
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PROGRESSIVE MEMORY TRANSFORMER: MEMORY-
AWARE ATTENTION FOR TIME-SERIES

Anonymous authors
Paper under double-blind review

ABSTRACT

Self-supervised learning has become the de-facto strategy for time-series domains
where labeled data are scarce, yet most existing objectives emphasize either lo-
cal continuity or global shape, seldom both. We introduce Progressive Mem-
ory Transformer (PMT), a lightweight transformer backbone that maintains a
writeable memory bank across overlapping windows, allowing representations to
accumulate evidence from short, medium, and long horizons without re-reading the
entire sequence. On top of our proposed memory-aware attention, we formulate a
hierarchical contrastive protocol that aligns embeddings at three complementary
granularities—tokens, windows, and full sequences—through a token-window
Gaussian loss, a memory-state loss, and a global [CLS] loss. Together, PMT
and these multi-scale objectives yield a task-agnostic model for time-series data,
providing strong features even when only 1–5% of labels are available. We validate
the approach on seven UCR/UEA/UCI benchmarks on classification tasks.

1 INTRODUCTION

Time-series in geophysics, wearables, finance, and industrial monitoring exhibit structure at multiple
temporal scales while supervision is sparse and noisy. Recent self-supervised (SSL) approaches
narrow this supervision gap with objectives that emphasize different parts of the temporal hier-
archy, from local timestamp smoothness to instance-level agreement (Chen et al., 2020; Eldele
et al., 2021; Lee et al., 2024; Oord et al., 2018; Yue et al., 2022). E.g., autoregressive methods (Oord
et al., 2018) emphasize local forecasting, whereas instance-level schemes (Chen et al., 2020) treat an
entire sequence as one instance, potentially overlooking within-series locality. Yet, most pipelines
still face a core tension: methods that protect fine-scale details often fail to propagate long-range
context without repeated re-encoding, whereas hierarchical pooling trades away local nuance when
aggregating across resolutions.

We contend that an effective time-series backbone should (i) preserve fine-grained patterns, (ii) pro-
gressively integrate context as the receptive field expands, rather than re-reading the full past, and
(iii) expose multiple levels: local, medium and global for contrastive supervision. While standard
transformers are stateless, existing memory-augmented architectures often rely on read-only caches,
e.g., Transformer-XL (Dai et al., 2019) or fixed latent bottlenecks (Jaegle et al., 2021) that cannot
adaptively summarize evolving temporal dynamics.

To bridge this gap, we propose Progressive Memory Transformer (PMT), a stateful backbone that
equips each overlapping window with a compact, writable memory and learns when to retain, refine,
or reset it. High-level context, thus, accumulates progressively across windows and depth while
preserving fine-scale token detail, reducing the need to re-encode the full past. We refer readers to
Fig. 1 for the dataflow and to Section 2 for the precise mechanics (gating, propagation, and overlap
aggregation).

To align the representations exposed by PMT without compressing token shape, we couple three
complementary contrastive losses: (i) Hierarchical Gaussian contrastive loss (HGCL) that promotes
local smoothness among nearby tokens and consistency across overlapping windows, (ii) memory

Anonymous code: https://anonymous.4open.science/r/PMT-anon-366C

1

https://anonymous.4open.science/r/PMT-anon-366C

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

contrastive loss that directly supervises the writable memory tokens (mid-range motifs), and (iii) a
class token [CLS] loss that enforces sequence-level agreement between augmented views. This
triad targets local, mid-range and global abstractions, respectively, matching the architecture’s three
hierarchical elements.

Contributions. (1) We propose PMT, a causally masked, memory-augmented backbone whose
window-aligned writable memory expands receptive field progressively without re-encoding the
full past and with a learnable reset gate to handle regime changes. (2) We formulate a multi-scale
contrastive protocol that supervises tokens (HGCL), memory states (PCL), and sequence summaries
(ICL) without pooling away fine detail. (3) On seven UCR/UEA/UCI benchmarks in low-label
settings (1–5%), PMT yields competitive linear-probe results and qualitative evidence that memory
states capture mid-range semantics; we also report targeted ablations of the loss components and
analyze failure cases to motivate adaptive tokenization.

Positioning relative to prior work. Current SSL methods, for time-series, either trade fine-scale
detail for broader context after aggressive pooling (Lee et al., 2024; Yue et al., 2022) or lack an
explicit mechanism to connect local and global views (Chen et al., 2020; Oord et al., 2018). Previous
stateful transformers reduce repeated recomputation typically do not expose their internal states to
the learning signal. PMT couples a small, writable memory with losses that supervise each stage of
the representation hierarchy. Related work is detailed in Section 4.

2 PROGRESSIVE MEMORY TRANSFORMERS

L.1

L.·

L.j

R
eceptive

field

Progressive Memory Transformer (PMT)

PMA(1,1)

+

PMA(·,1)

+

PMA(i,1)

+

PMA(1,·)

+

PMA(·,·)

+

PMA(i,·)

+

PMA(1,j)

+

PMA(·,j)

+

PMA(i,j)

+

Sequential Encoder

R
es

et
M

em
or

y

Window Representations

States

Gate

Input

Figure 1: An illustration of PMT unrolling several PMA
blocks through time (left to right) and hierarchy levels
(bottom to top). The sequence is tokenized and encoded
through an encoder. Then, each PMA block uses these
representations and previous states to produce a new
version of both of these inputs. At each level, a given
PMA block uses a gating mechanism to control how
much of the previous level’s memory is passed forward
or reset (i.e., uses a reset memory state instead).

Our primary objective is to robustly represent
time-series, i.e., to extract representations that
are consistent through the spatiotemporal and
semantic scales of the signal. Waveforms are
rich in multiscale information. From ampli-
tude spikes, phase shifts, seasonality, and long
term dependencies. Thus, the conservation of
local nuances, mid-range motifs and global con-
text is critical to produce robust and generaliz-
able features. Our proposal is to have a flex-
ible architecture that uses attention to system-
atically aggregate neighborhoods through time
and over the semantic hierarchies with the use
of a memory that retains and discards the pre-
vious states of the sequence. Our proposal im-
bues a transformer with memory that allows it
to retain, maintain or discard the states of the
processed signal, thus, effectively aggregating
the local neighborhoods to produce locally in-
formed global representations.

In the following, we propose to adapt the at-
tention mechanism to be memory-aware that
not only aggregates representations spatiotem-
porally but also stacks them within a semantic
hierarchy. We call this variation of attention
a Progressive Memory Attention (PMA) block.
Moreover, we introduce a set of losses that reg-
ularize the set of memory-aware PMAs at dif-
ferent granularities. Finally, we summarize our overall pipeline comprising the set of PMA blocks,
gating mechanisms and losses that collectively we termed Progressive Memory Transformer (PMT).

Notation. Let x ∈ RT×C denote a single C-channel time-series of length T . The encoder fθ
produces a matrix R ∈ RK×D containing K tokens, each D-dimensional, plus a separate [CLS]
vector c ∈ RD. Hence, the overall output is

[
R; c

]
∈ R(K+1)×D. We use the shorthand fθ(·; i) to

refer to the ith output token processed by the encoder.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.1 PROGRESSIVE MEMORY ATTENTION

Existing sliding-window transformers (Nie et al., 2023) either discard earlier windows or re-encode
them every step, whereas Transformer-XL (Dai et al., 2019) caches the past in a read-only form. In
contrast, we propose the Progressive Memory Attention (PMA) that equips each window with a
writable, fixed-size memory. Unlike read-only caches, writability enables adaptive summarization:
the model learns to promote, refine, or overwrite context as new evidence arrives, and we supervise
these states directly via a window-level contrastive loss (Section 2.2.1). The memory propagates
horizontally to the next window and vertically up the stack, so the receptive field widens by the stride S
as the window advances while deeper layers fuse these compact summaries without re-encoding all
tokens, see Fig. 2 and Eq. (1).

PMA(i,j)

+ GM + GW

Mi−1,j Mi,j

Mr

Mi,j−1
Wi,j−1 Wi,0

Wi,j

Figure 2: An illustration of the
information flow (1) in a PMA
block.

For a given window i at a level j, we compute a window Wi,j and
memory Mi,j representations through our proposed PMA block,
such that

Wi,j ,Mi,j = PMA(Mi−1,j , M̄i,j−1, W̄i,j−1), (1)
where Mi−1,j provides the temporal context (memory from the pre-
vious window at the same level), and M̄i,j−1 and W̄i,j−1 provide
hierarchical context (refined memory and window from the previous
level). The initial memory for level j is a reset state used for initial-
ization and adaptive reset, i.e., M0,j = Mr. We refine the memory
at a given window and level with a learnable gate that mixes the
carry-over memory and the reset state (implemented as a pre-update
mix that forms Mi,j)

M̄i,j = GM (Mi,j ,Mr), (2)
that adaptively mixes the memory with the reset token Mr, enabling the model to overwrite stale
context and prevent drift when regimes change. Similarly, we refine the representations with an
adaptive gating function,

W̄i,j = GW (Wi,j ,Wi,0), (3)
that mixes the original signal representation, Wi,0 = fθ(x; i), with the processed one Wi,j to preserve
local detail while integrating context. We illustrate this block in Fig. 2. Within each PMA block we
apply one multi-head FlashAttention-2 (Dao, 2024) layer to the concatenated input sequence (1).
Memory queries are unmasked; window queries see every key in Mi−1,j and the strictly-causal
slice of their own window but are blocked from M̄i,j−1 preventing leakage from deeper (potentially
future-aware) summaries and keeping updates strictly autoregressive.

We perform this computation (1) for every window and level in a forward manner. Afterward, we
process a reversed copy of the sequence with an independent PMA stack and fuse the two token
streams after both passes complete, thereby keeping the forward computation strictly unidirectional.

In our implementation, we normalize the representations layer-wise. Moreover, we mask the sequence
at each level to attend to the corresponding neighborhoods using FlashAttention-2; see Section 2.3
for details.

Attentive overlap aggregation & residual path. Because windows overlap, the same position
appears O times per block; an overlap pooler merges these rows so the token length stays constant
across blocks. The pooler is a single-query cross-attention per position over its O overlapped patches
(keys/values from the overlaps) with a learned head×overlap bias. Its output is scaled by 1/

√
O, post-

normalized, and multiplied by a learnable γ, then fused with the masked-mean skip via a SkipGate
before re-entering the residual stream. Standard pre-norm skips wrap the chunk-processing and
feed-forward sub-layers. Additional gates control state reuse across blocks and, in the bidirectional
model, the fusion of the two directional streams.

Receptive-field growth. A formal derivation (Appendix B) shows that after B PMA blocks the
contextual span of a token expands linearly with both block depth and token index.

2.2 MULTI-TASK LOSSES

Different downstream signals stand out at different temporal scales, e.g., a premature heartbeat is a
half-second glitch, whereas a walking about is a multi-second pattern. We, therefore, attach three

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

contrastive losses, each nudging the representation at a specific granularity. One (hierarchical loss)
smooths neighboring patch tokens and overlaps, so fine-scale details remain coherent even when
phase-shifted. The second one (memory loss) aligns the few writable tokens that summarize each
window, preventing collapse and preserving mid-range context that survives our augmentations.
Finally, the last one (class loss), applied after neighborhood masking, forces every local token to
contribute whatever information is globally predictive, yielding a stable sequence-level descriptor.
Each interface of the architecture exposes a different temporal scale (patch tokens, memory tokens,
[CLS]); supervising all three, without compressing token shape, aligns local nuance, mid-range
motifs, and global semantics in one backbone.

Two-view augmentation. Following established protocols in time-series contrastive learning (Eldele
et al., 2023; 2024; Yue et al., 2022), we present two stochastic views of every sample to a weight-
shared backbone: a weak view that preserves the signal’s local morphology (channel-wise z scaling
and low-variance Gaussian noise) and a strong view that, additionally, breaks short-range correlations
while keeping coarse semantics (time-warping and magnitude-warping).

Hierarchical targets. Our model treats a time-series as a hierarchy of progressively coarser views:
tokens windows, and the full sequence (global context). Within each PMA block, the writable
memory bank decides, via attention, which local details to persist, refine, or overwrite, so deeper
blocks can re-use distilled high-level cues while still observing fresh low-level evidence. We,
therefore, attach learning signals at three complementary abstraction levels: token-wise, window-wise
and sequence-wise. This multi-granular supervision forces the the backbone to align representations
that are simultaneously sensitive to fine temporal nuances and consistent across wider temporal spans,
providing rich anchors for downstream heads. Here, we will describe how each loss component
(HGCL) for token/window alignment, and two contrastive objectives on the PMA memory tokens
(PCL) and the [CLS] token (ICL) operationalize this hierarchy.

2.2.1 PMA CONTRASTIVE LOSS

The PMA Contrastive Loss (PCL) acts on the set of memory-state tokens produced by the PMA
backbone and is applied at the window level of the hierarchy. Each memory token is first passed
through a view-shared, two-layer projection head g(·) and then `2-normalized. Supervising the
memory tokens directly trains the model what to remember. Salient mid-range evidence must be
distilled into the writable slots consistently across views.

Let B be the batch size, v ∈ {1, 2} the view index, w = 1, . . . ,W the window index, and ` =
1, . . . , H the PMA-level index. Let the bth sample’s memory representation for the view v at position
(w, `) be M

(v)
b,w,`, then we define the set M (v) =

{
M

(v)
b,w,`

}
b=1,...,B;w=1,...,W ;`=1,...,H

with each

matrix M
(v)
b,w,` ∈ Rnm×D holding the nm memory tokens of that window and level. For an anchor

token ma = M
(1)
b,w,`[k], k = 1, . . . , nm, the positive is mp = M

(2)
b,w,`[k], while negatives come from

Na =
{
mn ∈ M (2) : mn /∈ b

}
, i.e., all tokens of the opposite view that originate from a different

sequence in the mini-batch. The resulting InfoNCE (Oord et al., 2018) loss is

LPCL = − 1

BWHnm

∑
ma∈M(1)

log
exp
(
〈g(ma), g(mp)〉/τ

)
exp
(
〈g(ma), g(mp)〉/τ

)
+
∑

mn∈Na
exp
(
〈g(ma), g(mn)〉/τ

) . (4)

All vectors are unit-normalized, so 〈·, ·〉 is the cosine similarity; and τ is a fixed temperature. Because
each window holds only nm � K memory tokens (where K is the patch-token count), the loss
can be evaluated over all tokens without subsampling. We compute this loss for the forward and
backward passes and average them, thus, we use the loss L∗PCL = 1

2

(
Lfwd

PCL + Lbwd
PCL

)
.

2.2.2 INSTANCE CONTRASTIVE LOSS

The token stream from the PMA backbone is refined by L Transformer layers with neighborhood
masking: token at position t attends only to positions t− n, . . . , t, whereas the [CLS] token itself
attends to every position. This constraint maintains quadratic capacity for aggregation tokens while
bounding the cost for patch interactions to O(LnT). The encoder, thus, (i) sharpens local patch
features through short-range context and (ii) aggregates global summaries into the [CLS] token,
supporting both instance contrastive-learning and downstream classification.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

For a mini-batch of B time-series we generate two stochastic views, yielding 2B sequences and
therefore 2B [CLS] embeddings. Denote the [CLS] token produced by view v ∈ {1, 2} of
sequence b ∈ {1, . . . , B} by c

(v)
b ∈ RD. Each is passed through a [CLS]-token-specific two-layer

projection head g(·) (shared across views) and `2-normalized. Thus, the loss is

LICL = − 1

B

B∑
b=1

log
exp
(
〈g(c(1)b), g(c

(2)
b)〉/τ

)∑B
b′=1

(b′,v) 6=(b,1)

∑2
v=1 exp

(
〈g(c(1)b), g(c

(v)
b′)〉/τ

) (5)

Thus each anchor c(1)b pairs with its positive c
(2)
b , while the remaining 2(B − 1) [CLS] tokens

in the batch act as negatives. This instance-based contrastive-loss constitutes the sequence-wise
component of our loss protocol. We explored a queue-based memory bank but found no performance
improvements; hence, all experiments use only in-batch negatives.

2.2.3 HIERARCHICAL GAUSSIAN CONTRASTIVE LOSS

Unlike TS2Vec (Yue et al., 2022), TNC (Tonekaboni et al., 2021), and the temporal arm of SoftCLT
(Lee et al., 2024), which confine positives to within-series neighborhoods (or their soft surrogates)
and typically control cost by pooling or striding, our HGCL preserves full token shape and creates
richly diverse pairs via Gaussian-weighted token/window positives with instance-wise in-batch
negatives. HGCL keeps full token shape and uses instance-wise negatives (in-batch across sequences)
while defining soft positives at two scales: (i) token-level smoothness within a window weighted
by a Gaussian over temporal distance, and (ii) window-level consistency for overlapping windows
weighted by a Gaussian over stride multiples—Eqs. (6) and (7).

At the token-level, embeddings within the same window are treated as soft positives, with similarity
weighted by temporal proximity according to a Gaussian function. At the window-level, embeddings
representing overlapping windows are also considered soft positives, promoting temporal consistency
at broader scales due to overlap in the sliding window approach.

Formally, the Gaussian weighting schemes at each level are defined as follows:

wpatch
ij = exp

(
− (i− j)2

2σ2
p

)
, wwindow

uv = exp

(
−
(
(u− v) · S

)2
2σ2

w

)
, (6)

where indices i, j represent positions within a local window at the patch-level, and u, v denote
window indices separated by stride S at the window-level. Parameters σp and σw control the
Gaussian weighting sharpness at the respective scales.

The HGCL objective combines these two scales into a unified InfoNCE loss:

LHGCL = αLpatch + βLwindow, (7)

where α and β control the balance between fine-grained local similarity and coarser temporal
consistency.

Negative samples for contrastive training are uniformly drawn from other sequences within the
training batch (in-batch negatives), ensuring robust discriminative learning. Through this hierarchical
Gaussian-weighted approach, HGCL promotes learning of temporally coherent representations across
multiple resolutions, bridging local alignment and broader contextual consistency.

2.3 PIPELINE SUMMARY

Pipeline in five steps. (1) A lightweight 1-D convolution tokenizes a C-channel waveform into
K patch tokens (plus a [CLS] vector); we keep tokens uncompressed thereafter. (2) We unfold
tokens into windows of length W and stride S and run B PMA blocks; at each block the writable
memory flows horizontally (window-to-window) and vertically (level-to-level). (3) An attentive
overlap-pooler merges duplicates so the token length remains constant across blocks. (4) We append
[CLS] and apply a short stack of locally masked encoder layers ([CLS] attends globally). (5) We
train with three complementary objectives: HGCL on tokens/windows, PCL on memory tokens,
and ICL on sequence summaries. Implementation details (window normalization across datasets,
masking, and vectorized kernels) appear in Appendices C and D.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3 EXPERIMENTS

3.1 DATASETS AND EVALUATION PROTOCOL

We evaluate PMT on seven time-series classification benchmarks—UCR (Dau et al., 2018), UEA
(Bagnall et al., 2018), and UCI (Anguita et al., 2013): HAR, Epilepsy, Wafer, FordA, FordB, Phalanges-
OutlinesCorrect (POC), and ElectricDevices. These datasets were chosen to jointly satisfy two
criteria: diversity (domains, lengths, channel counts) and sufficient unlabeled volume for contrastive
objectives that rely on in-batch negatives. Across the seven datasets, the training splits comprise
∼21.5M time-steps (i.e., > 40% of the combined UCR+UEA volume), while covering a broad range
of sequence lengths and class cardinalities (Appendix A). In InfoNCE-style training, representation
quality improves with the number of in-batch negatives (Chen et al., 2020; Oord et al., 2018). We,
therefore, avoid external memory banks or queues (He et al., 2020; Wu et al., 2018) to keep a single,
comparable training recipe across datasets; as a result, many micro-datasets in UCR/UEA (e.g.,
GunPoint, CBF) with only tens of sequences are unsuitable for our large-batch protocol.

We follow a standard linear-evaluation protocol (Eldele et al., 2021): the backbone is pretrained
without labels on each training set; we then train an SVM probe (matching Lee et al., 2024) on 1%
and 5% labeled subsets while freezing the backbone, and report top-1 accuracy and macro-F1 on the
official test split.

We compare against time-series SSL baselines TS2Vec (Yue et al., 2022), TS-TCC (Eldele et al., 2021),
and SoftCLT (Lee et al., 2024), as well as generic SSL baselines adapted to time-series: CPC (Oord
et al., 2018), SimCLR (Chen et al., 2020), and SSL-ECG (Sarkar & Etemad, 2020). Related work
appears in Section 4.

3.2 MAIN RESULTS ON SELF-SUPERVISED CLASSIFICATION

Table 1: Self-supervised learning results on 1% and 5% labeled subsets. Each
cell shows accuracy / macro-F1.

Self-supervised learning (1% labeled)
Dataset SSL-ECG CPC SimCLR TS2Vec+SoftCLT TS-TCC+SoftCLT PMT
HAR 60.0 / 54.0 65.4 / 63.8 65.8 / 64.3 91.0 / 91.0 82.9 / 82.8 92.9 / 93.2
Epilepsy 89.3 / 86.0 88.9 / 85.8 88.3 / 84.0 96.3 / 94.1 95.6 / 95.6 96.5 / 94.4
Wafer 93.4 / 76.1 93.5 / 78.4 93.8 / 78.5 95.3 / 88.1 96.5 / 96.5 98.9 / 97.1
FordA 67.9 / 66.2 75.8 / 75.2 55.9 / 55.7 87.1 / 87.1 81.5 / 81.2 87.0 / 87.0
FordB 64.4 / 60.5 66.8 / 65.0 50.9 / 49.8 67.9 / 67.9 74.8 / 74.8 72.2 / 72.0
POC 62.5 / 41.2 64.8 / 48.2 61.5 / 38.4 63.6 / 62.8 65.4 / 64.6 68.4 / 40.6
ElectricDevices 60.1 / 50.0 59.3 / 48.9 62.5 / 51.2 62.0 / 53.0 64.6 / 63.2 59.0 / 52.2

Self-supervised learning (5% labeled)
Dataset SSL-ECG CPC SimCLR TS2Vec+SoftCLT TS-TCC+SoftCLT PMT
HAR 63.7 / 58.6 75.4 / 74.7 75.8 / 74.9 92.1 / 92.1 92.6 / 92.6 95.5 / 95.9
Epilepsy 92.8 / 89.0 92.8 / 90.2 91.3 / 89.2 96.7 / 94.9 96.2 / 96.1 96.7 / 94.9
Wafer 94.9 / 84.5 92.5 / 79.4 94.8 / 83.3 98.8 / 96.8 98.2 / 98.2 99.2 / 97.8
FordA 73.6 / 70.7 86.5 / 86.5 69.6 / 68.9 92.5 / 92.5 93.2 / 93.2 87.6 / 87.6
FordB 71.7 / 69.8 86.3 / 86.2 63.0 / 60.7 78.8 / 78.6 88.0 / 88.0 75.1 / 75.2
POC 62.9 / 43.3 66.9 / 44.3 62.7 / 42.4 70.9 / 69.7 69.4 / 66.3 74.5 / 71.8
ElectricDevices 63.7 / 56.1 62.4 / 58.1 63.9 / 58.6 62.4 / 54.4 65.1 / 63.8 65.1 / 58.7

Table 1 presents the classi-
fication performance of our
method versus the baselines
on each dataset, for 1% and
5% labeled training data.
Our approach achieves com-
petitive results across all
datasets. The most note-
worthy result is the perfor-
mance on the HAR dataset,
where our method’s 1% la-
bels we surpass the 5%-
label performance of prior
methods on HAR. In Sec-
tion 3.4, we explore the performance on this dataset deeper. Table 1 also shows that our method
struggles to remain competitive on the FordA and FordB datasets. We attribute the weaker FordA/B
scores not to the PMA blocks themselves but to the fixed patchification used in our input stem. Due
to resource constraints, we limited exploration of token sizes, adversely affecting longer sequences.
Because the class labels in these two engine-vibration datasets hinge on subtle phase and frequency
shifts that unfold over only a few dozen time-steps, such coarse tokenization inevitably averages out
the very cues that distinguish the classes. Once those fine-scale patterns are lost, the downstream
memory-attention hierarchy cannot recover them. Hence the FordA/B results expose a limitation of
patchified inputs, rather than a fundamental weakness of PMT itself. Still, PMT outperforms the
other baselines in Top1 accuracy in the 1% label scenario (82.1% vs. 80.5%). For completeness, we
ran this experiment replacing the PMA blocks with xLSTM in the appendix (H)

3.3 PMA MEMORY VISUALIZATION

We probe the embeddings of the proposed encoder at two resolutions: local nuance (token repre-
sentations) and medium range (PMA memory states). We center the qualitative discussion on the
human-activity-recognition (HAR) data because its multichannel inertial traces exhibit macroscopic
structures, most notably the periodic peaks of foot-strikes, that are visually intelligible even without

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

−2
0
2

Wave Hybrid Wave 17 - Walking Upstairs Wave 13 - Walking Downstairs Wave 12 - Walking Upstairs

0

0.2

0.4

0.6

0.8

1

Token Reps. Hybrid

To
ke

n
R

ep
s.

H
yb

ri
d

Token Reps. Hybrid

To
ke

n
R

ep
s.

W
av

e
17

Token Reps. Hybrid

To
ke

n
R

ep
s.

W
av

e
13

Token Reps. Hybrid

To
ke

n
R

ep
s.

W
av

e
12

−1.0

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
sim

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Memory States Hybrid

M
em

or
y

St
at

es
H

yb
ri

d

0 0.2 0.4 0.6 0.8 1

Memory States Hybrid

M
em

or
y

St
at

es
W

av
e

17

0 0.2 0.4 0.6 0.8 1

Memory States Wave Hybrid

M
em

or
y

St
at

es
W

av
e

13

0 0.2 0.4 0.6 0.8 1

Memory States Wave Hybrid

M
em

or
y

St
at

es
W

av
e

12

Figure 4: Cosine similarity matrices for the representations and states between pair-wise signals from HAR.
Higher similarity shows that the signals correlate as evidenced by the learned embeddings. The vertical bars
denote the different sections of the hybrid wave. The wave number corresponds to the sample index in the test
dataset.

signal-processing expertise. Such “readable” waveforms allow us to relate patterns in the similarity
maps directly to real-world primitives (steps, turns, pauses), making HAR an ideal test-bed for
embedding inspection. For completeness, we do a short analysis on embeddings from the epilepsy
dataset as well.

0 0.2 0.4 0.6 0.8 1
−8

−6

−4

−2

0

2

4

6

8
·10−2

Time

A
m

pl
itu

de

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

PC1

PC
2

−40 −30 −20 −10 0 10

−40

−20

0

20

40

PC1

PC
2

0.0

0.2

0.4

0.6

0.8

1.0
t

Figure 3: (Left) Double spliced HAR waveform. (Mid-
dle) TSNE of representations (tokens) of the signal.
(Right) TSNE of memory-states. The splicing is sourced
from two unique waveforms from separate activities
(standing and laying)

Figures 3 and 4, and more in Appendix J,
show the token representations, and the memory
states over waveforms from HAR spliced from 3
unique waveforms. Figure 3 contains the classes:
standing (first and last third) and laying (for data
generation details see Appendix C, and for more
results see Appendix J). We plot only one chan-
nel of the 9 here for interpretability, while the
model processed all. As the PMA unrolls over
windows of tokens, with a stride greater than
one, we have more token representations (local
nuance), than memory states (mid-range motifs).
The center subplot of Fig. 3 highlights the ability of PMT to extract token representations that are
semantically consistent with the underlying signal. This is observed by the linear separability of the
tokens based on their source. This observation extends to the memory-state figure. We note that the
first memory-state in the sequence is often less semantically significant due to its small effective
receptive field, see Appendix B, and its proximity to the initial reset state. We have omitted this
memory state token from the figures.

Figure 4 show the cosine similarity matrix of the token representations and the memory states (from
the last PMA block) representations from three unique waveforms spliced together and processed by
PMT. The two unique classes of the waveform were chosen for their semantic proximity: walking
upstairs, walking downstairs, and walking upstairs. We plot a single channel, although the model
sees all. The top cosine similarity matrix show the token representation similarity matrix, while the
bottom show the memory state tokens. The leftmost figure show the self similarity matrix using
the hybrid/spliced waveform. The figures to the right show token and memory state embedding
comparisons from the hybrid waveform and the original.

In the left (orange highlight) self-similarity matrix the main diagonal is expected, but the block-
diagonal “checkerboard” pattern reveals that embeddings inside the same activity segment cluster
tightly, while inter-segment pairs are pushed apart. The second and third blocks—both walking
upstairs—are mutually bright, indicating class-level invariance to absolute position for both the local
tokens and medium-range memory state tokens. The persistence of this pattern to memory states show
that the progressive memory extract class relevant content. When we correlate the hybrid sequence
with the original waveforms, only the semantically matching blocks light up (e.g., hybrid-vs-upstairs
is bright in blocks 2 and 4 but not in block 3). This indicates that PMT learns representations that are
simultaneously class-separable and temporally compositional.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

−10

0

10

Wave 103 (Class 0) Wave 119 (Class 0) Wave 2 (Class 1) Wave 5 (Class 1) Wave 27 (Class 0) Wave 18 (Class 1)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Token Reps. Seq. 103

To
ke

n
R

ep
s.

Se
q.

11
9

0 0.2 0.4 0.6 0.8 1

Memory States Seq. 103

M
em

or
y

St
at

es
Se

q.
11

9

0 0.2 0.4 0.6 0.8 1

Token Reps. Seq. 2

To
ke

n
R

ep
s.

Se
q.

5

0 0.2 0.4 0.6 0.8 1

Memory States Seq. 2

M
em

or
y

St
at

es
Se

q.
5

0 0.2 0.4 0.6 0.8 1

Token Reps. Seq. 27 (Cls. 0)

To
ke

n
R

ep
s.

Se
q.

18
(C

ls
.1

)

0 0.2 0.4 0.6 0.8 1

Memory States Seq. 27 (Cls. 0)

M
em

or
y

St
at

es
Se

q.
18

(C
ls

.1
)

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0
sim

Figure 5: Cosine similarity matrices of the representations and states for the Epilepsy dataset. Comparison
of two sequences from the same class 1 (left) and class 2 (middle), and between two sequences from different
classes (right).

Table 2: Impact of λ(·) on HAR and FordA, averaged over 1% and 5% label splits. Higher is better.
(a) λHGCL ablation HAR.

λHGCL Top-1 ↑ mF1 ↑
0 93.35 93.68
0.01 93.47 93.86
0.1 93.36 93.70
0.5 92.84 93.16
1 92.95 93.22

(b) λHGCL ablation FordA.

λHGCL Top-1 ↑ mF1 ↑
0 78.42 78.38
0.01 75.58 75.44
0.1 80.63 79.84
0.5 82.90 82.90
1 84.32 84.31

(c) λPCL ablation HAR.

λPLC Top-1 ↑ mF1 ↑
0 93.32 93.70
0.25 93.54 93.95
0.5 93.73 94.13
1 93.56 93.88

(d) λPCL ablation FordA.

λPLC Top-1 ↑ mF1 ↑
0 83.91 83.91
0.25 83.13 83.08
0.5 83.24 83.23
1 82.64 82.61

Figure 5 show 3 sets of cosine similarity matrices from the epilepsy dataset. Each pair consists of
a token representation comparison on the left and a memory state comparison on the right. The
first column of each pair compares token embeddings; the right column compares the corresponding
progressive-memory states. Same-class pairs (columns 1–4): Diagonal stripes are faint at token
level but become sharply defined after memory integration, indicating that the progressive-memory
layer consolidates class-specific cues while damping phase noise. Cross-class pair (columns 5–6):
Residual token-level correlations disappear almost entirely in the memory states, suggesting that
sequences from different classes are mapped to near-orthogonal regions of latent space. Overall, class
separability is mainly realized after recurrent aggregation; token embeddings alone retain limited
spectral overlap.

3.4 ABLATIONS

Table 3: Ablation results on HAR, averaged over 1% and 5% label splits.
Higher is better.

(a) Loss-component ablation HAR.
Setup λICL λHGCL λPCL Top-1 ↑ mF1 ↑
All λ = 1 1 1 1 93.32 93.72
Balanced (all) 1 0.1 0.25 93.54 93.95
Leave-one-out
λICL = 0 0 0.1 0.25 90.74 91.03
λHGCL = 0 1 0 0.25 92.81 93.18
λPLC = 0 1 0.1 0 86.61 86.61
Single-only
ICL only 1 0 0 92.80 93.20
HGCL only 0 1 0 85.76 85.47
PCL only 0 0 1 91.38 91.69

(b) Loss-component ablation FordA.
Setup λICL λHGCL λPLC Top-1 ↑ mF1 ↑
All λ = 1 1 1 1 77.66 77.48
Balanced (all) 1 0.25 0.5 83.24 83.23
Leave-one-out
λICL = 0 0 0.25 0.5 82.44 82.39
λHGCL = 0 1 0 0.5 76.44 76.06
λPLC = 0 1 0.25 0 83.91 83.89
Single-only
ICL only 1 0 0 71.09 70.53
HGCL only 0 1 0 73.31 72.76
PLC only 0 0 1 72.89 71.00

The ablations in Ta-
ble 2 show the impact
of λ(·) on the total
loss function: LTotal =
λICLLICL + λPCLLPCL +
λHGCLLHGCL.We focus
on HAR, as this dataset
presents a diverse set of
classes with varying de-
grees of difficulty in terms
of class discrimination. To
contrast the rich multi-scale feature space of HAR, we explore FordA, to highlight a dataset with
highly local differentiating features. The Ford datasets present a particularly difficult set of features
that our model is less sensitive to. The contrasting ablations yield insight into how emphasizing or
deemphasizing the losses that are most critical for success on these datasets. Our ablations consists of
training sessions of 500 epochs over the HAR and FordA datasets, with the average of 3 unique seeds
for each category. We report average top-1 accuracy and macro-F1 score for 1% and 5% label splits.

The results outlined in Table 3 show that HAR’s strong performance is largely dependent on higher
level features, produced by the PCL and ICL losses. While a small λHGCL does contribute positively,
this is too small to be significant. FordA’s results indicate that a stronger emphasis on the tokens yield
a higher return, than the PCL loss, underlining the importance of encouraging local nuance for this
dataset. Our three losses behave like complementary focus knobs-HGCL sharpens fine-scale texture,
PCL condenses mid-range motifs, and ICL aligns global semantics. Adjusting these knobs lets a
practitioner steer the encoder towards known signal characteristics in the data.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

The less important knobs quickly reveal themselves by their ∆ response. Accuracy remains within
1.27% for λPCL, and 8.74% for λHGCL, revealing HGCL, and thus local nuance to be the knob to
pay attention to for FordA. Similarly for HAR, accuracy remains within 0.63 % accuracy for λHGCL,
and 0.41% for λPCL, indicating that λICL is the most impactful for performance. We have additional
ablations in the Appendix F.

4 RELATED WORK

Self-Supervised Learning for Time-Series. Early contrastive methods such as CPC (Oord
et al., 2018) and SimCLR (Chen et al., 2020) learn instance-level representations. CPC (Oord
et al., 2018) predicts future latents along the timeline combined with a probabilistic contrastive loss,
whereas SimCLR (Chen et al., 2020) treats the entire sequence as a single view and therefore ignores
within-series locality. Later work injects explicit temporal structure. For instance, TS-TCC (Eldele
et al., 2021) couples temporal prediction (cross-view future inference) with contextual instance
discrimination. CA-TCC (Eldele et al., 2023) keeps these losses but adds a class-aware term for
semi-supervised learning—no cross-attention module is introduced. TNC (Tonekaboni et al., 2021)
contrasts points inside vs. outside a fixed Gaussian neighborhood to promote local smoothness,
while SoftCLT (Lee et al., 2024) soft assigns positive anchors in a Gaussian neighborhood and soft
DTW-based weights so phase-shifted segments contribute graded positive signal. TS2Vec (Yue
et al., 2022) enforces contrastive agreement at multiple compressed temporal resolutions, producing
scale-specific embeddings that are later pooled.

In contrast, our framework supervises at three levels without compressing token shape: (i) a to-
ken/window loss (HGCL) that in-batch estimates Gaussian weights, (ii) a memory-token loss (PCL),
and (iii) Instance Contrastive Loss (ICL) for sequence-wise alignment. Thus, we preserve fine-
grained cues while adding hierarchical context, avoiding the information loss that can occur when
representations are repeatedly pooled or strided as in TS2Vec.

Memory-Augmented Transformers. Vanilla Transformers are stateless: after a window is processed
the past must be re-read. Transformer-XL (Dai et al., 2019) lengthens context by caching the previous
segment’s hidden states and concatenating them to the next, yielding a longer (but strictly read-only)
horizontal context. Set Transformer (Lee et al., 2019) and Perceiver (Jaegle et al., 2021) introduce
learnable auxiliary tokens that travel only vertically through layers within a sample, acting as a
fixed-size latent bottleneck that is reset every sequence. Titans (Behrouz et al., 2024) combines
both ideas with writable persistent slots that survive across segments, but exposes them as a single
global bank detached from any sliding-window alignment. PatchTST (Nie et al., 2023) discards
memory altogether, using patch tokens and vanilla self-attention; distant dependencies must therefore
be supplied in an increasingly long look-back window.

Our Progressive Memory Attention (PMA) targets the remaining gap for time-series data. Every block
carries a lightweight memory bank that is refreshed horizontally from one overlapping window to the
next and forwarded vertically to deeper blocks. This two-track propagation lets the model accumulate
local evidence while hierarchically expanding its receptive field—aligning memory flow with the
sliding-window regime common in sensor, seismic, and forecasting workloads. PMA therefore
blends Transformer-XL’s horizon, the latent-token economy of Set Transformer/Perceiver, and Titans’
read-write flexibility, while remaining lightweight and strictly causal for streaming inference.

5 CONCLUSION

We introduced the Progressive Memory Transformer as a solution to address the stateless attention
issues prevalent in current models for time-series. Given the unique challenges posed by time-series,
such as multiple temporal scales and sparse, noisy annotations, it is crucial to equip models with
memory and decision-making capabilities for more effective sequence processing. Our proposed
memory-aware attention mechanism (PMA) uses a writable memory and incorporates gating mecha-
nisms to enhance both the sequence and memory representations. We introduced three regularizers
that target improvements at various levels of granularity—token, windows, and sequences. Our
comprehensive evaluation showed that our method not only effectively processes these time-series
sequences but also surpasses the performance of existing approaches in most cases.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Ralph G Andrzejak, Klaus Lehnertz, Florian Mormann, Christoph Rieke, Peter David, and Christian E
Elger. Indications of nonlinear deterministic and finite-dimensional structures in time series of
brain electrical activity: Dependence on recording region and brain state. Physical Review E, 64
(6):061907, 2001.

Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, Jorge Luis Reyes-Ortiz, et al. A public
domain dataset for human activity recognition using smartphones. In Esann, volume 3, pp. 3–4,
2013.

Anthony Bagnall, Hoang Anh Dau, Jason Lines, Michael Flynn, James Large, Aaron Bostrom, Paul
Southam, and Eamonn Keogh. The UEA multivariate time series classification archive, 2018, 2018.
URL https://arxiv.org/abs/1811.00075.

Maximilian Beck, Korbinian Pppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova,
Michael Kopp, Gnter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xLSTM: Ex-
tended long short-term memory. In Adv. Neural Inf. Process. Sys. (NeurIPS), 2024.

Ali Behrouz, Peilin Zhong, and Vahab Mirrokni. Titans: Learning to memorize at test time. arXiv
preprint arXiv:2501.00663, 2024.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In Inter. Conf. Mach. Learn. (ICML), pp. 1597–1607.
PMLR, 2020.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan Salakhutdinov.
Transformer-XL: Attentive language models beyond a fixed-length context. In Conf. Assoc. Comput.
Ling. (ACL), 2019.

Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. In Inter.
Conf. Learn. Represent. (ICLR), 2024.

Hoang Anh Dau, Eamonn Keogh, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu, Shaghayegh
Gharghabi, Chotirat Ann Ratanamahatana, Yanping, Bing Hu, Nurjahan Begum, Anthony Bagnall,
Abdullah Mueen, Gustavo Batista, and Hexagon-ML. The UCR time series classification archive,
October 2018. https://www.cs.ucr.edu/˜eamonn/time_series_data_2018/.

Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, Chee Keong Kwoh, Xiaoli Li, and
Cuntai Guan. Time-series representation learning via temporal and contextual contrasting. In Inter.
Joint Conf. Artif. Intell. (IJCAI), pp. 2352–2359, 2021.

Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, Chee-Keong Kwoh, Xiaoli Li, and
Cuntai Guan. Self-supervised contrastive representation learning for semi-supervised time-series
classification. IEEE Trans. Pattern Anal. Mach. Intell., 45(12):15604–15618, December 2023.
ISSN 1939-3539. doi: 10.1109/tpami.2023.3308189. URL http://dx.doi.org/10.1109/
TPAMI.2023.3308189.

Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, Chee-Keong Kwoh, and Xiaoli
Li. Label-efficient time series representation learning: A review. IEEE Trans. Artif. Intell.,
5(12):6027–6042, December 2024. ISSN 2691-4581. doi: 10.1109/tai.2024.3430236. URL
http://dx.doi.org/10.1109/TAI.2024.3430236.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. 2020.

Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and Joao Carreira.
Perceiver: General perception with iterative attention. In Inter. Conf. Learn. Represent. (ICLR), pp.
4651–4664. PMLR, 2021.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set
transformer: A framework for attention-based permutation-invariant neural networks. In Inter.
Conf. Mach. Learn. (ICML), pp. 3744–3753, 2019.

10

https://arxiv.org/abs/1811.00075
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
http://dx.doi.org/10.1109/TPAMI.2023.3308189
http://dx.doi.org/10.1109/TPAMI.2023.3308189
http://dx.doi.org/10.1109/TAI.2024.3430236

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Seunghan Lee, Taeyoung Park, and Kibok Lee. Soft contrastive learning for time series. In
Inter. Conf. Learn. Represent. (ICLR), 2024. URL https://openreview.net/forum?
id=pAsQSWlDUf.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
words: Long-term forecasting with transformers. In Inter. Conf. Learn. Represent. (ICLR), 2023.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

Pritam Sarkar and Ali Etemad. Self-supervised learning for ecg-based emotion recognition. In IEEE
Inter. Conf. Acoust., Speech, Signal Process. (ICASSP). IEEE, May 2020. doi: 10.1109/icassp40776.
2020.9053985. URL http://dx.doi.org/10.1109/ICASSP40776.2020.9053985.

Sana Tonekaboni, Danny Eytan, and Anna Goldenberg. Unsupervised representation learning for
time series with temporal neighborhood coding. In Inter. Conf. Learn. Represent. (ICLR), 2021.
URL https://openreview.net/forum?id=8qDwejCuCN.

Zhirong Wu, Yuanjun Xiong, Stella Yu, and Dahua Lin. Unsupervised feature learning via non-
parametric instance discrimination. In IEEE/CVF Inter. Conf. Comput. Vis. Pattern Recog. (CVPR),
2018.

Zhihan Yue, Yujing Wang, Juanyong Duan, Tianmeng Yang, Congrui Huang, Yunhai Tong, and
Bixiong Xu. TS2Vec: Towards universal representation of time series. In AAAI Conf. Artif. Intell.
(AAAI), 2022. URL https://arxiv.org/abs/2106.10466.

11

https://openreview.net/forum?id=pAsQSWlDUf
https://openreview.net/forum?id=pAsQSWlDUf
http://dx.doi.org/10.1109/ICASSP40776.2020.9053985
https://openreview.net/forum?id=8qDwejCuCN
https://arxiv.org/abs/2106.10466

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Table A.1: Datasets used for self-supervised classification

Dataset # Train # Test Length # Channel # Class

HAR 7 352 2 947 128 9 6
Epilepsy 9 200 2 300 178 1 2
Wafer 1 000 6 174 152 1 2
FordA 1 320 3 601 500 1 2
FordB 3 636 810 500 1 2
POC 1 800 858 80 1 2
ElectricDevices 8 926 7 711 96 1 7

A DATASET SUMMARY

In our experiments, we rely on a set of well-established time-series benchmarks drawn from the UCR,
UEA, and UCI repositories (Bagnall et al., 2018; Dau et al., 2018). The Human Activity Recognition
(HAR) dataset (Anguita et al., 2013) contains triaxial accelerometer and gyroscope streams recorded
at 50 Hz from 30 volunteers who carried a smartphone on their waist while performing seven everyday
actions (walking, climbing or descending stairs, sitting, standing, and lying) (Yue et al., 2022). For
epileptic-seizure detection we adopt the version of the Epilepsy dataset simplified by TS-TCC:
the original EEG collection—23.6-second segments from 500 subjects and five classes (Andrzejak
et al., 2001)—is reduced to a binary seizure/non-seizure task.

The remaining benchmarks—Wafer, FordA, FordB, PhalangesOutlinesCorrect (POC), and
ElectricDevices—are sourced from the UCR archive (Dau et al., 2018). Wafer contains inline
process-control sensor traces from silicon-wafer fabrication and is strongly imbalanced: defective
wafers constitute 10.7% of the training set and 12.1% of the test set. FordA and FordB each comprise
500-sample engine-vibration sequences used to decide whether a specific subsystem fault is present;
FordA was recorded under controlled laboratory noise, whereas FordB reflects normal operating
conditions. The POC dataset merges three tasks derived from more than 1,300 radiographs employed
for bone-age estimation, with labels indicating whether the automatically extracted phalange outlines
are correct. Finally, the ElectricDevices dataset contains electricity-consumption profiles from
251 UK households, gathered to study residential usage patterns and help lower carbon emissions.
Detailed statistics for all datasets appear in Table A.1.

B RECEPTIVE-FIELD GROWTH IN PROGRESSIVE MEMORY ATTENTION

Notation. Let W be the window length (tokens per window), S the stride (1 ≤ S ≤ W), B the
number of stacked PMA blocks, and w ∈ {0, 1, . . . } the index of window Ww, which covers tokens
xtoken
wS:wS+W−1. Define

R(b)
w = all input tokens that can influence any token in Ww after block b.

We assume forward (causal) processing; bidirectional results follow by symmetry.
Lemma B.1 (base case, b = 1).∣∣R(1)

w

∣∣ = W, R(1)
w =

[
wS,wS +W − 1

]
. (B.1)

Lemma B.2 (without horizontal memory). If the horizontal memory bank is disabled, each extra
block enlarges the receptive field by W − S tokens, but only until earlier windows run out:∣∣R(b)

w

∣∣
no mem = W + (b− 1)(W − S) + min{w, b− 1}S (B.2)

Lemma B.3 (with horizontal memory). With the memory bank active, window Ww already sees its
w predecessors after the first block:∣∣R(b)

w

∣∣
mem = W + wS + (b− 1)(W − S) (B.3)

Corollary B.3.1 (bidirectional wrapper). Combining the forward and reversed passes yields∣∣R(b)
w

∣∣
bi,no mem = 2

∣∣R(b)
w

∣∣
no mem − 1, (B.4)∣∣R(b)

w

∣∣
bi,mem = 2

∣∣R(b)
w

∣∣
mem − 1. (B.5)

(The “−1” avoids double-counting the center token.)

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

1 def rf_no_mem(mW, S, B, w):
2 return mW + (B-1)*(mW-S) + min(w, B-1)*S
3

4 def rf_mem(mW, S, B, w):
5 return mW + w*S + (B-1)*(mW-S)
6

7 def rf_bi_no_mem(mW, S, B, w):
8 return 2*rf_no_mem(mW, S, B, w) - 1
9

10 def rf_bi_mem(mW, S, B, w):
11 return 2*rf_mem(mW, S, B, w) - 1

Listing B.1: Helper functions for Eqs. (B.3)–(B.5).

FordA (UCR) example. Series length T = 500, W = 100, S = 25, B = 4. For the last window
(w = b(T − 1)/Sc = 19), Eq. (B.3) gives

|R(4)
19 |mem = 100 + 19× 25 + 3× 75 = 500, (B.6)

i.e., the whole series is visible after four PMA blocks.

Remark. After block 1 the memory bank already aggregates all w previous windows, so the
token-level receptive field is W + wS; subsequent blocks expand it by (W − S) per layer.

C IMPLEMENTATION DETAILS

We train the PMT using an AdamW (Loshchilov & Hutter, 2017) optimizer with a cosine annealing
learning rate (Loshchilov & Hutter, 2016) scheduler, with a warmup period of 5% to a peak of 1e− 4
and a minimum learning rate of 1e− 6. Models were trained with a batch size of 256. The models
were trained on Nvidia A100 and AMD MI250x GPUs. For dataset specific hyperparameters used
for Table 1, we refer the reader to the attached repository (link on page 1).

The figures seen in Section 3.3 were all created using per dataset specific frozen backbone. For both
the HAR and Epilepsy figures, the backbone consisted of 6 PMA blocks with a window size of 6
and stride 3, using 2 memory states. Commonly for all visualizations, we do a simple forward pass
through the model and extract the output token representations and the final PMA block’s memory
states. We use the mean per window memory state for the visualizations. Both the averaged memory
state and the output tokens are `2-normalized.

The scatter plots, such as Fig. J.4 use PCA for dimensionality reduction per token and per memory
state. Heat-maps, such as Figs. 4 and 5 use the cosine-similarity matrix for both the token and
memory state visualizations.

Patchified input. Our sequence encoder is a lightweight 1-D convolution with kernel k and stride k
first tokenizes the waveform into fixed-length patch embeddings; these tokens—not the raw samples—
form the input to every PMA block. Although we restrict ourselves to this patchified view in the
present work, extending PMA to operate directly on raw time steps is a promising avenue for future
research.

Overlap-aware processing. We unfold the patch stream into windows of length W and stride S
(overlap O = dW/Se). Each window passes through a single-layer Transformer with the asymmetric
mask described in Section 2.1; FlashAttention-2 reduces its space requirement to O

(
(|M |+ S)D

)
per window. After all N = dL/Se windows are processed, the attentive overlap-pooler merges the O
overlapping rows at every position. Without this overlap-pooler each subsequent PMA block would
receive a growing number of tokens due to W > S. The overlap-pooler ensures the input and output
shape of any PMA block remains equal.

Global aggregation Finally, we append the [CLS] token to the output from the PMA blocks, and
pass the tokens through a series of locally masked (see 2.2.2) encoder blocks to aggregate the global
representation in the [CLS] token.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Algorithm D.1: Forward pass through a B-block PMA stack
Input: patch tokens W0,1:J , random memory Mr

Output: token stream ŴB,1:J , memories MB,1:J

Ŵ0,j←W0,j , M0,j←∅ (∀j)
for i← 1 to B do

for j ← 1 to J do
W in

i,j←σresidual

(
W0,j , Ŵi−1,j

)
; M init

i,j ←σmemory

(
LN(Mi−1,j),LN(Mr)

)
;[

Mi,j ,W
out
i,j

]
←SelfAttn

(
[Mi,j−1‖M init

i,j ‖W
in
i,j]

)
;

Ŵi,j←OverlapPool
(
{W out

i,∗ }
)
(∀j)

• σresidual — mixes new patch evidence with prior tokens.
• σmemory — gate blending inherited memory with Mr .

• SelfAttn — masked attention over [Mi,j−1‖M init
i,j ‖W

in
i,j].

• OverlapPool — attentive overlap-pooler producing Ŵi,j .

Table E.1: Streaming PMA: single-window kernel timed; FA run on the full sequence. For long horizons, PMA
reduces both FLOPs and peak memory while sustaining 96 kHz real-time with a 20% head-room.
Sequence (samples → tokens) PMA window ms (seq s) FA full seq s Max SR [Hz] ↑ ∆ FLOPs (PMA/FA) ∆ mem (PMA/FA)
512 → 63 0.8 (0.01) 0.000 48,000 +95% (0.16/0.08 G) 0% (26/26 MB)
1,024 → 127 0.8 (0.01) 0.000 48,000 +82% (0.30/0.17 G) 0% (26/26 MB)
2,048 → 255 0.8 (0.01) 0.000 96,000 +70% (0.60/0.35 G) 0% (26/26 MB)
4,096 → 511 0.8 (0.01) 0.000 96,000 +53% (1.21/0.80 G) 0% (28/28 MB)
8,192 → 1,023 0.8 (0.01) 0.000 96,000 +31% (2.52/1.93 G) −36% (28/44 MB)
16,384 → 2,047 0.8 (0.01) 0.001 96,000 +6% (5.52/5.20 G) −68% (30/94 MB)
32,768 → 4,095 0.8 (0.01) 0.003 96,000 −18% (13.0/15.8 G) −83% (52/308 MB)
65,536 → 8,191 0.8 (0.01) 0.008 96,000 −37% (33.6/53.0 G) −95% (52/1,092 MB)
131,072 → 16,383 1.1 (0.01) 0.030 96,000 −49% (98.1/191.9 G) −97% (122/4,262 MB)

D COMPUTATIONAL RESOURCES

We ran the experiments on NVIDIA A100 80GB and AMD MI250x 64 GB gpus. The model can
train on a single MI250x die or A100, but for higher training speed we primarily used DDP using 2
GPUs. We set number of workers per GPU to 8. The duration of a full 500 epoch experiment (as used
in our experiments) using 2 GPUs is typically 7 hours. The relatively small datasets do not require
much RAM, and we use 80GB RAM, yielding a healthy capacity buffer.

E COMPUTATIONAL ANALYSIS

We report minimal, reproducible compute measurements for completeness. These results detail
and resource notes already in Apps. C and D and use the same backbone as the experiments. We
distinguish between a streaming PMA microbenchmark (single-window kernel; no re-encoding the
past) and a vectorized non-streaming configuration (overlapped windows materialized for speed
during training).

Hardware/precision. Unless otherwise stated: single NVIDIA A100 (80 GB), FP16,
PyTorch with FlashAttention-2 for attention kernels. Peak GPU memory is measured
via torch.cuda.max memory allocated() after cudaDeviceSynchronize(). On
shorter sequences, PyTorch’s caching allocator may report the same peak for different models
because blocks are reserved in advance; we report the measured peak in all cases.

E.1 STREAMING PMA MICROBENCHMARKS

We time a single PMA block with d = 320 (as in the main experiments), a 16 sample-convolutional
patchifier (8× compression), and window stride S = 0.5W . For comparability, FlashAttention (FA)
is run on the full sequence (global receptive field). We report per-window latency (ms), total sequence
latency (s) implied by sliding over the sequence, maximum sustained sampling rate (Hz) with a 20%
head-room, and relative FLOPs/memory versus FA (rounded).

Table E.1 show that for short sequences the writable memory trades extra compute for fixed per-step
latency, but as the sequence grows the FA baseline’s global attention dominates. Streaming PMA

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

keeps the per-step memory bounded by O((|M | + S)D) (App. C), which avoids the growth of
full-sequence attention.

E.2 VECTORIZED NON-STREAMING INFERENCE

For training speed, we also report a non-streaming vectorized configuration that materializes all
overlapped windows before the attentive overlap-pooler. All models use d=320, 6 blocks (PMT
includes two neighborhood encoders for [CLS]), 100,000 time steps (8× tokenization), W=0.1L,
S=0.5W , one memory token. Latency is end-to-end.

Table E.2: Non-streaming inference (vectorized). Vectorization duplicates overlapped windows for speed,
inflating peak memory; the attentive overlap-pooler removes duplicates post-block.

Model Params [M] GFLOPs Peak mem [MB] Latency [ms] ↓ Tokens/s ↑
Vanilla Transformer 7.4 692.34 8,485 4,619.13 86,590
FlashAttention (FA) 7.4 692.34 8,336 3,476.55 115,047
PMA (vectorized) 16.3 329.95 12,292 2,962.21 135,022
PMT (full) 20.1 329.99 12,337 5,381.27 74,326

Notes and caveats. (i) FA sees the full sequence at once whereas streaming PMA strictly limits the
receptive field to the current window plus memory slots; this explains FA’s lower latency on short
sequences and PMA’s memory advantage on long horizons. (ii) The vectorized PMA/PMT inflate
peak memory due to overlapped materialization; the streaming kernel avoids this by construction.
(iii) Reported ∆ values use rounded base numbers; minor rounding mismatch may occur.

Reproducibility. We use the same tokenizer, windowing, masking and attentive overlap aggregation
as in the main model.

E.3 ATTENTIVE OVERLAP AGGREGATOR COST

To understand the computational distribution within PMA blocks, we isolate and measure the attentive
overlap-pooler component in both streaming and vectorized configurations. This component isolation
gives insight into the PMA mechanisms.

Methodology. We measure the aggregator in isolation by providing pre-computed window embed-
dings, thus excluding the window encoder (PMA attention) costs. Setup matches App. E.1: A100
(80 GB), FP16, d=320, S=0.5W , one memory token. We report computational cost in FLOPs and
the aggregator’s share of total per-window processing time.

Results. Tables E.3 to E.5 show that the overlap aggregator accounts for only 1–3% of per-window
processing time in streaming mode and less than 1% in vectorized mode. The aggregator’s computa-
tional cost is dominated by key-value projections (87% of aggregator FLOPs), while the attention
mechanism itself requires minimal computation due to single-token queries over O=2 positions.

Implementation notes. Our analysis isolates the aggregator component to measure its inherent
computational cost. In production streaming systems, windows would be processed individually with
aggregation happening asynchronously, avoiding the simulation overhead present in our experimental
framework. The vectorized implementation materializes overlapped windows for training speed but
increases peak memory; the aggregator itself contributes negligibly to this memory overhead.

F SUPERVISED RESULTS AND ADDITIONAL ABLATIONS

To verify that the architecture is not limited to SSL, we train PMT end-to-end with full supervision
(cross-entropy on the label) using the same tokenizer and encoder backbone as in the main text. The

Table E.3: Streaming overlap aggregator: isolated component analysis showing minimal overhead.
W (tokens) S/W O d GFLOPs/step Time share [%] ↓
1024 0.5 2 320 0.24 3.1
2048 0.5 2 320 0.48 1.7
4096 0.5 2 320 0.96 1.1

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table E.4: Vectorized overlap aggregator: computational cost scales linearly with sequence length.
L (tokens) W S/W K d GFLOPs MFLOPs/token
25,000 2,500 0.5 2 320 11.7 0.47
50,000 5,000 0.5 2 320 23.4 0.47
100,000 10,000 0.5 2 320 46.8 0.47

Table E.5: Aggregator attribution: fraction of end-to-end time attributable to overlap aggregation.
Configuration Aggregator time share [%] ↓
Streaming (W=2048, S/W=0.5, d=320) 1.7
Vectorized (L=100k, W=0.1L, S/W=0.5) <1

[CLS] token is passed to a linear classification head. Unless noted, optimization and scheduling
follow App. C (AdamW + cosine decay). No self-supervised losses are used in this section.

F.1 FULL-SUPERVISION (CROSS-ENTROPY) RESULTS

Table F.1 reports Top-1 accuracy and macro-F1 on four representative datasets. Results show that
PMT matches or exceeds a vanilla Transformer trained with the same supervised protocol on three
of the four datasets (notably +6.0pp on FordA), with a small drop on FordB. These results confirm
the task-agnostic nature of the backbone: while the main paper focuses on low-label SSL, the same
architecture trains effectively in a purely supervised regime.

Table F.1: Fully supervised results (cross-entropy). Top-1 / macro-F1 (%).

Dataset PMT (supervised) Vanilla Transformer (supervised)

Top-1 MF1 Top-1 MF1

HAR 97.8 98.0 97.7 97.9
FordA 91.5 91.5 85.5 85.5
FordB 79.3 79.2 80.5 80.5
Wafer 99.8 99.5 99.5 98.7

F.2 SHORT-RUN ARCHITECTURAL ABLATION (HAR)

To make the architectural comparison visible in the main body while keeping training time modest,
we include a 50-epoch ablation on HAR that contrasts PMT with a vanilla Transformer and two
windowed variants without the full PMA mechanism. For completeness we also include the 5%
SSL condition (same data, identical backbone depth/width; SSL losses only in that column). See
Table F.2.

Takeaways. (i) In the short-run supervised setting, PMT is on par (within noise) with a vanilla
Transformer. (ii) Under SSL, PMT yields consistently stronger features at 5% labels, suggesting the
writable memory and progressive aggregation surface useful mid-range cues even when labels are
scarce.

F.3 ROBUSTNESS TO RESET-STATE INITIALIZATION

The memory reset token Mr initializes the first-window state and can be mixed in by the learned reset
gate when regimes change. We tested robustness to the random initialization of Mr by repeating
HAR training five times with different seeds; Table F.3 shows negligible variance.

In addition to the small numeric spread, predictions are identical for ∼99.7% of samples across seeds,
indicating that PMT is insensitive to the particular initialization of the reset memory.

F.4 PMA WINDOW-SIZE ABLATION

Setup. We study the sensitivity of PMT to the window length W in Progressive Memory Attention
(PMA). We parameterize W as a fraction ρ of the token length K (after patchification), i.e., W =

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table F.2: HAR (50 epochs). Supervised vs. 5% SSL. Top-1 / macro-F1 (%).

Model Supervised (CE) SSL (5% labels, linear probe)

Top-1 MF1 Top-1 MF1

PMT 97.1 97.4 93.6 93.9
Vanilla Transformer 97.3 97.6 91.9 92.0
Windowed Transformer (with temporal state pass) 96.7 97.0 93.1 93.3
Windowed Transformer (no state pass) 96.8 97.1 93.0 93.2

Table F.3: Reset-state robustness (HAR). Supervised training with different random seeds for Mr; Top-1
accuracy (%).

Seed 42 Seed 123 Seed 456 Seed 789 Seed 2024 Mean ± Std

96.13 96.19 96.06 95.99 95.99 96.07± 0.08

bρKc with ρ ∈ {0.10, 0.20, 0.30, 0.50, 1.00}. Unless noted, we keep the stride S = b0.5W c, use a
single memory token per window (nm=1), and leave every non-geometric hyperparameter unchanged
(optimizer, temperatures for ICL/PCL/HGCL, Gaussian widths, augmentations). We pretrain on
HAR with the same recipe as in the main experiments but in a short-run setting (reduced training
budget); we then train linear SVM probes on the 1% and 5% label splits and report the average Top1
accuracy and macroF1. Results are averaged across the same random seeds used for our ablations.

Table F.4: PMA window-size ablation on HAR (short-run pretraining). W = ρK, S = 0.5W , nm=1.
We report the average over 1% and 5% label splits. Performance is flat for ρ∈ [0.1, 0.3] and degrades as W
approaches full context.

Window fraction ρ Avg. Top1 (%) Avg. MacroF1 (%)

0.10 92.8 93.0
0.20 92.7 93.0
0.30 92.7 92.9
0.50 92.5 92.6
1.00 92.3 92.5

Wide plateau at small/mid windows. Performance is essentially constant for ρ∈ [0.1, 0.3], indicating
that PMAs writable memory compensates for smaller windows by accumulating context progressively
across windows and depth; this aligns with the receptive-field growth in App. B, Eq. (B.3). (2) Very
large windows are unnecessary. As ρ→ 1.0, accuracy and macroF1 decline slightly. With few
very large windows, overlap reduces and the progressive mechanism has fewer horizontal updates,
dampening the benefits of memory refresh. (3) Practical choice. Any ρ in [0.1, 0.3] is a safe default.
We use ρ=0.2 in our configs to balance throughput (smaller attention tiles) and robust downstream
accuracy without additional tuning. For this ablation we did not retune contrastive temperatures or
Gaussian widths; the flat response in [0.1, 0.3] therefore represents a conservative estimate.

G ATTENTIVE OVERLAP AGGREGATOR IMPLEMENTATION DETAILS

For global position t with overlapped embeddings {W (r)
t }Ot

r=1, the aggregator uses a single query per
position to attend over overlaps and produce

At = γ LN
(
O−1/2 ConcatHh=1

Ot∑
r=1

αh,r Vh,r

)
, αh,r = softmaxr

(
〈qh,Kh,r〉√

dh
+ bh,r

)
.

Here Kh,r, Vh,r are per-head projections of the overlapped W
(r)
t , qh is formed by depthwise Conv1D

across overlaps, mean, then a 2-layer MLP, bh,r is a learned head× overlap bias, and there is no
output projection after head concatenation. The skip path is the masked mean

St =
1
Ot

Ot∑
r=1

W
(r)
t ,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table H.1: Comparison with xLSTM baseline (averaged across 1% and 5% labeled data).
PMT xLSTM

Dataset Top-1 Acc Macro F1 Top-1 Acc Macro F1
HAR 94.2 94.6 93.5 93.8
Epilepsy 96.6 94.7 94.5 91.9
Wafer 99.1 97.5 93.4 81.1
FordA 87.3 87.3 87.1 87.1
FordB 73.7 73.6 74.2 74.1
POC 71.5 56.2 65.5 64.8
ElectricDevices 62.1 55.5 55.1 50.7
Average 83.5 79.9 80.5 77.6

and the block output mixes them via a learnable SkipGate:

Ŵt = Gskip(St, At).

(Streaming computes the same weighted sum without materializing [B,L,O,D] and uses a tile-
constant O for the O−1/2 scaling.)

H XLSTM EXPERIMENT

To address the relationship between PMT’s progressive memory architecture and recurrent approaches,
we compare against xLSTM (Beck et al., 2024), a modern RNN architecture with exponential gating
and memory mixing. Here we replace the PMA blocks with xLSTM instead. Table H.1 presents
results averaged across 1% and 5% labeled data settings.

Both models were trained for identical epochs using the same self-supervised framework. However,
xLSTM lacks explicit memory state tokens and thus could not leverage our memory-aware contrastive
loss (PCL). PMT achieves higher average accuracy (83.5% vs 80.5%) and macro F1 (79.9% vs. 77.6%)
across the benchmark. The results suggest that explicit memory tokens with progressive attention
provide complementary benefits to recurrent processing, though xLSTM remains competitive on
some datasets (FordA/B). Further hyperparameter optimization for xLSTM could potentially narrow
this gap, especially considering their known fragility.

I LIMITATIONS

Our work uses a fixed window size tokenizer for the sequences. Given the variability of patterns in
these sequences, future work should look into using different patch sizes or multi-scale tokenizers to
better preserve details in the data. This dependence on tokenizer settings makes the process complex
and costly for large experiments. Another limitation is the need for a large number of negative
samples in the contrastive loss method. The class token relies heavily on having many negative
samples, which forces the use of larger batch sizes than those commonly used in related studies.

J SUPPLEMENTARY FIGURES OF THE LEARNED REPRESENTATIONS

Figure J.1 show to spliced waveforms of the same class (walking upstairs). It shows 4, off-center,
diagonal lines, together signifying the foot strikes of the subject. We included this supplementary
figure for completeness, here plotting all 9 channels, rather than the single channel we plot for the
other figures. Additionally, this same class comparison highlights similar patterns to what we see
across all walking related classes; the foot strike pattern (diagonal lines). See Fig. J.2 and Fig. 4 for
more examples of this pattern.

Figure J.3 show a double spliced waveform in the class pattern: Standing, Laying, Standing. Here we
see a clear checkerboard pattern in the hybrid-to-hybrid comparison. This shows the models features
produces similar features for the two unique standing waveforms, and different features for the laying
class.

Figure J.2 show a 3-way semantically close but unique class waveforms. What we want to see in
this figure is no correlation across splice borders. The figure shows that both the memory state

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

−10

0

10

−10

0

10

−10

0

10

−5
0
5

10

−10

0

10

−10

0

10

−4
−2
0
2

−6
−4
−2
0
2

−8
−6
−4
−2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Reps. Seq. 1

R
ep

s.
Se

q.
2

0 0.2 0.4 0.6 0.8 1

States Seq. 1

St
at

es
Se

q.
2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0
sim

Figure J.1: The cosine similarity matrix between the token (bottom left) and the memory states (bottom right)
representations of two signals (number 6 and 12, respectively, from the HAR validation set) of the same class
(walking upstairs). The nine channels of the signals are plotted independently (top). The similarities show that
the representations and states correlate to each other between the temporal domain.

and token level representations are distinct, meaning the model has learned both local-level and
medium-range class-separable and temporal compositional representations for these semantically
proximal activities.

Figure J.4 shows the token representations, and the memory states over a waveform from HAR
spliced from 2 waveforms of different classes, walking (first and last third) and walking downstairs
(see Appendix C for details). We plot only one channel of the 9 here for interpretability, while the
model processed all. As the PMA unrolls over windows of tokens, with a stride greater than one,
we have more token representations (local nuance), than memory states (mid-range motifs). The
center figure highlights the ability of PMT to extract token representations that are semantically
consistent with the underlying signal. This is observed by the linear separability of the tokens based
on their source. This observation extends to the memory-state Fig. 4 (however, we note that the first
memory-state in the sequence is often less semantically significant due to its small effective receptive
field, see Appendix B.

Finally, Fig. J.5 shows Ts2Vec + SoftCLTs embedding at layer 5 and the final layer, as trained in the
softCLT paper (Lee et al., 2024). This figure is using the same data splice we use in Fig. 4.Ts2vec’s

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

−2
0
2
4

Wave Hybrid Wave 6 - Walking downstairs Wave 5 - Walking Wave 24 - Walking upstairs

0

0.2

0.4

0.6

0.8

1

Token Reps. Hybrid

To
ke

n
R

ep
s.

H
yb

ri
d

Token Reps. Hybrid

To
ke

n
R

ep
s.

W
av

e
6

Token Reps. Hybrid

To
ke

n
R

ep
s.

W
av

e
5

Token Reps. Hybrid

To
ke

n
R

ep
s.

W
av

e
24

−1.0

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
sim

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Memory States Hybrid

M
em

or
y

St
at

es
H

yb
ri

d

0 0.2 0.4 0.6 0.8 1

Memory States Hybrid

M
em

or
y

St
at

es
W

av
e

6

0 0.2 0.4 0.6 0.8 1

Memory States Wave Hybrid

M
em

or
y

St
at

es
W

av
e

5

0 0.2 0.4 0.6 0.8 1

Memory States Wave Hybrid

M
em

or
y

St
at

es
W

av
e

24

Figure J.2: Cosine similarity matrices for the representations and states between pair-wise signals from HAR.
Higher similarity shows that the signals correlate as evidenced by the learned embeddings. The vertical bars
denote the different sections of the hybrid wave. The wave number corresponds to the sample index in the
validation dataset.

−0.1
−5 · 10−2

0
5 · 10−2

Wave Hybrid Wave 91 - Standing Wave 1295 - Laying Wave 592 - Standing

0

0.2

0.4

0.6

0.8

1

Token Reps. Hybrid

To
ke

n
R

ep
s.

H
yb

ri
d

Token Reps. Hybrid

To
ke

n
R

ep
s.

W
av

e
91

Token Reps. Hybrid

To
ke

n
R

ep
s.

W
av

e
12

95

Token Reps. Hybrid

To
ke

n
R

ep
s.

W
av

e
59

2

−1.0

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
sim

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Memory States Hybrid

M
em

or
y

St
at

es
H

yb
ri

d

0 0.2 0.4 0.6 0.8 1

Memory States Hybrid

M
em

or
y

St
at

es
W

av
e

91

0 0.2 0.4 0.6 0.8 1

Memory States Wave Hybrid

M
em

or
y

St
at

es
W

av
e

12
95

0 0.2 0.4 0.6 0.8 1

Memory States Wave Hybrid

M
em

or
y

St
at

es
W

av
e

59
2

Figure J.3: Cosine similarity matrices for the representations and states between pair-wise signals from HAR.
Higher similarity shows that the signals correlate as evidenced by the learned embeddings. The vertical bars
denote the different sections of the hybrid wave. The wave number corresponds to the sample index in the
validation dataset.

stacked dilated convolution layers extract the ”foot-strike” pattern we see in Fig. 4, but lacks the
”checkerboard” pattern in the hybrid-to-hybrid comparison. We included this figure for completeness,
despite the extraction at different layers approach, may not be perfectly analogous to the token vs.
memory-state comparison.

K LLM DISCLOSURE

We used a large language model as a writing assistant to improve clarity and grammar, and to help
surface potentially relevant related work during scoping. All technical claims, modeling choices,
experiments, analysis were the work of the authors. No citations were included without verification.
No empirical results were generated with LLMs.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

0 0.2 0.4 0.6 0.8 1

−10

−5

0

5

10

Time

A
m

pl
itu

de

−0.6−0.4−0.2 0 0.2 0.4 0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

PC1

PC
2

−8−6−4−2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

PC1

PC
2

0.0

0.2

0.4

0.6

0.8

1.0
t

Figure J.4: (Left) Double spliced HAR waveform. (Middle) PCA of representations (tokens) of the signal.
(Right) PCA of memory-states.

0

0.5

Wave Hybrid Wave 17 - Walking Upstairs Wave 13 - Walking Downstairs Wave 12 - Walking Upstairs

0

0.2

0.4

0.6

0.8

1

Layer 5 reps. Hybrid

L
ay

er
5

re
ps

.H
yb

ri
d

Layer 5 reps. Hybrid

L
ay

er
5

re
ps

.W
av

e
17

Layer 5 reps. Hybrid

L
ay

er
5

re
ps

.W
av

e
13

Layer 5 reps. Hybrid

L
ay

er
5

re
ps

.W
av

e
12

−1.0

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
sim

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Final Layer reps. Hybrid

Fi
na

lL
ay

er
re

ps
.H

yb
ri

d

0 0.2 0.4 0.6 0.8 1

Final Layer reps. Hybrid

Fi
na

lL
ay

er
re

ps
.W

av
e

17

0 0.2 0.4 0.6 0.8 1

Final Layer reps. Wave Hybrid

Fi
na

lL
ay

er
re

ps
.W

av
e

13

0 0.2 0.4 0.6 0.8 1

Final Layer reps. Wave Hybrid

Fi
na

lL
ay

er
re

ps
.W

av
e

12

Figure J.5: Cosine similarity matrices for the embeddings from layer 5 and 10 (final) from Ts2Vec + Softclt
between pair-wise signals from HAR. Higher similarity shows that the signals correlate as evidenced by the
learned embeddings. The vertical bars denote the different sections of the hybrid wave. The wave number
corresponds to the sample index in the validation dataset. Same samples as Fig. 4.

21

	Introduction
	Progressive Memory Transformers
	Progressive Memory Attention
	Multi-Task Losses
	PMA Contrastive Loss
	Instance Contrastive Loss
	Hierarchical Gaussian Contrastive Loss

	Pipeline Summary

	Experiments
	Datasets and Evaluation Protocol
	Main Results on Self-Supervised Classification
	PMA Memory visualization
	Ablations

	Related Work
	Conclusion
	Dataset Summary
	Receptive-field growth in Progressive Memory Attention
	Implementation Details
	Computational Resources
	Computational Analysis
	Streaming PMA microbenchmarks
	Vectorized non-streaming inference
	Attentive Overlap Aggregator Cost

	Supervised Results and Additional Ablations
	Full-Supervision (Cross-Entropy) Results
	Short-Run Architectural Ablation (HAR)
	Robustness to Reset-State Initialization
	PMA Window-Size Ablation

	Attentive Overlap Aggregator implementation details
	XLSTM experiment
	Limitations
	Supplementary Figures of the Learned Representations
	LLM Disclosure

