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ABSTRACT

Deep Neural Networks are powerful tools for understanding complex patterns and
making decisions. However, their black-box nature impedes a complete under-
standing of their inner workings. Saliency-Guided Training (SGT) methods try to
highlight the prominent features in the model’s training based on the output to al-
leviate this problem. These methods use back-propagation and modified gradients
to guide the model toward the most relevant features while keeping the impact on
the prediction accuracy negligible. SGT makes the model’s final result more inter-
pretable by masking input partially. In this way, considering the model’s output,
we can infer how each segment of the input affects the output. In the particu-
lar case of image as the input, masking is applied to the input pixels. However,
the masking strategy and number of pixels which we mask, are considered as a
hyperparameter. Appropriate setting of masking strategy can directly affect the
model’s training. In this paper, we focus on this issue and present our contribu-
tion. We propose a novel method to determine the optimal number of masked
images based on input, accuracy, and model loss during the training. The strategy
prevents information loss which leads to better accuracy values. Also, by inte-
grating the model’s performance in the strategy formula, we show that our model
represents the salient features more meaningful. Our experimental results demon-
strate a substantial improvement in both model accuracy and the prominence of
saliency, thereby affirming the effectiveness of our proposed solution.

1 INTRODUCTION

The transformative influence of deep learning on our lives stems from its ability to learn from data
and discover complex patterns in complex datasets. Deep Neural Networks (DNN) have enabled us
to make more accurate predictions and make better decisions supported by data, serving as a catalyst
for societal and technological evolution. Despite their unquestionable utility, the black-box nature
of DNNs raises concerns about the trustworthiness and reliability of their outputs and the facets
affecting their inference function. Consequently, there exists a significant interest to understand the
behavior of these models and identify specific features they use and prioritize when producing an
outcome.” Generating a reliable explanation is especially important in sensitive domains such as
medicine (Caruana et al. (2015)), neuroscience, finance, and autonomous driving (Li et al. (2018)).
Not only do these explanations contribute to the critical understanding and trustworthiness of mod-
els, but they also aid in the process of model debugging (Zaidan & Eisner (2008); Li et al. (2018))
and model tuning. In light of the aforementioned, a substantial volume of scholarly research has
been dedicated to the development of interpretability methods aimed at comprehending the internal
mechanisms of DNNs (Bach et al. (2015); Kindermans et al. (2016); Smilkov et al. (2017); Singla
et al. (2019); Singh & Lee (2017); LeCun et al. (2015)). A prevailing approach to interpreting model
decisions involves identifying significant input features that highly influence the final classification
decision (Baehrens et al. (2010); Singla et al. (2019); Smilkov et al. (2017); Zeiler & Fergus (2014);
Selvaraju et al. (2017)). Commonly referred to as saliency maps, these methods typically employ
gradient calculations to assign an importance score to individual features, thus reflecting their im-
pacts on the model’s prediction (Selvaraju et al. (2017); Shrikumar et al. (2017)).

Saliency maps can be unclear due to noise or distracting elements, which makes them harder to
comprehend and less accurate. To address this issue, (Singh & Lee (2017)) proposed explana-
tion methods that leverage higher-order backward gradients to give insight into the saliency maps.
Also, (Kindermans et al. (2016)) benefits from multiple gradient calculations. An example is the
SmoothGrad technique, which mitigates saliency noise by repetitively adding noise to the input
and subsequently averaging the resulting saliency maps for each input (Singla et al. (2019)). Other
techniques like integrated gradients(Smilkov et al. (2017)), DeepLIFT(Selvaraju et al. (2017)), and
Layer-wise Relevance Propagation(Bach et al. (2015)) modify the backpropagation through a differ-
ent gradient function (Ancona et al. (2017)). However, these methods’ effectiveness is intrinsically
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tied to their reliability and stability (Adebayo et al. (2018); Kindermans et al. (2016)). If saliency
maps change drastically for slight perturbations in the input or model, their trustworthiness can be
severely compromised (Ghorbani et al. (2019)). Thus, in developing novel interpretability tech-
niques, it is imperative to establish robust and comprehensive sanity checks to ensure their validity
and (Adebayo et al. (2018); Thorne et al. (2018)). Furthermore, the quality of explanations gener-
ated by these methods can vary significantly depending on the data type (images, text, time series,
etc.) and the model architecture (CNN, Recurrent Neural Networks, Transformer-based models,
etc.). Hence, it’s crucial to adapt and develop new interpretation techniques considering these fac-
tors (Ismail et al. (2020); Sundararajan et al. (2017)). Moreover, the quest for better interpretability
extends beyond understanding individual predictions. It’s about deciphering the learned representa-
tions and decision-making logic of the model as a whole (Hooker et al. (2019); Ross et al. (2017)).
Neural network distillation into interpretable models like soft decision trees has been studied as a
means to improve interoperability(Frosst & Hinton (2017)).

2 RELATED WORKS

Interpretability in machine learning refers to the ability to understand a learning model’s decisions
and actions and explain it in human-comprehensible terms(Chakraborty et al. (2017)). This research
paper focuses on the advancement and extension of existing gradient-based methods that serve to
define the behavior of models. Such methods have demonstrated their value in facilitating knowl-
edge transfer and enabling the post-hoc interpretation of models. Building upon prior works in
this domain, we aim to enhance the effectiveness and applicability of gradient-based approaches
in understanding and interpreting model behavior while improving the model’s generalization by
selecting the most robust features during model training. In this section, we review the relevant
prior-art literature on interpretability and saliency-guided training.

2.1 INTERPRETABILITY

Previous research has explored different approaches to enhance the performance and interpretability
of neural networks. Perkins et al. proposed a grafting method for feature selection, by incrementally
expanding the feature set while training a prediction model using gradient descent. This technique
accelerates the regularized learning process, making it suitable for large-scale applications (Perkins
et al. (2003)). Frosst et al. introduced a method for yielding a soft decision tree through stochas-
tic gradient descent, leveraging neural network predictions (Frosst & Hinton (2017)). Young et al.
created a benchmark dataset with annotated ”rationales” provided by humans, allowing for the mea-
surement of model justifications against human justifications (DeYoung et al. (2019)). In (Ghaeini
et al. (2019)), Ghaeini et al. proposed saliency learning aiming to train models that make predic-
tions with explanations that align with that of the ground truth. Ross et al. developed a method
to effectively explain and regularize differentiable models by penalizing input gradients based on
expert annotations in an unsupervised manner (Ross et al. (2017)). Wang et al. introduced a solu-
tion that emphasizes class discrimination as a fundamental component in training CNNs for image
classification, improving model discriminability and reducing visual confusion (Wang et al. (2019)).
(DeVries & Taylor (2017)) demonstrated the cutout regularization technique to enhance CNN’s
robustness and performance. Behrens et al. proposed a method to explain local decisions made
by arbitrary classification algorithms, utilizing local gradients as estimated explanations (Baehrens
et al. (2010)).

2.2 SALIENCY GUIDED TRAINING

In the saliency-guided training, Ismail et al. (Ismail et al. (2021)) introduce a new algorithm incor-
porating interpretability to enhance models’ accuracy and saliency. They established their algorithm
based on employing gradients for saliency map detection. Gradients are representative of the degree
of ”importance” attributed to the input pixels.

Although gradient methods have a lot of positive characteristics when used with visual models, they
frequently result in noisy pixel attributions in areas unrelated to the predicted class (Kapishnikov
et al. (2021)). Potentially meaningless local fluctuations in partial derivatives may be the cause
of the noise observed in a sensitivity map (Smilkov et al. (2017)). The gradient of the model,
when trained using a common method based on empirical risk minimization (ERM), may change
drastically in response to minor input perturbations. Low-level features contain object position
information but are intermingled with noises like backdrops, whereas high-level features display rich
semantic information but lack object position information (Liu et al. (2022)). In order to accomplish
saliency map extraction using low-level features like color and texture., downstream algorithms need
more precise criteria. This is where the saliency guidance training approach comes in. Saliency-
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guided training aims to decrease the gradient values and maintain the model performance. This
approach reduces the impact of irrelevant features on the outcome of the model as the gradients
get closer to zero. By incorporating saliency guidance into the training procedure, the model can
focus on the most significant aspects of the data, potentially leading to improved performance and
generalization.

Algorithm 1 describes the SGT process which uses saliency information in training a neural network
model fθ. In this algorithm DKL(p∥q) is the KL divergence between probability distributions p
and q. the DKL quantifies the difference between the original output distribution fθ(X) and the
modified output distribution fθ(X̃). The Mk(I,X) is the masking function that removes the bottom
k features from the input data X , based on the sorted index I representing the importance of features
according to their gradients. The X̃ is the input data with the least important k features masked out.
It is obtained by applying the masking operation Mk(I,X). The Li is the combined loss function
used for training. It includes two terms: the standard loss term L(fθ(X), y) that measures the
model’s performance on the original input X with corresponding labels y, and a regularization term
involving the KL divergence to encourage similarity between the output distributions of X and X̃ .

Algorithm 1 Saliency Guided Training (Original)
Training samples X , number of features to be masked k, learning rate τ , hyperparameter λ
Initialize fθ {Preload or randomize for new training}
for i = 1 to epochs do

for i = 1 to epochs do
{Calculate the sorted index I for the gradient of output w.r.t the input.}

I = sort(∇Xfθi(X))
{Mask the bottom k features of the original input.}

X̃ = Mk(I,X)
{Compute the loss function with regularization term.}

Li = L(fθi(X), y) + λDKL(fθi(X)∥fθi(X̃))
{Update network parameters using the gradient.}

fθi+1
= fθi − τ∇θiLi

end
end

2.3 MOTIVATION AND PROBLEM STATEMENT

In Algorithm 1, the number of masked features is determined using parameter k. Authors in Ismail
et al. (2021), although noted that parameter k may affect the SGT optimization, have assumed this
value constant. The solution in this paper was motivated after we investigated the impact of k and
realized that the best choice of k is input image dependent.

In our motivational experiment leading to the solution proposed in this paper, we first used back-
propagation to compute the gradient value for all input pixels. We then sorted the pixels based on
the gradient value. We then started masking pixels with the highest gradient. The highest gradient
pixels are expected to be the most important input features affecting the decision of the learning
model. We expected to see a monotonically reducing accuracy curve as we masked additional input
features. Interestingly, we observed a different behavior for some input images, in which the ac-
curacy of the model started increasing by masking the high-value gradients initially, and then after
reaching a max value, it started reducing. This behavior is captured in both images shown in Figure
1. The orange curve represents the behavior of the majority of images, where by increasing the
making percentage, the classification accuracy monotonically reduces, and the blue curve represents
the exception minority where the peak accuracy is reached after some initial masking. Figure 1 also
illustrates that the peak in accuracy in the exception group can happen before (left) or after (right)
the 50% making point.

The next important question we attempted to investigate was the frequency at which such a scenario
transpires. To answer this question we trained a two-layer CNN model on the CIFAR-10 dataset
featuring a kernel size of 3 and a stride of 1, succeeded by two fully connected layers. For
regularization, we introduced two dropout layers with rates set at 0.25 and 0.5. Our experiment
indicated that a considerable portion of the images, 16% of test images in our specific experiment,
fall into this category. This indicates that the observed behavior is not statistically negligible. This
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Figure 1: Illustration of how sorted gradient masking could result in a monotonic decrease in ac-
curacy in majority of images (in orange), but an initial increase and then decrease in accuracy in
some other images (in blue). The figure on the left captures the case where the peak accuracy in the
exception images is reached before the 50% masking point, and the figure on the right captures the
case where peak accuracy in the exception images is reached after 50% masking point.

observation also holds logical validity. The dimensions and orientation of an object within an image
impact the quantity of input pixels integrated into the input feature, thereby triggering activation
of the input image. This indicates that the optimal value for k is contingent upon the specific
image. Additionally, when examining the saliency map of an input image, it is frequently noted
that there are prominent pixels within the saliency map that lie outside or deviate from the area
of interest within the image. This suggests that the model is allocating attention to features that
hold no significant relevance for its classification objective. This observation likely elucidates why
the removal of certain pixels initially leads to an increase in model accuracy, until the authentic
features are discerned, ultimately resulting in a decline in accuracy. Stemming from this exploratory
experimentation, we postulated that the parameter k in Algorithm 1 assumes a pivotal role as a
hyperparameter, enabling the model to learn better features, while also enhancing the alignment
between the saliency map and the location of the object of interest. Given this motivational
background this paper addresses the following problem statement:

Problem Statement: Given a learning model fθ and data {(Xi, yi)}ni=1, formulate a saliency-
guided training solution that optimizes the number of masked input pixels (k) based on saliency
metrics and adjust model parameters θ to enhance the model accuracy and saliency map’s fidelity.

3 METHODOLOGY

To enhance the model’s generalization and the accuracy of the saliency map by focusing on a
broader, more crucial set of features, as well as to minimize noise by teaching the model to ig-
nore irrelevant features for input classification, we introduce an upgraded Saliency Guided Mask
Optimized Online Training (SMOOT) approach. In this approach, the hyperparameter k specifies
the number of masked pixels.

In the context of the Algorithm 1, the authors fixed parameter K. Their proposal advocates for
configuring this parameter to encompass 50% of the pixels. To illustrate, when applied to images
of dimensions 28*28, this parameter is set at 392 pixels. As explained in the motivational and
problem statement section of this paper, for some images, gradient masking initially increases the
classification accuracy and then reduces it. As mentioned, and illustrated in Figure 1, the max
accuracy could also be realized by dropping less (left image), or more (right images) than 50% of
high gradient pixels. Given this observation, we propose starting with 50% gradient masking and
modifying the Algorithm 1 to dynamically adjust the number of masked pixels in the direction where
accuracy is maximized.

Our proposed solution, SMOOT, is outlined in Algorithm 2. In this approach, instead of a single
hyperparameter k, we use a vector Ki, where Ki(X) is the masking percentage of input image X in
epoch i. The objective is to optimize model parameters by finding the best masking percentage for
each input image to minimize the loss function. The algorithm starts by initializing model parame-
ters fθ and by assigning each value in K vector to 50%. We then adjust the masking percentage for
each image in the direction that image accuracy increases. As discussed previously, there are two
types of images. images where increasing the masking percentage monotonically decreases their
classification accuracy. Let us denote this group of images as class I images. We also have the
images where masking initially increases the accuracy and then results in a drop in accuracy. Let us
denote these images as class II images.

For class I images, if we adjust the masking in the direction where accuracy increases, we always
move towards the direction of reducing the masking percentage. We define a fixed threshold for
minimum (min) and maximum (max) masking. In this case, for the class, I group, the masking
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percentage always shifts towards the min masking value, as as shown in Figure 1 stays there. For
class II, however, the move is towards the direction of max accuracy. As shown in Figure 1, the
move could be to the left or the right until the accuracy max (shown with blue dot) in Figure 1 is
achieved.

Algorithm 2 SMOOT: Saliency Guided Mask Optimized Online Training
Training samples X , learning rate τ , hyperparameter λ, hyperparameter α, controls increase or
decrease number of masking µ
Initialize fθ {Preload or randomize for new training}
Initialize K {50% to be consistent with prior work}
for i = 1 to epochs do

for i = 1 to epochs do
{Get sorted index I for the gradient of output w.r.t the input.}
1. I = sort(∇Xfθi(X))
{compute X̃ as the image with bottom k features of the original input masked.}

2. X̃ = M(i,K, I,X)
{Compute difference in softmax outputs when softmaxi is ith highest softmax output}

3. δ1 = softmax1(X̃)− softmax1(X)

4. δ2 = 1
n−1

∑i=n
i=2 (softmaxi(X̃)− softmaxi(X))

5. δ = αδ1 + (1− α)δ2
{Find number of masking for next epoch}
6. Ki+1(X) = max(Kmin,min(Kmax,Ki + ⌊µδ⌋))
{Compute the loss function}

7. Li = L(fθi(X), y) + λDKL(fθi(X)∥fθi(X̃))
{Use the gradient to update network parameters}
8. fθi+1

= fθi − τ∇θiLi

end
end

Let us define softmaxi(X) to be the softmax output of image X in epoch i. Let’s also define X̃
to be the masked image X . In this case, the difference between the accuracy of top 1, top 5, or a
combination of the 2 could be used to indicate if masking results in improvement or degradation in
accuracy. The change in the top 1 accuracy is computed in line 5 of the SMOOT algorithm as:

δ1 = softmax1(X̃)− softmax1(X) (1)

and the change in the top 2 to top n is computed using

δ2 =
1

n− 1

i=n∑
i=2

(softmaxi(X̃)− softmaxi(X)) (2)

In this equation, for top 5 accuracy, n should be equal to 5. We then use a weighted representation
of change in softmax value using the equation:

δ = αδ1 + (1− α)δ2 (3)

For the generated results, in the result section of this paper, we have used the n = 5 and α = 0.7,
placing more priority on improvement in top 1 accuracy. Given the change in the accuracy, we then
change the masking percentage of the input image using the following equation:

Ki+1(X) = max(Kmin,min(Kmax,Ki + ⌊µδ⌋)) (4)
In this equation, Kmin and Kmax are the min and max percentages allowed for masking. In our ex-
periment Kmin = 20 and Kmax = 80. Finally, the weight ”µ” is a hyperparameter that determines
the speed at which the masking percentage changes. The loss of the model is computed similarly to
the previous SGT using:

Li = L(fθi(X), y) + λDKL(fθi(X)∥fθi(X̃)) (5)

In which L is the cross entropy loss and DKL is the KL divergence. The KL divergence or relative
entropy is computed using:

DKL(fθi(X)∥fθi(X̃)) =
∑
x∈X

fθi(X)log(
fθi(X̃)

fθi(X)
) (6)
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The KL divergence is computed based on the similarity of fθi(X) to fθi(X̃), first term representing
the output for the original input image X , and second representing the output for masked image X̃
using the Ki(X) masked in the current epoch. Using this updated loss, the gradients are then used
to update the network parameters as follows:

fθi+1
= fθi − τ∇θiLi (7)

The algorithm of our proposed solution, including all steps above is shown in Algorithm 2. The
algorithm takes as input the training samples (X), the initial number of features to be masked (k),
learning rate (τ ), and a hyperparameter (λ). It starts by initializing the model parameters (fθ). Then,
for each epoch and mini-batch, the following steps are executed.

First, in line 1, the sorted index I corresponding to the gradient of the output concerning the input,
denoted as ∇Xfθi(X), is found. In this algorithm, sort(·) is a sorting function. sort(∇Xfθ(X))
denotes the sorted gradient. In line 2, we generate a new masked image from the input image.
M(·) represents the input masking function. M(i,K, I,X) generate X(i) with a mask distribution,
removing the K(i) lowest features as indicated by sorting vector I to generate X̃ . In lines 3-6, based
on the contrast between the accuracy of the input and the masked input, the algorithm determines and
applies the magnitude and direction of change in the masking percentage. In line 7 the loss function
is computed by adding a weighted KL divergence to the standard loss term. The KL divergence is
computed by comparing the output of the model when using original input X versus masked input
Xm, using the mask value Ki(X) generated in epoch i. The weighted KL divergence terms account
for The saliency-guided regularization in the overall loss function in line 7. Finally, the network
parameters are updated using gradient descent in line 8.

4 EXPERIMENTS AND RESULTS

Our primary objective is to assess the performance of SMOOT relative to SGT and traditional models
across different datasets. To this end, we evaluate the efficacy of our proposed solution by retraining
models on the MNIST (LeCun et al. (2010)), Fashion MNIST (Xiao et al. (2017)), CIFAR-10, and
CIFAR-100 (Krizhevsky et al. (2009)) datasets.

4.1 MODEL ARCHITECTURE

For the MNIST and Fashion-MNIST Datasets, we employed a two-layer CNN with a kernel size of
3 and a stride of 1. The CNN layers were succeeded by two fully connected layers. Additionally,
two dropout layers were incorporated with rates of 0.25 and 0.5. For the CIFAR datasets, we turned
to the Tiny Transformer, adopting the original configurations: a minimalist ’tiny’ dimension of
(L = 12, d = 192, h = 3). The pre-trained model for this setup was sourced from the Facebook
research repository1 and is based on the deit architecture, which was pre-trained on ImageNet (He
et al. (2016)). As the concluding layer, we incorporated a 10-neuron classifier. Both architectures
were trained on a single NVIDIA A100 GPU for a span of 100 epochs with batches of 256. Adadelta
(Zeiler (2012)) served as our optimizer, operating at a learning rate of 1 for MNIST and Fashion-
MNIST datasets and 0.001 for the CIFAR datasets. Throughout the training process, for each epoch,
low gradient value pixels were substituted by random values within the spectrum of the remaining
pixels. These gradients were computed using the Captum library (Kokhlikyan et al. (2020)).
In the context of our paper, with regard to the MNIST and Fashion MNIST datasets, which inherently
exhibit lower complexity, it is appropriate to configure the hyperparameter (α) to a high value, such
as 0.95. This strategic decision enables us to place a greater emphasis on the label. For the CIFAR-
10 and CIFAR-100 datasets, we recommend setting the hyperparameter (α) to a substantial value,
like 0.8. This choice effectively guides the model to allocate more attention to classes beyond the
label. Because the SGT article (Ismail et al. (2021)) considered K = 50% of the total pixel count,
in our paper, we also adopted an initial value of n equal to 50% of the total pixels. Specifically, the
initial value of n was set to 392 for the MNIST dataset and 512 for CIFAR. We set the µ to 10 and
λ to 1, following the approach described in SGT’s paper (Ismail et al. (2021)). Table 1 displays the
model architecture and hyperparameters utilized in our paper, which are based on the SGT.

4.2 SALIENCY GUIDED TRAINING FOR IMAGES

In the context of image classification using saliency, it is common to encounter redundant features
that are not crucial for the model’s prediction. Take the example of an object’s background in an im-
age, which occupies a significant portion but typically holds little relevance to the classification task.

1https://github.com/facebookresearch/deit
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Dataset Model Initialize K τ α λ

MNIST CNN 392 1 95% 1
Fashion-MNIST CNN 392 1 95% 1
CIFAR10 Transformer 512 0.001 80% 1
CIFAR100 Transformer 512 0.001 80% 1

Table 1: Model Architecture

When the model’s attention is directed toward the object itself, it is desirable for the background gra-
dient (representing most of the features) to be close to zero, indicating its diminished importance.
Figure 2 illustrates a comparison between the saliency map generated using our approach, the SGT
in (Ismail et al. (2021)), and Traditional training (no saliency-guided training). Figure 2 provides
this comparison for images selected from the MNIST dataset and Fashion MNIST dataset.

Figure 2: MNIST and Fashion-MNIST: The displayed images compare our model (SMOOT) with
an SGT and Traditional model. For saliency, the best model employs a high gradient to focus on the
most prominent pixels. In the case of MNIST and Fashion- MNIST, it prioritizes edge detection.

4.3 MODEL ACCURACY DROP

In our study, we investigate the efficacy of our approach, SMOOT, against the prior art SGT (Ismail
et al. (2021)) and conventional baseline training methods. We utilize various saliency techniques
for this purpose, including modification-based evaluation (Petsiuk et al. (2018); Kindermans et al.
(2016)). We evaluated the impact on model accuracy by ranking and eliminating features based
on their saliency values. The experiment is conducted on datasets such as MNIST and Fashion
MNIST, both of which have known uninformative feature distributions (e.g., black background).
The results show that SMOOT leads to a steeper drop in accuracy compared to traditional training
and SGT, regardless of the saliency method employed. This steeper drop indicates that our method
is more effective in identifying and eliminating less informative features, resulting in a more refined
model. However, it’s important to emphasize that this experiment is most relevant for datasets
with known uninformative features and might not be applicable to datasets with varying or unknown
backgrounds. Because in datasets with varying or unknown backgrounds, the uninformative features
may not be as consistent or easily distinguishable. This means that saliency methods might struggle
to effectively rank and eliminate them, potentially leading to different results.

MNIST # Test Min(K) Median(K) Max(K) Accuracy AUC
Traditional 10K 0 0 0 99.40% 36.35
SGT 10K 392 392 392 99.35% 34.67
SMOOT 10K 234 388 544 99.40% 33.16

Table 2: MNIST: Traditional and Saliency Model Training Accuracy and saliency (A smaller AUC
value indicates better performance in saliency)

Table 2 provides an overview of the Area Under accuracy drop Curve (AUC) and accuracy results
on the MNIST dataset for different gradient-based training approaches. The table compares tra-
ditional training, training with a saliency-guided procedure, and our own method. It’s noteworthy
that a lower AUC value is indicative of superior performance, largely due to its representation of
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a more pronounced drop in accuracy. Upon careful analysis of the table, it is clear that SMOOT
demonstrates superior accuracy and saliency when compared to the traditional and SGT approach.

Table 3 displays the outcomes of AUC and the achieved accuracy on the Fashion-MNIST dataset.
Analyzing the table, it becomes clear that our model exhibits superior accuracy and saliency in
comparison to both the SGT and traditional models, as indicated by the smaller AUC values.

Fashion-MNIST # Test Min(K) Median(K) Max(K) Accuracy AUC
Traditional 10K 0 0 0 93.60% 40.79
SGT 10K 392 392 392 93.35% 39.91
SMOOT 10K 223 372 576 93.65% 36.18

Table 3: Fashion-MNIST: Comparing Traditional and Saliency and SMOOT Model Training Accu-
racy and Saliency (Smaller AUC = Better Saliency)

Based on the changes in accuracy due to the number of masking, we present our findings in Figure
3 for MNIST and Fashion-MNIST datasets. These figures illustrate that our model exhibits a more
significant drop in accuracy compared to both the traditional and SGT models, demonstrating its
higher Salient in comparison to them.

Figure 3: Comparing accuracy drop For MNIST and Fashion-MNIST using three training ap-
proaches: Standard cross-entropy based training, SGT (Ismail et al. (2021)), and Our proposed
(SMOOT). A more pronounced decrease is indicative of superior performance.

4.4 SALIENCY GUIDED MASK OPTIMIZED ONLINE TRAINING FOR TRANSFORMERS

The Transformer model represents a revolutionary computational paradigm in the realm of deep
learning, demonstrating robust performance across an array of computer vision tasks. With its roots
in natural language processing (NLP), the Transformer model(Vaswani et al. (2017)) has shown
an unparalleled ability to capture long-range dependencies through the self-attention mechanism.
Its related large-scale counterparts, such as BERT (Devlin et al. (2018)), GPT-3 (Tomsett et al.
(2020)) and GPT-4 (Author1 et al. (2023)), have set new standards in harnessing powerful language
representations from unlabeled textual data. This remarkable success of Transformer models in the
NLP landscape has piqued the curiosity of the vision community, leading to its effective application
in various computer vision tasks. These encompass areas like image recognition (Dosovitskiy et al.
(2020); Touvron et al. (2021)), object detection (Carion et al. (2020)), and even image generation
(Chen et al. (2021)). Within this transformative framework, the Tiny Transformer (Touvron et al.
(2022))., stands out as a streamlined variant. This model is distinguished by its significantly reduced
size, all while maintaining performance levels comparable to its standard Transformer counterparts.
In Table 4 and 5, the implementation of the SGT method resulted in CIFAR10 and Cifar100 in a
notable improvement in accuracy. Notably, through the application of the SMOOTH method and
optimization of masked values, we were able to achieve even higher accuracy values, Furthermore,
Figure 4 presents a comparison among traditional, SGT, and SMOOT models through the application
of saliency maps to images.

CIFAR10 # Test Min(K) Median(K) Max(K) Accuracy
Traditional 10K 0 0 0 95.65%
SGT 10K 512 512 512 96.05%
SMOOT 10K 204 488 753 96.35%

Table 4: CIFAR10: The accuracy compares our model (SMOOT) with a Saliency-Guided Training
(SGT) and Traditional model by using a transformer.
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CIFAR100 # Test Min(K) Median(K) Max(K) Accuracy
Traditional 10K 0 0 0 75.75%
SGT 10K 512 512 512 78.10%
SMOOT 10K 362 432 682 79.65%

Table 5: CIFAR100: The accuracy compares our model(SMOOT) with a Saliency-Guided Train-
ing(SGT) and Traditional model by using transformer.

Figure 4: CIFAR10 and CIFAR100: The displayed image compares our model (SMOOT) with a
Saliency-Guided Training (SGT) and Traditional model by using a transformer. For saliency, the
best model employs a high gradient to focus on the most prominent pixels. Gradients approaching
zero often signify uninformative features, whereas exceptionally large or exceedingly small gradient
values tend to highlight the informativeness of these features.

5 CONCLUSION

In the framework of SGT, the hyperparameter k is of paramount importance as it represents the
”number of masking.” This hyperparameter is instrumental in the learning process by pinpointing
the most relevant pixels in each image. Also, such identification proves vital for improving accuracy,
especially in datasets with larger image dimensions. Therefore, careful optimization of k is crucial
to ascertaining its optimal value. In this paper, we present a novel solution for input-based selection
of k, illustrating that such optimization improves both the accuracy of the model and the fidelity of
the saliency map across all tested benchmarks.
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Pieter-Jan Kindermans, Kristof Schütt, Klaus-Robert Müller, and Sven Dähne. Investigating the
influence of noise and distractors on the interpretation of neural networks. arXiv preprint
arXiv:1611.07270, 2016.

Narine Kokhlikyan, Vivek Miglani, Miguel Martin, Edward Wang, Bilal Alsallakh, Jonathan
Reynolds, Alexander Melnikov, Natalia Kliushkina, Carlos Araya, Siqi Yan, et al. Captum: A
unified and generic model interpretability library for pytorch. arXiv preprint arXiv:2009.07896,
2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. att labs, 2010.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015.

Kunpeng Li, Ziyan Wu, Kuan-Chuan Peng, Jan Ernst, and Yun Fu. Tell me where to look: Guided
attention inference network. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 9215–9223, 2018.

Deyin Liu, Lin Wu, Farid Boussaid, and Mohammed Bennamoun. Improved and interpretable
defense to transferred adversarial examples by jacobian norm with selective input gradient regu-
larization. arXiv preprint arXiv:2207.13036, 2022.

Simon Perkins, Kevin Lacker, and James Theiler. Grafting: Fast, incremental feature selection by
gradient descent in function space. The Journal of Machine Learning Research, 3:1333–1356,
2003.

Vitali Petsiuk, Abir Das, and Kate Saenko. Rise: Randomized input sampling for explanation of
black-box models. arXiv preprint arXiv:1806.07421, 2018.

Andrew Slavin Ross, Michael C Hughes, and Finale Doshi-Velez. Right for the right reasons: Train-
ing differentiable models by constraining their explanations. arXiv preprint arXiv:1703.03717,
2017.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
ization. In Proceedings of the IEEE international conference on computer vision, pp. 618–626,
2017.

Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features through
propagating activation differences. In International conference on machine learning, pp. 3145–
3153. PMLR, 2017.

Krishna Kumar Singh and Yong Jae Lee. Hide-and-seek: Forcing a network to be meticulous for
weakly-supervised object and action localization. In 2017 IEEE international conference on
computer vision (ICCV), pp. 3544–3553. IEEE, 2017.

11



Under review as a conference paper at ICLR 2024

Sahil Singla, Eric Wallace, Shi Feng, and Soheil Feizi. Understanding impacts of high-order loss
approximations and features in deep learning interpretation. In International Conference on Ma-
chine Learning, pp. 5848–5856. PMLR, 2019.

Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wattenberg. Smoothgrad:
removing noise by adding noise. arXiv preprint arXiv:1706.03825, 2017.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
International conference on machine learning, pp. 3319–3328. PMLR, 2017.

James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal. Fever: a large-scale
dataset for fact extraction and verification. arXiv preprint arXiv:1803.05355, 2018.

Richard Tomsett, Dan Harborne, Supriyo Chakraborty, Prudhvi Gurram, and Alun Preece. Sanity
checks for saliency metrics. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 6021–6029, 2020.

Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, and Hervé Jégou. Going
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