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ABSTRACT

Robotic tasks such as manipulation with visual inputs require image features that
capture the physical properties of the scene, e.g., the position and configuration of
objects. Recently, it has been suggested to learn such features in an unsupervised
manner from simulated, self-supervised, robot interaction. The idea being that
high-level physical properties are well captured by modern physical simulators,
and their representation from visual inputs may transfer well to the real world.
In particular, learning methods based on noise contrastive estimation have shown
promising results. To robustify the simulation-to-real transfer, domain randomiza-
tion (DR) was suggested for learning features that are invariant to irrelevant visual
properties such as textures or lighting. In this work, however, we show that a
naive application of DR to unsupervised learning based on contrastive estimation
does not promote invariance, as the loss function maximizes mutual information
between the features and both the relevant and irrelevant visual properties. We
propose a simple modification of the contrastive loss to fix this, exploiting the
fact that we can control the simulated randomization of visual properties. Our ap-
proach learns physical features that are significantly more robust to visual domain
variation, as we demonstrate using both rigid and non-rigid objects.

1 INTRODUCTION

If a robot is to perform object manipulation tasks, it must process its sensory inputs to extract phys-
ical properties that are relevant to the objects and the task. For example, for picking an object, the
robot may extract the pose of the object and its size from a camera image. However, for general ob-
jects and tasks, defining the relevant properties can be difficult – what properties should be extracted
for manipulating a deformable object such as a rope? And what should be encoded about objects
with nontrivial geometries?

If the task (or task distribution) is known in advance and can be described using a reward function,
reinforcement learning (RL) can be used to learn a policy for solving the task (Levine et al., 2016).
By definition, however, the RL agent will only learn features that are relevant for the task it trained
on, as specified through the reward function, and the features may not be applicable for other tasks.
In addition, for many real world tasks it is difficult to define a reward function (Abbeel & Ng, 2004;
Christiano et al., 2017; Singh et al., 2019).

An alternative and promising approach is to learn features in an unsupervised fashion, from self-
supervised data of the robot interacting with objects. The idea is that features that are useful for
making predictions about the future state of the environment, likely encode relevant object proper-
ties, and will therefore be useful for a variety of downstream tasks. A popular method for learning
such features is based on contrastive learning: maximizing mutual information between features of
past and future observations (Oord et al., 2018; Tian et al., 2019; Chen et al., 2020a).

However, collecting a diverse set of self-supervised robot interactions requires significant resources
(Levine et al., 2018; Pinto & Gupta, 2016; Dasari et al., 2019). Exploiting the recent advances in
physical simulators, Yan et al. (2020) proposed to learn physical features using contrastive learning
from simulated interaction data. Since simulated data is easy to generate, and no reward function
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needs to be manually defined for unsupervised learning, the approach in Yan et al. (2020) offers a
principled and scalable method for learning general physical features, such as the configuration of
non-rigid objects.

The features learned in simulation can only be accurate up to the differences between simulation and
reality – the sim-to-real gap. To robustify learning, a popular trick is domain randomization (DR)
– randomly modify irrelevant visual properties such as lighting and object textures during training,
with the hope of learning features that are invariant to these perturbations. Indeed, Yan et al. (2020)
demonstrated successful sim-to-real transfer using DR. Conversely, however, in this work we claim
that a straightforward application of DR to contrastive learning is fundamentally flawed: by carefully
formulating the problem, we show that the standard CPC loss function aims to maximize information
between the features and both relevant and irrelevant visual properties, and therefore does not learn
features that are robustly invariant to the irrelevant randomization. Indeed, the experiments in Yan
et al. (2020) were designed with a very small sim-to-real gap, and we demonstrate that when this
gap is increased, the quality of the features degrade significantly. Our derivation also prescribes a
simple fix – by applying a different randomization to past and future observations, which can easily
be done in simulation, we guarantee that invariant representations are learned.

We demonstrate that our method, termed Contrastive Domain Randomization (CDR), is able to
learn relevant physical features of rigid and non-rigid objects that are highly robust to irrelevant
visual perturbations such as background, texture, and lighting. As such, CDR paves the way for
learning visual representations of physical properties that are general, robust, and easy to obtain.

2 RELATED WORK

Domain Randomization: Domain randomization is a class of domain adaptation techniques
(Wang & Deng, 2018; Patel et al., 2015) that targets the transition of learned models from simulation
to the real-world. DR has been successful on vision problems (e.g. object detection, pose estimation
(Tobin et al., 2017)) often using a rendering engine to perturb non-essential properties in synthetic
scenes (Ren et al., 2019). Recent work has extended DR to robotic grasping (Tobin et al., 2018), nav-
igation (Sadeghi & Levine, 2016), locomotion (Mordatch et al., 2015), and, relevantly, deformable
object manipulation (Matas et al., 2018). Further methods alter simulation dynamics in addition to
visual features (Antonova et al., 2017; Peng et al., 2018), randomizing physical properties, such as
friction and latency, to learn robust manipulation policies. Implicit in DR is an assumption that the
environment is composed of relevant and irrelevant properties, which together generate an obser-
vation. The goal is to learn a representation that attends to relevant properties (e.g. physics) while
ignoring the irrelevant ones. In this work, we make a connection between the domain randomization
objective and the idea of learning invariances, as studied in the causal inference literature (Peters
et al., 2017). Recent work on invariant risk minimization (Arjovsky et al., 2019) also aims to learn
invariant features. However, our setting controls the simulated domain (the ‘intervention’ in causal
inference parlance), enabling more effective representation learning.

Contrastive Learning: Contrastive learning has gained popularity as a method for self-supervised
feature learning, and relates to information-theoretic concepts such as mutual information (Oord
et al., 2018; Tian et al., 2019; Chen et al., 2020a). Leveraging spatially- or temporally-coherent data
(e.g., images or videos), contrastive learning techniques construct ”pretext” tasks (Misra & Maaten,
2020) in which a neural network must discriminate between similar and dissimilar input samples
(Chen et al., 2020b;c). Pretext tasks can involve predicting image patches (Hénaff et al., 2019; Oord
et al., 2018), frames in videos (Oord et al., 2018), optical flow (Tian et al., 2019), programs (Jain
et al., 2020), and other visual features (He et al., 2020; Chen et al., 2020c;b). Crucially, contrastive
learning can be interpreted as learning a non-linear transformation that is invariant to distortions of
the input data (Hadsell et al., 2006). Our method combines these ideas with domain-randomization
to learn self-supervised domain-invariant features.

Deformable Object Manipulation: We focus on deformable object manipulation approaches that
combine predictive models with forward planning. Recent work has proposed learning non-linear
deformation functions to assist feedback control (Hu et al., 2018; Jia et al., 2018). Generative mod-
eling (Chen et al., 2016; Finn et al., 2016) has enabled neural networks to learn richer dynamics
that can be used by model-predictive control (MPC) for manipulation (Ebert et al., 2018; Kurutach
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et al., 2018). Contrastive learning methods, which represent spatial/temporal patterns in the data
as latent vectors, are particularly useful for model-based planning (Wang et al., 2019; Nair et al.,
2017). For example, recent methods applied MPC for cloth and rope manipulation, using a forward
model learned using contrastive learning (Ding et al., 2020; Yan et al., 2020). Our work extends
these approaches to planning that is invariant to irrelevant visual properties.

3 BACKGROUND

Our work builds on contrastive learning and domain randomization. To set the stage for our devel-
opment, we formalize both ideas here under a unified notation.

Contrastive Learning: Contrastive Learning methods learn compact representations of high di-
mensional observations such as images, video, or audio. Unlike supervised learning, where a para-
metric model f is trained to maximize the similarity between a prediction ẑ and a known label y,
contrastive learning trains an encoder fθ, parametrized by θ, to map observations o into a latent
representation ẑ = fθ(o), and makes predictions directly in the latent space. For example, Oord
et al. (2018) introduces a self-supervised instance discrimination task in which fθ is used to predict
a single positive label y amongst N − 1 contrastive labels yj . This objective, known as InfoNCE
loss, simultaneously maximizes the similarity h(ẑ, y) between an observation based prediction ẑ and
the positive label y while minimizing the similarity h(ẑ, yj) between ẑ and contrastive labels yj . As
a self-supervised task, positive labels y are computed from the observation itself, while contrastive
labels yj are computed from different observations in the data. InfoNCE frames the discrimination
task as a standard classification problem, through the cross-entropy loss:

LNINCE = EoEy|o

[
− log

h(ẑ, y)∑N
j=1 h(ẑ, yj)

]
, (1)

whereN represents the total number of positive and negative samples. Prior work showed that mini-
mizing equation 1 is equivalent to maximizing the mutual information (MI) between the observation
space o and the latent space z according to the following inequality (Oord et al., 2018; Tian et al.,
2019): I(o, ẑ) ≥ log(N) − LNINCE. Note that increasing the number of contrastive samples in N
improves the lower bound on mutual information, and in turn, the learnt representations.

Typically, the InfoNCE loss is minimized using stochastic gradient descent, where a batch contains
random observations from the data, and the loss for a batch of sizeN is:

∑N
k=1− log h(ẑi,yi)∑N

j=1 h(ẑi,yj))
.

We set the constrastive labels for an observation to be the labels of other observations in the batch.

Contrastive samples often leverage spatial, temporal, or semantic consistency in the input data.
Given image data o, for example, it is possible to generate a prediction ẑ = fθ(τ

′(o)) and posi-
tive label y = fθ(τ(o)) by applying separate visual transformations (τ ′ and τ , respectively) to a
single image o. Contrastive labels can then be generated by applying transformations to different
images yj = fθ(τ(oj)) (Chen et al., 2020a;b). For sequential data, the temporal dimension of the
input serves as a useful signal with which to generate contrastive labels. CPC follows this approach,
defining the instance discrimination task over frames in a video (Oord et al., 2018). Specifically,
from the latent representation zt of the image at time t, ot, CPC predicts the latent representation of
a frame k steps in the future ẑt+k, using the representation of the true frame zt+k as a positive label,
and representations of frames from random time-steps (or different videos altogether) as contrastive
labels zj 6=t+k. In doing so, CPC simultaneously maximizes the similarity h(ẑt+k, zt+k) between
the predicted and true future frame representations and minimizes the similarity h(ẑt+k, zj 6=t+k)
between the prediction and each of the contrastive sample representations. Key to this approach
is the joint optimization of an encoder zt = fθ(ot) and an auto-regressive model ẑt+k = gφ(z≤t),
parametrized by φ, that at time t, produces a latent prediction ẑt+k, given a summary z≤t of observa-
tions up to time t. Our method similarly exploits the temporal structure of video data for contrastive
sampling.

Several similarity metrics have been proposed in the literature. A common choice is the weighted
dot-product exp(zTi Wzj) or σ(zTi Wzj) (Chen et al., 2020a;b). The cosine distance and L2 distance
have also proven effective (Oord et al., 2018; Yan et al., 2020; Schneider et al., 2019).
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Domain Randomization Domain randomization is a popular method of simulation-to-real trans-
fer for neural networks (Sadeghi & Levine, 2016; Tobin et al., 2017). By exposing the network to
extensive variations of scene parameters that are irrelevant for decision making during training (e.g.
lighting conditions and textures), the goal of DR is to learn robust features that will transfer well to
the real world. Here, we cast DR under a probabilistic formulation that will serve our subsequent
development.

We assume that an observation (either simulated or real) o(x, e) is generated from two independent
random variables x and e, representing relevant and irrelevant domain properties, respectively. We
further assume access to the observation generation process—i.e. given x and e, we can generate
o(x, e). For example, x can represent the pose of an object, e its texture, and o(x, e) is generated by
a rendering engine. Under these assumptions, DR can be framed as a supervised learning problem
over the following loss: LDR(l) = EeExEy|x,e [l(o(x, e), y)] , where y is a label for the observation
o(x, e), sampled from p(y|x, e), and l is some supervised learning loss function, such as regression
or classification. If y is independent of e, optimizing over this loss encourages the network to learn
a prediction that is agnostic to e.

4 CONTRASTIVE DOMAIN RANDOMIZATION (CDR)

In this section, we describe our proposed framework for learning domain-invariant representations:
Contrastive Domain Randomization (CDR). We begin by presenting a formalism for incorporating
DR into the contrastive learning framework. We then show that a straightforward combination of
CPC with DR does not learn domain-invariant representations. Finally, we introduce our method for
learning contrastive predictive models and show that, under mild assumptions, the learned represen-
tations of our model are in fact domain-invariant.

4.1 PROBLEM FORMULATION

Figure 1: A causal model that produces
environment observations o(x, e), en-
coding z and labels y. (a) applying
naive DR to InfoNCE process where la-
bels y depend on both relevant x and ir-
relevant environmental properties e. (b)
Contrastive DR, in which y ⊥⊥ e by
randomly replacing the environmental
properties e that generates y to e′.

Recall that observations o(x, e) are generated from two
independent variables—relevant properties x and irrele-
vant environmental properties e—and z = fθ(o(x, e)) is
an encoded representation of o(x, e). As in DR, we as-
sume access to the observation generation process. Let
y(x, e) be a random variable we wish to predict from
o(x, e), such as the outcome of an action at or an en-
coding of future observations. This framework supports
two types of causal models: (i) domain-dependent mod-
els in which y is influenced by both e and x (Figure 1a);
(ii) domain-independent models in which x predicts y, re-
gardless of interventions over e (Figure 1b). In the next
section, we show that straightforwardly applying domain
randomization to the CPC objective results in domain-
dependent representations.

4.2 NAIVE CPC DOES NOT LEARN DOMAIN-INVARIANT FEATURES

A simple application of DR to CPC is to domain-randomize each sample in our data, and apply CPC
on this data (Yan et al., 2020). The corresponding loss for a batch of size N can be written as:

N∑
i=1

− log
h(ẑ(xi, ei), y(xi, ei))∑N
j=1 h(ẑ(xi, ei), y(xj , ej))

, (2)

where xi, ei correspond to random observations o(xi, ei) in the data, and we denote by ẑ(xi, ei) and
y(xi, ei) the prediction and label that correspond to the observation.

Though Eq. equation 1 suggests that CPC maximizes the mutual information between the represen-
tation z and the observation o, when inspecting Eq. equation 2, we note that there is nothing in the
loss function preventing both y and z from becoming dependent on e. That is, Eq. equation 2 may
learn to maximize mutual information between e and z, effectively learning features that encode
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spurious properties of the random domain. In fact, depending on the task, e might serve well in
distinguishing positive labels from contrastive labels! Indeed, we empirically show that this naive
CPC formulation learns representations that depend on the random domain.

An alternative approach to Eq. equation 2 is to contrast between different observations in the data
that share the same domain e. This will prevent CPC from learning to discriminate between labels
based on e. The corresponding loss for a batch is:

N∑
i=1

− log
h(ẑ(xi, e), y(xi, e))∑N
j=1 h(ẑ(xi, e), y(xj , e))

, (3)

where xi, e correspond to random observations from the data that share the same domain. While
this approach is appealing, it suffers from several technical problems. The first is that SGD based
optimization tends to work well when samples in a batch are not correlated. The second is that
this method requires generating at least N different observations for each combination of domain
properties e, which becomes prohibitively large when we want high variation in e.

4.3 DOMAIN-INVARIANT CPC

We propose a novel contrastive loss function that learns domain-invariant representations while pre-
serving high sample efficiency. Our method exploits domain randomization to remove the depen-
dence between predictive variables y and spurious domain features e.

First, we sample {x, e, y} from the joint distribution p(e)p(x)p(y|x, e). Using the observation gen-
eration process, we then generate both positive D = {o(x, e), y} and intervened D′ = {o′, y′}
datasets; where o′ = o(x, e′) and y′ = y(x, e′), and e′ is randomly sampled. Our key observation is
that since y′ is sampled from p(y′|x, e′), we ensure that y′ is independent of e, namely, y′ ⊥⊥ e. We
next introduce the Contrastive Domain Randomization loss:

N∑
i=1

− log
h(ẑ(xi, ei), y

′(xi, e
′
i))∑N

j=1 h(ẑ(xi, ei), y
′(xj , e′j))

, (4)

which is optimized using both D and D′. Note that, in contrast to naive CPC equation 2, CDR
does not induce learning representations that depend on e. In comparison to Eq. 3, however, we can
sample from different domains in the same batch, leading to improved efficiency.

4.4 DOMAIN-INVARIANCE GUARANTEES

We now show that CDR indeed learns domain invariant representations. We focus on
neural-network encoders, and specifically assume that the encoder can be written as:
f(x, e) = σ(WT

x φx(x) + WT
e φe(e) + b), that is, the encoder has separable features for x

and e. In this case, the following proposition shows that the CDR loss will learn to ignore e.

Proposition 1. Let x and e be independent random variables defined over spaces X and E, re-
spectively. Let y ∈ Y be a random variable that satisfies y ⊥⊥ e. Consider a family of functions
f , parameterized by Wx,We, and b, that satisfy: f(x, e) = σ(WT

x φx(x) +WT
e φe(e) + b), where

φx(x) and φe(e) are functions that depend solely on x and e, respectively, and σ is some activation
function. Given the following loss:

L(f) = EeExEy|x [l(f(x, e), y)] , (5)

an optimal set of parameters is achieved when φe(e) is nullified (i.e. We = 0).

Proof is available in Appendix A.

If f learns to produce φx(o(x, e))=φx(x) and φe(o(x, e)) = φe(e) in any layer of the neural net-
work, then according to Proposition 1 the optimal representation will be domain-invariant. While
the assumption on separable features is idealistic, modern neural-network architectures are often
expressive enough to be capable of separating x and e. In such cases, the result above guarantees
invariant features. In our experiments, we further demonstrate this result empirically.
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5 CDR FEATURE LEARNING FROM VIDEOS

In this section, we describe how to use CDR for learning domain-invariant image representations
that capture intuitive physical concepts and generalize to the real world. We assume to have access
to a physics simulator that follows the real world physical rules and renders image observations. We
consider two experimental paradigms – controlled and uncontrolled, as we next describe.

Uncontrolled environment In the uncontrolled setting we only observe sequences of images {ot}
depicting some physical interaction.

We follow CPC (Oord et al., 2018) and define gφ to be an auto-regressive model (GRU) that sum-
marizes the past observations in the latent space z≤t and predicts the next K future latent states
ẑi = ẑt+k = WT

k GRU(z ≤ t). we set our positive labels y′ to be the true representation at time
t + k, z′i = z′t+k = fθ(o(xt+k, e

′)), and contrastive labels are drawn from different time-steps or
from different videos. we average K predictions and optimize:

N∑
i=1

[
1

K

K∑
k=1

− log
h(ẑt+k, z

′
t+k)∑N

j=1 h(ẑt+k, zj))

]
. (6)

Controlled environment In the controlled settings, an agent interacts with the environment and
we can observe its actions. That is, we observe ot and an action at at each time-step. Here, we
define gφ to be a 1-step forward model ẑi = ẑt+1 = gφ(zt, at). We set our positive labels y′ to be
the true representation of the next frame z′i = z′t+1 = fθ(o(xt+1, e

′)).

6 EXPERIMENTAL RESULTS

In this section, we empirically evaluate our method on both simulated and real world data. Our eval-
uations are built to answer the following questions: (1) Does CDR learn to produce both informative
and domain-invariant representations? (2) Is CDR robust to the simulation-reality gap?

Since our representation learning is unsupervised, it is difficult to define a quantitative performance
measure to evaluate the quality of the learned representations. To address this challenge, we devised
both simulated experiments that measure the representation quality, and real-robot experiments that
evaluate the representations when input to a downstream visual planning task. In simulation, we
designed experiments in which certain physical properties, such as the position and orientation of
objects, are necessary for making accurate predictions about the future evolution of the system. In
such domains, we know that a good representation learning method must represent these features re-
liably, and we correspondingly design an evaluation protocol termed information retrieval to reflect
this. For the real-robot evaluation, we evaluate representations that were trained solely in simulation,
by using them as input to an MPC-style planner based on image goals (Yan et al., 2020). We term
this sim-to-real evaluation as planning. We next describe our domains, training details, and results.

Figure 2: Qualitative comparisons of CDR and naive DR. Left - Deformable rope, Middle - Con-
trolled Rigid objects, Right - Uncontrolled Rigid objects. We retrieve the nearest neighbour (in latent
space) of a real-world OOD reference image from a held-out simulated dataset of 30K images. we
report the cosine distance between the features of the reference image and the retrieved one. note
that CDR latent representations yield images that are much more similar to the reference image.
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Table 1: Accuracy in Predicting Physical Properties
Euclidean Euclidean

(OOD)
IOU IOU (OOD)

Rigid Rigid Rigid Rigid Rope Rigid Rigid Rope
uncontrolled uncontrolled uncontrolled controlled uncontrolled controlled

Baseline 0.45±0.39 0.55±0.46 0.18±0.14 0.19±0.13 0.15±0.12 0.15±0.14 0.15±0.13 0.14±0.11
CDR

(Ours)
0.3± 0.36 0.42±0.48 0.34±0.16 0.27±0.12 0.24±0.15 0.28±0.17 0.26±0.13 0.22±0.13

Table 2: Invariance to Random Texture
Cosine similarity (higher is better) MSE distance (lower is better)

Rigid un-
controlled

Rigid
controlled

Rope Rigid un-
controlled

Rigid
controlled

Rope

Baseline 0.69±0.22 0.8± 0.19 0.86±0.12 0.51±0.44 0.8± 0.67 1.06±0.89
CDR

(Ours)
0.86±0.21 0.91± 0.1 0.97±0.06 0.13± 0.2 0.12±0.12 0.11±0.24

6.1 SIMULATED ENVIRONMENTS

We focus on the following environments (see Fig. 4 in Appendix B for visual samples).

Uncontrolled Rigid objects Two simple rigid objects, a cube or a ball, initialized with random
size, position and mass, are placed in a blocked frame with low friction. At the start of each episode
a force in a random direction and magnitude is applied to one of the objects, making it collide with
the frame and the second object over time.

Controlled Rigid objects Two complex shaped rigid objects, a Hammer and a Banana, initialized
with random size, position and orientation, placed in a blocked frame with high friction. An agent,
represented by a small cube or sphere initialized with random size, interacts with the environment
by randomly pushing the other objects in a random direction. We use a two-dimensional action
space: the direction and magnitude in Cartesian coordinates of the force applied to the agent at each
time-step.

Controlled Deformable Rope A rope with random length and thickness, represented in sim-
ulation as n ∈ {35...45} connected small spheres with random radius, is being pushed in a
random direction by a robotic arm. The arm is not visible in the overhead images. We use a four-
dimensional action space: the 2-d initial and final positions of the robot end effector. At the start of
each episode, the rope state is randomly initialized by applying a random number of random actions.

All our experiments use the bullet (Coumans et al., 2013) physics simulator with an overhead camera
that renders 128×128×3 RGB images as observations. We apply random textures sampled from
Describable Textures Dataset (DTD) (Cimpoi et al., 2014).

6.2 REAL ROBOT ENVIRONMENT

To evaluate sim-to-real transfer, we use the Franka Emika Panda robotic arm, with an Intel RealSense
D415 camera positioned to look diagonally down at the scene (see Fig. 5 in Appendix B). We make
sure that the arm is not visible in the images by moving it out of sight before taking an image. We
also use a simulation of the real Panda robotic arm environment to generate training data and for
evaluation. Our manipulation task is moving a random sized cube. The actions are similar to the
Controlled Deformable Rope environment – the Panda robotic arm pushes the cube in a random
direction that is parallel to the table, specified by a start and goal position for the tip of the gripper.

6.3 TRAINING AND BASELINES

Real Robot Experiment for fair comparison with the state of the art, we use Contrastive Forward
Modeling (CFM) (Yan et al., 2020) as baseline. Both baseline and CDR uses the same model,
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Figure 3: Planning results: each row is a trajectory sampled by planning with CDR representa-
tions. In each frame, a 1-step MPC planner selects an action, which is then executed by the Panda
arm. Goal images can be generated in simulation, while the various real-world environments are
dramatically different from the simulated training environments.

a ResNet18 (He et al., 2016) that was pre-trained on the ImageNet (Deng et al., 2009) dataset as a
backbone encoder, CFM forward model architecture, and L2 similarity function hi,j = −||zi−zj ||2.
We replace the last fully connected (FC) of the encoder with a FC layer that compresses the encoder
outputs to 8-dimensional latent vector z.1

We applied DR and generated a set of 4,000 videos with 15 frames each, where each set samples
textures independently from DTD. Baseline is trained with the objective presented in Eq. 2 as in
CFM, and CDR with the objective presented in Eq. 4. We also use 10% of the training videos as a
validation set for early stopping.

Simulated Experiments For the Controlled environments (Rigid and Deformable) we use dot-
product similarity hi,j = exp(zTi zj) and replace the CFM forward model architecture with an
action encoder that encodes the actions to a 16-dimensional vector with a 2-layered MLP with tanh
activations and a hidden layer of size 64 for both Baseline and CDR. the encoding of the state zt
and actions are then concatenated and used as input to a 3-layered MLP with ReLU activations and
a skip connection. we found this architecture beneficial for both Baseline and CDR.

For the Uncontrolled Rigid objects environment, we use bilinear similarity and replace the CFM
forward model architecture with a GRU that summarize past observations and predict K steps into
the future as in CPC, i.e ẑt+k =WT

k GRU(z ≤ t). we use the objective in Eq. 6 with K = 6.

We generated a set of 10,000 videos with 30 frames each for both rigid environments, and a set
of 8,000 videos with 15 frames each for the deformable rope environment. DTD is divided into
47 categories, we use 3 categories as out-of-distribution (OOD) test textures and sample uniformly
from the rest during training.

6.4 INFORMATION RETRIEVAL RESULTS

Our goal is to learn representations that capture relevant properties of the scene, and ignore spurious
features. To evaluate such behavior on out-of-distribution data, we test the ability to retrieve similar
observations that share similar physical properties (e.g. position, orientation, size) but from different
domains. Given a test image o, we first encode it into z = fθ(o), and retrieve the latent nearest
neighbour from an external dataset Dext, unseen during training zNN = argminz′∈Dext

h(z, z′).
For h, we use the Cosine distance, as we found it to perform well for both CDR and the baseline. We
evaluate test images from both in distribution (following the terminology of Sec. 3, with e seen in
training but different x) and OOD (both e and x were not seen in training). To evaluate performance,
we measure the Intersection Over Union (IOU) of the object pixels between the nearest neighbor

1Our code is publicly available at https://github.com/carmelrabinov/cdr
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and the test image (higher is better). For the rigid object environments, we also report the sum of
Euclidean distances between the objects in the test image and its retrieved nearest neighbour (lower
is better). Table 1 shows quantitative results of CDR against Baseline. Note that CDR significantly
outperforms the baselines by a large margin.

To test if our representations are in fact domain-invariant, we randomly sample observations from
different domains but with the same object configurations o1 = o(x, e1), o2 = o(x, e2), and compare
the distance between them in the latent space, i.e h(o1, o2). Table 2 shows that CDR is significantly
more domain-invariant compare to the baseline.

To evaluate sim-to-real transfer, we use real world images that are very different from the simulated
data in both domain appearance and physical properties (see Fig. 2). We then qualitatively evaluate
our ability to retrieve similar simulated data. In Fig. 2 we compare CDR and Baseline to retrieve
observations from a challenging reference image with a very different lightning and frame. Though
retrieved positions are not always perfect, CDR tends to capture correctly the relative position and
sizes of the objects – an essential property for predicting the outcome of a collision. For the con-
trolled rigid objects data, we use a hammer and a banana much bigger than the maximal size in
simulation. Nevertheless, CDR tends to capture correctly the relationship between the objects and
the cube agent. For the rope data, we use a colored rope, and unlike previous work (Yan et al., 2020),
we use a long rope that can form complex shapes. Furthermore, to demonstrate generalization out-
side lab conditions, we also use the same rope material as background for some reference images.
Note that CDR yields retrievals that are much more accurate than the baseline.

Table 3: Euclidean distance from final state to goal state in cm. each simulation is given 10 trials
to reach a goal. Simulation results are based on 80 experiments, Real robot results with goal image
from real world or simulation are based on 16 and 21 experiments, respectively.

Simulation Real Robot
In domain goal Different domain goal Real world goal Simulated goal

Baseline 15.18± 9.01 15.47± 8.20 15.26± 9.13 10.02± 5.88
CDR (Ours) 9.31± 7.93 7.93± 7.46 7.59± 8.04 3.48± 3.34

6.5 PLANNING RESULTS

To evaluate if representations learned with CDR are useful for planning, we test our model in reach-
ing a goal image from a random state using a simple 1-step Model Predictive Control (MPC) planner.
The planner is provided with a goal image ogoal which can be either a real-world image or a simu-
lated one (see Fig. 3), which is then encoded into zgoal = fθ(ogoal). In each time step, the planner
samples a set A of 1000 possible actions that are guaranteed to push the cube in some random di-
rection and magnitude. We feed these into our forward model, along with the representation of the
current image zt = fθ(ot) to get a set of 1000 latent representations of next states, corresponding to
the different actions, ẑt+1 = gφ(zt, a). We greedily choose an action to execute, based on distance
in latent space at = argmina∈A h(zgoal, gφ(zt, a)).

To evaluate sim2real transfer, we use both simulated goal images and real-world goal images, and
test the robot on a variety of challenging environments. For example, we add multiple objects to the
scene, while no additional objects were seen during training (see Fig. 3). We measure the Euclidean
distance from the final state to the goal state. Table 3 shows that CDR significantly outperforms the
CFM Baseline.

7 CONCLUSION

Learning from simulated data is a promising approach to scale up robot learning to complex tasks.
In this work, we proposed a principled robustification of unsupervised representation learning using
domain randomization, and demonstrated that it can learn relevant representations that are robust to
irrelevant features of the domain appearance. Key to our approach is exploiting the fact that we can
intervene on a simulated image, and change some of its irrelevant features.

Our framework is general, and can be used with any physical simulator, any domain randomiza-
tion technique, and any InfoNCE based representation learning method. As such, it is a promising
direction for learning general representations for robotic tasks.
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A PROOF FOR PROPOSITION 1

Proof. Our proof assumes that X and E are finite, but can be extended to the infinite setting. Define
g(e) as the expectation

g(e) = ExEy|x [l(f(x, e), y)] .
The objective in equation 5 can be restated as: L(f) = Eeg(e). We can then define e∗ =
argmine g(e) as the optimal environmental variable that minimizes L(f) and write:

L(f) = Eeg(e) =
∑
e

p(e)g(e) ≥
∑
e

p(e)g(e∗) = g(e∗).

For any parameters Wx and b, consider the case in which We = 0. If we define a new parameter b′
as b′ = b+W ∗Te φe(e

∗), where e∗,W ∗e = argmine,We
g(e), then we can re-write:

g(e) = ExEy|x
[
l(σ(WT

x φx(x) + b′), y)
]
= g(e∗).

It follows that for the set of parameters {W opt
x , bopt} that minimize L(f), the parameters {Wx =

W opt
x ,We = 0, b = b′} produce the same loss.

B REAL AND SIMULATED ENVIRONMENTS

Figure 4: A short trajectory sampled from each simulated environment.

Figure 5: Real Environment, a Panda arm needs to push the red cube toward a goal position repre-
sented as an image.
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