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ABSTRACT

Self-supervised learning has become the de-facto strategy for time-series domains
where labeled data are scarce, yet most existing objectives emphasize either lo-
cal continuity or global shape, seldom both. We introduce Progressive Mem-
ory Transformer (PMT), a lightweight transformer backbone that maintains a
writeable memory bank across overlapping windows, allowing representations to
accumulate evidence from short, medium, and long horizons without re-reading the
entire sequence. On top of our proposed memory-aware attention, we formulate a
hierarchical contrastive protocol that aligns embeddings at three complementary
granularities—tokens, windows, and full sequences—through a token-window
Gaussian loss, a memory-state loss, and a global [CLS] loss. Together, PMT
and these multi-scale objectives yield a task-agnostic model for time-series data,
providing strong features even when only 1-5% of labels are available. We validate
the approach on seven UCR/UEA/UCI benchmarks on classification tasks.

1 INTRODUCTION

Time-series in geophysics, wearables, finance, and industrial monitoring exhibit structure at multiple
temporal scales while supervision is sparse and noisy. Recent self-supervised (SSL) approaches
narrow this supervision gap with objectives that emphasize different parts of the temporal hier-
archy, from local timestamp smoothness to instance-level agreement (Chen et al., 2020; Eldele
etal., 2021; Lee et al., 2024; Oord et al., 2018; Yue et al., 2022). E.g., autoregressive methods (Oord
et al., 2018) emphasize local forecasting, whereas instance-level schemes (Chen et al., 2020) treat an
entire sequence as one instance, potentially overlooking within-series locality. Yet, most pipelines
still face a core tension: methods that protect fine-scale details often fail to propagate long-range
context without repeated re-encoding, whereas hierarchical pooling trades away local nuance when
aggregating across resolutions.

We contend that an effective time-series backbone should (i) preserve fine-grained patterns, (ii) pro-
gressively integrate context as the receptive field expands, rather than re-reading the full past, and
(iii) expose multiple levels: local, medium and global for contrastive supervision. While standard
transformers are stateless, existing memory-augmented architectures often rely on read-only caches,
e.g., Transformer-XL (Dai et al., 2019) or fixed latent bottlenecks (Jaegle et al., 2021) that cannot
adaptively summarize evolving temporal dynamics.

To bridge this gap, we propose Progressive Memory Transformer (PMT), a stateful backbone that
equips each overlapping window with a compact, writable memory and learns when to retain, refine,
or reset it. High-level context, thus, accumulates progressively across windows and depth while
preserving fine-scale token detail, reducing the need to re-encode the full past. We refer readers to
Fig. 1 for the dataflow and to Section 2 for the precise mechanics (gating, propagation, and overlap
aggregation).

To align the representations exposed by PMT without compressing token shape, we couple three
complementary contrastive losses: (i) Hierarchical Gaussian contrastive loss (HGCL) that promotes
local smoothness among nearby tokens and consistency across overlapping windows, (ii) memory
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contrastive loss that directly supervises the writable memory tokens (mid-range motifs), and (iii) a
class token [CLS] loss that enforces sequence-level agreement between augmented views. This
triad targets local, mid-range and global abstractions, respectively, matching the architecture’s three
hierarchical elements.

Contributions. (1) We propose PMT, a causally masked, memory-augmented backbone whose
window-aligned writable memory expands receptive field progressively without re-encoding the
full past and with a learnable reset gate to handle regime changes. (2) We formulate a multi-scale
contrastive protocol that supervises tokens (HGCL), memory states (PCL), and sequence summaries
(ICL) without pooling away fine detail. (3) On seven UCR/UEA/UCI benchmarks in low-label
settings (1-5%), PMT yields competitive linear-probe results and qualitative evidence that memory
states capture mid-range semantics; we also report targeted ablations of the loss components and
analyze failure cases to motivate adaptive tokenization.

Positioning relative to prior work. Current SSL methods, for time-series, either trade fine-scale
detail for broader context after aggressive pooling (Lee et al., 2024; Yue et al., 2022) or lack an
explicit mechanism to connect local and global views (Chen et al., 2020; Oord et al., 2018). Previous
stateful transformers reduce repeated recomputation typically do not expose their internal states to
the learning signal. PMT couples a small, writable memory with losses that supervise each stage of
the representation hierarchy. Related work is detailed in Section 4.

2 PROGRESSIVE MEMORY TRANSFORMERS
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In the following, we propose to adapt the at- blocks through time (left to right) and hierarchy levels
tention mechanism to be memory-aware that (bottom to top). The sequence is tokenized and encoded
not only aggregates representations spatiotem- through an _encoder. Theg, each PMA block uses these
porally but also stacks them within a semantic "ePresentations and previous states to produce a new
hierarchy. We call this variation of attention version of both of these inputs. At each level, a given
" . PMA block uses a gating mechanism to control how
i/[};l;(;%iisrmleﬁfgg?é ?;t:;tg)fnléfsl\e/lﬁﬁg?:; much of Fhe previous level’s memory is.passed forward
ularize th,e set of memory-aware PMAs at dif- or reset (i.e., uses a reset memory state instead).
ferent granularities. Finally, we summarize our overall pipeline comprising the set of PMA blocks,
gating mechanisms and losses that collectively we termed Progressive Memory Transformer (PMT).

Notation. Let z € R7*® denote a single C-channel time-series of length 7. The encoder fj
produces a matrix R € REXD containing K tokens, each D-dimensional, plus a separate [CLS]
vector ¢ € RP. Hence, the overall output is [R; ¢|] € RE+DXP_ We use the shorthand fy(+;4) to
refer to the ¢th output token processed by the encoder.
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2.1 PROGRESSIVE MEMORY ATTENTION

Existing sliding-window transformers (Nie et al., 2023) either discard earlier windows or re-encode
them every step, whereas Transformer-XL (Dai et al., 2019) caches the past in a read-only form. In
contrast, we propose the Progressive Memory Attention (PMA) that equips each window with a
writable, fixed-size memory. Unlike read-only caches, writability enables adaptive summarization:
the model learns to promote, refine, or overwrite context as new evidence arrives, and we supervise
these states directly via a window-level contrastive loss (Section 2.2.1). The memory propagates
horizontally to the next window and vertically up the stack, so the receptive field widens by the stride .S
as the window advances while deeper layers fuse these compact summaries without re-encoding all
tokens, see Fig. 2 and Eq. (1).

For a given window 1 at a level j, we compute a window W; ; and Wi
memory M; ; representations through our proposed PMA block, =
such that T

Wi js Mij = PMA(M; 1, Mij—1, Wi j-1), (1) O*)%O

. Moy, M,
where M;_1 ; provides the temporal context (memory from the pre- Y ’
vious window at the same level), and M; ;_; and W; ;_; provide O% G Gw

hierarchical context (refined memory and window from the previous s, T H %
level). The initial memory for level j is a reset state used for initial- O == ==
ization and adaptive reset, i.e., My ; = M,. We refine the memory M,y Wi Wio

at a given window and level with a learnable gate that mixes the
carry-over memory and the reset state (implemented as a pre-update  Figure 2: An illustration of the
mix that forms Mi,j) information flow (1) in a PMA

M; j = Gu(M; 5, M), block. ()
that adaptively mixes the memory with the reset token M,., enabling the model to overwrite stale
context and prevent drift when regimes change. Similarly, we refine the representations with an
adaptive gating function, ~

Wi =Gw (Wi, Wip), 3)
that mixes the original signal representation, W; o = fy(z;4), with the processed one W; ; to preserve
local detail while integrating context. We illustrate this block in Fig. 2. Within each PMA block we
apply one multi-head FlashAttention-2 (Dao, 2024) layer to the concatenated input sequence (1).
Memory queries are unmasked; window queries see every key in M;_; ; and the strictly-causal
slice of their own window but are blocked from M; ;_; preventing leakage from deeper (potentially
future-aware) summaries and keeping updates strictly autoregressive.

We perform this computation (1) for every window and level in a forward manner. Afterward, we
process a reversed copy of the sequence with an independent PMA stack and fuse the two token
streams after both passes complete, thereby keeping the forward computation strictly unidirectional.

In our implementation, we normalize the representations layer-wise. Moreover, we mask the sequence
at each level to attend to the corresponding neighborhoods using FlashAttention-2; see Section 2.3
for details.

Attentive overlap aggregation & residual path. Because windows overlap, the same position
appears O times per block; an overlap pooler merges these rows so the token length stays constant
across blocks. The pooler is a single-query cross-attention per position over its O overlapped patches
(keys/values from the overlaps) with a learned head x overlap bias. Its output is scaled by 1/ VO, post-
normalized, and multiplied by a learnable -, then fused with the masked-mean skip via a SkipGate
before re-entering the residual stream. Standard pre-norm skips wrap the chunk-processing and
feed-forward sub-layers. Additional gates control state reuse across blocks and, in the bidirectional
model, the fusion of the two directional streams.

Receptive-field growth. A formal derivation (Appendix B) shows that after B PMA blocks the
contextual span of a token expands linearly with both block depth and token index.

2.2 MULTI-TASK LOSSES

Different downstream signals stand out at different temporal scales, e.g., a premature heartbeat is a
half-second glitch, whereas a walking about is a multi-second pattern. We, therefore, attach three
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contrastive losses, each nudging the representation at a specific granularity. One (hierarchical loss)
smooths neighboring patch tokens and overlaps, so fine-scale details remain coherent even when
phase-shifted. The second one (memory loss) aligns the few writable tokens that summarize each
window, preventing collapse and preserving mid-range context that survives our augmentations.
Finally, the last one (class loss), applied after neighborhood masking, forces every local token to
contribute whatever information is globally predictive, yielding a stable sequence-level descriptor.
Each interface of the architecture exposes a different temporal scale (patch tokens, memory tokens,
[CLS]); supervising all three, without compressing token shape, aligns local nuance, mid-range
motifs, and global semantics in one backbone.

Two-view augmentation. Following established protocols in time-series contrastive learning (Eldele
et al., 2023; 2024; Yue et al., 2022), we present two stochastic views of every sample to a weight-
shared backbone: a weak view that preserves the signal’s local morphology (channel-wise z scaling
and low-variance Gaussian noise) and a strong view that, additionally, breaks short-range correlations
while keeping coarse semantics (time-warping and magnitude-warping).

Hierarchical targets. Our model treats a time-series as a hierarchy of progressively coarser views:
tokens windows, and the full sequence (global context). Within each PMA block, the writable
memory bank decides, via attention, which local details to persist, refine, or overwrite, so deeper
blocks can re-use distilled high-level cues while still observing fresh low-level evidence. We,
therefore, attach learning signals at three complementary abstraction levels: token-wise, window-wise
and sequence-wise. This multi-granular supervision forces the the backbone to align representations
that are simultaneously sensitive to fine temporal nuances and consistent across wider temporal spans,
providing rich anchors for downstream heads. Here, we will describe how each loss component
(HGCL) for token/window alignment, and two contrastive objectives on the PMA memory tokens
(PCL) and the [CLS] token (ICL) operationalize this hierarchy.

2.2.1 PMA CONTRASTIVE LOSS

The PMA Contrastive Loss (PCL) acts on the set of memory-state tokens produced by the PMA
backbone and is applied at the window level of the hierarchy. Each memory token is first passed
through a view-shared, two-layer projection head ¢(-) and then ¢y-normalized. Supervising the
memory tokens directly trains the model what to remember. Salient mid-range evidence must be
distilled into the writable slots consistently across views.

Let B be the batch size, v € {1,2} the view index, w = 1,..., W the window index, and ¢ =

1,..., H the PMA-level index. Let the bth sample’s memory representation for the view v at position
(w, é) be Mévu)) ;» then we define the set M) = {Mbvlz Yoot Baoet.... w1, With each

matrix M, ZE we € R"*P holding the n.,,, memory tokens of that Wll’ldOW and level. For an anchor
token mq = leu))e[k], k=1,...,ny, the positive is m,, = MIEQU)M [k], while negatives come from

N, = {mn eM® :m, ¢ b}, i.e., all tokens of the opposite view that originate from a different
sequence in the mini-batch. The resulting InfoNCE (Oord et al., 2018) loss is

- (4)

LpcL =

L, exp({glma),9(m,)/7)
BWH e exp((g(ma) (mp)>/7—)+2mneN exp((g( )79(mn)>/7—)

All vectors are unit-normalized, so (-, -) is the cosine similarity; and 7 is a fixed temperature. Because
each window holds only n,, < K memory tokens (where K is the patch-token count), the loss
can be evaluated over all tokens without subsampling. We compute this loss for the forward and
backward passes and average them, thus, we use the loss Ly, = 3 (ﬁfCL + Cll’)vcvf).

2.2.2 INSTANCE CONTRASTIVE LOSS

The token stream from the PMA backbone is refined by L Transformer layers with neighborhood
masking: token at position ¢ attends only to positions ¢ —n, ..., t, whereas the [CLS] token itself
attends to every position. This constraint maintains quadratic capacity for aggregation tokens while
bounding the cost for patch interactions to O(LnT'). The encoder, thus, (i) sharpens local patch
features through short-range context and (ii) aggregates global summaries into the [CLS] token,
supporting both instance contrastive-learning and downstream classification.
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For a mini-batch of B time-series we generate two stochastic views, yielding 2B sequences and
therefore 2B [CLS] embeddings. Denote the [CLS] token produced by view v € {1,2} of

sequence b € {1,..., B} by cl(f) € RP. Each is passed through a [CLS]-token-specific two-layer
projection head ¢(-) (shared across views) and ¢5-normalized. Thus, the loss is

B (1) (2)
1 exp({g(cy '), g(c,”))/7)
LicL = B Zlog B
b=1 b'=1
(0", 0)#(b,1)

S22 exp({g(e), glet))/7)
(1) (2)

Thus each anchor ¢, ’ pairs with its positive ¢,”’, while the remaining 2(B — 1) [CLS] tokens
in the batch act as negatives. This instance-based contrastive-loss constitutes the sequence-wise
component of our loss protocol. We explored a queue-based memory bank but found no performance
improvements; hence, all experiments use only in-batch negatives.

(&)

2.2.3 HIERARCHICAL GAUSSIAN CONTRASTIVE LOSS

Unlike TS2Vec (Yue et al., 2022), TNC (Tonekaboni et al., 2021), and the temporal arm of SoftCLT
(Lee et al., 2024), which confine positives to within-series neighborhoods (or their soft surrogates)
and typically control cost by pooling or striding, our HGCL preserves full token shape and creates
richly diverse pairs via Gaussian-weighted token/window positives with instance-wise in-batch
negatives. HGCL keeps full token shape and uses instance-wise negatives (in-batch across sequences)
while defining soft positives at two scales: (i) token-level smoothness within a window weighted
by a Gaussian over temporal distance, and (ii) window-level consistency for overlapping windows
weighted by a Gaussian over stride multiples—Eqgs. (6) and (7).

At the token-level, embeddings within the same window are treated as soft positives, with similarity
weighted by temporal proximity according to a Gaussian function. At the window-level, embeddings
representing overlapping windows are also considered soft positives, promoting temporal consistency
at broader scales due to overlap in the sliding window approach.

Formally, the Gaussian weighting schemes at each level are defined as follows:

s 2 . J— . 2
Wl = exp <—(Z ) ) W = exp (—““ 9 5) ) ©)

2 2
20, 202

where indices ¢, j represent positions within a local window at the patch-level, and u, v denote
window indices separated by stride S’ at the window-level. Parameters o, and o, control the
Gaussian weighting sharpness at the respective scales.

The HGCL objective combines these two scales into a unified InfoNCE loss:

LuceL = aLpach + BLyindow @)

where o and (8 control the balance between fine-grained local similarity and coarser temporal
consistency.

Negative samples for contrastive training are uniformly drawn from other sequences within the
training batch (in-batch negatives), ensuring robust discriminative learning. Through this hierarchical
Gaussian-weighted approach, HGCL promotes learning of temporally coherent representations across
multiple resolutions, bridging local alignment and broader contextual consistency.

2.3 PIPELINE SUMMARY

Pipeline in five steps. (1) A lightweight 1-D convolution tokenizes a C-channel waveform into
K patch tokens (plus a [CLS] vector); we keep tokens uncompressed thereafter. (2) We unfold
tokens into windows of length W and stride .S and run B PMA blocks; at each block the writable
memory flows horizontally (window-to-window) and vertically (level-to-level). (3) An attentive
overlap-pooler merges duplicates so the token length remains constant across blocks. (4) We append
[CLS] and apply a short stack of locally masked encoder layers ([CLS] attends globally). (5) We
train with three complementary objectives: HGCL on tokens/windows, PCL on memory tokens,
and ICL on sequence summaries. Implementation details (window normalization across datasets,
masking, and vectorized kernels) appear in Appendices C and D.
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3 EXPERIMENTS

3.1 DATASETS AND EVALUATION PROTOCOL

We evaluate PMT on seven time-series classification benchmarks—UCR (Dau et al., 2018), UEA
(Bagnall et al., 2018), and UCI (Anguita et al., 2013): HAR, Epilepsy, Wafer, FordA, FordB, Phalanges-
OutlinesCorrect (POC), and ElectricDevices. These datasets were chosen to jointly satisfy two
criteria: diversity (domains, lengths, channel counts) and sufficient unlabeled volume for contrastive
objectives that rely on in-batch negatives. Across the seven datasets, the training splits comprise
~21.5M time-steps (i.e., > 40% of the combined UCR+UEA volume), while covering a broad range
of sequence lengths and class cardinalities (Appendix A). In InfoNCE-style training, representation
quality improves with the number of in-batch negatives (Chen et al., 2020; Oord et al., 2018). We,
therefore, avoid external memory banks or queues (He et al., 2020; Wu et al., 2018) to keep a single,
comparable training recipe across datasets; as a result, many micro-datasets in UCR/UEA (e.g.,
GunPoint, CBF) with only tens of sequences are unsuitable for our large-batch protocol.

We follow a standard linear-evaluation protocol (Eldele et al., 2021): the backbone is pretrained
without labels on each training set; we then train an SVM probe (matching Lee et al., 2024) on 1%
and 5% labeled subsets while freezing the backbone, and report top-1 accuracy and macro-F1 on the
official test split.

We compare against time-series SSL baselines TS2Vec (Yue et al., 2022), TS-TCC (Eldele et al., 2021),
and SoftCLT (Lee et al., 2024), as well as generic SSL baselines adapted to time-series: CPC (Oord
et al., 2018), SimCLR (Chen et al., 2020), and SSL-ECG (Sarkar & Etemad, 2020). Related work
appears in Section 4.

3.2 MAIN RESULTS ON SELF-SUPERVISED CLASSIFICATION

Table 1 presents the classi-
fication performance of our Table 1: Self-supervised learning results on 1% and 5% labeled subsets. Each

method versus the baselines cell shows accuracy / macro-F1.

on each dataset, for 1% and

Self-supervised learning (1% labeled)

e Dataset SSLECG __ CPC___ SimCLR _ TS2Vec+SoftCLT TS-TCC+SoftCLT ___PMT

5% labeled training data. HaR 6007540 6547638 6587643  9L0/9L0 8207828 9297932

. Epilepsy 893/86.0 83.9/858 88.3/840  96.3/94.1 956/95.6  96.5/94.4

Our approach achieves com-  wafer 934/76.1 935/784 938/78.5  953/88.1 965/96.5  98.9/97.1

s FordA 6791662 758/752 559/557  87.1/87.1 81.5/812  87.0/87.0

petitive results across all  pogp 64.4/60.5 66.8/650 509/498  67.9/67.9 748/748  122/72.0

_ POC 625/412 64.8/482 61.5/384  63.6/628 654/64.6  68.4/40.6

datasets. Thf_: MOSL NOWC- il iicbevices 60.1/500 5937450 623/512 6207330 64.6/632  59.0/522

worthy result is the perfor- Self-supervised learning (5% labeled)

Dataset SSL.ECG __ CPC___ SimCLR _ TS2Vec+SoftCLT TS-TCC+SoftCLT __ PMT

mance on the HAR, dataset, HAR 63.77586 7547747 7587749 9217921 0267926 9557959

where our method’s 1% la-  Epilepsy 92.8/89.0 92.8/90.2 91.3/89.2 96.7/94.9 96.2/96.1 96.7 / 94.9

Wafer 949/84.5 925/79.4 948/833  98.8/96.8 982/982  99.2/97.8

bels we surpass the 5%-  Forda 73.6/707 865/86.5 69.6/689  92.5/92.5 93.2/93.2 87.6/87.6

label f f ori FordB 7171698 863/862 63.0/60.7  78.8/78.6 88.0/88.0  75.1/752

abel pertormance O prior  poc = 629/433 66.9/443 62.7/424  70.9/69.7 69.4/66.3  74.5/718

methods on HAR. In Sec- -ElectricDevices 637/56.1 624/581 63.9/58.6  624/544 65.1/638  65.1/587

tion 3.4, we explore the performance on this dataset deeper. Table 1 also shows that our method
struggles to remain competitive on the FordA and FordB datasets. We attribute the weaker FordA/B
scores not to the PMA blocks themselves but to the fixed patchification used in our input stem. Due
to resource constraints, we limited exploration of token sizes, adversely affecting longer sequences.
Because the class labels in these two engine-vibration datasets hinge on subtle phase and frequency
shifts that unfold over only a few dozen time-steps, such coarse tokenization inevitably averages out
the very cues that distinguish the classes. Once those fine-scale patterns are lost, the downstream
memory-attention hierarchy cannot recover them. Hence the FordA/B results expose a limitation of
patchified inputs, rather than a fundamental weakness of PMT itself. Still, PMT outperforms the
other baselines in Top1 accuracy in the 1% label scenario (82.1% vs. 80.5%). For completeness, we
ran this experiment replacing the PMA blocks with XLSTM in the appendix (H)

3.3 PMA MEMORY VISUALIZATION

We probe the embeddings of the proposed encoder at two resolutions: local nuance (token repre-
sentations) and medium range (PMA memory states). We center the qualitative discussion on the
human-activity-recognition (HAR) data because its multichannel inertial traces exhibit macroscopic
structures, most notably the periodic peaks of foot-strikes, that are visually intelligible even without
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Figure 4: Cosine similarity matrices for the representations and states between pair-wise signals from HAR.
Higher similarity shows that the signals correlate as evidenced by the learned embeddings. The vertical bars
denote the different sections of the hybrid wave. The wave number corresponds to the sample index in the test
dataset.

signal-processing expertise. Such “readable” waveforms allow us to relate patterns in the similarity
maps directly to real-world primitives (steps, turns, pauses), making HAR an ideal test-bed for
embedding inspection. For completeness, we do a short analysis on embeddings from the epilepsy
dataset as well.

Figures 3 and 4, and more in Appendix J, : ) 1o
show the token representations, and the memory : |
states over waveforms from HAR spliced from 3
unique waveforms. Figure 3 contains the classes:
standing (first and last third) and laying (for data ) R
generation details see Appendix C, and for more Time

results see Appendix .J)' We plot on ly one chan- Figure 3: (Left) Double spliced HAR waveform. (Mid-
nel of the 9 here for interpretability, while the dle) TSNE of representations (tokens) of the signal.

model processed all. As the PMA unrolls over (Right) TSNE of memory-states. The splicing is sourced
windows of tokens, with a stride greater than from two unique waveforms from separate activities
one, we have more token representations (local (standing and laying)

nuance), than memory states (mid-range motifs).

The center subplot of Fig. 3 highlights the ability of PMT to extract token representations that are
semantically consistent with the underlying signal. This is observed by the linear separability of the
tokens based on their source. This observation extends to the memory-state figure. We note that the
first memory-state in the sequence is often less semantically significant due to its small effective
receptive field, see Appendix B, and its proximity to the initial reset state. We have omitted this
memory state token from the figures.

Amplitude
L

—40 —30 —20 10 0 10

PC1

Figure 4 show the cosine similarity matrix of the token representations and the memory states (from
the last PMA block) representations from three unique waveforms spliced together and processed by
PMT. The two unique classes of the waveform were chosen for their semantic proximity: walking
upstairs, walking downstairs, and walking upstairs. We plot a single channel, although the model
sees all. The top cosine similarity matrix show the token representation similarity matrix, while the
bottom show the memory state tokens. The leftmost figure show the self similarity matrix using
the hybrid/spliced waveform. The figures to the right show token and memory state embedding
comparisons from the hybrid waveform and the original.

In the left (orange highlight) self-similarity matrix the main diagonal is expected, but the block-
diagonal “checkerboard” pattern reveals that embeddings inside the same activity segment cluster
tightly, while inter-segment pairs are pushed apart. The second and third blocks—both walking
upstairs—are mutually bright, indicating class-level invariance to absolute position for both the local
tokens and medium-range memory state tokens. The persistence of this pattern to memory states show
that the progressive memory extract class relevant content. When we correlate the hybrid sequence
with the original waveforms, only the semantically matching blocks light up (e.g., hybrid-vs-upstairs
is bright in blocks 2 and 4 but not in block 3). This indicates that PMT learns representations that are
simultaneously class-separable and temporally compositional.
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Figure 5: Cosine similarity matrices of the representations and states for the Epilepsy dataset. Comparison
of two sequences from the same class 1 (left) and class 2 (middle), and between two sequences from different
classes (right).

Table 2: Impact of A(.y on HAR and FordA, averaged over 1% and 5% label splits. Higher is better.

(a) AugcL ablation HAR. (b) AxccL ablation FordA. (¢) ApcL ablation HAR. (d) Apcy ablation FordA.
Auge  Top-11T mF11  Auge  Top-11T mFIfT  Appc Top-11t mFl1T  Apc Top-1T mFl171
0 93.35 93.68 0 78.42 78.38 0 93.32 93.70 0 83.91 83.91
0.01 93.47 93.86 0.01 75.58 75.44 0.25 93.54 93.95 0.25 83.13 83.08
0.1 9336 9370 0.1 80.63  79.84 (3 9373 9413 05 83.24  83.23
0.5 92.84 93.16 0.5 82.90 82.90 1 93.56 03.88 1 82.64 82.61
1 92.95 93.22 1 84.32 84.31

Figure 5 show 3 sets of cosine similarity matrices from the epilepsy dataset. Each pair consists of
a token representation comparison on the left and a memory state comparison on the right. The
first column of each pair compares token embeddings; the right column compares the corresponding
progressive-memory states. Same-class pairs (columns 1-4): Diagonal stripes are faint at token
level but become sharply defined after memory integration, indicating that the progressive-memory
layer consolidates class-specific cues while damping phase noise. Cross-class pair (columns 5-6):
Residual token-level correlations disappear almost entirely in the memory states, suggesting that
sequences from different classes are mapped to near-orthogonal regions of latent space. Overall, class
separability is mainly realized after recurrent aggregation; token embeddings alone retain limited
spectral overlap.

3.4 ABLATIONS

The ablations iI} Ta-  Taple 3: Ablation results on HAR, averaged over 1% and 5% label splits.
ble 2 show the impact Higher is better.

of )\() on the total (a) Loss-component ablation HAR. (b) Loss-component ablation FordA.
loss function: ETotal = Setup Aic AwgeL Aec. Top-11 mFI1 1 Setup Aic AwgeL Ape Top-11 mFI1 1
Nt £ Noct L. AlA=1 1 T T 9332 9372 AllA=1 1 T T 7766 7748
icLlic. + pcLlpcL + Balanced (all) 1 0.1 025 9354 9395 Balanced (all) 1 025 05 8324 8323
A L ‘We focus  Leave-one-ourt Leave-one-out
HGCL/~HGCL . ML =0 0 01 025 9074 9103 c=0 0 025 05 8244 8239
on HAR, as this dataset ., —o 1 0 025 9281 9318  Auga=0 1 0 05 7644 76.06
presents a diverse set of Amc=0 1 01 0 8661 8661  Apc=0 1 025 0 8391 8389
. . Single-only Single-only
classes with varying de- 1cLony I 0 0 9280 9320 ICLonly T 0 0 7109 7053
: : HGCLonly 0 1 0 876 8547 HGCLonly 0 1 0 7331 7276
grees of difficulty in terms PCL only 0 0 1 9138 9169  PLConly 0 0 1 7289 71.00

of class discrimination. To
contrast the rich multi-scale feature space of HAR, we explore FordA, to highlight a dataset with
highly local differentiating features. The Ford datasets present a particularly difficult set of features
that our model is less sensitive to. The contrasting ablations yield insight into how emphasizing or
deemphasizing the losses that are most critical for success on these datasets. Our ablations consists of
training sessions of 500 epochs over the HAR and FordA datasets, with the average of 3 unique seeds
for each category. We report average top-1 accuracy and macro-F1 score for 1% and 5% label splits.

The results outlined in Table 3 show that HAR’s strong performance is largely dependent on higher
level features, produced by the PCL and ICL losses. While a small Aggcr does contribute positively,
this is too small to be significant. FordA’s results indicate that a stronger emphasis on the tokens yield
a higher return, than the PCL loss, underlining the importance of encouraging local nuance for this
dataset. Our three losses behave like complementary focus knobs-HGCL sharpens fine-scale texture,
PCL condenses mid-range motifs, and ICL aligns global semantics. Adjusting these knobs lets a
practitioner steer the encoder towards known signal characteristics in the data.
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The less important knobs quickly reveal themselves by their A response. Accuracy remains within
1.27% for Apcr, and 8.74% for AygeL, revealing HGCL, and thus local nuance to be the knob to
pay attention to for FordA. Similarly for HAR, accuracy remains within 0.63 % accuracy for Apgcr,
and 0.41% for ApcL, indicating that Ajc is the most impactful for performance. We have additional
ablations in the Appendix F.

4 RELATED WORK

Self-Supervised Learning for Time-Series. Early contrastive methods such as CPC (Oord
et al., 2018) and SimCLR (Chen et al., 2020) learn instance-level representations. CPC (Oord
et al., 2018) predicts future latents along the timeline combined with a probabilistic contrastive loss,
whereas SIimCLR (Chen et al., 2020) treats the entire sequence as a single view and therefore ignores
within-series locality. Later work injects explicit temporal structure. For instance, TS-TCC (Eldele
et al., 2021) couples temporal prediction (cross-view future inference) with contextual instance
discrimination. CA-TCC (Eldele et al., 2023) keeps these losses but adds a class-aware term for
semi-supervised learning—no cross-attention module is introduced. TNC (Tonekaboni et al., 2021)
contrasts points inside vs. outside a fixed Gaussian neighborhood to promote local smoothness,
while SoftCLT (Lee et al., 2024) soft assigns positive anchors in a Gaussian neighborhood and soft
DTW-based weights so phase-shifted segments contribute graded positive signal. TS2Vec (Yue
et al., 2022) enforces contrastive agreement at multiple compressed temporal resolutions, producing
scale-specific embeddings that are later pooled.

In contrast, our framework supervises at three levels without compressing token shape: (i) a to-
ken/window loss (HGCL) that in-batch estimates Gaussian weights, (ii) a memory-token loss (PCL),
and (iii) Instance Contrastive Loss (ICL) for sequence-wise alignment. Thus, we preserve fine-
grained cues while adding hierarchical context, avoiding the information loss that can occur when
representations are repeatedly pooled or strided as in TS2Vec.

Memory-Augmented Transformers. Vanilla Transformers are stateless: after a window is processed
the past must be re-read. Transformer-XL (Dai et al., 2019) lengthens context by caching the previous
segment’s hidden states and concatenating them to the next, yielding a longer (but strictly read-only)
horizontal context. Set Transformer (Lee et al., 2019) and Perceiver (Jaegle et al., 2021) introduce
learnable auxiliary tokens that travel only vertically through layers within a sample, acting as a
fixed-size latent bottleneck that is reset every sequence. Titans (Behrouz et al., 2024) combines
both ideas with writable persistent slots that survive across segments, but exposes them as a single
global bank detached from any sliding-window alignment. PatchTST (Nie et al., 2023) discards
memory altogether, using patch tokens and vanilla self-attention; distant dependencies must therefore
be supplied in an increasingly long look-back window.

Our Progressive Memory Attention (PMA ) targets the remaining gap for time-series data. Every block
carries a lightweight memory bank that is refreshed horizontally from one overlapping window to the
next and forwarded vertically to deeper blocks. This two-track propagation lets the model accumulate
local evidence while hierarchically expanding its receptive field—aligning memory flow with the
sliding-window regime common in sensor, seismic, and forecasting workloads. PMA therefore
blends Transformer-XL’s horizon, the latent-token economy of Set Transformer/Perceiver, and Titans’
read-write flexibility, while remaining lightweight and strictly causal for streaming inference.

5 CONCLUSION

We introduced the Progressive Memory Transformer as a solution to address the stateless attention
issues prevalent in current models for time-series. Given the unique challenges posed by time-series,
such as multiple temporal scales and sparse, noisy annotations, it is crucial to equip models with
memory and decision-making capabilities for more effective sequence processing. Our proposed
memory-aware attention mechanism (PMA) uses a writable memory and incorporates gating mecha-
nisms to enhance both the sequence and memory representations. We introduced three regularizers
that target improvements at various levels of granularity—token, windows, and sequences. Our
comprehensive evaluation showed that our method not only effectively processes these time-series
sequences but also surpasses the performance of existing approaches in most cases.
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Table A.1: Datasets used for self-supervised classification

Dataset #Train #Test Length # Channel # Class
HAR 7352 2947 128 9 6
Epilepsy 9200 2300 178 1 2
Wafer 1000 6174 152 1 2
FordA 1320 3601 500 1 2
FordB 3636 810 500 1 2
POC 1800 858 80 1 2
ElectricDevices 8926 7711 96 1 7

A  DATASET SUMMARY

In our experiments, we rely on a set of well-established time-series benchmarks drawn from the UCR,
UEA, and UCI repositories (Bagnall et al., 2018; Dau et al., 2018). The Human Activity Recognition
(HAR) dataset (Anguita et al., 2013) contains triaxial accelerometer and gyroscope streams recorded
at 50 Hz from 30 volunteers who carried a smartphone on their waist while performing seven everyday
actions (walking, climbing or descending stairs, sitting, standing, and lying) (Yue et al., 2022). For
epileptic-seizure detection we adopt the version of the Epilepsy dataset simplified by TS-TCC:
the original EEG collection—23.6-second segments from 500 subjects and five classes (Andrzejak
et al., 2001)—is reduced to a binary seizure/non-seizure task.

The remaining benchmarks—Wafer, FordA, FordB, PhalangesOutlinesCorrect (POC), and
ElectricDevices—are sourced from the UCR archive (Dau et al., 2018). Wafer contains inline
process-control sensor traces from silicon-wafer fabrication and is strongly imbalanced: defective
wafers constitute 10.7% of the training set and 12.1% of the test set. FordA and FordB each comprise
500-sample engine-vibration sequences used to decide whether a specific subsystem fault is present;
FordA was recorded under controlled laboratory noise, whereas FordB reflects normal operating
conditions. The POC dataset merges three tasks derived from more than 1,300 radiographs employed
for bone-age estimation, with labels indicating whether the automatically extracted phalange outlines
are correct. Finally, the ElectricDevices dataset contains electricity-consumption profiles from
251 UK households, gathered to study residential usage patterns and help lower carbon emissions.
Detailed statistics for all datasets appear in Table A.1.

B RECEPTIVE-FIELD GROWTH IN PROGRESSIVE MEMORY ATTENTION

Notation. Let W be the window length (tokens per window), S the stride (1 < S < W), B the
number of stacked PMA blocks, and w € {0, 1,... } the index of window W,,, which covers tokens
xﬁ%"ﬂus+w4. Define

Rff,’) = all input tokens that can influence any token in W,,, after block b.
We assume forward (causal) processing; bidirectional results follow by symmetry.
Lemma B.1 (base case, b = 1).
RV =w, RY =[wS,wS+W -1]. (B.1)

Lemma B.2 (without horizontal memory). If the horizontal memory bank is disabled, each extra
block enlarges the receptive field by W — S tokens, but only until earlier windows run out:

}R$)| =W+ ((B-1)(W—-2S5)+min{w, b—1} S (B.2)

no mem

Lemma B.3 (with horizontal memory). With the memory bank active, window W, already sees its
w predecessors after the first block:

=D

=W+ wS+ (b—1)(W —5) (B.3)

mem

Corollary B.3.1 (bidirectional wrapper). Combining the forward and reversed passes yields

‘,R’Sll;) |bi,n0 mem =2 |R$) |no mem 1’ (B4)
’R$)|bi,mem =2 |Rg)’mem -1 (BS)

(The “—1" avoids double-counting the center token.)
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def rf no_mem(mW, S, B, w):
return mW + (B-1)* (mW-S) + min(w, B-1)+*S

def rf_mem(mW, S, B, w):
return mW + w+S + (B-1)* (mW-3)

def rf_bi_no_mem(mW, S, B, w):
return 2+«rf_no_mem(mW, S, B, w) - 1

def rf _bi_mem(mW, S, B, w):
return 2+rf_mem(mW, S, B, w) — 1

Listing B.1: Helper functions for Egs. (B.3)—-(B.5).

FordA (UCR) example. Series length T" = 500, W = 100, S = 25, B = 4. For the last window
(w= (T -1)/S| =19), Eq. (B.3) gives

R(Y |mem = 100 + 19 x 25 + 3 x 75 = 500, (B.6)

i.e., the whole series is visible after four PMA blocks.

Remark. After block 1 the memory bank already aggregates all w previous windows, so the
token-level receptive field is W + wS; subsequent blocks expand it by (W — S) per layer.

C IMPLEMENTATION DETAILS

We train the PMT using an AdamW (Loshchilov & Hutter, 2017) optimizer with a cosine annealing
learning rate (Loshchilov & Hutter, 2016) scheduler, with a warmup period of 5% to a peak of 1le — 4
and a minimum learning rate of 1e — 6. Models were trained with a batch size of 256. The models
were trained on Nvidia A100 and AMD MI250x GPUs. For dataset specific hyperparameters used
for Table 1, we refer the reader to the attached repository (link on page 1).

The figures seen in Section 3.3 were all created using per dataset specific frozen backbone. For both
the HAR and Epilepsy figures, the backbone consisted of 6 PMA blocks with a window size of 6
and stride 3, using 2 memory states. Commonly for all visualizations, we do a simple forward pass
through the model and extract the output token representations and the final PMA block’s memory
states. We use the mean per window memory state for the visualizations. Both the averaged memory
state and the output tokens are ¢>-normalized.

The scatter plots, such as Fig. J.4 use PCA for dimensionality reduction per token and per memory
state. Heat-maps, such as Figs. 4 and 5 use the cosine-similarity matrix for both the token and
memory state visualizations.

Patchified input. Our sequence encoder is a lightweight 1-D convolution with kernel & and stride k
first tokenizes the waveform into fixed-length patch embeddings; these tokens—not the raw samples—
form the input to every PMA block. Although we restrict ourselves to this patchified view in the
present work, extending PMA to operate directly on raw time steps is a promising avenue for future
research.

Overlap-aware processing. We unfold the patch stream into windows of length W and stride S
(overlap O = [W/S7). Each window passes through a single-layer Transformer with the asymmetric
mask described in Section 2.1; FlashAttention-2 reduces its space requirement to O ((|M| + S)D)
per window. After all N = [L/S] windows are processed, the attentive overlap-pooler merges the O
overlapping rows at every position. Without this overlap-pooler each subsequent PMA block would
receive a growing number of tokens due to W > S. The overlap-pooler ensures the input and output
shape of any PMA block remains equal.

Global aggregation Finally, we append the [CLS] token to the output from the PMA blocks, and
pass the tokens through a series of locally masked (see 2.2.2) encoder blocks to aggregate the global
representation in the [CLS] token.
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Algorithm D.1: Forward pass through a B-block PMA stack

Input: patch tokens Wy 1.7, random memory M,

Output: token stream WB,LJ, memories M p 1.7
Wo,j — Wo.,j, Mo,;+ 2 (Vj)
for i <— 1to B do
for j < 1to J do
W;ID < Oresidual (Wowj, Wifl,j)l M;?;t = Omemory (LN(Mifl,j)v LN(MT));
[M; 5, WB*] < SelfAttn([M; ;1 || M| WR]);

W, j + OverlapPool ({VV:":t 1) (v4)

* Oresidual — Mixes new patch evidence with prior tokens.
® Omemory — gate blending inherited memory with M,..
* SelfAttn — masked attention over [M; ;1 || Ibfjf‘j“’ I Wl‘“]]

¢ OverlapPool — attentive overlap-pooler producing Wi e

Table E.1: Streaming PMA: single-window kernel timed; FA run on the full sequence. For long horizons, PMA
reduces both FLOPs and peak memory while sustaining 96 kHz real-time with a 20% head-room.
Sequence (samples — tokens) PMA window ms (seqs) FA full seqs Max SR [Hz] T A FLOPs (PMA/FA) A mem (PMA/FA)

512 — 63 0.8 (0.01) 0.000 48,000 +95%  (0.16/0.08 G) 0% (26/26 MB)
1,024 — 127 0.8 (0.01) 0.000 48,000 +82%  (0.30/0.17 G) 0% (26/26 MB)
2,048 — 255 0.8 (0.01) 0.000 96,000 +70%  (0.60/0.35G) 0% (26/26 MB)
4,096 — 511 0.8 (0.01) 0.000 96,000 +53%  (1.21/0.80G) 0% (28/28 MB)
8,192 — 1,023 0.8 (0.01) 0.000 96,000 +31% (2.52/1.93G) —36% (28/44 MB)
16,384 — 2,047 0.8 (0.01) 0.001 96,000 +6% (5.52/520G) —68% (30/94 MB)
32,768 — 4,095 0.8 (0.01) 0.003 96,000 —18%  (13.0/15.8G) —83% (52/308 MB)
65,536 — 8,191 0.8 (0.01) 0.008 96,000 —37%  (33.6/53.0G) —95%  (52/1,092MB)
131,072 — 16,383 1.1 (0.01) 0.030 96,000 —49% (98.1/191.9G) —97% (122/4,262 MB)

D COMPUTATIONAL RESOURCES

We ran the experiments on NVIDIA A100 80GB and AMD MI1250x 64 GB gpus. The model can
train on a single MI250x die or A100, but for higher training speed we primarily used DDP using 2
GPUs. We set number of workers per GPU to 8. The duration of a full 500 epoch experiment (as used
in our experiments) using 2 GPUs is typically 7 hours. The relatively small datasets do not require
much RAM, and we use 80GB RAM, yielding a healthy capacity buffer.

E COMPUTATIONAL ANALYSIS

We report minimal, reproducible compute measurements for completeness. These results detail
and resource notes already in Apps. C and D and use the same backbone as the experiments. We
distinguish between a streaming PMA microbenchmark (single-window kernel; no re-encoding the
past) and a vectorized non-streaming configuration (overlapped windows materialized for speed
during training).

Hardware/precision. ~ Unless otherwise stated: single NVIDIA A100 (80GB), FPI16,
PyTorch with FlashAttention-2 for attention kernels. @ Peak GPU memory is measured
via torch.cuda.max_memory_allocated () after cudaDeviceSynchronize (). On
shorter sequences, PyTorch’s caching allocator may report the same peak for different models
because blocks are reserved in advance; we report the measured peak in all cases.

E.1 STREAMING PMA MICROBENCHMARKS

We time a single PMA block with d = 320 (as in the main experiments), a 16 sample-convolutional
patchifier (8§ x compression), and window stride S = 0.5 W. For comparability, FlashAttention (FA)
is run on the full sequence (global receptive field). We report per-window latency (ms), total sequence
latency (s) implied by sliding over the sequence, maximum sustained sampling rate (Hz) with a 20%
head-room, and relative FLOPs/memory versus FA (rounded).

Table E.1 show that for short sequences the writable memory trades extra compute for fixed per-step
latency, but as the sequence grows the FA baseline’s global attention dominates. Streaming PMA
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keeps the per-step memory bounded by O((|M| + S)D) (App. C), which avoids the growth of
full-sequence attention.

E.2 VECTORIZED NON-STREAMING INFERENCE

For training speed, we also report a non-streaming vectorized configuration that materializes all
overlapped windows before the attentive overlap-pooler. All models use d=320, 6 blocks (PMT
includes two neighborhood encoders for [CLS]), 100,000 time steps (8 x tokenization), W=0.1L,
S5=0.5W, one memory token. Latency is end-to-end.

Table E.2: Non-streaming inference (vectorized). Vectorization duplicates overlapped windows for speed,
inflating peak memory; the attentive overlap-pooler removes duplicates post-block.

Model Params [M] GFLOPs Peak mem [MB] Latency [ms]| Tokens/s 1
Vanilla Transformer 7.4 692.34 8,485 4,619.13 86,590
FlashAttention (FA) 74 692.34 8,336 3,476.55 115,047
PMA (vectorized) 16.3 329.95 12,292 2,962.21 135,022
PMT (full) 20.1 329.99 12,337 5,381.27 74,326

Notes and caveats. (i) FA sees the full sequence at once whereas streaming PMA strictly limits the
receptive field to the current window plus memory slots; this explains FA’s lower latency on short
sequences and PMA’s memory advantage on long horizons. (ii) The vectorized PMA/PMT inflate
peak memory due to overlapped materialization; the streaming kernel avoids this by construction.
(iii) Reported A values use rounded base numbers; minor rounding mismatch may occur.

Reproducibility. We use the same tokenizer, windowing, masking and attentive overlap aggregation
as in the main model.

E.3 ATTENTIVE OVERLAP AGGREGATOR COST

To understand the computational distribution within PMA blocks, we isolate and measure the attentive
overlap-pooler component in both streaming and vectorized configurations. This component isolation
gives insight into the PMA mechanisms.

Methodology. We measure the aggregator in isolation by providing pre-computed window embed-
dings, thus excluding the window encoder (PMA attention) costs. Setup matches App. E.1: A100
(80GB), FP16, d=320, S=0.5 W, one memory token. We report computational cost in FLOPs and
the aggregator’s share of total per-window processing time.

Results. Tables E.3 to E.5 show that the overlap aggregator accounts for only 1-3% of per-window
processing time in streaming mode and less than 1% in vectorized mode. The aggregator’s computa-
tional cost is dominated by key-value projections (87% of aggregator FLOPs), while the attention
mechanism itself requires minimal computation due to single-token queries over O=2 positions.

Implementation notes. Our analysis isolates the aggregator component to measure its inherent
computational cost. In production streaming systems, windows would be processed individually with
aggregation happening asynchronously, avoiding the simulation overhead present in our experimental
framework. The vectorized implementation materializes overlapped windows for training speed but
increases peak memory; the aggregator itself contributes negligibly to this memory overhead.

F SUPERVISED RESULTS AND ADDITIONAL ABLATIONS

To verify that the architecture is not limited to SSL, we train PMT end-to-end with full supervision
(cross-entropy on the label) using the same tokenizer and encoder backbone as in the main text. The

Table E.3: Streaming overlap aggregator: isolated component analysis showing minimal overhead.
W (tokens) S/W O d GFLOPs/step Time share [%] |

1024 05 2 320 0.24 3.1
2048 05 2 320 0.48 1.7
4096 05 2 320 0.96 1.1
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Table E.4: Vectorized overlap aggregator: computational cost scales linearly with sequence length.
L (tokensy W S/W K d GFLOPs MFLOPs/token

25,000 2,500 05 2 320 11.7 0.47
50,000 5000 05 2 320 234 0.47
100,000 10,000 05 2 320 46.8 0.47

Table E.5: Aggregator attribution: fraction of end-to-end time attributable to overlap aggregation.

Configuration Aggregator time share [%] |
Streaming (W =2048, S/W=0.5, d=320) 1.7
Vectorized (L=100k, W=0.1L, S/W=0.5) <1

[CLS] token is passed to a linear classification head. Unless noted, optimization and scheduling
follow App. C (AdamW + cosine decay). No self-supervised losses are used in this section.

F.1 FULL-SUPERVISION (CROSS-ENTROPY) RESULTS

Table F.1 reports Top-1 accuracy and macro-F1 on four representative datasets. Results show that
PMT matches or exceeds a vanilla Transformer trained with the same supervised protocol on three
of the four datasets (notably +6.0pp on FordA), with a small drop on FordB. These results confirm
the task-agnostic nature of the backbone: while the main paper focuses on low-label SSL, the same
architecture trains effectively in a purely supervised regime.

Table F.1: Fully supervised results (cross-entropy). Top-1/ macro-F1 (%).

PMT (supervised)  Vanilla Transformer (supervised)

Dataset

Top-1 MF1 Top-1 MF1
HAR 97.8 98.0 97.7 97.9
FordA 91.5 91.5 85.5 85.5
FordB 79.3 79.2 80.5 80.5
Wafer 99.8 99.5 99.5 98.7

F.2 SHORT-RUN ARCHITECTURAL ABLATION (HAR)

To make the architectural comparison visible in the main body while keeping training time modest,
we include a 50-epoch ablation on HAR that contrasts PMT with a vanilla Transformer and two
windowed variants without the full PMA mechanism. For completeness we also include the 5%
SSL condition (same data, identical backbone depth/width; SSL losses only in that column). See
Table F.2.

Takeaways. (i) In the short-run supervised setting, PMT is on par (within noise) with a vanilla
Transformer. (ii) Under SSL, PMT yields consistently stronger features at 5% labels, suggesting the
writable memory and progressive aggregation surface useful mid-range cues even when labels are
scarce.

F.3 ROBUSTNESS TO RESET-STATE INITIALIZATION

The memory reset token M, initializes the first-window state and can be mixed in by the learned reset
gate when regimes change. We tested robustness to the random initialization of M, by repeating
HAR training five times with different seeds; Table F.3 shows negligible variance.

In addition to the small numeric spread, predictions are identical for ~99.7% of samples across seeds,
indicating that PMT is insensitive to the particular initialization of the reset memory.

F.4 PMA WINDOW-SIZE ABLATION

Setup. We study the sensitivity of PMT to the window length W in Progressive Memory Attention
(PMA). We parameterize W as a fraction p of the token length K (after patchification), i.e., W =
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Table F.2: HAR (50 epochs). Supervised vs. 5% SSL. Top-1/ macro-F1 (%).
Supervised (CE)  SSL (5% labels, linear probe)

Model

Top-1 MF1 Top-1 MF1
PMT 97.1 97.4 93.6 93.9
Vanilla Transformer 97.3 97.6 91.9 92.0
Windowed Transformer (with temporal state pass)  96.7 97.0 93.1 93.3
Windowed Transformer (no state pass) 96.8 97.1 93.0 932

Table F.3: Reset-state robustness (HAR). Supervised training with different random seeds for M,.; Top-1
accuracy (%).

Seed 42 Seed 123 Seed 456 Seed 789  Seed 2024  Mean =+ Std ‘
96.13 96.19 96.06 95.99 95.99 96.07 £+ 0.08 \

|pK | with p € {0.10,0.20,0.30,0.50, 1.00}. Unless noted, we keep the stride S = [0.5W ], use a
single memory token per window (n,,,=1), and leave every non-geometric hyperparameter unchanged
(optimizer, temperatures for [ICL/PCL/HGCL, Gaussian widths, augmentations). We pretrain on
HAR with the same recipe as in the main experiments but in a short-run setting (reduced training
budget); we then train linear SVM probes on the 1% and 5% label splits and report the average Topl
accuracy and macroF1. Results are averaged across the same random seeds used for our ablations.

Table F.4: PMA window-size ablation on HAR (short-run pretraining). W = pK, S = 0.5W, n,,=1.
We report the average over 1% and 5% label splits. Performance is flat for p € [0.1,0.3] and degrades as W
approaches full context.

Window fraction p  Avg. Topl (%) Avg. MacroF1 (%)

0.10 92.8 93.0
0.20 92.7 93.0
0.30 92.7 92.9
0.50 92.5 92.6
1.00 92.3 92.5

Wide plateau at small/mid windows. Performance is essentially constant for p € [0.1, 0.3], indicating
that PMAs writable memory compensates for smaller windows by accumulating context progressively
across windows and depth; this aligns with the receptive-field growth in App. B, Eq. (B.3). (2) Very
large windows are unnecessary. As p — 1.0, accuracy and macroF1 decline slightly. With few
very large windows, overlap reduces and the progressive mechanism has fewer horizontal updates,
dampening the benefits of memory refresh. (3) Practical choice. Any p in [0.1,0.3] is a safe default.
We use p=0.2 in our configs to balance throughput (smaller attention tiles) and robust downstream
accuracy without additional tuning. For this ablation we did not retune contrastive temperatures or
Gaussian widths; the flat response in [0.1, 0.3] therefore represents a conservative estimate.

G ATTENTIVE OVERLAP AGGREGATOR IMPLEMENTATION DETAILS

O
r=1*

For global position ¢ with overlapped embeddings {Wt(r)}
position to attend over overlaps and produce

the aggregator uses a single query per

O,
Ay =y LN(O_l/2 ConcathH:1 Z opp VhJ), oy = softmaXT(% + bh7T).
r=1

Here K}, ., V3, are per-head projections of the overlapped Wt(r), gr, is formed by depthwise ConvID
across overlaps, mean, then a 2-layer MLP, by, ,- is a learned head x overlap bias, and there is no
output projection after head concatenation. The skip path is the masked mean

O
= 3o
r=1

17



Under review as a conference paper at ICLR 2026

Table H.1: Comparison with XLSTM baseline (averaged across 1% and 5% labeled data).

PMT xLSTM
Dataset Top-1 Acc Macro F1 Top-1 Acc Macro F1
HAR 94.2 94.6 93.5 93.8
Epilepsy 96.6 94.7 94.5 91.9
Wafer 99.1 97.5 93.4 81.1
FordA 87.3 87.3 87.1 87.1
FordB 73.7 73.6 74.2 74.1
POC 71.5 56.2 65.5 64.8
ElectricDevices 62.1 55.5 55.1 50.7
Average 83.5 79.9 80.5 77.6

and the block output mixes them via a learnable SkipGate:
Wt = Gskip(Sh At)

(Streaming computes the same weighted sum without materializing [B, L, O, D] and uses a tile-
constant O for the O~'/2 scaling.)

H XLSTM EXPERIMENT

To address the relationship between PMT’s progressive memory architecture and recurrent approaches,
we compare against XLSTM (Beck et al., 2024), a modern RNN architecture with exponential gating
and memory mixing. Here we replace the PMA blocks with XLSTM instead. Table H.1 presents
results averaged across 1% and 5% labeled data settings.

Both models were trained for identical epochs using the same self-supervised framework. However,
xLSTM lacks explicit memory state tokens and thus could not leverage our memory-aware contrastive
loss (PCL). PMT achieves higher average accuracy (83.5% vs 80.5%) and macro F1 (79.9% vs. 77.6%)
across the benchmark. The results suggest that explicit memory tokens with progressive attention
provide complementary benefits to recurrent processing, though xLSTM remains competitive on
some datasets (FordA/B). Further hyperparameter optimization for XLSTM could potentially narrow
this gap, especially considering their known fragility.

I LIMITATIONS

Our work uses a fixed window size tokenizer for the sequences. Given the variability of patterns in
these sequences, future work should look into using different patch sizes or multi-scale tokenizers to
better preserve details in the data. This dependence on tokenizer settings makes the process complex
and costly for large experiments. Another limitation is the need for a large number of negative
samples in the contrastive loss method. The class token relies heavily on having many negative
samples, which forces the use of larger batch sizes than those commonly used in related studies.

J SUPPLEMENTARY FIGURES OF THE LEARNED REPRESENTATIONS

Figure J.1 show to spliced waveforms of the same class (walking upstairs). It shows 4, off-center,
diagonal lines, together signifying the foot strikes of the subject. We included this supplementary
figure for completeness, here plotting all 9 channels, rather than the single channel we plot for the
other figures. Additionally, this same class comparison highlights similar patterns to what we see
across all walking related classes; the foot strike pattern (diagonal lines). See Fig. J.2 and Fig. 4 for
more examples of this pattern.

Figure J.3 show a double spliced waveform in the class pattern: Standing, Laying, Standing. Here we
see a clear checkerboard pattern in the hybrid-to-hybrid comparison. This shows the models features
produces similar features for the two unique standing waveforms, and different features for the laying
class.

Figure J.2 show a 3-way semantically close but unique class waveforms. What we want to see in
this figure is no correlation across splice borders. The figure shows that both the memory state
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Figure J.1: The cosine similarity matrix between the token (bottom left) and the memory states (bottom right)
representations of two signals (number 6 and 12, respectively, from the HAR validation set) of the same class
(walking upstairs). The nine channels of the signals are plotted independently (top). The similarities show that
the representations and states correlate to each other between the temporal domain.

and token level representations are distinct, meaning the model has learned both local-level and
medium-range class-separable and temporal compositional representations for these semantically
proximal activities.

Figure J.4 shows the token representations, and the memory states over a waveform from HAR
spliced from 2 waveforms of different classes, walking (first and last third) and walking downstairs
(see Appendix C for details). We plot only one channel of the 9 here for interpretability, while the
model processed all. As the PMA unrolls over windows of tokens, with a stride greater than one,
we have more token representations (local nuance), than memory states (mid-range motifs). The
center figure highlights the ability of PMT to extract token representations that are semantically
consistent with the underlying signal. This is observed by the linear separability of the tokens based
on their source. This observation extends to the memory-state Fig. 4 (however, we note that the first
memory-state in the sequence is often less semantically significant due to its small effective receptive
field, see Appendix B.

Finally, Fig. J.5 shows Ts2Vec + SoftCLTs embedding at layer 5 and the final layer, as trained in the
softCLT paper (Lee et al., 2024). This figure is using the same data splice we use in Fig. 4. Ts2vec’s
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Figure J.2: Cosine similarity matrices for the representations and states between pair-wise signals from HAR.
Higher similarity shows that the signals correlate as evidenced by the learned embeddings. The vertical bars
denote the different sections of the hybrid wave. The wave number corresponds to the sample index in the
validation dataset.
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Figure J.3: Cosine similarity matrices for the representations and states between pair-wise signals from HAR.
Higher similarity shows that the signals correlate as evidenced by the learned embeddings. The vertical bars
denote the different sections of the hybrid wave. The wave number corresponds to the sample index in the
validation dataset.

stacked dilated convolution layers extract the “foot-strike” pattern we see in Fig. 4, but lacks the
“checkerboard” pattern in the hybrid-to-hybrid comparison. We included this figure for completeness,
despite the extraction at different layers approach, may not be perfectly analogous to the token vs.
memory-state comparison.

K LLM DISCLOSURE

We used a large language model as a writing assistant to improve clarity and grammar, and to help
surface potentially relevant related work during scoping. All technical claims, modeling choices,
experiments, analysis were the work of the authors. No citations were included without verification.
No empirical results were generated with LLMs.
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