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Abstract

Knowledge editing in Text-to-Image(T2I) diffusion models aims to update specific factual
associations without disrupting unrelated knowledge. However, existing methods often
suffer from unintended collateral effects, where editing a single fact can alter the represen-
tation of non-target named entities, degrading generation quality for unrelated prompts,
which becomes more severe in real-world, dynamic environments requiring frequent up-
dates. To address this challenge, we introduce a novel editing framework supporting large-
scale T2I knowledge editing. Our framework incorporates our proposed Entity-Aware Text
Alignment(EATA) to penalize unintended changes in unaffected entities and employs a
principled null-space projection strategy to minimize perturbations to existing knowledge.
Experimental results demonstrate that our approach enables precise and robust large-scale
T2I knowledge editing, preserves the integrity of unrelated content, and maintains high
generation fidelity, while offering scalability for continuous editing scenarios.

Keywords: Text-to-Image Diffusion Models, T2I Knowledge Editing, Prompt-based Gen-
eration

1. Introduction

Text-to-Image (T2I) generative models Ho et al. (2020); Ramesh et al. (2022); Rombach
et al. (2022); Ho et al. (2022); Croitoru et al. (2023); Cao et al. (2024) have rapidly advanced
in recent years, enabling the synthesis of photorealistic images from natural language de-
scriptions. Powered by large-scale diffusion architectures and trained on massive datasets
of image-text pairs, these models have internalized a wide range of factual and common-
sense knowledge. However, due to the static nature of their training data, the information
embedded in these models is inherently fixed at the time of training. As real-world facts
evolve, these models may generate outdated or incorrect content, limiting their reliability
in dynamic or time-sensitive applications. Retraining such large models to reflect updated
knowledge is computationally intensive, time-consuming, and often impractical. Therefore,
there is a pressing need for fast, low-cost techniques that enable efficient and precise updates
to a model’s internal knowledge without full retraining or reliance on prompt engineering.

To address this problem, most prior studies have primarily focused on model editing
methods. These approaches typically involve fine-tuning or precisely targeting specific lay-
ers to make minimal yet effective modifications to the model’s distribution. This allows
for the desired concept to be updated while preserving the original knowledge. Existing
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methods often concentrate on editing either the cross-attention layers or the multi-layer
perceptron (MLP) layers to update new concepts. They generally achieve this by aligning
the representation of a source prompt (e.g., ”The president of the United States”) with that
of a target prompt (e.g., ”Tim Cook”).

Figure 1: Successful and failed generated results of EMCID Xiong et al. (2024) when
conducting the edit ”The CEO of P & G → Joe Biden”. The results demonstrate
how the named entity within the prompt text are affected during the alignment
of the source and target prompts.

However, despite the effectiveness of existing T2I knowledge editing methods, several im-
portant issues remain to be addressed. First, few studies have explored large-scale knowledge
editing in Text-to-Image models. Existing research on large-scale T2I knowledge editing for
diffusion models is still limited, and their performance leaves substantial room for improve-
ment across multiple dimensions. Second, current methods rarely consider fine-grained
alignment of sentence-level semantic representations. In particular, they often overlook the
effects on subword or token-level semantics within the source prompt, which can undermine
the fidelity of the edited model. For instance, as shown in Fig. 1, when aligning the source
prompt ”The CEO of P & G” with the target prompt ”Joe Biden”, the model may suc-
cessfully generate images of Joe Biden in response to the edited prompt. However, it fails
to produce correct outputs for prompts like ”P & G logo” or ”products of P & G”, which
contain the entity ”P & G” but are unrelated to the edited concept. This suggests that
the token-level representation of ”P & G” was unintentionally affected during the editing
process, leading to semantic misalignment and incorrect generations.

These observations highlight the limitations of current approaches and underscore the
need for a new method capable of precisely editing specific concepts while preserving the
semantics of unrelated content.

In summary, this paper’s primary contributions are encapsulated as follows:
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• We introduce a novel framework, which enables large-scale T2I knowledge editing
while preserving internal knowledge and maintaining the overall performance of the
diffusion models.

• We propose EATA (Entity-Aware Text Alignment) Loss combined with sentence level
text alignment loss, which is able to effectively protect the model’s understanding of
named entities while facilitating successful T2I knowledge editing.

• We adopt a closed-form solution with null-space projection, which removes the need
for manually balancing old and new knowledge in the optimization objective.

• We compare our proposed method with existing T2I knowledge editing approaches.
Through both quantitative and qualitative analyses, our method demonstrates supe-
rior effectiveness in performing large-scale T2I knowledge editing while preserving the
overall performance of the model.

Figure 2: Overview of our proposed framework, which consists of three main stages. Null
Space Projection: a projection matrix is estimated using the covariance of the
original concept keys K0. Semantic Alignment: source and target prompts are
aligned via a combination of text alignment and visual alignment losses, yielding
refined value vectors V1 → V ∗

1 . Closed-form Edit: the final weight update is
performed by applying (K1, V

∗
1 ) to the closed-form solution and adding pertur-

bation to the original weight matrix.
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2. Related Work

Recent years have witnessed growing interest in editing diffusion-based T2I diffusion models
to incorporate new knowledge . A variety of approaches Gandikota et al. (2023); Zhang
et al. (2024); Fan et al. (2023); Kumari et al. (2023); Zheng and Yeh (2024); Heng and Soh
(2023) have been explored to achieve this goal through fine-tuning techniques. However,
continual fine-tuning tends to degrade the overall performance of the model, leading to the
well-known catastrophic forgetting phenomenon McCloskey and Cohen (1989); Kirkpatrick
et al. (2017). This makes it unsuitable as a long-term solution for concept editing. Moreover,
frequent fine-tuning incurs high computational costs Mitchell et al. (2022), limiting its
practical applicability.

Inspired by earlier work on model editing Meng et al. (2022a,b), several approaches have
explored model editing methods using closed-form solutions. TIME Orgad et al. (2023)
edits implicit assumptions in diffusion models by adjusting projection matrices in cross-
attention layers, aligning source prompt (e.g., “a pack of roses”) with destination prompt
(e.g., “a pack of blue roses”). ReFACT Arad et al. (2023) focuses on the text encoder’s
MLP layers in CLIP Radford et al. (2021); Ilharco et al. (2021), treating them as linear
associative memories to update key-value mappings via closed-form solutions. Several ap-
proaches Gandikota et al. (2023); Gong et al. (2024); Lu et al. (2024); Xiong et al. (2024);
Wu and Harandi (2024) utilize closed-form editing to perform concept erasure, demon-
strating impressive effectiveness in eliminating specific knowledge. Although ReFACT and
TIME perform well for single-concept editing, they are not designed to scale to large-scale
editing scenarios. In contrast, our method is capable of handling large-scale knowledge
updates, while ensuring both faithful concept injection and high-quality image generation
across diverse prompts.

For large-scale editing, EMCID Xiong et al. (2024) introduces a two-stage framework
that supports multiple edits on diffusion models, maintaining high edit fidelity while alleviat-
ing catastrophic forgetting. However, EMCID requires a delicate trade-off between preserv-
ing prior knowledge and integrating new information, and it becomes especially problematic
when editing concepts involving named entities, thereby causing noticeable degradation in
output quality. In this research, our proposed framework eliminates the need to balance old
and new knowledge in the overall objective. Also, we introduce a more fine-grained text
alignment mechanism. This design leads to more precise factual updates, better preser-
vation of existing knowledge, and improved overall generation quality—especially under
large-scale, dynamic editing scenarios.

3. Methods

3.1. Preliminaries

Text-to-Image Diffusion Models Text-to-image (T2I) diffusion models are typically
based on denoising diffusion probabilistic models (DDPMs) Ho et al. (2020), which learn to
reverse a gradual noising process through iterative denoising steps. Given a text prompt y,
the model is trained to generate an image x by sampling from the conditional distribution
pθ(x|y). The training objective is to learn a denoising network ϵθ that predicts the noise
added at each timestep t in the forward diffusion process.
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q(xt|x0) = N (xt;
√
αtx0, (1− αt)I) (1)

Here, xt denotes the noisy image at timestep t, ϵ ∼ N (0, I), and y is the conditioning
text input, typically embedded via a pretrained language model. During generation, the
model samples xT ∼ N (0, I) and applies the learned reverse process to iteratively denoise
and recover x0.

Model Editing with Closed-form Solution Several existing editing methods, such as
ROME and MEMIT, have demonstrated strong performance in T2I knowledge editing tasks
on autoregressive large language models (LLMs) Radford et al. (2019); Brown et al. (2020);
Devlin et al. (2019). Through the causal tracing of factual associations, ROME Meng et al.
(2022a) reveals that feedforward MLPs at a range of middle layers are decisive when process-
ing the last token of the subject name. Also, ROME treats the transformer MLP as a linear
associative memory. By solving Ŵ = W+Λ(C−1k∗)

T , where Λ = (v∗−Wk∗)/((C
−1k∗)

Tk∗),
and C = KKT is the precomputed covariance of input keys, ROME inserts a new key-value
pair (k∗, v∗) to update factual associations after perturbing W, ensuring minimal interfer-
ence with existing memories. Building on this, MEMIT Meng et al. (2022b) proposes a
scalable multi-layer method that distributes updates across critical MLP layers, which stack
the k and v from the preserved and new knowledge as K0/V0 and K1/V1 respectively. By
solving ∆ = RKT

1 (K0K
T
0 +K1K

T
1 )

−1, where R = V1 −W0K1 represents residual errors for
new memories. This approach enables bulk editing of thousands of facts while maintaining
the performance of the model.

3.2. The Overview of the Framework

Our proposed framework, as illustrated in Fig. 2, consists of three key stages, that is, null
space projection, semantic alignment and closed-form edit. Firstly, the initialization of
source prompts psrc (e.g., ”The president of the United States”) and target prompts ptgt
(e.g., ”Tim Cook”) is conducted, which can derive the key-value pairs of the original and
new concepts, respectively. As demonstrated in previous studies Kohonen (2009); Meng
et al. (2022a), the multi-layer perceptron (MLP) layers in the text encoder contain two
matrices separated by a non-linear activation function. This structure can be formulated as
Wproj ·σ(Wfc), thereby constructing a linear projection for the key-value stores, i.e., WK ≈
V , while (K0|V0) and (K1|V1) correspond to the key-value pairs of original and new concepts,
respectively. Specifically, when providing K0 = [k1| · · · |kn] and K1 = [kn+1| · · · |kn+e],
the linear memory association yields the corresponding value vectors V0 = [v1| · · · |vn] and
V1 = [vn+1| · · · |vn+e]. In the null space projection stage, we compute the projection matrix
P based on the covariance of K0. Subsequently, both source and target prompts are utilized
for semantic alignment. The optimization is guided by a combination of text alignment loss
containing our proposed non-target token loss, and noise prediction loss, the target value
vectors V1 are refined into V ∗

1 . All outputs from the preceding steps contribute to a closed-
form edit, which updates the weight matrices of the text encoder and ultimately completes
the T2I knowledge editing process. Based on previous studies Meng et al. (2022a); Arad
et al. (2023), we identify the text encoder within the diffusion model as the key component
for performing editing.
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3.3. Null Space-Guided T2I Knowledge Editing

In the context of large-scale concept editing, existing studies Meng et al. (2022b); Xiong
et al. (2024) primarily focus on achieving a trade-off between preserving the original concept
and incorporating the new ones, which is typically formulated as:

W ∗ = argmin
W

(∥WK1 − V1∥+ γ∥WK0 − V0∥) (2)

However, this optimization objective relies on the balancing parameter γ, which makes
it a struggle to contrive a trade-off between retaining existing knowledge and integrating
newly edited information.

Figure 3: Illustration of the proposed EATA method. We first utilize the Named Entity
Recognition (NER) model to extract potential named entities from the source
prompt. Then, representations are obtained from both a frozen text encoder and
a target text encoder. Two types of losses are computed: the general sentence-
level text alignment loss and our proposed EATA loss. These two losses are then
combined to form the overall text alignment loss used for optimization.

Inspired by the study Fang et al. (2024), we adopt a null space projection approach
to address this dilemma. By computing the projection matrix onto the null space of the
covariance matrix K0K

T
0 , we obtain a projection matrix P , which is then combined with

the perturbation ∆ of the original weight matrix W . After applying this transformation,
(W +∆)K0 can be treated as equivalent to WK0, allowing us to focus solely on minimizing
the distance loss for the new knowledge, as shown below:

W ∗ = argmin
W

∥WK1 − V1∥ (3)
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Source Prompt Extracted Entity Tokens

The president of the United States the United States
The CEO of Amazon Amazon
The chief scientist at NASA NASA
The lead singer of Beatles Beatles

Table 1: Examples of extracted entities from source prompts. The extracted tokens of
entities will be used for calculating the Entity-Aware Text Alignment Loss.

3.4. Entity-Aware Text Alignment

To ensure that the generated images align with expectations, the value vectors V1 must
be refined so that they yield correct results when the context includes the source prompt.
Therefore, it is necessary to optimize and update the refined vectors v∗ within V1.

Considering that T2I diffusion models are conditioned on a text prompt that guides
the image generation process. it’s crucial to align the representation of the text prompt.
Here we introduce the Entity-Aware Text Alignment (EATA), which applies a named
entity recognition (NER) module to extract salient proper nouns or entities from the source
prompt (Examples shown in Tab. 1). By incorporating the prompt text alignment loss and
EATA loss, we then are able to separate alignment constraints not only between psrc and
ptgt (e.g., ”The president of the United States” → ”Tim Cook”), but also between non-
target entities and themselves (e.g., ”the United States” → ”the United States”). Here we
got the formulation of the loss function like:

LEATA = ∥csrc − ctgt∥2 + α∥ce − ce∥2 (4)

where csrc and ctgt denote the representations, specifically the feature vector of the last
subject token [EOS] from the source and target prompts derived from the text encoder,
and ce represents the named entity extracted from the source prompt. To facilitate entity
extraction, we employ the bert-large-NER Tjong Kim Sang and De Meulder (2003), a fine-
tuned BERT model that achieves state-of-the-art performance on named entity recognition
tasks. The coefficient α, which balances the two loss components, is empirically set to 0.11.

Additionally, to further enhance the quality of the generated images in terms of both
semantic accuracy and visual fidelity, we incorporate a visual alignment loss. This loss is
applied during the noise prediction stage, encouraging consistency between the edited and
target prompts in the denoising process. The loss is formulated as follows:

LV = ∥ϵ(xt, csrc, t)− ϵ(xt, ctgt, t)∥2 (5)

where ϵ(xt, csrc, t) denotes the predicted noise conditioned on the source prompt, and
ϵ(xt, ctgt, t) denotes the predicted noise conditioned on the target prompt.

We combine this with our entity-aware text alignment loss to form the overall optimiza-
tion objective for each concept editing instance:

L = LEATA + λLV (6)

Here, λ is a balance factor that controls the contribution of the visual alignment loss.
Following the practice in Xiong et al. (2024), we empirically set λ = 0.01.
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3.5. Closed-form Edit

As for the closed-form edit, this stage utilizes the previously derived value to form the
perturbation of the original weight matrix within the multiple layers of text encoder. The
closed-form solution is displayed as below:

∆ = RKT
1 P (K1K

T
1 P + I)−1 (7)

We define the residual vector of the current edit as R = V1 −WK1, where P denotes the
null space projection matrix obtained in the previous step. The identity matrix I ensures
invertibility and improves numerical stability, turning a possibly singular semidefinite ma-
trix into a positive definite one Fang et al. (2024). We then compute the perturbation ∆
and add it to the original weight matrix W to obtain the updated weight matrix in the text
encoder.

4. Experiment

4.1. Experiment Setup

In our experiments, we utilize Stable Diffusion v1.4 (CompVis/stable-diffusion-v1-4) Rom-
bach et al. (2022) as the target model. It is a latent T2I diffusion model capable of generating
high-quality, photorealistic images from diverse natural language prompts. All experiments
are conducted using an NVIDIA RTX 4090 GPU. To measure the semantic alignment be-
tween the generated images and the input prompts, we employ CLIP ViT-bigG/14 (trained
on LAION-2B) Schuhmann et al. (2022).

Dataset We evaluate our method on three benchmark datasets for T2I diffusion model
editing. The TIMED dataset Orgad et al. (2023) focuses on attribute-level modifications,
where each entry includes a source prompt (e.g., “a dog”) and a destination prompt (e.g., “a
green dog”) to test whether the model can integrate new attributes while preserving original
semantics. It also provides five positive and five negative prompts to assess generalization
and retention. The RoAD dataset Arad et al. (2023) extends TIME by emphasizing role-
based edits involving entities like politicians or musicians. Each of its 100 entries includes an
edit prompt, a source prompt, a target prompt, and the same structure of positive/negative
prompts. The CAKE dataset Gu et al. (2024) offers a more comprehensive evaluation,
introducing multi-entity scenes and complex semantics. It contains 100 editing entries and
1,500 evaluation prompts, categorized into Edit I (single-object) and Edit II (multi-object),
with detailed subcategories such as Efficacy, Generality, Specificity, KgeMap, and Compo
for fine-grained behavioral analysis.

Baseline Given the large-scale T2I knowledge editing scenario, we adopt three represen-
tative methods as our baselines: TIME Orgad et al. (2023), ReFACT Arad et al. (2023),
and EMCID Xiong et al. (2024). For a clearer comparison, we also include an Oracle
model—i.e., the original model without any edits for comparison. Due to differences in
dataset formats and evaluation protocols, we follow the approach of Gu et al. (2024) and
adapt the datasets accordingly to ensure compatibility with all baseline methods.
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Dataset Method Score Efficacy Generality Specificity FID(↓) CLIP

TIMED

Oracle 49.17 25.00%±2.65 50.23%±1.89 94.65%±1.78 33.41 0.465
TIME 0.00 0.00%±0.00 0.00%±0.00 1.50%±0.39 34.21 0.464
ReFACT 43.49 22.50%±3.31 41.58%±1.01 87.92%±2.09 33.84 0.465
EMCID 65.07 70.19%±2.19 64.42%±1.51 60.92%±3.64 33.80 0.465
Ours 71.60 73.85%±4.23 69.15%±2.91 71.88%±2.21 33.66 0.465

RoAD

Oracle 16.59 3.56%±1.30 13.33%±0.37 96.36%±1.50 33.41 0.465
TIME 0.85 0.44%±0.54 0.27%±0.00 5.21%±0.42 33.54 0.464
ReFACT 15.07 2.89%±0.89 12.89%±1.15 91.96%±1.81 34.36 0.465
EMCID 62.72 69.11%±2.15 51.78%±1.55 68.93%±1.28 33.79 0.465
Ours 70.14 77.56%±2.37 62.27%±2.90 71.47%±0.91 33.58 0.465

Table 2: Evaluation results on TIMED and RoAD datasets. Best results are marked with
bold, and best among editing methods are marked with underline.

Method Score Efficacy Generality KgeMap Compo Specificity FID (↓) CLIP

Oracle 0.00 00.00%±0.00 02.72%±0.96 03.27%±0.65 01.73%±0.48 96.06%±1.57 33.41 0.465
TIME 0.00 00.00%±0.00 00.00%±0.00 00.00%±0.00 00.00%±0.00 01.27%±0.44 33.68 0.465
ReFACT 0.00 00.00%±0.00 02.92%±0.82 03.20%±0.72 01.73%±0.53 91.40%±1.12 34.17 0.465
EMCID 24.52 61.40%±5.04 26.84%±3.06 22.80%±2.86 13.00%±3.41 18.13%±2.35 33.93 0.464
Ours 40.06 63.40%±5.24 43.12%±7.18 34.67%±3.77 28.60%±5.74 38.07%±3.53 33.81 0.465

Table 3: Evaluation results on the dataset CAKE. Best results are marked with bold. Best
among editing methods are marked with underline. Score refers to the geometric
mean of all the five metrics, FID refers to FID-5K, CLIP refers to the average
CLIP score.

Metrics To comprehensively evaluate the effectiveness of T2I knowledge editing methods,
we adopt a suite of metrics that capture different aspects of model behavior post-editing.
Efficacy measures how accurately the model generates images that reflect the edited con-
cept when given the original editing prompt. Generality assesses the model’s ability to
generalize the edited concept to semantically related prompts in varied contexts. Speci-
ficity, on the other hand, evaluates whether the editing process affects unrelated concepts,
ensuring that the model retains its original behavior on prompts outside the scope of the
edit. Additionally, we incorporate two metrics specified in CAKE dataset which is proposed
by Gu et al. (2024). KgeMap, which examines whether the model can correctly respond
to paraphrased or semantically similar prompts of the target concept, and Compo, which
evaluates the model’s ability to coherently combine and represent multiple edited concepts
within a single prompt. Together, these metrics provide a comprehensive assessment of the
edit’s precision, generalization, and unintended side effects. we also compute the FID-5k
and CLIP on the MS-COCO validation dataset Lin et al. (2014).
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4.2. Quantitive Evaluation

To assess model’s ability to edit multiple facts, we perform the large-scale concept edit, that
is, update all the concepts from the items in the dataset at a time. While in the semantic
alignment stage, we set the number of gradient steps as 200 with learning rate determined
as the value 0.2. We use 5 random seeds, editing a clean model and generating one image
per prompt for each seed. We then compute each of the metrics using CLIP as a zero-shot
classifier.

Based on the results obtained from large-scale T2I knowledge editing experiments, shown
as Tab. 2 and Tab. 3, we observe that while ReFACT and TIME perform reasonably well
on the TIMED and RoAD datasets, showing satisfactory post-edit generation quality,
yet their performance on the CAKE dataset degrades significantly. In particular, both
methods suffer a substantial drop in effectiveness, which suggests a potential occurrence of
catastrophic forgetting. This indicates that although ReFACT and TIME aim to preserve
the model’s original knowledge during editing, they struggle to maintain the balance between
editing precision and the retention of prior knowledge. As a result, their edited generations
often fail to meet the actual needs of users.

In contrast, after large-scale editing, our method can maintain the model’s fundamen-
tal performance. Compared to other approaches, it not only more accurately reflects the
intended edits but also better preserves the core capabilities of the model. Moreover, our
method exhibits superior generalization and strong adaptability to contextual text.

4.3. Qualitative Evaluation

In order to further evaluate the effectiveness of our T2I knowledge editing method, we
perform concept editing and image generation on three datasets: TIMED, RoAD, and
CAKE. As shown in the Fig. 4, our method successfully accomplishes the editing tasks
while maintaining high levels of fidelity and image quality in the generated outputs. These
results demonstrate that our approach is effective for large-scale T2I knowledge editing and
can robustly update the model’s internal representations without compromising generation
performance.

In addition, we compare our framework with existing methods by generating images
conditioned on Efficacy and Specificity prompts. As shown in Fig. 5, the generations pro-
duced by diffusion models edited with TIME and ReFACT reveal several limitations in T2I
knowledge editing, particularly in handling proper nouns that are unrelated to the original
content, and exhibit varying levels of interference with the model’s underlying knowledge.
Specifically, TIME fails to generate coherent outputs for the edited concepts after large-
scale modifications. While ReFACT is able to produce fluent text, it does not accurately
reflect the intended edits. EMCID successfully incorporates the target edits even under
large-scale changes; however, it tends to generate irrelevant content when prompted with
unrelated concepts, indicating poor specificity.

In contrast, our method not only preserves generation quality and successfully incor-
porates the intended edits but also maintains robustness in handling prompts involving
unrelated proper nouns, thus achieving a better trade-off between fidelity and specificity.
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Figure 4: The generation results selected after the T2I knowledge editing on three datasets.
The results demonstrate the excellent performance of our framework in large-scale
T2I knowledge editing tasks.

Figure 5: Visual comparison of image quality produced by different T2I knowledge editing
algorithms.
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Figure 6: The evaluation results under different trade-off parameters α, where Average
Score denotes the arithmetic mean and Geometric Mean refers to the geometric
mean.

4.4. Empirical Analysis of Loss Weighting Strategies

To explore the optimal parameter that balances the trade-off between the text-alignment
loss and the EATA loss, we perform a systematic grid search over the weight coefficient α
with a step size of 0.01. For each value of α, we carry out a complete round of large-scale
T2I knowledge editing based on dataset CAKE, and evaluate the model’s performance us-
ing multiple metrics, including Specificity, Efficacy, Generality, KgeMap andCompo.
In addition to individual metrics, we also compute the arithmetic mean and geometric
mean of all the metrics calculated, which offer a more comprehensive assessment of perfor-
mance across competing objectives. The result is shown as Fig. 6. As demonstrated in the
first subfigure, there exists a subtle trade-off between Efficacy and Specificity that enhanc-
ing the preservation of unrelated concepts often comes at the cost of reduced precision in
modifying the target concept.

From the results displayed in Fig. 6, the model’s behavior varies notably with different
values of α. By analyzing both the arithmetic and geometric means across metrics, we
identify α = α∗ (set to 0.11) as the optimal value. Consequently, we adopt this setting for
all experiments using our proposed framework. Our experimental results show that when
the EATA loss is not introduced (i.e., α = 0), the overall geometric and arithmetic mean
scores are 34.8% and 38.82%, respectively. In contrast, after tuning the α parameter, the
geometric mean can improve to 40.1% and the arithmetic mean to 41.6%, which validates
the effectiveness of our method in improving generation performance.

5. Conclusion

In this paper, we propose a novel framework that not only supports large-scale T2I knowl-
edge editing, but preserves existing knowledge in the model while minimizing performance
degradation. We employ a more fine-grained alignment at the token level, particularly
focusing on named entities, to ensure these concepts remain unaffected and intact. Ad-
ditionally, we incorporate a null-space projection technique to restrict the proportion of
affected concepts within the model. Experimental results demonstrate that our method
can successfully perform large-scale T2I knowledge editing while preserving the overall per-
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formance of the model, with minimal impact on non-target knowledge. Our work offers a
new perspective on model editing, paving the way for future research into more robust and
reliable T2I knowledge editing techniques.

6. Limitations

Although our proposed method demonstrates strong performance in large-scale knowledge
editing tasks for diffusion models and effectively maintains model performance after editing,
it occasionally generates images with unnatural or slightly distorted effects, shown as Fig
7 (a). In addition, for certain entities (e.g., “The author of 1984”), entity extraction may
fail, which in turn affects the quality of concept editing and manifests in the image results
generated from specificity-based prompts, shown as Fig 7 (b). This suggests the need for
further investigation into methods that stabilize the quality of image generation and for
developing more robust and adaptable non-target entity text alignment approaches.

7. Ethical Statement

Our method preserves the model’s original knowledge while enabling large-scale concept
editing. However, like other T2I diffusion models, it cannot fully prevent inappropriate or
NSFW outputs under low-toxicity or ambiguous prompts—a known limitation of diffusion
models. All prompts in our experiments are used solely for academic evaluation, without
intent to offend or misrepresent any individuals or organizations. We advocate responsible
and ethical use of generative models.

Figure 7: Failed cases of our method. (a) illustrates that occasional distortions or unnatural
artifacts may occur in the generated images, while (b) shows that failures in entity
extraction can lead to suboptimal editing results.
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