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ABSTRACT

Upcycling pre-trained dense models into sparse Mixture-of-Experts (MoEs) effi-
ciently increases model capacity but often suffers from poor expert specialization
due to naive weight replication. Our analysis reveals that upcycled MoEs, even with
conventional regularization, exhibit low-confidence, weakly differentiated routing,
hindering performance. We introduce Dirichlet-Prior Shaping Loss (DPSL), a
novel router regularization technique that directly shapes routing probability distri-
butions by matching expert assignments to a target Dirichlet prior. DPSL offers
fine-grained control over expert balance and specialization, and enables encoding
of inductive biases such as encouraging experts to focus on specific modalities or
tasks, without requiring manual intervention; notably, DPSL is a general tool appli-
cable to any module that outputs categorical probability distributions, extending
its utility beyond MoE training. Experiments on upcycled MoE vision-language
models (with Qwen2, Phi3, Llama3.2 LLM backbones) show DPSL consistently
outperforms upcycling strategies and regularization techniques across standard
vision-language benchmarks, addressing the critical issue of poor specialization
and fostering more adaptive, higher-performing models.

1 INTRODUCTION

Recent advances in large language models (LLMs) and multimodal LLMs (MLLMs) have transformed
natural language and vision-language tasks. Model scaling drives this success (Kaplan et al.| 2020;
Hoffmann et al., 2022)), enhancing accuracy and unlocking new capabilities, albeit with significant
increases in training and inference costs. Sparse Mixture-of-Experts (MoE) architectures offer a
solution by increasing model capacity while maintaining computational efficiency, activating only
a subset of parameters (“experts”) for each input token (Jacobs et al.l [1991} |[Eigen et al.| |2013).
Concurrently, sparse upcycling offers an efficient training strategy by initializing an MoE with
a pre-trained dense model, thereby accelerating convergence and leveraging existing knowledge
(Komatsuzaki et al., [2023)), particularly effective for instruction-tuning. The combination of MoE
architectures and upcycling is particularly well-suited for advancing MLLMSs, enabling more capable
multimodal systems, without prohibitive computational overhead. Recent efforts like LLaVA-MoE
demonstrate this direction, using MoE structures to enhance MLLM efficiency (Lin et al., [2024]).

However, sparse upcycling introduces specific challenges in expert specialization. Naively initializing
all MoE experts by replicating the dense model’s feedforward network (FFN) weights (Komatsuzaki
et al.l 2023) leads to weight homogeneity, impeding the router’s ability to differentiate experts
and fully utilize its capacity, resulting in suboptimal performance (Nakamura et al.| 2025)). Drop-
Upcycling (Nakamura et al., [2025) addresses this by partially re-initializing a random subset of
parameters within each expert to promote diversity, but its benefits typically emerge only after
extensive training, often exceeding practical instruction-tuning budgets. Specialized upcycling
methods such as Branch-Train-MiX (BTX) (Sukhbaatar et al.,|2024)) fine-tune separate model copies
on different datasets to create diverse experts, which are then merged into an MoE and further
fine-tuned with a learned router. However, BTX may yield experts specialized in suboptimal ways
for MoE routing and can miss positive knowledge transfer, leading to inefficiencies and suboptimal
convergence. In addition, standard MoE regularization, such as load-balancing loss (Shazeer et al.,
2017; [Fedus et al.||2022)) and z-loss (Zoph et al.,[2022) aim to stabilize training and prevent expert
collapse, but do not directly induce specialization from identically initialized experts. Hence, they are
unable to overcome the specialization challenges in upcycled MoEs, especially under limited data.
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Figure 1: Sparse upcycling (left) initializes identical experts, yielding homogeneous routing probabil-
ities and limited specialization. (right) Our proposed Dirichlet-Prior Shaping Loss guides routing
towards desired distributions fostering balanced and confident selection (via symmetric priors) or
targeted, modality-/task-aware specialization (via asymmetric priors).

To address the specialization challenges in upcycled MoEs, we first analyze routing behavior and
find that, even with conventional regularization, upcycled MoEs exhibit low-confidence, weakly
differentiated routing distributions. Expert assignment probabilities remain sharply peaked near 1/N
(where N is the number of experts), indicating a persistent lack of specialization throughout training.

To overcome this, we propose Dirichlet-Prior Shaping Loss (DPSL), a principled router regularization
technique that directly shapes the distribution of routing probabilities using Dirichlet priors (see
IFigure [I). DPSL generalizes the Batch Shaping Loss (Bejnordi et all [2020) by matching the
empirical distribution of expert assignments to a target Dirichlet prior enabling fine-grained control
over both expert balance and specialization. Symmetric priors promote balanced expert utilization,
while asymmetric priors allow targeted specialization. In this work, we focus on Vision-Language
Models (VLMs), which present novel opportunities for expert specialization in MoEs. In VLMs,
the coexistence of distinct modalities and data sources naturally exposes domain structure that MoE
routers can harness, creating opportunities for experts to specialize along meaningful axes such as
modality, dataset provenance, or task family. By doing so, our framework paves the way for more
adaptive and efficient vision-language models. Our main contributions are:

* We analyze the routing dynamics in upcycled MoEs, demonstrating that naive upcycling
results in restricted routing probability ranges, and that standard regularization methods fail
to effectively promote expert specialization in this setting.

* We propose Dirichlet-Prior Shaping Loss (DPSL), a powerful and flexible tool to instill a
wide array of desired statistical properties and behaviors into the learning process of any
module that outputs categorical probability distributions. Applied to MoE routers, DPSL
enables fine-grained control over expert utilization and specialization.

* We show that asymmetric Dirichlet priors can guide experts towards desired specialization
patterns (e.g., modality- or task-specific), without manual intervention or pre-training.

» Through extensive experiments on upcycled MoE variants of state-of-the-art LLMs (Qwen2
(Bai et al., 2023)), Phi3 (Abdin et al.,[2024), Llama3.2 (Dubey et al.| 2024)), we demonstrate
that our method significantly outperforms existing upcycling and regularization techniques
on standard vision-language understanding benchmarks.

2 METHOD

2.1 DIRICHLET PRIORS FOR CATEGORICAL DISTRIBUTIONS

Let a model component output a probability vector p = [p1, po, . .., px] over K distinct categories,
where Zszl pr = 1 and p; > 0. As the conjugate prior for categorical distributions, the Dirichlet
distribution is the natural choice to model beliefs over such probability vectors. We model p as
drawn from a Dirichlet distribution, p ~ Dir(cx), where o = [avq, . . ., ] are positive concentration
parameters that define the prior. The joint probability density function (PDF) of the Dirichlet
distribution is:
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key property of the Dirichlet distribution is that each marginal p; follows a Beta distribution (see
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The shape of each py’s distribution depends on both oy, and the total A, reflecting dependencies
among categories. For symmetric Dirichlet distribution, where all of the elements of the concentration
parameter have the same value, larger o concentrates py near its mean; smaller values yield more
dispersed or even U-shaped distributions (see [Appendix[A.3]| for visualizations). By tuning a, we
can flexibly control the expected distribution over categories: setting all oy, = 1 yields a uniform
prior, while asymmetric choices (e.g., & = (Qwigh, Ciow, - - -)) bias the distribution toward specific
categories. This enables fine-grained control over categorical outputs, as detailed in the next section.

dt, (@)

2.2 DIRICHLET-PRIOR SHAPING LOSS

To align the empirical distribution of categorical probabilities with a target Dirichlet prior, we adapt
the Batch Shaping Loss from [Bejnordi et al.| (2020), based on the Cramér—von Mises criterion
(Andersonl [1962)). This criterion measures the squared difference between the empirical cumulative
distribution function (CDF), Fiy (), and the target theoretical CDF, F(x):

= [ 1Fwe) - F@)Par(e) ®

— 00

For each of the K categories, we match the empirical distribution of assigned probabilities py (over a
batch of samples) to the theoretical Beta distribution, Beta(ay, A — «;), defined by Dirichlet prior.

Let p,(cb) denote the probability assigned to category k for the b-th sample in a batch of B total samples.

The empirical CDF for the probabilities of category &, denoted as F](Vk) (x), is constructed from these
probability values. The Dirichlet-Prior Shaping Loss (DPSL), Lpps, is then computed as the sum of
squared differences between the empirical CDF and the target Beta CDF for each category:
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where py, (;) denotes the j-th value in the sorted list of probabilities, py, (1) < pi,2) < -+ < Pi,(B)»
assigned to category k across the B samples in the batch. Fge (p; ok, A — a;) is the theoretical CDF

of the Beta distribution with parameters (cy, A — o), and F](f ) (Pr,(j)) = j/B is the value of the
empirical CDF at py, (;). The hyperparameter A > 0 controls the strength of this regularization.

illustrates DPSL in practice. For two data sources (S1 in green, S2 in purple) and three
output categories, independent Dirichlet priors shape the output distributions. The first two rows
show, for each category, empirical CDFs (dashed) and target Beta CDFs (solid) for both sources, at
initialization and convergence, respectively; DPSL minimizes the distance between the empirical
and target CDFs, thereby encouraging the model’s output probabilities for each source to conform to
the desired statistical profile. The rightmost bottom plot tracks DPSL convergence during training.
The remaining bottom plots show, for each source, the empirical probability histograms per category,
overlaid with the target Beta PDFs. For S1, a symmetric Dirichlet prior, a = (1.5, 1.5, 1.5), yields
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Figure 2: Dirichlet-Prior Shaping Loss (DPSL) shapes categorical probability distributions from two
data sources (S1, S2). Top and middle rows show the empirical (dashed) vs. target (solid) CDFs for
each category, at initialization and after convergence, respectively, along with simplex of assignment
probabilities. Bottom row presents data histograms of assignment probabilities overlaid with target
Beta PDFs, and learning curves showing DPSL minimization during training.

balanced probabilities. In contrast, for S2, an asymmetric Dirichlet prior, a = (3,1, 0.5), induces
specialization predominately toward Category one. We provide the training details of this experiment,

along with an additional example in[Appendix[C.1]

In essence, as demonstrated by the example in[Figure2] our Dirichlet-Prior Shaping method offers a
powerful and flexible tool to instill a wide array of desired statistical properties and behaviors into

the learning process of any module that outputs categorical probability distributions.

2.3 DPSL FOR UNSUPERVISED CLUSTERING: A GENERAL APPLICATION

DPSL is fundamentally a general-purpose regularization technique applicable to any module that
outputs categorical probability distributions. To demonstrate this broad applicability, we consider a
small unsupervised deep clustering problem where a neural network outputs a distribution over K = 3
clusters for 2D inputs. As baselines, we adopt SWAV (Caron et al} 2020) and SeCu [2023),
both of which implicitly promote balanced partitions through an equipartition Sinkhorn—Knopp
step (SWAV) or a global entropy constraint (SeCu). On top of these methods, DPSL is added as an
auxiliary loss on the cluster assignment probabilities to encode asymmetric Dirichlet priors on cluster

sizes, without modifying the underlying clustering objective.

Table 1: Impact of DPSL on unsupervised clustering accuracy.

Setting SwAV SwAV+DPSL SeCu SeCu+DPSL

Non-overlapping 84.42 £ 0.83% 99.35 = 0.14% (+14.9%) 88.40 & 11.4% 94.31 = 5.49% (+5.91%)

Overlapping

86.71 £ 1.13% 94.09 + 0.17% (+7.4%)
87.73 £0.67% 92.28 + 0.46% (+4.6%)

70.69 + 3.8%
76.84 +7.1%

83.28 + 1.69% (+12.6%)
87.66 £ 3.86% (+10.8%)

Elongated

We evaluate three challenging synthetic 2D regimes with three clusters and 1500 points per setting:
(i) non-overlapping imbalanced clusters with size ratio 4:1:1, (ii) overlapping imbalanced clusters
with ratio 5:2:1, and (iii) overlapping elongated clusters with ratio 5:3:1.
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Figure 3: Router output distributions for three experts in an upcycled MoE with top-1 routing.
Each panel shows the simplex of routing probabilities under (a) no regularization, (b) z-loss, (c)
load-balancing loss, and (d) Dirichlet-Prior Shaping Loss (symmetric prior).

To encode only soft prior knowledge about cluster proportions and overlap, we use moderate asym-
metric Dirichlet priors. We report clustering accuracy averaged over three random seeds. As can be
seen in[TableT} across all three regimes, adding DPSL substantially improves clustering accuracy for
both SWAV (by 4.6%—14.9%) and SeCu (by 5.9%-12.6%), demonstrating that shaping categorical
output distributions with Dirichlet priors is a beneficial and general-purpose technique (Qualitative
clustering results are presented in [Figure [5} [Appendix [B)). Complete experimental details, prior
selection rationale, and robustness analysis to prior misspecification are provided in [Appendix[B}

2.4  MOTIVATIONAL STUDY: UNDERSTANDING ROUTER BEHAVIOR IN UPCYCLED MOES

To motivate the need for a more nuanced control over router learning, especially in the context of
upcycled MoE models, we first briefly review MoE fundamentals and then present an empirical study
of router output distributions under various common regularization schemes.

2.4.1 MIXTURE-OF-EXPERTS BACKGROUND

Mixture-of-Experts (MoE) architectures increase model capacity and efficiency by activating only a
subset of specialized subnetworks, or “experts”, for each input token. Each MoE layer replaces a
standard feed-forward network (FFN) with NV expert FFNs (E, Es, ..., Ey) and a router module
that assigns tokens to experts (see[Figure[l]for an example with 4 experts and top-2 routing).

Given a token representation z, the router (with weights W) computes logits xW,, which are
converted to routing probabilities g(x) = softmax(xW ). Sparse MoEs typically employ top-K
gating: only the K experts with the highest routing probabilities g;(x) are selected to process the
token. Let Ty (x) be the set of indices corresponding to these top-K experts for token x. The MoE
output is:

yx) = Y &) Ei(x). Q)

1€ Tk (%)

Recent MoE designs introduce “shared experts” [2024): in addition to routed experts,
shared experts F(x), processes all input tokens, akin to a standard FFN. Throughout this paper, we
employ MoE architectures with shared experts.

2.4.2 ANALYZING ROUTER OUTPUT DISTRIBUTIONS IN UPCYCLED MOES

Upcycling a pre-trained dense model into an MoE creates challenges for the router: all experts start
as identical FFNs, while the router must learn to differentiate token assignments to foster expert
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specialization. We analyzed router output distributions in an upcycled MoE with three experts and
top-1 routing, comparing the effects of common regularization techniques.

visualizes the router’s output probability distribution for a specific MoE layer, plotted
on a simplex where each point represents the probabilities (py, p2, p3) for a given input. Without
regularization (a), router outputs cluster near the center, reflecting low confidence and limited expert
differentiation. Applying z-loss (b) (Zoph et al.||2022) further compacts the distribution, stabilizing
training but reducing the range and specialization of expert assignments. Load-balancing loss
(c) (Fedus et al., |2022) distributes load more evenly but neither improves routing confidence nor
encourages a wider probability dynamic range; notably, imbalanced load is often less critical in
upcycled MoE training.

In contrast, our proposed Dirichlet-Prior Shaping Loss, illustrated in (d) with a symmetric prior
(o, = 1.5), explicitly shapes the router’s output distribution, allowing confident and diverse expert
assignments while utilizing the full probability range. By choosing appropriate Dirichlet priors, we
can flexibly encourage distributions that are confidently skewed or evenly spread as needed, unlike
the low-confidence regime of conventional methods.

3 EXPERIMENTS AND RESULTS

This section evaluates our proposed Dirichlet-Prior Shaping Loss for training upcycled VLM MoEs.
We base our study on the LLaVA framework (L1u et al.l|2024b). For the language modeling backbone,
we selected Qwen2-1.5B (Bai et al.,[2023)), Phi3-mini 3.8B (Abdin et al.| 2024}, and Llama3.2-1B
(Dubey et al 2024) due to their strong performance and manageable size. Following the setup
outlined in LLaVA (Liu et al.||2024b)) and MoE-LLaVA (Lin et al., 2024)), we utilize CLIP Large
(Radford et al., 2021) as the visual encoder.

In the following, we first provide training and implementation details in |[Section then describe
the baselines and present downstream evaluation tasks and results in[Section[3.2and [Section[3.3} We

compare our method to modality- and task-specialized upcycling methods in|Section|3.4, Finally,
we present ablation studies on the impact of the DPSL’s hyperparameters on model performance in

Section [3.5]and examine router output distributions and expert specialization patterns in[Section |3.6|

3.1 TRAINING STAGES AND IMPLEMENTATION DETAILS

We upcycle pre-trained LLMs within the LLaVA framework into MoE architectures, while keeping
the vision encoder intact. We investigate two primary MoE configurations: (1) a standard MoE,
where each expert is a full FFN replica, and (2) a granular MoE, where each expert is partitioned into
multiple smaller ones, allowing more granular experts per token while maintaining constant active
parameters (He et al.,[2024; |Dai et al., [2024; Ludziejewski et al. 2024). The standard configuration
corresponds to a granularity of 1, resulting in a 4-expert setup with top-2 routing (2in4). In contrast,
the granular MoE configuration uses a granularity of 4, yielding 16 experts (each % the size of
a full FFN) with top-8 routing (8in16). Despite the increased number of experts, the total and
activated parameter count remains constant across configurations. We further discuss the details of

the implementation of the upcycling of FFNs into granular experts in [Appendix |C.2]

Training stages. The training consists of three stages. Initially, we train the MLP projector to map
visual tokens into the LLM’s embedding space. The subsequent warm-up stage aims to bolster
the model’s general visual-language understanding using a large corpus, predominantly captioning
datasets. This stage comprises two phases: first, the dense model with the aligned projector is
fine-tuned; second, we introduce the MoE experts and fine-tune the complete MoE architecture,
including the experts, router, and other existing parameters. The final finetuning stage, involves
training on diverse task-specific datasets. This stage aims to refine the experts’ capabilities, enabling
them to learn the nuances and intricacies of specific tasks. The detailed breakdown of the datasets
used in every stage can be found in along with implementation details in[Appendix|
[C:4 We maintain the same training pipeline and stages for all baselines and our method. Finally, we
provide a profiling of the computational overhead introduced by DPSL in

Dirichlet-Prior Shaping Loss for Upcycled MoE Training. Dirichlet-Prior Shaping Loss (DPSL) is
computed at the token level across the entire batch, resulting in an effective sample size of B = S x T,
where .S denotes the number of sequences and 7" represents the average sequence length. For each
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MOoE layer, let ggt) be the router’s output probability for expert ¢ (among N experts) for the ¢-th token

in the batch. DPSL is applied to each router as defined in[Equation[4] In our setup, with S = 128 and
T ranging from 576 to 1024, the effective batch size exceeds 73,000 tokens. We apply DPSL and
other router regularization baselines only in the second phase of warm-up stage.

3.2 BASELINES AND DOWNSTREAM EVALUATIONS

We categorize our baselines into two groups. The first comprises upcycling methods without explicit
regularizers: Sparse Upcycling (Komatsuzaki et al.l [2023), which directly copies dense model
weights to intialize experts, and Drop-Upcycling (Nakamura et al., [2025), which introduces partial
weight re-initialization with random noise. The second group includes methods with additional
router regularizations: load-balancing loss (Shazeer et al., 2017} |Fedus et al., |2022); z-loss (Zoph
et al.,[2022), and the loss-free DeepSeek balancing procedure (Wang et al., 2024} [Liu et al.| 2024a).
We describe the hyperparameters of these methods in Additionally, in[Section[3.4]
we extend our comparison to include specialized upcycling techniques for various tasks including
Branch-Train-MiX (BTX) (Sukhbaatar et al.,[2024) as well as a manual routing strategy involving
modality-specific warmup to pre-specialize experts for vision and language tokens. For a fair and
rigorous comparison, we fine-tuned these baselines for their strongest possible performance, as
detailed in Finally, we subjected our dense baselines to the exact same enhanced
training protocol as our MoE models which resulted in significantly stronger reference accuracies
beyond standard practices used in LLaVA (Liu et al., 2024b) and MoE-LLaVA (Lin et al., 2024)).

We evaluate our method across six benchmarks. For VQA-style tasks, models are tested on GQA
(Hudson & Manning, 2019), TextVQA (Singh et al., 2019), and VizWiz (Gurari et al., 2018]).
Instruction-following capabilities are assessed using MME (Fu et al.| 2023) (consisting of MME-
Perception and MME-Cognition), MM-Vet (Yu et al.;2024) and MMBench (Liu et al., [2025)). Due to
the constraint on the number of submissions for VizWiz evaluation and our large number of baselines
and models, we have evaluated all models on the Test-Dev2024 split.

3.3 DOWNSTREAM TASK EVALUATION RESULTS

summarizes the downstream evaluation results across all evaluated models and upcycling
methods. Standard sparse upcycling without regularization shows minimal performance gains, and
in some cases, performs worse than the dense baseline, underscoring the challenge of effective
expert specialization in naive upcycling. Our Dirichlet-Prior Shaping approach consistently achieves
the highest average performance across all models and MoE configurations, including both the
standard 2in4 and granular 8inl6 expert settings, while the second-best method is a moving target.
This consistency demonstrates the effectiveness of our method in promoting expert specialization
and robust downstream performance, regardless of backbone or architecture making DPSL a more
reliable and generalizable choice. Among the baselines, DeepSeek balancing and Drop-Upcycling
are generally strong performers, but their effectiveness varies by model and architecture. For instance,
DeepSeek balancing achieves high scores with Phi-MoE 2in4 and Qwen 8in16, but underperforms on
Llama 2in4 and Qwen 2in4. Drop-Upcycling performs robustly across most settings, ranking among
the top two for Qwen 2in4, but not consistently leading elsewhere. Overall, these results establish
Dirichlet-Prior Shaping as the most consistent and broadly effective upcycling regularization strategy
among those evaluated.

3.4 MODALITY- AND TASK-SPECIALIZED UPCYCLING

This section evaluates our method against specialized upcycling and expert allocation strategies. All
experiments here utilize the Upcycled Llama3.2-1B model with 4 experts and top-2 routing.

Modality-Specific Expert Specialization. We compare a manual modality-specific routing baseline,
where experts are hard-assigned to vision or language tokens during warm-up, with mixing allowed
only in finetuning stage, to our DPSL approach. For the latter, we use modality-aware priors:
VM) — (o + o, a4 i, up, () for vision tokens and o2"2922¢) — (), oy, ap + g, vy + ) for
language tokens, where «, denotes the base « value and «y is the additive term to promote increased
specialization for the corresponding experts. This encourages soft, learned modality preferences
throughout training. As shown in[Table[3} manual specialization yields the lowest performance, likely
due to its rigidity and lack of early cross-modal sharing. In contrast, our modality-specific DPSL
achieves the best results, even slightly outperforming our symmetric DPSL, highlighting the benefit
of flexibly integrated, informed priors for MLLMs, whereas suboptimal manual approaches might
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Table 2: Downstream task performance comparison of upcycled VLM MoEs methods across various
backbone LLMs and MoE configurations. Highest accuracy is marked in bold, 2nd best is underlined.
We also report the average accuracy (unweighted mean across seven metrics) for MME-P and MME-C,
the scores were normalized over the maximal possible scores (2000 and 800, respectively).

| [Setup TextVQA GQA MM-Vet MME-P MME-C VizWiz MMB | Avg
Dense 54.28 61.43 343 1442.67 266.07 38.80 66.31 |36.60
Sparse Upcycling ~ 53.14 61.65 329 1418.53 296.07 39.38 65.07 |36.17
Drop-Upcycling 53.23 62.10 349 1389.21 287.86 46.01 65.70 |37.57
% | Load-balancing 53.66 61.42 33.0 1412.83 298.57 4122 64.96 |36.48
@ || Z-loss 53.80  61.81 36.3 1417.29 265.00 39.04 65.86 |36.84
& DeepSeek balancing 53.30 61.68 33.2 1420.25 29392 41.87 65.92 [36.72
§ DPSL 53.01 62.01 353 1459.06 289.71 49.55 66.26 |38.17
o Sparse Upcycling ~ 53.74 62.01 338 1393.42 270.00 40.74 65.75 [36.72
Drop-Upcycling 54.16 61.80 34.1 143591 280.35 41.30 66.36 |36.97
% Load-balancing 53.93 62.10 34.6 1418.28 266.78 38.16  65.80 [36.52
% | Z-loss 53.95 61.36 29.2 139494 266.79 3948  65.86 |35.84
DeepSeek balancing 54.49 61.97 323 1444.88 310.71 43.70 65.74 |37.04
DPSL 53.32 61.86 34.0 142190 265.00 43.54 65.98 |37.25
Dense 51.19 60.18 30.5 129599 25393 3581 61.71 |34.19
Sparse Upcycling 51.20 61.00 30.0 1309.71 251.43 40.81 60.31 |34.85
Drop-Upcycling 50.50 60.43 29.8 1293.02 236.78 43.00 62.61 [35.33
. | Load-balancing 49.49 59.79 313 1331.86 247.14 40.54 59.30 |34.48
2 & | Z-loss (2in4) 51.00 60.67 30.7 1318.65 246.07 39.62 61.49 [34.92
o DeepSeek balancing 51.50 60.64 29.5 1265.25 220.00 36.65 62.39 |34.51
g DPSL 52.82 60.98 31.7 1334.78 253.21 42.19 62.78 |35.92
3 Sparse Upcycling ~ 51.47 60.78 28.5 1285.61 223.57 38.66 61.88 |34.92
Drop-Upcycling 51.75 60.70 32.0 1352.30 267.40 39.50 63.30 |35.47
\% Load-balancing 49.80 59.97 28.1 1312.68 227.50 45.53 61.32 |35.09

33 | Z-loss (8in16) 52.06 60.92 33.5 1340.57 246.43 38.74 62.84 (355
DeepSeek balancing 52.89 61.32 322 1321.10 228.21 3874 63.17 |35.61
DPSL 52.10 61.09 29.7 1294.50 247.86 44.03 63.23 |35.87
Dense 57.32 61.78 36.5 1491.31 301.07 4432 66.76 |38.18
o Sparse Upcycling ~ 56.90 62.64 35.4 1440.94 333.21 4479 71.97 |38.98
;’Z Drop-Upcycling 56.55 63.01 40.3 145190 33321 4242 72.50 |39.42
‘g | & | Load-balancing 56.57 62.78 35.1 1449.07 322.50 4343  73.00 |38.86
£ Q| Z loss (2in4) 56.60 62.40 40.6 1467.90 31140 46.10 73.10 [39.99
% DeepSeek balancing 56.80 62.81 41.5 1481.90 361.40 43.10 73.80 |39.89
DPSL 56.73 62.47 424 1472.80 350.00 46.20 72.31 |[40.18

prematurely dismiss such strategies. Following[Section[3.3]results, for both modality-specific and
task-specific priors, we set o, = 0.75 and o, = 0.5.

Task-Specific Expert Specialization. We compare DPSL to Branch-Train-MiX (BTX) (Sukhbaatar
et al., 2024) where experts are pre-specialized by fine-tuning separate dense model copies on different
data subsets (details in[Appendix|C.6) before MoE integration. DPSL, instead, applies data-subset-
conditional priors during standard upcycled MoE training: for tokens from subset M (targeting
specialization for expert E,,), its prior o™ has a higher m-th component (e.g., a,(qT ) = ap + ag)
compared to other priors (e.g., a§m) = qy, j # m). This encourages expert F,, to focus on domain
M while allowing continuous knowledge sharing. While both task-specific methods outperform the
dense baseline (Table[3)), they underperform our symmetric DPSL strategy. This suggests that for the

defined vision-language modeling data subsets, explicitly enforced task specialization might be less
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effective than a more general, symmetrically guided approach, possibly due to multi-faceted nature
of VLM tasks, non-optimal data subsets, or over-constraining experts compared to allowing more
data-driven specialization.

Table 3: Performance comparison of modality- and task-specific expert specialization strategies on
Llama3.2-1B (2in4) performance.

Model TextVQA GQA MM-Vet MME-P MME-C VizWiz MMB Avg
Dense 51.19 60.18 30.5 129599 25393 3581 61.71 34.19
DPSL (symmetric-prior) 52.82 60.98 31.7 1334.78 253.21 42.19 62.78 3592
Manual (modality) 51.60 60.82 30.3 1323.09 242.14 37.37 61.49 34.65
DPSL (modality-prior) 51.83 61.40 32.1 1304.96 285.00 42.88 64.01 36.18
BTX (task) 50.69 60.64 31.0 1330.64 247.50 40.22 63.62 3531
DPSL (task-prior) 51.99 60.73 27.8 1301.12 23821 43.82 62.16 35.35

3.5 ABLATION STUDY

Concentration parameter. We ablate the symmetric Dirichlet concentration o to assess sensitivity
of DPSL to prior sharpness, where smaller o encourages sparser, corner-biased routing and larger o
favors more uniform, center-biased assignments, with « = 1 corresponding to the flat Dirichlet over
the simplex. We present results and detailed discussion in[Appendix [D. 1| (Table[8] for Llama3.2-1B
and[Table[9] for Qwen2-1.5B). Taken together, the ablation indicates that Llama3.2-1B benefits from
a modestly lower concentration (o = (.75), whereas larger backbones such as Qwen2-1.5B are
comparatively robust across a wider range of « values. In practice, we adopt backbone-specific
defaults for all experiments: o = 1 for Qwen and Phi models, and o = 0.75 for Llama.

Concentration parameter in the specialization setting. We analyze the concentration parameter
within the modality-specialization setup, varying both the number of experts per modality and the
prior allocations, and report all results and discussion in[Appendix[D.2] (Table[T0)). In brief, DPSL
remains stable under small changes to the symmetric base prior, while deliberately unbalanced
allocations across modalities materially reduce overall accuracy.

Regularization weight \. We ablate the regularization weight A of DPSL over the range
{0.001,0.01,0.1} and provide complete results in [Table [11] in [Appendix [D.3] The best result
is achieved with A = 0.01, which is used as the default for all experiments.

Practical guidelines for selecting o. 'We view the Dirichlet concentration « as a semantic prior for
the desired routing profile. Based on our experiments, we recommend a symmetric unit prior (o = 1)
as a robust universal default. This setting inherently provides a balanced loading profile for all experts
and yields competitive performance across diverse LLM architectures and transfers zero-shot to
completely different domains, such as unsupervised clustering (Section[2.3). We observe that slightly
smaller values (e.g., & =~ 0.75) can be used on smaller backbones to encourage marginally stronger
specialization.

For asymmetric priors, where a specific expert or cluster & is preferred (e.g., due to known modality
imbalance or domain importance), we recommend starting from the base value (e.g., 1.0) and adding
a moderate scalar bias of ~ 0.5 to that component’s concentration (e.g., &« = (1.5,1,1)). This
approach, which we successfully verified in MoE and unsupervised learning experiments, softly
biases probability mass toward the target component without enforcing rigid hard constraints.

3.6 ROUTING DISTRIBUTIONS AND EXPERT SPECIALIZATION PATTERNS

We qualitatively analyze the distributions of router scores resulting from training with various
regularization techniques, including router z-loss, load-balancing loss, and the loss-free DeepSeek
balancing method. [Appendix[D.4] visualizes these output score distributions for a Llama3.2-1B model
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configured with 4 experts and top-2 routing. As can be seen, most conventional methods yield router
score distributions that are sharply peaked around the uniform selection probability of 0.25 (i.e., 1/4
for four experts). This clustering suggests that these approaches often result in low router confidence
when selecting among experts. In contrast, the model trained with our DPSL exhibits a noticeably
broader and more varied distribution of routing scores.

We further examine the expert specialization patterns by computing pairwise cosine similarity
between expert activations across layers, see [Appendix]D.] for detailed analysis for LLama3.2-1B
2in4. Our DPSL maintains the lowest average similarity compared to load-balancing loss and z-loss,
demonstrating superior expert specialization.

We additionally analyze the expert utilization by measuring the Coefficient of Variation (CoV) of
expert loads at different layers. We present our finding in the [Appendix|D.3] (Table[12)) for Llama3.2-
1B 2in4 model. We can observe that even without explicit enforcing of expert balancing, DPSL loss
intrinsically encourages a balanced load distribution consistently visible across layers.

4 RELATED WORK

Our work builds upon advancements in upcycling pre-trained dense models into MoE architectures, a
technique to efficiently enhance model capacity (Komatsuzaki et al.,[2023} [Lin et all [2024). Naive
sparse upcycling typically involves replicating feed-forward network weights, which can lead to
initial expert homogeneity and low specialization. To address this, methods like Drop-Upcycling
(Nakamura et al.| [2025)) introduce partial re-initialization to promote expert diversity from the start.
Further refinement in upcycling enables the creation of fine-grained MoE architectures, notably
through the “virtual group” initialization proposed by (2024), which we leverage for our
granular MoE variants. While these methods focus on initialization, our Dirichlet-Prior Shaping Loss
offers a distinct approach by providing continuous, fine-grained control over expert specialization
throughout the training process by directly shaping the router’s output probability distributions.

Effective MoE training also relies on managing router behavior and expert utilization. Common
strategies include load-balancing losses to encourage uniform expert activation (Shazeer et al.|, 2017}
Fedus et al.,[2022) and router z-loss to improve training stability by penalizing large logits (Zoph et al.,

2022). Entropy-based regularization mechanisms (Chen et al.} 2025)) are applied per token and push
each individual routing distribution toward high entropy, thereby discouraging confident assignments

and typically shrinking all router outputs toward the center of the simplex. More recent developments
include auxiliary-loss-free load balancing, such as dynamically adjusting expert-wise biases used in
DeepSeek v3 model Wang et al| (2024); [Liu et al| (2024a). Unlike these methods that primarily target
even load distribution or numerical stability, our DPSL directly models and regularizes the entire
categorical distribution of routing probabilities. DPSL exposes explicit, interpretable control knobs
via the Dirichlet concentration parameters. By varying the magnitude and asymmetry of the prior,
practitioners can smoothly interpolate between uniform routing, confident but balanced specialization,
and targeted specialization (e.g., modality-aware or task-aware), without changing the underlying
architecture or adding hand-crafted heuristics.

5 CONCLUSION

In this paper, we introduce Dirichlet-Prior Shaping Loss (DPSL), a novel and principled regulariza-
tion technique that empowers fine-grained control over modules outputting categorical probabilities
by aligning their empirical distributions with a target Dirichlet prior. Applied to upcycled VLM
MokEs, DPSL demonstrates robust, consistently superior performance across diverse models and MoE
configurations. Our results further reveal the promise of modality-specific priors for multimodal
learning, enabling more adaptive and effective expert allocation in MLLMs. While this work focused
on upcycled MoEs, the principles of DPSL extend naturally to training MoEs from scratch and poten-
tially to a wider array of machine learning systems, opening exciting future directions for instilling
desired statistical behaviors directly into the learning process. Specifically, we envision DPSL playing
a critical role in stabilizing early-stage MoE training by preventing expert collapse through symmetric
prior shaping. Despite broad improvements across backbones and MoE configurations, a primary
limitation of our work is the inability to perform multiple seeds across the full matrix of backbones,
granularities, and priors due to the expense of upcycled MoE training.

10
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6 ETHICS AND REPRODUCIBILITY STATEMENTS

We adhere to the ICLR Code of Ethics. This paper focuses on training methodology to enhance MoE
upcycling, however, the model itself incorporates an LLM that may perpetuate biases present in the
training data, potentially affecting fairness and reliability. Therefore, we recommend adhering to
standard ethical guidelines for the use of LLMs to mitigate these risks.

During the preparation of this manuscript, we utilized large language models (LLMs) to assist with
grammar correction and refinement of the writing.

In this paper, we provide all the necessary details to ensure the reproducibility of the presented method.
We provide the theoretical justification of the method in[Section 2] and [Appendix[A] implementation
details and training protocoles in[Section[3.1} [Appendix|C.2| and [Appendix |C.4] and data description
in[Appendix[C.3
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APPENDIX

A MARGINALS OF THE DIRICHLET DISTRIBUTION

In this appendix, we provide proof that the marginal distribution of each component py, of a Dirichlet
random vector p = (p1,...,px) ~ Dir(a) follows a Beta distribution. We first establish the
aggregation property of the Dirichlet distribution, then use it to derive the marginal.

A.1 AGGREGATION PROPERTY OF THE DIRICHLET DISTRIBUTION

Statement: If p = (p1,...,pi,...,Pj,...,PKk) ~ Dir(eu,...,q;,...,q;,...,ak), then the
vector p’ obtained by aggregating components p; and p; into a single component p = p; + p;, i.e.,
p = (p1,--.,0i + Dj,---,Pj—1,Pj+1,-- -, DK ), follows a Dirichlet distribution with parameters
(Ckl,...,Oli +O£j,...,04j,1,04j+1,... ,()éK).

Proof: Without loss of generality, we aggregate the first two components, p; and ps. We want to
find the marginal distribution of p’ = (y, ps, - .., Pk ), Where y = p; + pa, by integrating the joint
PDF of (p1,p2,ps, - - ., i) over the region defined by p; + p2 = y, keeping ps, . . ., px fixed. We

integrate with respect to p1, while substituting p» = y — p;. Based on Equation () in[Section[2:T}
the PDF for (y, ps, ..., pk) is:

v K
(Y. pss- - ) =/0 %p?l_l(y—pl)”‘l <Hp?k1> dp1 (6)
k=3

1 s o —1 Y a;—1 as—1

= Blo H Dy, Pt (Y —p)* dp N

k=3 0

Applying a change of variables p; = yt, and evaluating the integral:
y 1
/ PPy = p)* T dpr = / (yt)* ~Hy — yt)*> " (ydt) ®
0 0
1

= yotea—l / tor= (1 — )2l )

0

The remaining integral is the definition of the Beta function B(«1, c2). Substituting this back in
Equation 7:

B(ag, as) K
_ 1, 2) oy 4as—1 ap—1 10
f(y7p37"'7pK) B(a) Yy kli[gpk; ( )
The constant term % is:
T'(a)T(a2)
B(ay,az) N CTE=) _Tlar+ o +az+-+ak) (1
T (o)l (a2)T(a3)--T(arx) -
B(a) F(éz1+a§+a3-?-'~~+a;(})( I(a + a2)l(as) -+ - T(ak)
This is the reciprocal of the multivariate Beta function for parameters (o + aa, @, ..., ax). Let
a’' = (a1 + asg,as, ..., ax). Then the constant is ﬁa,). So, the PDF becomes:
1 K
= ———ylortaa) =1 TT pow—l 12

f(y7p37 apK) B(a,)y kli[Bp]C (12)

Therefore, the marginal distribution of p’ is exactly a Dirichlet distribution Dir(ay + s, ag, . . ., ak).

This proves the aggregation property for summing two components. The argument can be extended
by induction to summing any number of components.
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A.2 MARGINALS OF THE DIRICHLET DISTRIBUTION ARE BETA DISTRIBUTIONS

Using the aggregation property proven above, we can derive the marginal distribution of a single
component p;. Aggregate all components except p; into a single component:

poi=1-pi=) pr (13)
ki

By the aggregation property, we have:
(piap—i) ~ Dir(aia A— ai)7 (14)

where A = sz:1 ay,. Since, the 2-dimensional Dirichlet distribution is equivalent to a Beta
distribution, it follows that:
p; ~ Beta(a;, A — ay). (15)

This proves that the marginals of a Dirichlet distribution are Beta distributed, as stated in[Section[2.1]

A.3 VISUALIZATION OF THE MARGINAL BETA DISTRIBUTIONS

visualizes the marginal Beta distributions for each component of a Dirichlet distribution.
For a symmetric Dirichlet distribution, where all of the elements of the concentration parameter have
the same value, larger oy, concentrates py, near its mean (e.g. Dir(5.0,5.0,5.0)); smaller values yield
more dispersed or even U-shaped distributions (e.g. ); while an & = 1 known as the
flat Dirichlet distribution corresponds to a uniform distribution over the simplex ( ).
Finally, we present the marginal beta distributions when an asymmetric concentration parameter is
used (Dir(0.75, 0.1, 1.25)) in which the last component has the biggest value placing more mass at

this component.

w0 Beta PDF for component 1 w0 Beta PDF for component 2 w0 Beta PDF for component 3
= Beta(5.0, 10.0) = Beta(5.0, 10.0) = Beta(5.0, 10.0)
35 Beta(0.2, 0.4) 35 Beta(0.2, 0.4) 35 Beta(0.2, 0.4)
Beta(1.0, 2.0) Beta(1.0, 2.0) Beta(1.0, 2.0)

3.0 = Beta(0.75, 1.35) 30 = Beta(0.1, 2.0) 20 = Beta(1.25, 0.85)

Figure 4: Visualization of the marginal Beta distributions for the following Dirichlet distributions:
—Dir(5.0,5.0,5.0), , ,and —Dir(0.75,0.1, 1.25).

B PRIOR-GUIDED UNSUPERVISED CLUSTERING EXPERIMENT

To demonstrate the applicability of DPSL beyond MoE routing, we design a synthetic unsupervised
clustering task where a small network outputs 3-way cluster-assignment probabilities for 2D inputs.
For each of three regimes, we sample 1500 points from a mixture of three Gaussian-like clusters with
distinct means and covariances.

B.1 DATA GENERATION

* Non-overlapping imbalanced clusters: The points distributed across three clusters with
size ratios 4:1:1, sampled from isotropic Gaussian distributions with standard deviation
o = 0.8 and fixed centroids g1 = (0,0), o = (5,5), and g = (=5, 5).

* Overlapping imbalanced clusters: The data points with size ratios 5:2:1 were sampled
from anisotropic Gaussian distributions centered at the vertices of an equilateral triangle
(radius 2.4), with varying standard deviations o € {1.0,0.8,0.6} and elongation factors
{1.0,2.5, 1.5} oriented to induce complex boundary overlaps.
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* Overlapping elongated clusters: The data points with size ratios 5:3:1 were sampled
from highly anisotropic Gaussian distributions centered at the vertices of an equilateral
triangle (radius 3.8), with distinct elongations {3.0, 4.0, 2.0} and standard deviations o €
{0.7,1.0,0.5}.

B.2 TRAINING DETAILS

For each setting, we trained an MLP with architecture 2 — 64 — 32 — 3 with ReL.U activations.
The final output is passed through a softmax function to produce cluster assignment probabilities.
The model is trained for 50 epochs using the Adam optimizer with a learning rate of 0.01 and

full-batch gradient descent (N = 1500). We use SwAV (Caron et al] [2020) and SeCu [2023)

unsupervised clustering methods as baselines.

To allow the intrinsic clustering structure to emerge before imposing prior constraints, we implement
a warm-up schedule. The model is trained solely with the baseline clustering loss for the first 40
epochs. For the remaining epochs, DPSL is added to the objective with a A set to 0.01 to shape the
distribution of the learned cluster assignments towards the target Dirichlet prior.

B.3 CHOICE OF DIRICHLET PRIORS FOR CLUSTERING

The idea cluster-size ratios and the amount of cluster overlap are generally not known exactly a
priori, and even when approximate ratios are available, the effective proportions in the learned
representation can deviate due to overlap or elongated cluster geometry. For this reason, we use
moderate asymmetric Dirichlet priors that provide soft inductive bias toward approximate proportions
without rigid enforcement. In particular, we set w = (2, 1, 1) for the 4:1:1 non-overlapping setting,
and o = (1.5,1.0,0.5) for both the 5:2:1 overlapping and 5:3:1 elongated settings. The clustering
accuracy results for our aligned priors are presented in[Table[T)in the main paper.

As qualitatively shown in[FigureP] while the SWAV baseline fails to distinguish smaller or overlapping
clusters, adding DPSL effectively guides the model to recover the true cluster structure across all
three regimes.

B.4 ROBUSTNESS TO PRIOR MISSPECIFICATION

To test robustness to prior misspecification, we intentionally used a fixed sub-optimal prior @ =
(1.5,1,1) for all settings which no longer encodes differences between the medium and smallest
clusters. Even under these misspecified priors, DPSL consistently improves performance. The results
in[TableH]indicate that DPSL remains beneficial even with coarse or partially incorrect prior.

Table 4: Impact of DPSL on unsupervised clustering accuracy, when using a fixed sub-optimal prior
for all the settings.

Setting SwAV SwAV+DPSL SeCu SeCu+DPSL
Non-overlapping 84.42 + 0.83% 88.31 + 0.19% (+3.89%) 88.40 + 11.4% 93.42 + 6.42% (+5.02%)
Overlapping 86.71 £ 1.13% 89.62 £+ 0.30% (+2.91%) 70.69 +3.8% 82.66 + 2.83% (+11.97%)
Elongated 87.73 £ 0.67% 88.18 £+ 0.63% (+0.45%) 76.84 +7.1% 83.67 + 3.58% (+6.83%)

C TRAINING AND IMPLEMENTATION DETAILS

C.1 TRAINING DETAILS FOR THE EXPERIMENT IN SECTION 2.2

This appendix provides the training details with an additional illustrative example for applying the
Dirichlet-Prior Shaping Loss (DPSL), as referenced in|Section|2.2} The objective is to guide a set of
learnable probability distributions over three categories to match target Dirichlet priors.

In the example shown in Figure 2 in the paper and [Figure[f]in this section, we consider data points
representing probability distributions derived from two distinct sources. Independent Dirichlet priors
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Figure 5: Qualitative impact of DPSL on clustering under various data regimes. We visualize cluster
assignments for a random seed across three settings: Top: Non-overlapping (size ratio 4:1:1), Middle:
Elongated (ratio 5:3:1 ), and Bottom: Overlapping (ratio 5:2:1). The columns compare the Ground
Truth labels (a) with predictions from the SwAV baseline (Caron et all, 2020) (b) and SWAV +
DPSL (c). Adding DPSL successfully recovers the distinct cluster structures by shaping the output
distribution toward the expected asymmetric prior.

are applied to shape the distributions for each source: For example in Source one has a
target prior of Dir(5,5,5) and Source two has a target prior of Dir(0.2,0.2,0.2).

For training, we initialize the data points as learnable parameters. These parameters are optimized
using the Adam optimizer with a learning rate of 0.1 for 100 training steps. The optimization
minimizes the Dirichlet-Prior Shaping Loss (defined in Equation 4), which quantifies the difference
between the empirical CDF of the learned probabilities (for each category) and the theoretical Beta
CDF derived from the respective target Dirichlet prior. The learning curve, shown in the bottom right
panel of tracks the minimization of this loss during training.

As illustrated in [Figure[f] minimizing the CDF divergence ensures that the empirical distribution
of the learnable probability vectors for each source converges effectively to its specified target
Dirichlet prior (top row). The choice of concentration parameters (c) significantly influences the
characteristics of the learned distributions. For source one, the larger o, = 5 values steer the
probability distributions towards the mean of the simplex. For source two, the smaller ap, = 0.2
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values promote sparse probability distributions. This results in distributions heavily concentrated
at the corners of the simplex, where one category is assigned a high probability, and the others are

assigned probabilities near zero, indicating a strong preference for a single category.
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Figure 6: Dirichlet-Prior Shaping Loss (DPSL) shapes categorical probability distributions from
two data sources (S1, S2). Top row shows the empirical (dashed) vs. target (solid) CDFs for each
category after convergence, along with simplex of assignment probabilities. Bottom row presents data
histograms of assignment probabilities overlaid with target Beta PDFs, and learning curves showing
DPSL minimization during training.

C.2 IMPLEMENTATION DETAILS FOR UPCYCLING FFNS INTO GRANULAR EXPERTS

This section provides implementation details for upcycling Feed-Forward Networks (FFNs) into
granular experts, as referenced in Granularity, in this context, refers to the ratio of the
original FFN’s hidden dimension (d¢¢y,) to the hidden dimension of an MoE expert (dexp), expressed
as G = d¢en/deyp. Creating smaller, more granular experts allows tokens to be routed to a larger
number of experts, which has shown promising accuracy results (Ludziejewski et al.,[2024; |He et al.|
2024) for granular expert upcycling. We closely follow the approach detailed in He et al.| (2024).

We experimented with both standard upcycling and fine-grained upcycling, as follows: For standard
upcycling, we duplicate the original FFN blocks to create experts. We add noise to the weights at
initialization with a small magnitude, ¢ ~ A(0,0.01). For fine-grained upcycling, we follow the
approach proposed by [He et al|(2024), partitioning each FFN weight tensor into G shards. In our
experiments, upcycling with granularity 1 (standard upcycling) corresponds to a setup with 4 experts
and top-2 routing. Fine-grained upcycling corresponds to a setup with 16 experts and top-8 routing.

Notably, we implemented weight scaling for expert initialization (He et al.| [2024), but found that
it resulted in decreased accuracy in our experiments. Therefore, we did not use it in the final

experimental setup.

C.3 DATASETS

provides a detailed breakdown of the datasets used for training in every stage (stage I:
projector-training, stage 11: warm-up, stage IIl: finetuning). We maintain the same training pipeline
and stages for all baselines and our Dirichlet-Prior Shaped models.

C.4 HYPERPARAMETERS, IMPLEMENTATION, AND TRAINING DETAILS

This appendix outlines the hyperparameters, implementation specifics, and training procedures

employed for the experiments discussed in[Section[3.2]

All models were trained on a distributed setup utilizing either 4 or § NVIDIA A100 GPUs. A
consistent total batch size of 128 was maintained across all experiments. When using 4 GPUs, the
per-device batch size was set to 8, complemented by 4 gradient accumulation steps. In the 8-GPU
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Table 5: Datasets used in training stages. On the first stage, we are training the adapter network. On
the second stage, we train the whole network on a larger dataset including 30% of the data used for
the Stage III.

Datasets Size

Stage I LLaVA 1.5-558k (Liu et al.,|2024b) 558k
LLaVA 1.5-mix-665k (30%) (Liu et al.|[2024b)
SAM (30%) (Kirillov et al.,[2023)
Wikiart (30%) (Saleh & Elgammal, [2015))
LVIS (Wang et al.| 2023)

ALLaVA (Chen et al.,[2024)
TextVQA (Singh et al.,[2019)
LLaVA 1.5-mix-665k (Liu et al., 2024b)
Stage 111 SAM (Kirillov et al.,[2023)) 750k
Wikiart (Saleh & Elgammal, 2015)

Stage 11 1,206k

configuration, the per-device batch size remained 8, but with 2 gradient accumulation steps. For
efficient distributed training, we leveraged DeepSpeed with ZeRO-2 offloading.

The models were optimized using the AdamW optimizer, configured with 5; = 0.9 and 52 = 0.999.
The learning rate was varied across training stages: set to 1 x 10~2 during Stage I, and reduced to
2 x 1075 for both Stage II and Stage III in all experiments. A cosine learning rate scheduler was
used, with a warmup ratio of 0.03.

For our proposed method, the coefficient for the Dirichlet-Prior Shaping Loss (DPSL) was set to
A = 0.01. The baseline methods were implemented following the descriptions provided in their
respective original publications, and we generally adopted the hyperparameters recommended by
their authors. Specifically, the weight for the standard load-balancing loss (Shazeer et al.l 2017}
Fedus et al.,2022) was set to 0.01, and the weight for the z-loss (Zoph et al.| 2022) regularizer was
0.001. Following the DeepSeek-V3 Technical Report (Wang et al.l [2024; [Liu et al.| [2024a)), we
evaluated two update rates (v = 0.001 and u = 0.0001) for the auxiliary-loss-free DeepSeek strategy
and selected the one that yielded the highest final accuracy, even though it produced less balanced
routing than all other baselines as can be seen in Table[I2} For the Drop-Upcycling (Nakamura et al.,
2025)) baseline, we encountered instabilities and training freezes with the initially recommended 50%
drop rate settings. Consequently, we adjusted the ratios of re-initialized parameters. We found that a
re-initialization ratio of 0.5 worked best for the 4-expert setup, but this value led to instabilities in the
granular setup with 16-experts. Thus, for the 16-expert setup, we used a smaller re-initialization ratio
of 0.2 to ensure stable training, and reported highest accuracies.

C.5 COMPUTATIONAL OVERHEAD OF DPSL

Computing the DPSL loss introduces an additional minimal overhead during training. However,
several factors help mitigate this overhead. First, the loss is computed over all tokens in a mini-batch
(effective batch size B = S x T), which is a highly parallelizable operation. Second, the gradient
computation is efficient, as the derivative of the CDF used in the loss calculation is simply the PDF,
which is already available from the forward pass. Third, empirical observations indicate that the router
distributions converge to the target shape early in training and remain stable thereafter. Consequently,
DPSL loss was applied only during the warm-up phase and relaxed during final fine-tuning, thereby
minimizing its impact on overall training time.

To quantify this overhead precisely, we profiled the forward pass on a Qwen2.5-0.5B MoE model
across varying expert counts (4, 8, and 16) using a Pytorch implementation. As shown in Table[6]
the standard implementation introduces a modest overhead of 7-12% depending on the number of
experts, primarily due to CPU-GPU transfers for SciPy-based Beta CDF computation. However,
when using DeepSpeed with ZeRO-3 offloading (Table[J), this overhead drops significantly to just
1-5%. For larger models, such as Qwen2.5-1.5B, the relative cost becomes smaller as the constant-
time CDF operation is dwarfed by the model’s forward/backward pass. We anticipate this cost
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will significancy be reduced with the upcoming native GPU support for Beta CDFs in PyTorch
(torch.special.betainc), eliminating the need for device transfers.

Finally, DPSL is active only during the warm-up phase (Stage II), which accounts for ~40% of our
training pipeline. Using DeepSpeed, a 1-5% overhead in this stage translates to a trivial 0.4-2%
increase in total wall-clock time.

Table 6: Qwen2.5-0.5B MoE forward pass overhead (avg. of 5 runs)

Setting w/o DPSL (ms) w/ DPSL (ms) Overhead

4 experts 189 203 14ms (+7%)
8 experts 272 299 27ms (+10%)
16 experts 434 487 52ms (+12%)

Table 7: Qwen2.5-0.5B MoE forward pass overhead using DeepSpeed ZeRO-3 (avg. of 5 runs)

Setting w/o DPSL (ms) w/ DPSL (ms) Overhead

4 experts 502 507 Sms (+1%)
8 experts 797 825 28ms (+3.5%)
16 experts 1358 1436 78ms (+5%)

C.6 IMPLEMENTATION DETAILS FOR TASK-SPECIFIC EXPERT SPECIALIZATION

This appendix details the implementation for task-specific expert specialization, as referenced in
[Section[3.4] For this setup, using a 4-expert MoE model with top-2 routing, we partitioned the data
utilized during the warm-up stage (Stage II) into four specific subsets: 1) data comprising text-only
and image captions; 2) data focused on general question answering tasks; 3) data related to grounding
tasks; and 4) a combined subset for OCR, chart understanding, and science-related tasks.

It is important to highlight a potential limitation inherent in such manual data partitioning, especially
for vision-language modeling. The process of creating distinct, meaningful subsets is non-trivial and
can inadvertently over-constrain the experts. For instance, many real-world vision-language tasks may
benefit from, or even necessitate, knowledge derived from a combination of these defined categories
(e.g., a chart-based question answering task might require OCR, chart understanding, and general QA
capabilities). Consequently, this manual separation may restrict experts from learning broader, more
synergistic representations, potentially leading to the sub-optimal performance observed in Table 2.

D ABLATION STUDIES

D.1 CONCENTRATION PARAMETER

For this ablation, we utilized the upcycled Llama3.2-1B model with 4 experts and top-2 routing. We
performed a study over « € {0.75,1.0,1.25,1.5}. The results in show optimal performance
at a = (.75, suggesting a benefit from priors encouraging slightly sparser routing than uniform.
Ablation results for Qwen2-1.5B are shown in[Table[9] We can observe that larger models are robust
across a wider range of « values.

Table 8: The impact of the Dirichlet prior parameter ¢ on Llama3.2-1B (2in4) performance.

Prior TextVQA GQA MM-Vet MME-P MME-C VizWiz MMB Avg

a=0.75 52.82 60.98 31.7 1334.78  253.21 62.78 42.19 35.92
a=10 51.68 60.84 30.2 1310.57 24393 61.94 38.43  34.86
a=125 5148 60.53 29.2 1236.36  227.86 61.32 41.01  34.92
a=15 5145 60.85 314 1294.43  256.43 61.94 3775 34091
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Table 9: The impact of the Dirichlet prior parameter cc on Qwen2-1.5B (8in16) performance.

Prior TextVQA GQA MM-Vet MME-P MME-C VizWiz MMB Avg

a=0.75 54.11 62.08 32.6 1427.13 280 66.20 43.18 37.03
a=10 5432 61.86 34.0 142190 265 65.98 43.54 37.25
a=125 5379 62.05 35.1 1428.87 276 66.48 4153 37.14
a=15 5342 62.02 36.5 1402.43 270 65.70 4231  37.28

D.2 CONCENTRATION PARAMETER IN THE SPECIALIZATION SETTING.

We have additionally ablated the impact of o concentration parameter on the model performance in
the modality specialized setting. We have considered four different setups: Setting I encouraging
two experts for vision and two for language with concentration values «,,, = (0.75,0.75,1.25,1.25)
and o, = (1.25,1.25,0.75,0.75), Setting II — similar to the previous setup but with different «
values «y,,, = (1.0,1.0,1.25,1.25) and «,, = (1.25,1.25,1.0, 1.0), Setting III encouraging three
experts to specialize in vision and one in language with oy, = (0.75,0.75,0.75,1.25) and o, =
(1.25,1.25,1.25,0.75), and, finally, Setting IV encouraging one expert to specialize in vision and
thee in language with oy, = (0.75,1.25,1.25,1.25) and o, = (1.25,0.75,0.75,0.75).

Table 10: The impact of the Dirichlet prior parameter & on Llama3.2-1B (2in4) performance in the
modality specialized setting.

Setting TextVQA GQA MME-P MME-C VizWiz MMB Avg

I 51.8 61.4 1305 285 64.0 42.9 36.85
II 51.7 61.2 1314 261 63.9 42.1 36.65
III 51.4 60.7 1310 269 63.1 39.4 35.94
v 50.7 56.0 1240 261 62.3 40.2 35.02

The results summarized in [Table|10[suggest that DPSL is robust to minor changes of the a values,
as long as the fundamental architectural prior is preserved. However, ill-conceived priors that
encourage unbalancing the expert allocation lead to a degraded model performance (Settings III
and IV). Interestingly, the performance drop is not symmetric. Starving the model of vision experts
(Setting IV) is significantly more detrimental than starving it of language experts (Setting III). This is
intuitive, as VLM inputs typically consist of a large number of vision tokens sourced from the image
and relatively few language tokens obtained from the question. Restricting the model’s capacity to
process the larger modality creates a more severe bottleneck.

D.3 IMPACT OF REGULARIZATION WEIGHT.

We have studied the effect of A loss regularization weight. The results summarized in below
suggest that the value A = 0.01 yields the best performance. Based on this ablation study, we fixed
this value for all subsequent experiments.

Table 11: The impact of the loss regularization weight parameter A on Llama3.2-1B (2in4) perfor-
mance.

A value TextVQA GQA MM-Vet MME-P MME-C VizWiz MMB Avg

A=0.001 513 609  28.7 1286 236.8 60.4 44.0 35.2
A=0.01 528 61.0 31.7 1335 253.2 62.8 422 35.9
A=0.1 50.9 60.6 305 1261 241.4 61.2 39.6 34.8
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D.4 VISUALIZATION OF ROUTING SCORE DISTRIBUTIONS

As discussed in[Section[3.6] we analyze the impact of different upcycling and regularization strategies
on the routing score distributions within our upcycled VLM MoEs. provides a visualization
of the routing score distributions for 4 experts at the 12th intermediate layer of a Llama3.2-1B model
configured with 4 experts and top-2 routing. The routing scores presented in this visualization were
collected during model evaluation on the MM-Vet benchmark (Yu et al., 2024).

The figure compares several training approaches: Standard sparse upcycling (Komatsuzaki et al.}
2023)), load-balancing (Shazeer et al.,|2017; [Fedus et al.,|2022)), auxiliary-loss-free DeepSeek balanc-
ing (Wang et al.}2024; [Liu et al.| 2024al)), and z-loss (Zoph et al., 2022). Notably, these approaches
tend to produce similar routing score distributions across the experts. Each distribution exhibits a
prominent peak around a score of 0.25, corresponding to a uniform probability distribution if the
router were to assign equal preference to each of the four available experts. This suggests a lack of
strong differentiation or specialization among them.

In contrast, our DPSL, when applied with a symmetric prior where o, = 1.5 for all experts, results in
visibly different routing score distributions. The distributions generated by DPSL are more dispersed
and cover a wider range of score values. This indicates that DPSL encourages the router to make
more varied and potentially more confident assignments, fostering a greater degree of specialization
or differentiation in how tokens are directed to the experts.
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Figure 7: Routing score distributions at layer 12 of an upcycled Llama3.2-1B model (4-expert, top-2
routing). Each column represents a different upcycling/regularization method, and each row displays
the distribution for one of the four experts under that method.

D.5 EXPERT UTILIZATION ANALYSIS

To analyze the expert utilization load, we measure Coefficient of Variation (CoV). As the results
show, DPSL achieves low CoV scores, competitive with explicit load-balancing techniques. Although
DPSL does not contain an explicit load-balancing term, a symmetric Dirichlet prior intrinsically
encourages a balanced load distribution, which we observe across layers.

In all of our experiments, DPSL successfully prevented expert collapse and significant utilization
imbalance. We note, however, that none of the baseline methods exhibited severe imbalance issues in
our experiments.
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Table 12: Coefficient of Variation of expert loads for Llama3.2-1B (2in4) model. Lower values
indicate more balanced utilization.

Layer Sparse Upcycling Load Balancing z-loss DeepSeek DPSL (Ours)

Layer4  0.071 0.070 0.088 0.440 0.035
Layer8  0.075 0.126 0.064 0.191 0.069
Layer 12 0.072 0.091 0.031 0.397 0.057
Layer 16 0.071 0.053 0.103  0.229 0.110

D.6 EXPERT SPECIALIZATION PATTERNS

We analyze expert activation similarity patterns for Llama3.2-1B (2in4) across layers 3, 6, 9, and
12 using cosine similarity between expert outputs on S0 MM Vet randomly selected sequences. Low
similarity values (< 0.4, red) indicates distinct expert specialization, while higher similarity values
(0.4 —0.8, yellow-green) suggest overlapping expert behaviors and reduced differentiation. As shown
in [F1gure [8] DPSL demonstrates superior expert differentiation (average similarity: 0.39). In contrast,
Load Balancing loss and Router z-loss shows progressive expert convergence from early to deep
layers (average similarity: 0.57 and 0.59, respectively). These results clearly indicate that our method
effectively prevents expert redundancy and maintains expert specialization across all layers where
traditional auxiliary losses struggle to maintain diversity.
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Figure 8: Expert activation similarity scores across layers 3, 6, 9, and 12. Our DPSL (top row)
achieves the lowest average similarity (0.39) for these layers compared to Load Balancing loss (0.57)
and Router z-loss (0.59), demonstrating superior expert specialization.
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