSL on unsupervised clustering accuracy, when using a fixed sub-optimal prior for all the settings.

Setting	SwAV	SwAV+DPSL	SeCu	SeCu+DPSL
Non-overlapping	$84.42 \pm 0.83\%$	$88.31 \pm 0.19\%$ (+3.89%)	$88.40 \pm 11.4\%$	$93.42 \pm 6.42\%$ (+5.02%)
Overlapping	$86.71 \pm 1.13\%$	$89.62 \pm 0.30\%$ (+2.91%)	$70.69 \pm 3.8\%$	$82.66 \pm 2.83\%$ (+11.97%)
Elongated	$87.73 \pm 0.67\%$	$88.18 \pm 0.63\%$ (+0.45%)	$76.84 \pm 7.1\%$	$83.67 \pm 3.58\%$ (+6.83%)

C TRAINING AND IMPLEMENTATION DETAILS

C.1 TRAINING DETAILS FOR THE EXPERIMENT IN SECTION 2.2

This appendix provides the training details with an additional illustrative example for applying the Dirichlet-Prior Shaping Loss (DPSL), as referenced in Section 2.2. The objective is to guide a set of learnable probability distributions over three categories to match target Dirichlet priors.

In the example shown in Figure 2 in the paper and Figure 6 in this section, we consider data points representing probability distributions derived from two distinct sources. Independent Dirichlet priors

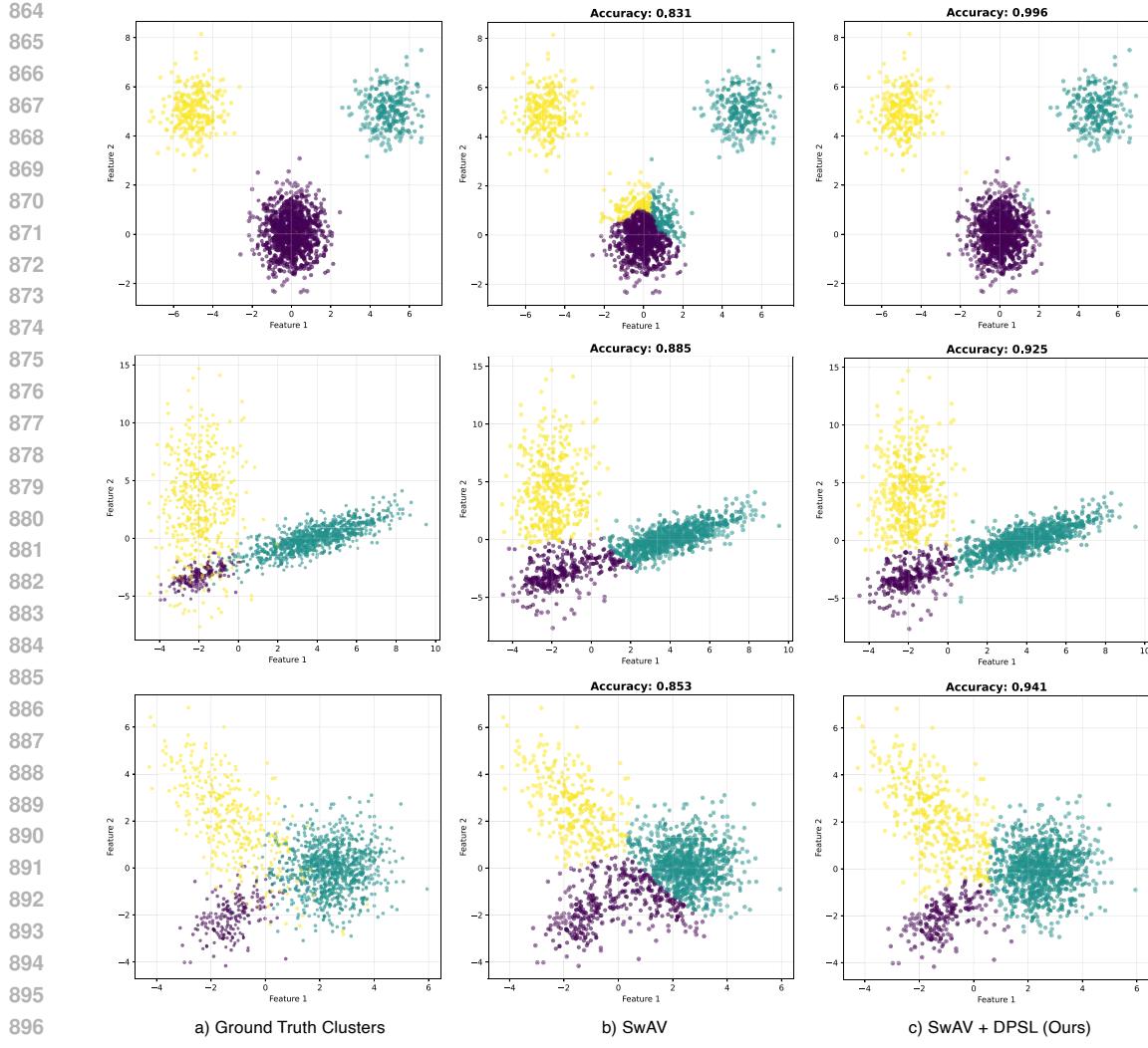


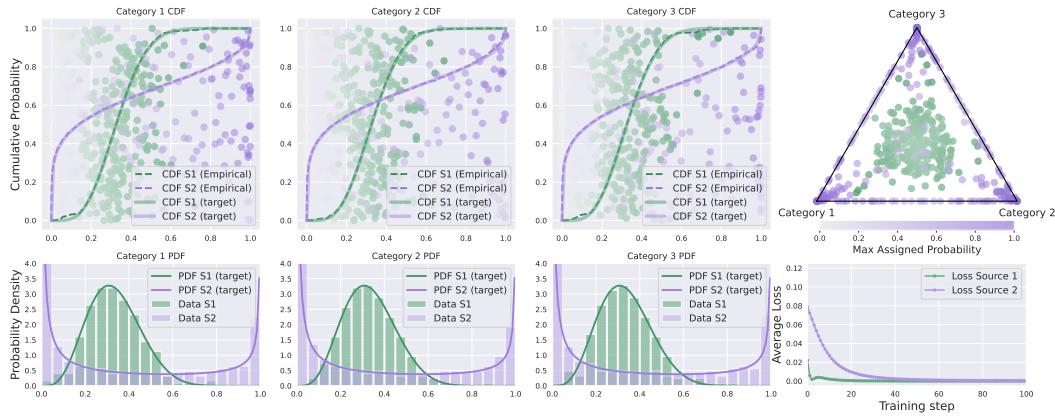
Figure 5: Qualitative impact of DPSL on clustering under various data regimes. We visualize cluster assignments for a random seed across three settings: Top: Non-overlapping (size ratio 4:1:1), Middle: Elongated (ratio 5:3:1), and Bottom: Overlapping (ratio 5:2:1). The columns compare the Ground Truth labels (a) with predictions from the SwAV baseline (Caron et al., 2020) (b) and SwAV + DPSL (c). Adding DPSL successfully recovers the distinct cluster structures by shaping the output distribution toward the expected asymmetric prior.

are applied to shape the distributions for each source: For example in Figure 6, Source one has a target prior of $\text{Dir}(5, 5, 5)$ and Source two has a target prior of $\text{Dir}(0.2, 0.2, 0.2)$.

For training, we initialize the data points as learnable parameters. These parameters are optimized using the Adam optimizer with a learning rate of 0.1 for 100 training steps. The optimization minimizes the Dirichlet-Prior Shaping Loss (defined in Equation 4), which quantifies the difference between the empirical CDF of the learned probabilities (for each category) and the theoretical Beta CDF derived from the respective target Dirichlet prior. The learning curve, shown in the bottom right panel of Figure 6, tracks the minimization of this loss during training.

As illustrated in Figure 6, minimizing the CDF divergence ensures that the empirical distribution of the learnable probability vectors for each source converges effectively to its specified target Dirichlet prior (top row). The choice of concentration parameters (α_k) significantly influences the characteristics of the learned distributions. For source one, the larger $\alpha_k = 5$ values steer the probability distributions towards the mean of the simplex. For source two, the smaller $\alpha_k = 0.2$

918 values promote sparse probability distributions. This results in distributions heavily concentrated
 919 at the corners of the simplex, where one category is assigned a high probability, and the others are
 920 assigned probabilities near zero, indicating a strong preference for a single category.
 921



936 Figure 6: Dirichlet-Prior Shaping Loss (DPSL) shapes categorical probability distributions from
 937 two data sources (S1, S2). Top row shows the empirical (dashed) vs. target (solid) CDFs for each
 938 category after convergence, along with simplex of assignment probabilities. Bottom row presents data
 939 histograms of assignment probabilities overlaid with target Beta PDFs, and learning curves showing
 940 DPSL minimization during training.
 941

942 C.2 IMPLEMENTATION DETAILS FOR UPCYCLING FFNS INTO GRANULAR EXPERTS

944 This section provides implementation details for upcycling Feed-Forward Networks (FFNs) into
 945 granular experts, as referenced in Section 3.1. Granularity, in this context, refers to the ratio of the
 946 original FFN’s hidden dimension (d_{ffn}) to the hidden dimension of an MoE expert (d_{exp}), expressed
 947 as $G = d_{\text{ffn}}/d_{\text{exp}}$. Creating smaller, more granular experts allows tokens to be routed to a larger
 948 number of experts, which has shown promising accuracy results (Ludziejewski et al., 2024; He et al.,
 949 2024) for granular expert upcycling. We closely follow the approach detailed in He et al. (2024).

950 We experimented with both standard upcycling and fine-grained upcycling, as follows: For standard
 951 upcycling, we duplicate the original FFN blocks to create experts. We add noise to the weights at
 952 initialization with a small magnitude, $\epsilon \sim \mathcal{N}(0, 0.01)$. For fine-grained upcycling, we follow the
 953 approach proposed by He et al. (2024), partitioning each FFN weight tensor into G shards. In our
 954 experiments, upcycling with granularity 1 (standard upcycling) corresponds to a setup with 4 experts
 955 and top-2 routing. Fine-grained upcycling corresponds to a setup with 16 experts and top-8 routing.

956 Notably, we implemented weight scaling for expert initialization (He et al., 2024), but found that
 957 it resulted in decreased accuracy in our experiments. Therefore, we did not use it in the final
 958 experimental setup.
 959

960 C.3 DATASETS

962 Table 5 provides a detailed breakdown of the datasets used for training in every stage (stage I:
 963 *projector-training*, stage II: *warm-up*, stage III: *finetuning*). We maintain the same training pipeline
 964 and stages for all baselines and our Dirichlet-Prior Shaped models.
 965

966 C.4 HYPERPARAMETERS, IMPLEMENTATION, AND TRAINING DETAILS

968 This appendix outlines the hyperparameters, implementation specifics, and training procedures
 969 employed for the experiments discussed in Section 3.2.
 970

971 All models were trained on a distributed setup utilizing either 4 or 8 NVIDIA A100 GPUs. A
 972 consistent total batch size of 128 was maintained across all experiments. When using 4 GPUs, the
 973 per-device batch size was set to 8, complemented by 4 gradient accumulation steps. In the 8-GPU

972
 973 Table 5: Datasets used in training stages. On the first stage, we are training the adapter network. On
 974 the second stage, we train the whole network on a larger dataset including 30% of the data used for
 975 the Stage III.

	Datasets	Size
Stage I	LLaVA 1.5-558k (Liu et al., 2024b)	558k
	LLaVA 1.5-mix-665k (30%) (Liu et al., 2024b) SAM (30%) (Kirillov et al., 2023)	
Stage II	Wikiart (30%) (Saleh & Elgammal, 2015)	
	LVIS (Wang et al., 2023)	1,206k
	ALLaVA (Chen et al., 2024) TextVQA (Singh et al., 2019)	
Stage III	LLaVA 1.5-mix-665k (Liu et al., 2024b) SAM (Kirillov et al., 2023)	750k
	Wikiart (Saleh & Elgammal, 2015)	

988
 989 configuration, the per-device batch size remained 8, but with 2 gradient accumulation steps. For
 990 efficient distributed training, we leveraged DeepSpeed with ZeRO-2 offloading.
 991

992 The models were optimized using the AdamW optimizer, configured with $\beta_1 = 0.9$ and $\beta_2 = 0.999$.
 993 The learning rate was varied across training stages: set to 1×10^{-3} during Stage I, and reduced to
 994 2×10^{-5} for both Stage II and Stage III in all experiments. A cosine learning rate scheduler was
 995 used, with a warmup ratio of 0.03.

996 For our proposed method, the coefficient for the Dirichlet-Prior Shaping Loss (DPSL) was set to
 997 $\lambda = 0.01$. The baseline methods were implemented following the descriptions provided in their
 998 respective original publications, and we generally adopted the hyperparameters recommended by
 999 their authors. Specifically, the weight for the standard load-balancing loss (Shazeer et al., 2017;
 1000 Fedus et al., 2022) was set to 0.01, and the weight for the z-loss (Zoph et al., 2022) regularizer was
 1001 0.001. Following the DeepSeek-V3 Technical Report (Wang et al., 2024; Liu et al., 2024a), we
 1002 evaluated two update rates ($u = 0.001$ and $u = 0.0001$) for the auxiliary-loss-free DeepSeek strategy
 1003 and selected the one that yielded the highest final accuracy, even though it produced less balanced
 1004 routing than all other baselines as can be seen in Table 12. For the Drop-Upcycling (Nakamura et al.,
 1005 2025) baseline, we encountered instabilities and training freezes with the initially recommended 50%
 1006 drop rate settings. Consequently, we adjusted the ratios of re-initialized parameters. We found that a
 1007 re-initialization ratio of 0.5 worked best for the 4-expert setup, but this value led to instabilities in the
 1008 granular setup with 16-experts. Thus, for the 16-expert setup, we used a smaller re-initialization ratio
 1009 of 0.2 to ensure stable training, and reported highest accuracies.
 1010

1011 C.5 COMPUTATIONAL OVERHEAD OF DPSL

1012 Computing the DPSL loss introduces an additional minimal overhead during training. However,
 1013 several factors help mitigate this overhead. First, the loss is computed over all tokens in a mini-batch
 1014 (effective batch size $B = S \times T$), which is a highly parallelizable operation. Second, the gradient
 1015 computation is efficient, as the derivative of the CDF used in the loss calculation is simply the PDF,
 1016 which is already available from the forward pass. Third, empirical observations indicate that the router
 1017 distributions converge to the target shape early in training and remain stable thereafter. Consequently,
 1018 DPSL loss was applied only during the warm-up phase and relaxed during final fine-tuning, thereby
 1019 minimizing its impact on overall training time.

1020 To quantify this overhead precisely, we profiled the forward pass on a Qwen2.5-0.5B MoE model
 1021 across varying expert counts (4, 8, and 16) using a Pytorch implementation. As shown in Table 6,
 1022 the standard implementation introduces a modest overhead of 7–12% depending on the number of
 1023 experts, primarily due to CPU-GPU transfers for SciPy-based Beta CDF computation. However,
 1024 when using DeepSpeed with ZeRO-3 offloading (Table 7), this overhead drops significantly to just
 1025 1–5%. For larger models, such as Qwen2.5-1.5B, the relative cost becomes smaller as the constant-
 time CDF operation is dwarfed by the model’s forward/backward pass. We anticipate this cost

1026 will significance be reduced with the upcoming native GPU support for Beta CDFs in PyTorch
 1027 (`torch.special.betainc`), eliminating the need for device transfers.
 1028

1029 Finally, DPSL is active only during the warm-up phase (Stage II), which accounts for $\approx 40\%$ of our
 1030 training pipeline. Using DeepSpeed, a 1-5% overhead in this stage translates to a trivial 0.4-2%
 1031 increase in total wall-clock time.

1032 Table 6: Qwen2.5-0.5B MoE forward pass overhead (avg. of 5 runs)
 1033

Setting	w/o DPSL (ms)	w/ DPSL (ms)	Overhead
4 experts	189	203	14ms (+7%)
8 experts	272	299	27ms (+10%)
16 experts	434	487	52ms (+12%)

1040 Table 7: Qwen2.5-0.5B MoE forward pass overhead using DeepSpeed ZeRO-3 (avg. of 5 runs)
 1041

Setting	w/o DPSL (ms)	w/ DPSL (ms)	Overhead
4 experts	502	507	5ms (+1%)
8 experts	797	825	28ms (+3.5%)
16 experts	1358	1436	78ms (+5%)

1042 C.6 IMPLEMENTATION DETAILS FOR TASK-SPECIFIC EXPERT SPECIALIZATION

1043 This appendix details the implementation for task-specific expert specialization, as referenced in
 1050 Section 3.4. For this setup, using a 4-expert MoE model with top-2 routing, we partitioned the data
 1051 utilized during the *warm-up* stage (Stage II) into four specific subsets: 1) data comprising text-only
 1052 and image captions; 2) data focused on general question answering tasks; 3) data related to grounding
 1053 tasks; and 4) a combined subset for OCR, chart understanding, and science-related tasks.

1054 It is important to highlight a potential limitation inherent in such manual data partitioning, especially
 1055 for vision-language modeling. The process of creating distinct, meaningful subsets is non-trivial and
 1056 can inadvertently over-constrain the experts. For instance, many real-world vision-language tasks may
 1057 benefit from, or even necessitate, knowledge derived from a combination of these defined categories
 1058 (e.g., a chart-based question answering task might require OCR, chart understanding, and general QA
 1059 capabilities). Consequently, this manual separation may restrict experts from learning broader, more
 1060 synergistic representations, potentially leading to the sub-optimal performance observed in Table 2.
 1061

1062 D ABLATION STUDIES

1064 D.1 CONCENTRATION PARAMETER

1066 For this ablation, we utilized the upcycled Llama3.2-1B model with 4 experts and top-2 routing. We
 1067 performed a study over $\alpha \in \{0.75, 1.0, 1.25, 1.5\}$. The results in Table 8 show optimal performance
 1068 at $\alpha = 0.75$, suggesting a benefit from priors encouraging slightly sparser routing than uniform.
 1069 Ablation results for Qwen2-1.5B are shown in Table 9. We can observe that larger models are robust
 1070 across a wider range of α values.

1072 Table 8: The impact of the Dirichlet prior parameter α on Llama3.2-1B (2in4) performance.
 1073

Prior	TextVQA	GQA	MM-Vet	MME-P	MME-C	VizWiz	MMB	Avg
$\alpha = 0.75$	52.82	60.98	31.7	1334.78	253.21	62.78	42.19	35.92
$\alpha = 1.0$	51.68	60.84	30.2	1310.57	243.93	61.94	38.43	34.86
$\alpha = 1.25$	51.48	60.53	29.2	1236.36	227.86	61.32	41.01	34.92
$\alpha = 1.5$	51.45	60.85	31.4	1294.43	256.43	61.94	37.75	34.91

1080

1081

Table 9: The impact of the Dirichlet prior parameter α on Qwen2-1.5B (8in16) performance.

1082

1083

Prior	TextVQA	GQA	MM-Vet	MME-P	MME-C	VizWiz	MMB	Avg
$\alpha = 0.75$	54.11	62.08	32.6	1427.13	280	66.20	43.18	37.03
$\alpha = 1.0$	54.32	61.86	34.0	1421.90	265	65.98	43.54	37.25
$\alpha = 1.25$	53.79	62.05	35.1	1428.87	276	66.48	41.53	37.14
$\alpha = 1.5$	53.42	62.02	36.5	1402.43	270	65.70	42.31	37.28

1088

1089

1090

D.2 CONCENTRATION PARAMETER IN THE SPECIALIZATION SETTING.

1091

1092

We have additionally ablated the impact of α concentration parameter on the model performance in the modality specialized setting. We have considered four different setups: *Setting I* encouraging two experts for vision and two for language with concentration values $\alpha_{lm} = (0.75, 0.75, 1.25, 1.25)$ and $\alpha_v = (1.25, 1.25, 0.75, 0.75)$, *Setting II* – similar to the previous setup but with different α values $\alpha_{lm} = (1.0, 1.0, 1.25, 1.25)$ and $\alpha_v = (1.25, 1.25, 1.0, 1.0)$, *Setting III* encouraging three experts to specialize in vision and one in language with $\alpha_{lm} = (0.75, 0.75, 0.75, 1.25)$ and $\alpha_v = (1.25, 1.25, 1.25, 0.75)$, and, finally, *Setting IV* encouraging one expert to specialize in vision and three in language with $\alpha_{lm} = (0.75, 1.25, 1.25, 1.25)$ and $\alpha_v = (1.25, 0.75, 0.75, 0.75)$.

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Table 10: The impact of the Dirichlet prior parameter α on Llama3.2-1B (2in4) performance in the modality specialized setting.

1103

1104

1105

Setting	TextVQA	GQA	MME-P	MME-C	VizWiz	MMB	Avg
I	51.8	61.4	1305	285	64.0	42.9	36.85
II	51.7	61.2	1314	261	63.9	42.1	36.65
III	51.4	60.7	1310	269	63.1	39.4	35.94
IV	50.7	56.0	1240	261	62.3	40.2	35.02

1106

1107

1108

1109

1110

1111

The results summarized in Table 10 suggest that DPSL is robust to minor changes of the α values, as long as the fundamental architectural prior is preserved. However, ill-conceived priors that encourage unbalancing the expert allocation lead to a degraded model performance (Settings III and IV). Interestingly, the performance drop is not symmetric. Starving the model of vision experts (Setting IV) is significantly more detrimental than starving it of language experts (Setting III). This is intuitive, as VLM inputs typically consist of a large number of vision tokens sourced from the image and relatively few language tokens obtained from the question. Restricting the model’s capacity to process the larger modality creates a more severe bottleneck.

1112

1113

D.3 IMPACT OF REGULARIZATION WEIGHT.

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Table 11: The impact of the loss regularization weight parameter λ on Llama3.2-1B (2in4) performance.

1128

1129

1130

1131

1132

1133

λ value	TextVQA	GQA	MM-Vet	MME-P	MME-C	VizWiz	MMB	Avg
$\lambda = 0.001$	51.3	60.9	28.7	1286	236.8	60.4	44.0	35.2
$\lambda = 0.01$	52.8	61.0	31.7	1335	253.2	62.8	42.2	35.9
$\lambda = 0.1$	50.9	60.6	30.5	1261	241.4	61.2	39.6	34.8

1134
1135

D.4 VISUALIZATION OF ROUTING SCORE DISTRIBUTIONS

1136
1137
1138
1139
1140

As discussed in Section 3.6, we analyze the impact of different upcycling and regularization strategies on the routing score distributions within our upcycled VLM MoEs. Figure 7 provides a visualization of the routing score distributions for 4 experts at the 12th intermediate layer of a Llama3.2-1B model configured with 4 experts and top-2 routing. The routing scores presented in this visualization were collected during model evaluation on the MM-Vet benchmark (Yu et al., 2024).

1141
1142
1143
1144
1145
1146
1147

The figure compares several training approaches: Standard sparse upcycling (Komatsuzaki et al., 2023), load-balancing (Shazeer et al., 2017; Fedus et al., 2022), auxiliary-loss-free DeepSeek balancing (Wang et al., 2024; Liu et al., 2024a), and z-loss (Zoph et al., 2022). Notably, these approaches tend to produce similar routing score distributions across the experts. Each distribution exhibits a prominent peak around a score of 0.25, corresponding to a uniform probability distribution if the router were to assign equal preference to each of the four available experts. This suggests a lack of strong differentiation or specialization among them.

1148
1149
1150
1151
1152

In contrast, our DPSL, when applied with a symmetric prior where $\alpha_k = 1.5$ for all experts, results in visibly different routing score distributions. The distributions generated by DPSL are more dispersed and cover a wider range of score values. This indicates that DPSL encourages the router to make more varied and potentially more confident assignments, fostering a greater degree of specialization or differentiation in how tokens are directed to the experts.

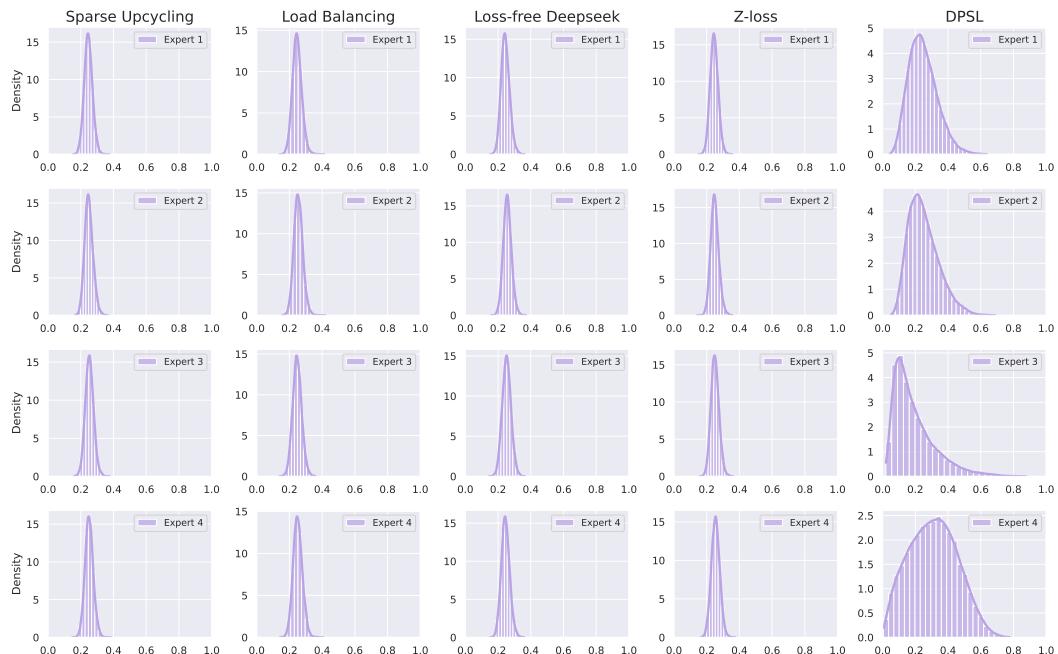
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Figure 7: Routing score distributions at layer 12 of an upcycled Llama3.2-1B model (4-expert, top-2 routing). Each column represents a different upcycling/regularization method, and each row displays the distribution for one of the four experts under that method.

D.5 EXPERT UTILIZATION ANALYSIS

To analyze the expert utilization load, we measure Coefficient of Variation (CoV). As the results show, DPSL achieves low CoV scores, competitive with explicit load-balancing techniques. Although DPSL does not contain an explicit load-balancing term, a symmetric Dirichlet prior intrinsically encourages a balanced load distribution, which we observe across layers.

In all of our experiments, DPSL successfully prevented expert collapse and significant utilization imbalance. We note, however, that none of the baseline methods exhibited severe imbalance issues in our experiments.

1188

1189 Table 12: Coefficient of Variation of expert loads for Llama3.2-1B (2in4) model. Lower values
1190 indicate more balanced utilization.

1191

Layer	Sparse Upcycling	Load Balancing	z-loss	DeepSeek	DPSL (Ours)
Layer 4	0.071	0.070	0.088	0.440	0.035
Layer 8	0.075	0.126	0.064	0.191	0.069
Layer 12	0.072	0.091	0.031	0.397	0.057
Layer 16	0.071	0.053	0.103	0.229	0.110

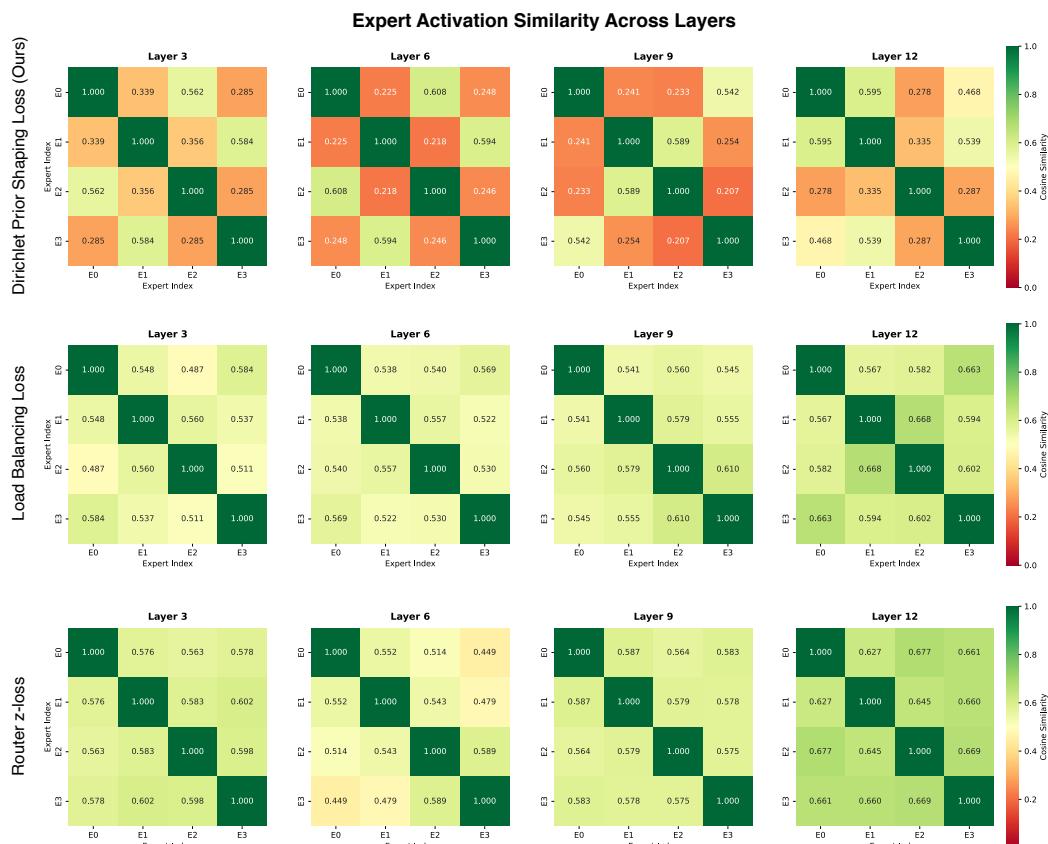
1192

1193

1194 D.6 EXPERT SPECIALIZATION PATTERNS

1195

1196 We analyze expert activation similarity patterns for Llama3.2-1B (2in4) across layers 3, 6, 9, and
1197 12 1201 using cosine similarity between expert outputs on 50 MMVet randomly selected sequences. Low
1202 1203 similarity values (< 0.4, red) indicates distinct expert specialization, while higher similarity values
1204 1205 (0.4 – 0.8, yellow-green) suggest overlapping expert behaviors and reduced differentiation. As shown
1206 1207 in Figure 8, DPSL demonstrates superior expert differentiation (average similarity: 0.39). In contrast,
1208 1209 Load Balancing loss and Router z-loss shows progressive expert convergence from early to deep
1210 1211 layers (average similarity: 0.57 and 0.59, respectively). These results clearly indicate that our method
1212 1213 effectively prevents expert redundancy and maintains expert specialization across all layers where
1214 1215 traditional auxiliary losses struggle to maintain diversity.



1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1238 Figure 8: Expert activation similarity scores across layers 3, 6, 9, and 12. Our DPSL (top row)
1239 achieves the lowest average similarity (0.39) for these layers compared to Load Balancing loss (0.57)
1240 and Router z-loss (0.59), demonstrating superior expert specialization.