
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

AUTOCODEBENCH: LARGE LANGUAGE MODELS ARE
AUTOMATIC CODE BENCHMARK GENERATORS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have shown impressive performance across di-
verse domains, with code generation emerging as a particularly prominent ap-
plication. However, existing benchmarks designed to evaluate code generation
exhibit several critical limitations. First, most rely on manual annotations, which
are time-consuming and difficult to scale across programming languages and prob-
lem complexities. Second, the majority focus primarily on Python, while the few
multilingual benchmarks suffer from limited difficulty and imbalanced language
coverage. To overcome these challenges, we present AutoCodeGen, an automated
framework for constructing high-difficulty, multilingual code generation datasets
without manual annotations. Our approach guarantees correctness and complete-
ness of test cases by generating test inputs with LLMs, obtaining test outputs within
a multilingual sandbox, and further enhancing quality through reverse problem
generation and multi-stage filtering. Based on this novel method, we introduce Au-
toCodeBench, a large-scale benchmark suite spanning 20 programming languages
with balanced coverage. AutoCodeBench is designed to rigorously evaluate LLMs
on diverse, challenging, and realistic multilingual programming tasks. Extensive
experiments reveal that even state-of-the-art models struggle on these tasks, par-
ticularly in low-resource languages. Besides, we release complementary training
and evaluation resources, including a large-scale, verifiable multilingual training
set generated via the same pipeline, as well as a multilingual sandbox with high-
concurrency support. We hope these contributions will provide a solid foundation
for future research and inspire the community to explore more automatic and
scalable approaches to multilingual code generation. 1

1 INTRODUCTION

Recently, Large Language Models (LLMs) have advanced rapidly, achieving strong performance
across a wide range of tasks (OpenAI, 2024; Gemini, 2025; DeepSeek-AI, 2025b; Anthropic, 2025b).
Among these, code generation has emerged as a central indicator of both intelligence and practical
utility, drawing increasing attention from academia and industry alike (Chen et al., 2021; Jimenez
et al., 2024; Jiang et al., 2024). Many powerful LLMs, such as Claude Opus 4.1 (Anthropic, 2025a),
are already widely adopted in AI-assisted coding tools (Cursor, 2025; Anthropic, 2025). Through the
ability to generate executable code, LLMs can substantially accelerate programming automation and
reduce manual development effort.

To evaluate and advance these capabilities, a series of benchmarks have been developed (Wang
et al., 2025a). Early efforts such as HumanEval (Chen et al., 2021) and MBPP (Austin et al.,
2021) focused on short, algorithmic Python tasks. More recent benchmarks (Peng et al., 2024;
Jimenez et al., 2024; Jain et al., 2025; Zheng et al., 2025; Zhu et al., 2025; Chai et al., 2025;
Bytedance, 2025; Zan et al., 2025) target more challenging and realistic programming tasks, including
competition-level problems and multilingual scenarios. However, constructing such benchmarks
remains costly and labor-intensive, which hinders scalability and makes it difficult to guarantee both
high difficulty and broad coverage. As shown in Table 1, widely used multilingual benchmarks

1The code and benchmark are available at https://anonymous.4open.science/r/autocode
bench-iclr-6E45. The remaining resources will be released after the double-blind review process due to
their large size.

1

https://anonymous.4open.science/r/autocodebench-iclr-6E45
https://anonymous.4open.science/r/autocodebench-iclr-6E45

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Table 1: Comparison of Code Generation Benchmarks. MLing: MultiLingual; MLogi: MultiLogical,
refers to programming problems that require the model to simultaneously implement multiple core
functionalities. HFree: Human-Free; BDist: Balanced Distribution of multiple languages. DSize:
Data Size. PLen: Problem Length. Further details are provided in the Appendix B.

Benchmark MLing MLogi HFree BDist Difficulty Category DSize PLen

HumanEval / 5 164 134.1
MBPP / 6 378 50.5
LiveCodeBench / 4 1100 469.6
FullStackBench 12 1687 184.3
McEval 9 2007 146.7

AutoCodeBench 14 3920 498.2

such as FullStackBench (Bytedance, 2025) and McEval (Chai et al., 2025) suffer from imbalanced
language distributions and limited diversity. These issues stem from the inherent bias of manual
annotation. For example, most annotators are proficient in Python algorithmic tasks but lack expertise
in domains such as Elixir-based communication development. Moreover, the rapid progress of LLMs
has rendered many of the overly simple problems in these benchmarks obsolete. These limitations
naturally raise a critical question: Can we automatically construct high-quality code generation
benchmarks that scale while ensuring both comprehensiveness and diversity?

In this paper, we propose AutoCodeGen, an automated workflow centered on LLM–sandbox interac-
tion, to synthesize challenging multilingual code generation datasets without manual annotations.
Unlike previous data synthesis approaches (Luo et al., 2024; Wei et al., 2024b; Xu et al., 2025;
Ahmad et al., 2025) that directly rely on LLMs to generate test functions, we adopt a more intuitive
and reliable strategy. The LLMs first produce test inputs, and a multilingual sandbox executes these
inputs to obtain the corresponding outputs. This design effectively mitigates a common limitation
of LLMs, namely the tendency to generate incorrect outputs when confronted with high-difficulty
problems. Furthermore, we introduce a reverse-generation paradigm, where code solutions and test
functions are synthesized first, followed by the construction of the programming problem itself. This
ensures that the resulting tasks are not only sufficiently challenging but also verifiably correct.

Based on the automation workflow, we introduce AutoCodeBench, a large-scale, fully automated
code generation benchmark, as shown in Table 1. Compared with previous multilingual bench-
marks (Cassano et al., 2022; Bytedance, 2025; Chai et al., 2025), ours simultaneously offers high
difficulty, diversity, and practicality, with a balanced distribution of problems across 20 programming
languages. We intentionally include some multi-logical problems to test the LLMs’ capacity for
multitasking in a single problem. The key contributions of this paper are as follows:

1. AutoCodeGen. We propose an automated workflow based on LLM-sandbox interaction,
where LLMs generate test inputs and a sandbox executes them to obtain outputs, to create
high-quality multilingual code generation tasks.

2. AutoCodeBench. We introduce AutoCodeBench, a large-scale, fully automatic code
generation benchmark with 3,920 problems, evenly distributed across 20 programming
languages, featuring high difficulty, practicality, and diversity. We also construct Lite and
Complete versions to enable efficient and high-quality evaluation. The evaluation results
show that current LLMs still struggle with complex and diverse multilingual programming
tasks, especially in multi-logical and low-resource language scenarios.

3. Training and Evaluation Resources. We propose AutoCodeInstruct, a multilingual code
generation training set constructed using the same pipeline as AutoCodeBench, ensuring
comparable quality. We design a two-stage GRPO training to demonstrate the potential of
this dataset in enhancing code generation capabilities. Besides, we release a Multilingual
Sandbox with high-concurrency support, which can be employed for both model evaluation
and RL training.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Private Test Input

Code Snippets
Calculate the Sum of Two Numbers
Given two integers a and b, please return their sum a
+ b.
Function Signature:
def two_sum(a: int, b: int) -> int:
Input: Two integers a and b where -10^4 ≤ a, b ≤ 10^4.
Output: Return the sum of a and b.
Examples:

Question

Sampling

Executor

Question

Test Func

LLM-Critic

/....

EXEC

Public Test Input

COMBINE

def public_test_input():
 test_cases = [
 [1,2] # Expected Output: 3

]
 for a, b in test_cases:
 print(f"Input: a={a}, b={b}")
 result = two_sum(a, b)
 print(f"Output: {result}\n")

Private Test Function
Public Test Function

def test_two_sum():
 # Test Case 1
 a, b, expected = 1, 2, 3
 result = two_sum(a, b)
 assert result == expected,
f"Test failed: {result} !=
{expected}”
 # Test Case 2

Code Solution

def two_sum(a: int, b:
int) -> int:
 two_sum = a + b
 return two_sum

Private Test Output
Public Test Output

Input: a=1, b=2
Output: 3
...

1

2

3

4

5

CONCAT
6

7 8

two_sum(a=1, b=2) == 3

Figure 1: The overview of AutoCodeGen. It first generates code solution and the corresponding
public/private test input functions based on multilingual code snippets (1⃝). They are concatenated
and executed in a sandbox to obtain test outputs, which are then combined by the LLM into complete
test functions (2⃝, 3⃝, 4⃝). Based on the code solution and test function, the LLM is prompted to
generate accurate programming problems (5⃝). Finally, a three-stage data filtering is applied: multiple
sampling to remove too easy problems (6⃝), LLM-as-Critic to discard low-quality ones (7⃝), and
diversity-based tagging to ensure distributional variety (8⃝).

2 AUTOCODEGEN & AUTOCODEBENCH

In this section, we first present how AutoCodeGen constructs the AutoCodeBench family of bench-
marks, and then provide an overview of AutoCodeBench.

2.1 AUTOCODEGEN

Our AutoCodeGen is a fully automated workflow based on LLM-sandbox interaction for constructing
verifiable code generation datasets. It first generates large-scale multilingual data with guaranteed
executability and correctness, then applies a three-stage filtering strategy to ensure the benchmark
is challenging, high-quality, and diverse. As illustrated in Figure 1, the workflow includes four key
stages: Code Solution Generation (1⃝), Test Function Generation (2⃝, 3⃝, 4⃝), Programming Problem
Generation (5⃝), and Data Filtering (6⃝, 7⃝, 8⃝).

2.1.1 CODE SOLUTION GENERATION

We begin by extracting multilingual code snippets from Stack-Edu (Allal et al., 2025), a large-scale
dataset of educational code filtered from The Stack v2 (Lozhkov et al., 2024), as seeds. These seeds
span function-level, class-level, and file-level code, sourced from real GitHub repositories, ensuring di-
versity and practicality. Using a language-specific few-shot prompt, we guide DeepSeek-V3-0324
to refine and evolve these seeds into verifiable and self-contained code solutions. During this process,
the model removes non-essential logic and adds appropriate comments for clarity. We then validate
the correctness of the generated solutions by multilingual sandbox.

2.1.2 TEST FUNCTION GENERATION

We enhance efficiency and edge-case coverage by first generating test inputs via LLMs and then
executing them in a sandbox to obtain the corresponding outputs. Specifically, it is divided into the
following three steps:

Test Input Generation The test input functions (both public and private) are generated alongside the
above code solution, ensuring alignment between the solution and its inputs. The public test input
function includes no more than 3 basic cases and serves demonstration purposes; it will be embedded
into the final programming problem as an illustrative usage. In contrast, the private test input function

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 2: Programming language translation pairs.

Origin Target Origin Target Origin Target Origin Target Origin Target

Python R Python Ruby Java Scala Java C# Shell Perl
Python Elixir Python Julia Java Kotlin JavaScript PHP C++ Rust
Python Swift Python Racket Java Dart JavaScript Typescript

contains 7+ cases, including edge cases, and functions as the comprehensive test for verifying the
correctness of the code solution.

Test Output Generation We concatenate the code solution with test input functions and execute
them in the sandbox to obtain the corresponding test outputs.

Input-Output Integration We prompt DeepSeek-V3-0324 with both the test input functions
and output results from the sandbox to generate coherent and verifiable test functions. Finally, we
validate the correctness by executing the code solution together with the generated public and private
test functions in the sandbox.

2.1.3 PROGRAMMING PROBLEM GENERATION

Generating high-quality programming problems is challenging, as it requires detailed and accurate
problem descriptions. We find that models often omit key information when generating programming
problems, such as the entry point specified in the test function. Therefore, we define a set of
specifications, such as explicit input/output formats, function and class names, to ensure that the
generated problems are detailed and well-structured. We prompt DeepSeek-V3-0324 to generate
high-quality programming problems based on the code solution with appropriate comments and the
corresponding test function, while embedding the public test function as example usage.

Through these three steps, we obtain a large-scale multilingual dataset, where each instance is
represented as a tuple <programming problem, code solution, public test function, private test
function>.

2.1.4 DATA FILTERING

Finally, We apply three filtering and sampling steps to ensure the high-difficulty, high-quality, and
diversity of the final benchmark.

Difficulty Control Too simple programming problems are barely meaningful for evaluating the
code generation capabilities of current LLMs. To address this, we employ a moderately capable
code model, DeepSeek-Coder-V2-Lite, to filter out too easy problems. Specifically, we
sample answers for each problem ten times using the model and validate the correctness via sandbox
execution. We discard problems that are solved in all attempts. Take Python as an example,
DeepSeek-Coder-V2-Lite can filter out 25.1% of the whole problems.

Quality Control During the aforementioned problem generation stage, we define six specifications to
guide the generation of detailed and accurate programming problems. To further ensure high quality,
we employ DeepSeek-R1-0528 to critique each <problem, test function> pair. Only the data
whose test functions are completely accurate and fully aligned with the problem are retained.

Diversity Sampling We aim for our benchmark to cover as many real-world scenarios as possible. To
this end, we perform diversity-based sampling on the existing data to construct the final benchmark.
We use DeepSeek-V3-0324 to label each problem. We then divide the problems into different
pools by category and perform cyclic sampling, ensuring a broad representation of programming
scenarios.

2.1.5 APPROXIMATE LANGUAGE TRANSLATION

For Python, C++, Shell, Java, JavaScript, and Go, we directly use the workflow described above.
For the other 14 languages, while the proposed workflow is still applicable, we choose to employ an
approximate language translation approach due to their limited data resources and lack of diversity.
We extract unused data from the dataset generated in Section 2.1.3 and translate them into the target

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 3: Statistics of Dataset. ACB: AutoCodeBench; Langs: Languages; Prob: Problem; Solu:
Solution; Len: Length; E/M/H: Easy/Medium/Hard. The difficulty level is determined by the number
of passes in ten samplings of DeepSeek-Coder-V2-Lite. Problems with zero correct solutions
are classified as hard, 1-5 correct solutions as medium, and those with more than five as easy.

#Problems #Test Cases #Langs Prob Len Solu Len Difficulty (E/M/H)

ACB-Full 3,920 37,777 20 498.2 487.5 646/846/2428
ACB-Lite 1,586 15,341 20 517.2 469.3 263/421/902
ACB-Complete 1,000 9,608 20 505.2 461.2 169/265/566

low-resource language, as shown in Table 2. This ensures a sufficient and diverse dataset, which is
further refined through the Data Filtering process in Section 2.1.4.

2.2 AUTOCODEBENCH

2.2.1 DATA OVERVIEW

As shown in Table 1 and 3, AutoCodeBench(-Full) is a large-scale, high-difficulty multilingual
benchmark. Over 60% of the problems are classified as hard problems, with each problem averaging
498.2 characters and accompanied by 9.6 test cases, providing a challenging and comprehensive
evaluation standard. The 20 languages are as follows: Python, C++, Java, JavaScript(JS), Go, Shell,
C#, Dart, Elixir, Julia, Kotlin, Perl, PHP, Racket, R, Ruby, Rust, Scala, Swift, TypeScript(TS).

To analyze the diversity and language coverage of AutoCodeBench, we first use Claude Sonnet
4 to generate 20 language-agnostic task categories, and then employ DeepSeek-V3-0324 to
classify each problem accordingly. Categories with less than 2% representation are merged into
the “Other” group. AutoCodeBench covers 14 categories, demonstrating comprehensive coverage
of practical programming scenarios. Besides, we analyze the distribution of problems across the
20 programming languages. AutoCodeBench exhibits a relatively balanced distribution across
languages, with no significant bias toward any specific one, further validating its completeness and
representativeness as a multilingual benchmark. Detailed category and language distribution are
provided in Appendix B.3.

2.2.2 AUTOCODEBENCH-LITE AND AUTOCODEBENCH-COMPLETE CONSTRUCTION

To facilitate quicker and more efficient model evaluations, we create AutoCodeBench-Lite, a
simplified subset of AutoCodeBench. Specifically, we collect the problem-solving results from all
models and sort the problems in ascending order based on the number of passes. After discarding
problems with fewer than 2 passes, we select approximately 1,500 problems based on their pass count
in ascending order. These problems, which have been solved correctly by existing models at least
twice and have a certain level of difficulty, are selected to amplify the differences between the models.
We use these problems as the set for the Lite version.

To enable evaluating base models, we further present AutoCodeBench-Complete, a completion-
based version of ACB. Concretely, we select 1,000 data points from ACB-Lite to ensure a balanced
distribution of 50 problems per programming language and use 3-shot demonstrations to evaluate the
performance of base models. ACB-Complete can serve as a comprehensive benchmark for evaluating
the multilingual code generation capabilities of base models.

3 EVALUATION

3.1 EVALUATION SETUP

We use the Pass@1 (%) (Chen et al., 2021) as the default evaluation metric. In terms of inference
parameters, for proprietary models and open-source models that provide APIs, we access them
through direct API calls. Other models are evaluated with official parameters when available, or
with greedy decoding otherwise. All models are provided with our custom system prompt, which
standardizes the output format: You are an expert programmer. Your task is to provide a code

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Average Python Cpp Java JS Go Shell Csharp Dart Elixir Julia Kotlin Perl PHP Racket R Ruby Rust Scala Swift TS
Count 3920 196 186 188 184 191 188 199 200 198 200 200 200 199 196 198 200 199 199 200 199
Current Upper Bound 75.3 65.3 75.8 80.9 60.9 71.7 72.9 88.4 78.0 97.5 78.5 90.5 64.5 53.8 88.9 75.8 81.0 62.8 78.4 78.5 61.3

Proprietary Models and 200B+ Open-source Models
Claude Opus 4.1 (20250805) 55.4 42.3 49.5 56.4 42.9 44.0 50.0 78.4 59.5 86.9 59.5 74.5 47.5 31.2 73.0 55.6 61.0 39.2 50.8 57.0 47.7
Claude Sonnet 4 (20250514) 51.1 37.2 46.8 52.7 34.8 41.9 48.9 72.4 53.5 81.8 49.0 71.5 45.0 34.7 68.9 50.5 54.5 36.2 48.2 48.0 44.2
Claude Opus 4.1 (20250805) 52.6 38.3 48.4 53.7 41.3 38.7 46.8 75.4 55.0 80.3 57.5 76.0 45.0 29.6 64.8 51.0 55.5 39.7 51.8 53.0 47.2
Claude Sonnet 4 (20250514) 49.3 35.7 47.3 52.7 38.0 37.7 47.9 72.9 51.0 74.2 51.0 72.0 44.0 30.7 63.8 44.4 51.5 35.2 45.2 45.5 44.2
GPT-5 (20250807) 53.5 44.4 51.6 48.9 44.6 45.0 47.3 75.9 53.5 84.3 53.0 70.5 43.7 36.2 58.5 54.0 60.5 40.7 49.7 58.5 46.7
o3-high (20250416) 51.1 40.8 47.3 53.2 40.8 22.0 49.5 68.3 55.0 80.8 54.5 72.0 44.0 32.7 53.1 47.5 59.0 42.2 51.3 59.0 47.2
o4-mini (2025-04-16) 50.0 42.3 46.8 51.6 40.2 31.4 45.2 68.3 54.0 82.3 49.0 74.0 44.0 30.2 45.4 43.4 59.0 40.2 50.3 54.0 45.7
GPT4.1 (2025-04-14) 48.0 37.2 46.8 48.9 34.8 37.2 36.7 74.4 46.5 76.8 50.0 72.0 43.5 29.2 50.5 42.4 54.0 37.2 44.2 49.5 46.2
Grok-4 50.9 41.2 48.7 50.0 37.5 41.4 47.3 72.4 49.5 76.8 55.0 70.0 44.0 27.1 63.8 48.5 61.5 37.7 52.8 51.5 40.7
Gemini2.5 Pro 48.7 40.3 47.5 53.2 37.0 37.2 45.2 70.9 54.0 68.7 54.0 72.0 41.0 29.7 52.6 49.5 56.5 24.6 46.7 49.5 41.7
Gemini2.5 Flash 45.7 39.3 44.1 50.0 33.2 33.0 37.8 68.3 49.5 64.0 47.5 70.0 39.5 24.1 38.3 51.5 53.0 36.2 44.2 46.5 41.2
DeepSeek-V3.1-250821 48.2 39.3 47.3 53.7 37.0 30.4 38.3 71.9 49.5 75.8 53.0 67.5 43.0 29.6 52.6 48.0 54.0 39.2 45.2 49.0 38.2
DeepSeek-V3.1-250821 46.2 35.7 44.1 54.3 35.3 29.3 36.2 68.3 44.0 72.7 49.5 64.5 44.0 29.6 52.6 47.0 51.0 33.2 42.2 47.0 42.7
DeepSeek-Coder-V2-Instruct 37.7 29.1 34.9 34.0 27.7 29.8 31.4 63.8 33.5 60.6 37.5 58.5 35.5 25.1 41.8 35.4 45.0 22.6 33.2 38.0 35.7
Hunyuan-TurboS-20250716 43.8 34.2 34.9 47.9 32.6 34.6 38.3 64.8 44.5 70.7 47.0 62.0 42.0 30.2 45.9 39.9 53.0 30.7 39.2 39.5 42.2
GLM-4.5-enable 46.6 41.0 43.2 47.9 34.8 37.8 43.9 70.5 42.0 72.5 47.5 66.0 43.5 28.6 50.0 45.0 54.5 31.6 41.0 46.0 42.2
Kimi-K2-0905-preview 46.8 36.2 38.2 47.3 37.0 35.1 41.5 68.3 50.5 78.8 48.5 66.5 41.5 30.7 55.6 40.4 49.5 31.7 45.7 48.5 42.7
ERNIE-X1-Turbo-32K 39.6 39.4 17.8 33.2 32.6 37.4 33.9 46.0 33.0 68.9 54.0 49.5 39.5 23.9 45.3 44.3 48.0 20.8 40.4 44.0 37.7
Qwen3-235B-A22B-Thinking-2507 47.7 37.8 41.9 48.4 39.7 39.8 45.2 71.9 46.0 79.8 48.5 58.0 40.5 29.1 56.6 49.0 55.0 35.7 40.4 46.0 44.2
Qwen3-Coder-480B-A35B-Instruct 44.8 39.4 41.1 51.1 27.9 31.4 41.1 63.0 36.5 73.7 49.5 63.1 41.0 27.2 56.3 42.7 51.5 25.4 42.1 47.5 41.9
Qwen3-235B-A22B-Instruct-2507 43.1 35.7 38.2 49.5 29.3 33.5 40.4 67.3 39.5 59.1 46.0 59.5 44.5 26.1 49.5 44.0 46.5 24.6 37.7 46.0 43.2
Seed1.6-Thinking-250715 45.0 40.3 45.2 50.0 33.2 38.2 39.9 67.3 36.5 67.7 51.0 61.0 41.0 26.1 51.0 44.9 55.5 27.6 37.2 46.5 38.7
Seed1.6-enabled (250615) 45.3 39.8 44.6 46.3 28.3 40.8 44.1 60.3 39.5 69.7 51.0 58.0 41.5 25.6 52.6 51.0 52.0 28.6 41.7 47.5 41.2
Seed1.6-disabled (250615) 42.9 35.2 40.3 46.8 32.6 34.6 35.1 70.9 42.5 69.7 45.0 62.0 39.5 23.1 49.5 40.4 46.5 28.1 32.7 40.0 42.7

Open-source Models below 200B
GLM-4.5-Air-enable 40.8 39.3 37.6 39.4 31.0 39.8 36.7 66.3 38.0 61.5 42.0 53.0 40.5 27.1 40.3 39.0 47.0 25.1 30.5 38.5 42.7
Qwen3-Next-80B-A3B-Thinking 40.6 38.3 39.8 43.6 38.0 33.0 37.4 66.3 24.0 59.1 43.5 43.5 42.5 25.1 34.2 46.0 50.5 26.1 35.2 43.7 41.2
Qwen3-Next-80B-A3B-Instruct 39.6 36.7 35.5 44.1 32.6 29.8 39.9 62.8 35.5 63.1 39.0 41.0 42.0 27.6 41.3 39.4 39.0 24.6 34.7 42.0 40.2
Qwen3-32B 41.7 37.8 38.7 39.9 32.6 36.1 39.4 67.8 34.5 65.2 42.5 52.0 40.5 27.6 37.8 44.9 47.0 28.1 37.2 42.0 40.2
Qwen3-14B 37.6 37.8 35.5 35.1 30.4 30.4 36.2 60.8 29.0 62.1 34.5 44.5 37.5 23.1 44.9 36.9 43.5 24.6 28.6 36.0 38.7
Qwen3-8B 28.5 28.1 22.6 21.8 28.3 29.3 27.1 52.8 21.0 43.9 29.0 36.0 35.5 18.6 13.3 30.8 37.0 12.6 21.1 22.0 37.7
Qwen3-1.7B 11.2 16.8 5.4 4.8 12.5 9.9 11.7 19.6 7.0 20.7 11.0 9.0 19.5 7.5 5.6 9.6 21.0 0.0 2.5 10.0 19.6
Qwen3-32B 31.0 26.5 21.5 29.5 28.0 25.5 24.0 59.3 27.5 52.0 28.0 45.0 34.5 21.6 28.6 22.7 36.5 16.1 26.6 30.0 35.2
Qwen3-14B 28.6 24.5 22.6 32.4 27.2 16.8 23.9 50.8 21.0 42.4 22.5 42.0 34.5 24.6 28.1 26.3 33.5 17.1 20.6 26.5 32.7
Qwen3-8B 23.3 22.4 11.3 25.0 22.8 18.3 22.3 42.2 17.0 41.4 18.5 36.0 29.5 18.1 23.5 16.2 27.0 7.5 19.1 17.5 29.1
Qwen3-1.7B 7.9 8.7 1.1 2.7 8.2 3.7 11.7 9.5 3.5 17.2 6.0 11.5 15.5 7.5 4.6 7.6 14.5 0.5 3.0 6.0 14.6
Qwen2.5-Coder-32B-Instruct 35.8 29.6 27.4 33.0 29.9 23.0 29.3 58.3 34.5 59.6 35.5 56.0 38.5 26.1 35.7 31.3 40.0 23.1 29.6 39.0 35.2
Qwen2.5-Coder-7B-Instruct 22.5 19.9 8.6 22.3 21.2 12.6 21.3 38.7 18.5 47.0 18.0 39.0 27.5 15.1 24.0 17.7 29.5 7.0 19.1 17.0 24.6
Qwen2.5-Coder-1.5B-Instruct 10.3 12.2 2.7 4.8 12.0 7.3 14.4 17.6 6.5 35.4 4.0 16.5 15.0 5.0 7.1 7.6 15.5 1.0 4.5 5.0 11.1
DeepSeek-Coder-33B-Instruct 28.5 25.0 24.2 29.3 24.5 29.8 22.3 54.8 17.5 67.7 14.5 52.0 29.5 19.1 28.1 18.7 33.0 8.0 24.1 18.0 29.1
DeepSeek-Coder-6.7B-Instruct 20.5 18.9 12.9 19.7 19.6 21.5 16.0 44.2 11.5 47.5 15.5 45.5 21.5 10.6 15.3 13.1 27.5 6.0 11.1 8.0 23.6
Seed-Coder-8B-Instruct 32.3 23.5 23.7 33.5 28.8 22.5 20.7 54.8 30.5 57.1 33.0 52.5 34.0 25.1 36.7 28.3 35.5 15.6 29.6 28.0 31.2
OpenCoder-8B-Instruct 19.3 14.3 9.7 19.1 12.5 17.3 21.3 33.2 15.5 34.3 15.5 30.0 26.5 14.6 15.8 17.2 29.5 6.0 17.1 15.0 21.1

Table 4: Pass@1 (%) performance of different models for AutoCodeBench. Current Upper Bound
represents the Pass@1 value calculated by taking the union of problems correctly solved by all
models. Blue and Green denotes reasoning and non-reasoning modes.

solution within a single Markdown code block for the given programming problem. Do not include
any direct execution commands, test cases, or usage examples within the code block.

3.2 MAIN RESULTS

We comprehensively evaluate the performance on ACB, with results across different programming
languages shown in Tables 4. The results of ACB-Lite and leaderboards are shown in Table 9, Figure 7
and Figure 8.

Results show that ACB is highly challenging, as no model surpasses 55.5 average score, indicat-
ing that current LLMs still struggle with complex, practical multilingual problems. Among all
models, Claude Opus 4.1 consistently achieves the best performance in both reasoning and non-
reasoning modes, confirming its strength across diverse coding tasks and aligning with observations
from SWE-bench (Jimenez et al., 2024). Finally, while individual models perform moderately, their
combined upper bound reaches 75.3, revealing complementary strengths and substantial room for
improvement, as no single model dominates across all languages.

3.3 PERFORMANCE ACROSS POPULAR AND LOW-RESOURCE PROGRAMMING LANGUAGES

We select five models with similar performance levels (ranging from 47.7 to 49.3) and evaluate
their performance differences across popular and low-resource languages. As shown in Figure 2,
the difference in average Pass@1 scores among the models for popular languages is small (∆
3.1). However, the performance gap between models widens (∆6.3) in low-resource languages,
suggesting that low-resource programming languages may have received insufficient attention in
model development. Besides, since we use the moderately capable DeepSeek-Coder-V2-Lite
as a filter to remove simple problems, the Pass@1 scores of top models on popular languages
are relatively low. However, because the filter itself performs poorly on low-resource languages,
many problems that appear trivial to top models are not filtered out, resulting in higher Pass@1
scores in these languages than in popular ones. This further highlights the pronounced disparities in
low-resource language capabilities across models and underscores the need for greater community
attention to this issue.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Popular Languages
(Python, C++, Java, C#)

Low-Resource Languages
(Racket, Shell, Elixir, TS)

46

48

50

52

54

Pa
ss

@
1

(%
)

- P
op

ul
ar

 L
an

gu
ag

es 52.2
51.8

53.0 53.1

50.0

Claude Sonnet 4
GPT4.1
Gemini 2.5 Pro

DeepSeek-V3.1-250821 (Think)
Qwen3-235B-A22B-Thinking-2507

Claude Sonnet 4
GPT4.1
Gemini 2.5 Pro

DeepSeek-V3.1-250821 (Think)
Qwen3-235B-A22B-Thinking-2507

50

52

54

56

58

60

Pa
ss

@
1

(%
)

- L
ow

-R
es

ou
rc

e
La

ng
ua

ge
s

57.5

52.6

52.1

51.2

56.5

Figure 2: The performance comparison of differ-
ent models across two language sets.

Claude Opus 4.1 (Think) GPT-5 Gemini2.5 Pro
DeepSeek-V3.1-250821 (Think)

Qwen3-235B-A22B-Thinking
35

40

45

50

55

60

Pa
ss

@
1

51.4

-4.0

55.4

48.8

-4.7

53.5

43.9

-4.8

48.7

45.1

-3.1

48.2

41.4

-6.3

47.7

AutoCodeBench_MultiLogic
Performance Drop

Figure 3: Performance drop of models on multi-
logic problems (1,622) compared to full dataset.

3.4 PERFORMANCE ACROSS MULTI-LOGIC PROGRAMMING PROBLEMS

A key feature that distinguishes AutoCodeBench from prior benchmarks is the inclusion of multi-
logical problems. These problems require models to implement multiple distinct functions or classes
within a single task, challenging their ability to handle multiple core demands simultaneously. We
use DeepSeek-V3-0324 to identify all multi-logical problems in AutoCodeBench and evaluate
model performance on them. The results, shown in Figure 3, reveal a significant performance
drop for all models when faced with multi-logical tasks. Among them, Claude Opus 4.1 and
DeepSeek-V3.1 exhibit relatively smaller declines, while the other models show larger drops.
These findings highlight a key limitation: current models still struggle with multi-logical problem
solving, an ability that is particularly critical for real-world code agent applications.

3.5 PERFORMANCE ANALYSIS OF MULTI-TURN REFINEMENT WITH SANDBOX FEEDBACK

As shown in Figure 4, we evaluate how models leverage execution error messages to iteratively refine
their code solutions. The results highlight the substantial value of our multilingual sandbox error
feedback across all evaluated models. Qwen2.5-Coder-32B-Instruct achieves remarkable
improvement from 35.8% to 47.4% after three refinement turns, while Qwen3-8B shows consistent
progress from 23.3% to 30.2%. The most significant performance gains occur during the first
refinement turn, with diminishing returns in subsequent iterations. This pattern suggests that models
can effectively leverage execution feedback to identify and correct common coding errors, though the
complexity of remaining problems increases with each iteration. The consistent improvement across
different model scales indicates that multi-turn refinement with sandbox feedback is a valid strategy
for enhancing code generation quality.

3.6 AUTOCODEBENCH-COMPLETE: EVALUATING BASE MODEL CAPABILITIES

Table 5 presents a performance comparison between base models on ACB-Complete and chat models
on ACB-Full. Among models with 8B parameters or fewer, Seed-Coder-8B demonstrates superior
performance in ACB-Complete, consistent with its strong showing on ACB-Full. This consistency
suggests that the pretraining process effectively equipped Seed-Coder-8B models with strong
multilingual programming capabilities, enabling them to handle diverse coding scenarios across mul-
tiple languages. Besides, an interesting observation arises when comparing Qwen2.5-Coder-7B
and OpenCoder-8B. While it outperforms OpenCoder-8B on ACB-Full, the trend reverses on
ACB-Complete. This suggests that Qwen2.5-Coder-7B may have undergone more effective
post-training on multilingual code generation data.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 5: The pass@1 values of chat models
(ACB-Full) and base models (ACB-Complete).

ACB-Full ACB-Complete

30B+ Models
DeepSeek-Coder-V2 37.7 39.0
Qwen2.5-72B 34.3 35.9
Qwen2.5-Coder-32B 35.8 35.5

∼8B Models
Seed-Coder-8B 32.3 31.6
Qwen3-8B 23.3 22.6
OpenCoder-8B 19.3 26.1
Qwen2.5-Coder-7B 22.5 24.6
DeepSeek-Coder-6.7B 20.5 22.9

Qwen2.5-Coder-32B-Instruct Qwen3-8B
20

25

30

35

40

45

50

Pe
rfo

rm
an

ce
 (%

)

35.8

23.3

44.7

28.2

46.1

29.3

47.4

30.2

Pass@1
Turn 1
Turn 2
Turn 3

Figure 4: Performance improvement across multi-
turn refinement with sandbox feedback.

Table 6: Results of two-stage GRPO and SFT with AutoCodeInstruct.

Model ACB-Full ACB-Lite LiveCodeBench-V6 FullStackBench McEval

Qwen2.5-Coder-7B-Instruct 22.5 21.5 18.3 41.1 57.2
+ first-stage GRPO 25.0↑2.5 24.8↑3.3 18.3↑0.0 46.9↑5.8 58.6↑1.4
+ second-stage GRPO 27.4↑4.9 27.6↑6.1 17.1↓1.2 47.7↑6.6 58.4↑1.2
+ SFT 28.9↑6.4 29.0↑6.5 17.7↓0.6 47.7↑6.6 63.1↑5.9

Qwen2.5-Coder-32B-Instruct 35.8 37.4 24.0 57.1 64.5
+ first-stage GRPO 38.3↑2.5 39.5↑2.1 25.1↑1.1 58.3↑1.2 65.4↑0.9
+ second-stage GRPO 41.6↑5.8 45.3↑7.9 28.0↑4.0 59.7↑2.6 66.1↑1.6
+ SFT 41.9↑6.1 46.2↑8.8 30.3↑6.3 58.7↑1.6 69.5↑5.0

4 AUTOCODEINSTRUCT

AutoCodeInstruct Besides the evaluation benchmarks, we further construct AutoCodeInstruct, a
training dataset of comparable quality to AutoCodeBench. Specifically, we collect data generated
during the AutoCodeGen process that does not overlap with AutoCodeBench, and repeatedly sample
DeepSeek-V3-0324. Problems with excessively high pass rates (>80%) or low pass rates (<40%)
are filtered out to ensure both solvability and appropriate difficulty. We further apply a two-stage
deduplication strategy (MinHash + LLM-as-Judge) across existing code benchmarks. The resulting
dataset contains 37K verifiable problems spanning 20 programming languages.

Training Setup We conduct RL experiments via a two-stage GRPO (Shao et al.,
2024) training strategy to unleash the potential of AutoCodeInstruct, based on the
Qwen2.5-Coder-7B/32B-Instruct models. Concretely, we apply a data filtering strategy
by sampling the responses 15 times from the Instruct models and filter out easy problems with
pass rates above 0.6. The remaining problems are divided into solve-partial and solve-none parts
depending on whether the pass rate is zero. In the first stage, only the solve-partial problems join
training, with a rollout size of 8. In the second stage, we incorporate both solve-partial and solve-none
problems, and increase the rollout size to 16 to enable better exploration for harder problems. Besides,
for all solve-partial and solve-none problems, we additionally obtain correct code solutions from
DeepSeek-V3-0324 and perform SFT on Qwen2.5-Coder-7B/32B-Instruct. Details of
the training configurations are presented in Appendix I.

Results As shown in Table 6, after the first-stage GRPO, both models achieve noticeable gains
on in-domain benchmarks (ACB-Full and ACB-Lite), which suggests that they begin to learn
how to stably consolidate existing knowledge. The second-stage GRPO enables the models to
tackle harder problems, effectively pushing their multilingual capability boundaries and leading
to significant performance improvements. Surprisingly, the models also show consistent gains on
out-of-domain multilingual benchmarks such as FullStackBench and McEval. The performance
of Qwen2.5-Coder-32B-Instruct on the programming contest task LiveCodeBench-V6
(20250201–20250501) also improves by 4 points. In addition, after the SFT stage, both models

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

achieve even larger performance improvements than those obtained from GRPO, thanks to the distilled
correct code solutions from DeepSeek-V3-0324. These results indicate that AutoCodeInstruct
enhances the comprehensive code generation capability of models and demonstrate the effectiveness
of our approach in synthesizing high-quality training datasets for code LLMs.

5 RELATED WORK

Code Generation Benchmarks The rapid evolution of code LLMs, ranging from open-source mod-
els (Roziere et al., 2023; Zhu et al., 2024; Hui et al., 2024b) to proprietary LLMs (Anthropic, 2025a;
OpenAI, 2024; 2025a; Gemini, 2025) series, has reshaped code generation, create a demand for robust
and contemporary code generation benchmarks. Pioneering benchmarks like HumanEval (Chen et al.,
2021) and MBPP (Austin et al., 2021) established foundational correctness on small Python tasks but
suffer from contamination and limited language coverage. Later benchmarks target more complex
settings, such as competition-level challenges (Hendrycks et al., 2021; Li et al., 2022; Jain et al.,
2025; Wang et al., 2025b; Zheng et al., 2025) and multilingual scenarios (Cassano et al., 2022; Peng
et al., 2024; Zhang et al., 2024; Jimenez et al., 2024; Chai et al., 2025; Bytedance, 2025; Zhang
et al., 2025b;a;b). McEval (Chai et al., 2025) is a massively multilingual benchmark covering 40
languages for generation, explanation, and completion tasks. FullStackBench (Bytedance, 2025)
assesses LLMs in realistic, multi-domain scenarios across 16 languages, employing a novel execution
environment. However, due to the challenges of manual annotation, these benchmarks suffer from
issues such as limited diversity and insufficient difficulty, making them difficult to scale in line with
the evolving demand for high-quality evaluation. By comparison, our AutoCodeBench series adopts
a fully automated and scalable approach to create realistic, diverse, and high-difficulty tasks. A recent
trend, exemplified by the SWE-Bench series (Jimenez et al., 2024; Zan et al., 2025; Rashid et al.,
2025; He et al., 2025), focuses on evaluating LLMs in real-world software engineering tasks such as
GitHub issue solving, thereby assessing models’ comprehensive capabilities beyond atomic-level
code generation. By comparison, AutoCodeBench specifically targets LLMs’ atomic-level code
generation abilities, which remain a crucial foundation for overall model performance.

Code Data Synthesis To reduce dependence on manually curated data, a growing body of research
explores automatic data synthesis to augment the training of Code LLMs (Luo et al., 2024; Wei et al.,
2024b; Zheng et al., 2024; Wu et al., 2024; Yu et al., 2024; Ahmad et al., 2025; Xu et al., 2025). For
instance, Evol-Instruct (Luo et al., 2024) uses heuristic prompts to guide LLMs in evolving existing
programming problems, thereby increasing their diversity and difficulty. OSS-Instruct (Wei et al.,
2024b) prompts LLMs to generate new coding problems and solutions from raw, open-source code
snippets. KodCode (Xu et al., 2025) synthesizes a broad spectrum of Python coding tasks—including
questions, solutions, and test cases—and ensures correctness through a systematic self-verification
procedure. Some other methods focus on model self-improvement (Wu et al., 2024; Wei et al., 2024a;
Chen et al., 2025b; Zhou et al., 2025; Zhang et al., 2025c). For instance, Inverse-Instruct (Wu et al.,
2024) is a self-improvement technique that generates new instructions by ”back-translating” code
from an LLM’s own training set, reducing the need to distill from more powerful proprietary models.
Collectively, these data synthesis methods significantly reduce the reliance on manual curation and
enable the continuous expansion of the problem space for training. Our work extends this paradigm
of automation from data augmentation to the benchmark creation process. By leveraging extensive
LLM-sandbox interaction, our pipeline not only automates the synthesis of verifiable test problems
but can also be naturally repurposed for synthesizing high-quality training datasets.

6 FUTURE WORKS

Ensuring high-quality and reliable code data synthesis remains fundamentally challenging. Although
the sandbox provides strong guarantees regarding the correctness of code solutions and their align-
ment with test functions, the intrinsic quality of the synthesized programming problems and the
completeness of their test coverage cannot be fully ensured. AutoCodeGen incorporates an LLM-as-
Critic stage and careful prompt engineering to mitigate such risks, yet these mechanisms inevitably
operate under uncertainty. To further improve reliability, future iterations of AutoCodeGen will
incorporate repeated verification rounds using increasingly capable LLMs. Double- or triple-check
validation loops are expected to improve accuracy, albeit at the cost of increased computational
overhead and reduced pipeline efficiency.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Moreover, repository-level evaluation and data synthesis represent a more realistic and demanding
setting, while the current multi-logic analysis provides only an initial bridge between fine-grained
function behavior and higher-level software engineering reasoning. Moving forward, we aim to
extend AutoCodeGen toward SWE-Bench– and Terminal-Bench–style domains, enabling automated
synthesis of repo-level tasks together with the stateful sandbox environments required for such
scenarios. This represents a crucial step toward scalable and fully autonomous code evaluation
frameworks.

7 CONCLUSION

In this paper, we explored the large-scale and automated construction of code generation benchmarks.
We introduce AutoCodeGen, an automated workflow based on LLM-Sandbox interaction, designed
to generate multilingual verifiable code data without any manual annotation. Through this novel
approach, we have successfully built AutoCodeBench, a large-scale, human-free code generation
benchmark. AutoCodeBench contains 3,920 problems, evenly distributed across 20 programming
languages, and is characterized by its high difficulty, practicality, and diversity. We also provide
AutoCodeBench-Lite and AutoCodeBench-Complete, for efficient and high-quality evaluation of
both chat and base LLMs. Our evaluation of more than 40 open-source and proprietary LLMs
reveals that even the most advanced models still face challenges when confronted with the complex
and diverse multilingual tasks set by AutoCodeBench. Besides, we construct AutoCodeInstruct, a
large-scale, high-quality multilingual training dataset, and validate its effectiveness through GRPO.

REFERENCES

Wasi Uddin Ahmad, Aleksander Ficek, Mehrzad Samadi, Jocelyn Huang, Vahid Noroozi, Somshubra
Majumdar, and Boris Ginsburg. Opencodeinstruct: A large-scale instruction tuning dataset for
code llms, 2025. URL https://arxiv.org/abs/2504.04030.

Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Gabriel Martı́n Blázquez, Guilherme Penedo,
Lewis Tunstall, Andrés Marafioti, Hynek Kydlı́ček, Agustı́n Piqueres Lajarı́n, Vaibhav Srivastav,
Joshua Lochner, Caleb Fahlgren, Xuan-Son Nguyen, Clémentine Fourrier, Ben Burtenshaw, Hugo
Larcher, Haojun Zhao, Cyril Zakka, Mathieu Morlon, Colin Raffel, Leandro von Werra, and
Thomas Wolf. Smollm2: When smol goes big – data-centric training of a small language model,
2025. URL https://arxiv.org/abs/2502.02737.

Anthropic. Claude code, 2025. URL https://claude.com/product/claude-code.

Anthropic. Introducing claude 4, 2025a. URL https://www.anthropic.com/news/cla
ude-4.

Anthropic. Claude opus 4.1, 2025b. URL https://www.anthropic.com/news/claud
e-opus-4-1.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models, 2021. URL https://arxiv.org/abs/2108.07732.

Baidu. Ernie-x1-turbo-32k, 2025. URL https://cloud.baidu.com/doc/WENXINWORK
SHOP/s/Wm9cvy6rl.

Bytedance. Fullstack bench: Evaluating llms as full stack coders, 2025. URL https://arxiv.
org/abs/2412.00535.

Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-Costin, Donald
Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, Molly Q Feldman, Arjun Guha,
Michael Greenberg, and Abhinav Jangda. Multipl-e: A scalable and extensible approach to
benchmarking neural code generation, 2022. URL https://arxiv.org/abs/2208.082
27.

10

https://arxiv.org/abs/2504.04030
https://arxiv.org/abs/2502.02737
https://claude.com/product/claude-code
https://www.anthropic.com/news/claude-4
https://www.anthropic.com/news/claude-4
https://www.anthropic.com/news/claude-opus-4-1
https://www.anthropic.com/news/claude-opus-4-1
https://arxiv.org/abs/2108.07732
https://cloud.baidu.com/doc/WENXINWORKSHOP/s/Wm9cvy6rl
https://cloud.baidu.com/doc/WENXINWORKSHOP/s/Wm9cvy6rl
https://arxiv.org/abs/2412.00535
https://arxiv.org/abs/2412.00535
https://arxiv.org/abs/2208.08227
https://arxiv.org/abs/2208.08227

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Linzheng Chai, Shukai Liu, Jian Yang, Yuwei Yin, JinKe, Jiaheng Liu, Tao Sun, Ge Zhang, Changyu
Ren, Hongcheng Guo, Noah Wang, Boyang Wang, Xianjie Wu, Bing Wang, Tongliang Li, Liqun
Yang, Sufeng Duan, Zhaoxiang Zhang, and Zhoujun Li. Mceval: Massively multilingual code
evaluation. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=UunCPtPOlZ.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code, 2021. URL https://arxiv.org/abs/2107.033
74.

Wei-Lin Chen, Zhepei Wei, Xinyu Zhu, Shi Feng, and Yu Meng. Do llm evaluators prefer themselves
for a reason?, 2025a. URL https://arxiv.org/abs/2504.03846.

Xiancai Chen, Zhengwei Tao, Kechi Zhang, Changzhi Zhou, Xinyu Zhang, Wanli Gu, Yuanpeng
He, Mengdi Zhang, Xunliang Cai, Haiyan Zhao, and Zhi Jin. Revisit self-debugging with self-
generated tests for code generation. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and
Mohammad Taher Pilehvar (eds.), Proceedings of the 63rd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 18003–18023, Vienna, Austria, July
2025b. Association for Computational Linguistics. ISBN 979-8-89176-251-0. URL https:
//aclanthology.org/2025.acl-long.881/.

Cursor. The ai code editor, 2025. URL https://cursor.com/en.

DeepSeek-AI. Deepseek-v3 technical report, 2025a. URL https://arxiv.org/abs/2412
.19437.

DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
2025b. URL https://arxiv.org/abs/2501.12948.

DeepSeek-AI, Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu, Y. Wu,
Yukun Li, Huazuo Gao, Shirong Ma, Wangding Zeng, Xiao Bi, Zihui Gu, Hanwei Xu, Damai
Dai, Kai Dong, Liyue Zhang, Yishi Piao, Zhibin Gou, Zhenda Xie, Zhewen Hao, Bingxuan Wang,
Junxiao Song, Deli Chen, Xin Xie, Kang Guan, Yuxiang You, Aixin Liu, Qiushi Du, Wenjun Gao,
Xuan Lu, Qinyu Chen, Yaohui Wang, Chengqi Deng, Jiashi Li, Chenggang Zhao, Chong Ruan,
Fuli Luo, and Wenfeng Liang. Deepseek-coder-v2: Breaking the barrier of closed-source models
in code intelligence, 2024. URL https://arxiv.org/abs/2406.11931.

Gemini. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long context, and
next generation agentic capabilities, 2025. URL https://arxiv.org/abs/2507.06261.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen,
Xiao Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder:
When the large language model meets programming – the rise of code intelligence, 2024. URL
https://arxiv.org/abs/2401.14196.

Xinyi He, Qian Liu, Mingzhe Du, Lin Yan, Zhijie Fan, Yiming Huang, Zejian Yuan, and Zejun Ma.
Swe-perf: Can language models optimize code performance on real-world repositories?, 2025.
URL https://arxiv.org/abs/2507.12415.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, et al. Measuring coding challenge competence
with apps. arXiv preprint arXiv:2105.09938, 2021.

11

https://openreview.net/forum?id=UunCPtPOlZ
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2504.03846
https://aclanthology.org/2025.acl-long.881/
https://aclanthology.org/2025.acl-long.881/
https://cursor.com/en
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2406.11931
https://arxiv.org/abs/2507.06261
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2507.12415

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Siming Huang, Tianhao Cheng, J. K. Liu, Jiaran Hao, Liuyihan Song, Yang Xu, J. Yang, Jiaheng Liu,
Chenchen Zhang, Linzheng Chai, Ruifeng Yuan, Zhaoxiang Zhang, Jie Fu, Qian Liu, Ge Zhang,
Zili Wang, Yuan Qi, Yinghui Xu, and Wei Chu. Opencoder: The open cookbook for top-tier code
large language models, 2025. URL https://arxiv.org/abs/2411.04905.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun
Zhang, Bowen Yu, Keming Lu, Kai Dang, Yang Fan, Yichang Zhang, An Yang, Rui Men, Fei
Huang, Bo Zheng, Yibo Miao, Shanghaoran Quan, Yunlong Feng, Xingzhang Ren, Xuancheng
Ren, Jingren Zhou, and Junyang Lin. Qwen2.5-coder technical report, 2024a. URL https:
//arxiv.org/abs/2409.12186.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024b.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. In The Thirteenth International Conference on
Learning Representations, 2025. URL https://openreview.net/forum?id=chfJJY
C3iL.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language
models for code generation, 2024. URL https://arxiv.org/abs/2406.00515.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues?, 2024. URL
https://arxiv.org/abs/2310.06770.

Kimi-Team. Kimi k2: Open agentic intelligence, 2025. URL https://arxiv.org/abs/2507
.20534.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven
Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson,
Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level code
generation with alphacode. Science, 378(6624):1092–1097, December 2022. ISSN 1095-9203. doi:
10.1126/science.abq1158. URL http://dx.doi.org/10.1126/science.abq1158.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis Kocetkov,
Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul,
Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii,
Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli He, Manan
Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muhtasham Oblokulov,
Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, Tri
Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten
Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa
Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes,
Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries. Starcoder 2 and the stack v2:
The next generation, 2024.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with
evol-instruct. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=UnUwSIgK5W.

OpenAI. Hello GPT-4o, 2024. URL https://openai.com/index/hello-gpt-4o/.

OpenAI. Introducing gpt-4.1 in the api, 2025a. URL https://openai.com/index/gpt-4
-1/.

OpenAI. Gpt-5, 2025b. URL https://openai.com/index/introducing-gpt-5/.

12

https://arxiv.org/abs/2411.04905
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2409.12186
https://openreview.net/forum?id=chfJJYC3iL
https://openreview.net/forum?id=chfJJYC3iL
https://arxiv.org/abs/2406.00515
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2507.20534
https://arxiv.org/abs/2507.20534
http://dx.doi.org/10.1126/science.abq1158
https://openreview.net/forum?id=UnUwSIgK5W
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/gpt-4-1/
https://openai.com/index/gpt-4-1/
https://openai.com/index/introducing-gpt-5/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

OpenAI. Introducing openai o3 and o4-mini, 2025. URL https://openai.com/index/int
roducing-o3-and-o4-mini/.

Arjun Panickssery, Samuel R. Bowman, and Shi Feng. LLM evaluators recognize and favor their own
generations. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024. URL https://openreview.net/forum?id=4NJBV6Wp0h.

Qiwei Peng, Yekun Chai, and Xuhong Li. Humaneval-xl: A multilingual code generation benchmark
for cross-lingual natural language generalization, 2024. URL https://arxiv.org/abs/24
02.16694.

Qwen. Qwen3-coder: Agentic coding in the world, 2025. URL https://qwenlm.github.io
/blog/qwen3-coder/.

Qwen. Qwen3-next: Towards ultimate training & inference efficiency, 2025. URL https:
//qwen.ai.

Muhammad Shihab Rashid, Christian Bock, Yuan Zhuang, Alexander Buchholz, Tim Esler, Simon
Valentin, Luca Franceschi, Martin Wistuba, Prabhu Teja Sivaprasad, Woo Jung Kim, Anoop
Deoras, Giovanni Zappella, and Laurent Callot. Swe-polybench: A multi-language benchmark for
repository level evaluation of coding agents, 2025. URL https://arxiv.org/abs/2504
.08703.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation models for
code. arXiv preprint arXiv:2308.12950, 2023.

Seed. Introduction to techniques used in seed1.6, 2025. URL https://seed.bytedance.c
om/en/seed1_6.

ByteDance Seed, Yuyu Zhang, Jing Su, Yifan Sun, Chenguang Xi, Xia Xiao, Shen Zheng, Anxiang
Zhang, Kaibo Liu, Daoguang Zan, Tao Sun, Jinhua Zhu, Shulin Xin, Dong Huang, Yetao Bai,
Lixin Dong, Chao Li, Jianchong Chen, Hanzhi Zhou, Yifan Huang, Guanghan Ning, Xierui Song,
Jiaze Chen, Siyao Liu, Kai Shen, Liang Xiang, and Yonghui Wu. Seed-coder: Let the code model
curate data for itself, 2025. URL https://arxiv.org/abs/2506.03524.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024. URL https://arxiv.org/abs/
2402.03300.

Tencent. Hunyuan-turbos: Advancing large language models through mamba-transformer synergy
and adaptive chain-of-thought, 2025. URL https://arxiv.org/abs/2505.15431.

Kaixin Wang, Tianlin Li, Xiaoyu Zhang, Chong Wang, Weisong Sun, Yang Liu, and Bin Shi. Software
development life cycle perspective: A survey of benchmarks for code large language models and
agents, 2025a. URL https://arxiv.org/abs/2505.05283.

Zhexu Wang, Yiping Liu, Yejie Wang, Wenyang He, Bofei Gao, Muxi Diao, Yanxu Chen, Kelin Fu,
Flood Sung, Zhilin Yang, et al. Ojbench: A competition level code benchmark for large language
models. arXiv preprint arXiv:2506.16395, 2025b.

Yuxiang Wei, Federico Cassano, Jiawei Liu, Yifeng Ding, Naman Jain, Zachary Mueller, Harm
de Vries, Leandro von Werra, Arjun Guha, and Lingming Zhang. Selfcodealign: Self-alignment
for code generation. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak,
and C. Zhang (eds.), Advances in Neural Information Processing Systems, volume 37, pp. 62787–
62874. Curran Associates, Inc., 2024a. URL https://proceedings.neurips.cc/pap
er_files/paper/2024/file/72da102da91a8042a0b2aa968429a9f9-Paper
-Conference.pdf.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Empower-
ing code generation with OSS-instruct. In Proceedings of the 41st International Conference on
Machine Learning, volume 235 of Proceedings of Machine Learning Research, pp. 52632–52657.
PMLR, 21–27 Jul 2024b. URL https://proceedings.mlr.press/v235/wei24h.
html.

13

https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openreview.net/forum?id=4NJBV6Wp0h
https://arxiv.org/abs/2402.16694
https://arxiv.org/abs/2402.16694
https://qwenlm.github.io/blog/qwen3-coder/
https://qwenlm.github.io/blog/qwen3-coder/
https://qwen.ai
https://qwen.ai
https://arxiv.org/abs/2504.08703
https://arxiv.org/abs/2504.08703
https://seed.bytedance.com/en/seed1_6
https://seed.bytedance.com/en/seed1_6
https://arxiv.org/abs/2506.03524
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2505.15431
https://arxiv.org/abs/2505.05283
https://proceedings.neurips.cc/paper_files/paper/2024/file/72da102da91a8042a0b2aa968429a9f9-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/72da102da91a8042a0b2aa968429a9f9-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/72da102da91a8042a0b2aa968429a9f9-Paper-Conference.pdf
https://proceedings.mlr.press/v235/wei24h.html
https://proceedings.mlr.press/v235/wei24h.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yutong Wu, Di Huang, Wenxuan Shi, Wei Wang, Lingzhe Gao, Shihao Liu, Ziyuan Nan, Kaizhao
Yuan, Rui Zhang, Xishan Zhang, Zidong Du, Qi Guo, Yewen Pu, Dawei Yin, Xing Hu, and Yunji
Chen. Inversecoder: Self-improving instruction-tuned code llms with inverse-instruct, 2024. URL
https://arxiv.org/abs/2407.05700.

Zhangchen Xu, Yang Liu, Yueqin Yin, Mingyuan Zhou, and Radha Poovendran. Kodcode: A diverse,
challenging, and verifiable synthetic dataset for coding, 2025. URL https://arxiv.org/ab
s/2503.02951.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388,
2025.

Zhaojian Yu, Xin Zhang, Ning Shang, Yangyu Huang, Can Xu, Yishujie Zhao, Wenxiang Hu, and
Qiufeng Yin. Wavecoder: Widespread and versatile enhancement for code large language models
by instruction tuning, 2024. URL https://arxiv.org/abs/2312.14187.

Daoguang Zan, Zhirong Huang, Wei Liu, Hanwu Chen, Linhao Zhang, Shulin Xin, Lu Chen, Qi Liu,
Xiaojian Zhong, Aoyan Li, Siyao Liu, Yongsheng Xiao, Liangqiang Chen, Yuyu Zhang, Jing Su,
Tianyu Liu, Rui Long, Kai Shen, and Liang Xiang. Multi-swe-bench: A multilingual benchmark
for issue resolving, 2025. URL https://arxiv.org/abs/2504.02605.

Alexander Zhang, Marcus Dong, Jiaheng Liu, Wei Zhang, Yejie Wang, Jian Yang, Ge Zhang, Tianyu
Liu, Zhongyuan Peng, Yingshui Tan, Yuanxing Zhang, Zhexu Wang, Weixun Wang, Yancheng
He, Ken Deng, Wangchunshu Zhou, Wenhao Huang, and Zhaoxiang Zhang. Codecriticbench: A
holistic code critique benchmark for large language models, 2025a. URL https://arxiv.or
g/abs/2502.16614.

Chenchen Zhang, Yuhang Li, Can Xu, Jiaheng Liu, Ao Liu, Shihui Hu, Dengpeng Wu, Guanhua
Huang, Kejiao Li, Qi Yi, Ruibin Xiong, Haotian Zhu, Yuanxing Zhang, Yuhao Jiang, Yue Zhang,
Zenan Xu, Bohui Zhai, Guoxiang He, Hebin Li, Jie Zhao, Le Zhang, Lingyun Tan, Pengyu Guo,
Xianshu Pang, Yang Ruan, Zhifeng Zhang, Zhonghu Wang, Ziyan Xu, Zuopu Yin, Wiggin Zhou,
Chayse Zhou, and Fengzong Lian. Artifactsbench: Bridging the visual-interactive gap in llm code
generation evaluation, 2025b. URL https://arxiv.org/abs/2507.04952.

Shudan Zhang, Hanlin Zhao, Xiao Liu, Qinkai Zheng, Zehan Qi, Xiaotao Gu, Xiaohan Zhang, Yuxiao
Dong, and Jie Tang. Naturalcodebench: Examining coding performance mismatch on humaneval
and natural user prompts, 2024. URL https://arxiv.org/abs/2405.04520.

Xinyu Zhang, Changzhi Zhou, Linmei Hu, Luhao Zhang, Xiancai Chen, Haomin Fu, Yang Yang, and
Mengdi Zhang. Scoder: Iterative self-distillation for bootstrapping small-scale data synthesizers to
empower code llms, 2025c. URL https://arxiv.org/abs/2509.07858.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu, Bill Yuchen Lin, Jie Fu, Wenhu Chen, and
Xiang Yue. OpenCodeInterpreter: Integrating code generation with execution and refinement.
In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the Association for
Computational Linguistics: ACL 2024, pp. 12834–12859, Bangkok, Thailand, August 2024.
Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.762. URL
https://aclanthology.org/2024.findings-acl.762/.

Zihan Zheng, Zerui Cheng, Zeyu Shen, Shang Zhou, Kaiyuan Liu, Hansen He, Dongruixuan Li,
Stanley Wei, Hangyi Hao, Jianzhu Yao, Peiyao Sheng, Zixuan Wang, Wenhao Chai, Aleksandra
Korolova, Peter Henderson, Sanjeev Arora, Pramod Viswanath, Jingbo Shang, and Saining Xie.
Livecodebench pro: How do olympiad medalists judge llms in competitive programming?, 2025.
URL https://arxiv.org/abs/2506.11928.

Zhipu. Glm-4.5: Reasoning, coding, and agentic abililties, 2025. URL https://z.ai/blog/
glm-4.5.

Changzhi Zhou, Xinyu Zhang, Dandan Song, Xiancai Chen, Wanli Gu, Huipeng Ma, Yuhang Tian,
Mengdi Zhang, and Linmei Hu. Refinecoder: Iterative improving of large language models via
adaptive critique refinement for code generation, 2025. URL https://arxiv.org/abs/25
02.09183.

14

https://arxiv.org/abs/2407.05700
https://arxiv.org/abs/2503.02951
https://arxiv.org/abs/2503.02951
https://arxiv.org/abs/2312.14187
https://arxiv.org/abs/2504.02605
https://arxiv.org/abs/2502.16614
https://arxiv.org/abs/2502.16614
https://arxiv.org/abs/2507.04952
https://arxiv.org/abs/2405.04520
https://arxiv.org/abs/2509.07858
https://aclanthology.org/2024.findings-acl.762/
https://arxiv.org/abs/2506.11928
https://z.ai/blog/glm-4.5
https://z.ai/blog/glm-4.5
https://arxiv.org/abs/2502.09183
https://arxiv.org/abs/2502.09183

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu, Y Wu, Yukun Li,
Huazuo Gao, Shirong Ma, et al. Deepseek-coder-v2: Breaking the barrier of closed-source models
in code intelligence. arXiv preprint arXiv:2406.11931, 2024.

Yaoming Zhu, Junxin Wang, Yiyang Li, Lin Qiu, ZongYu Wang, Jun Xu, Xuezhi Cao, Yuhuai Wei,
Mingshi Wang, Xunliang Cai, and Rong Ma. Oibench: Benchmarking strong reasoning models
with olympiad in informatics, 2025. URL https://arxiv.org/abs/2506.10481.

15

https://arxiv.org/abs/2506.10481

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 7: Comparison of Accuracy, Upper Bound, and Model Performance.

Average Python C++ Java JS Go Shell

Problem Accuracy 87.6 83.5 88.0 86.0 89.0 86.0 93.3

Current Upper Bound 66.9∆20.7 61.7∆21.8 71.5∆16.5 76.1∆9.9 58.2∆30.8 65.4∆20.6 68.6∆24.7

Claude Opus 4 (Reasoning) 44.6∆43.0 40.3∆43.2 44.1∆43.9 55.9∆30.1 38.6∆50.4 37.2∆48.8 51.6∆41.7

A MANUAL VERIFICATION

Although our pipeline enforces quality control through specifications and an LLM-as-Critic mech-
anism, we further validate AutoCodeBench with human annotators. We employ a Human-LLM
collaboration approach for data quality validation. Specifically, we design prompts in the native lan-
guages of the annotators and use the DeepSeek-R1-0528 to generate detailed reasoning processes
and checklist-based annotation results. The prompt is shown in Figure 10. During the annotation
process, we assume that the programming problems are completely correct. The primary task of the
annotators is to assess the correctness of the test functions and their alignment with the programming
problem, based on the LLM’s output. We allow for test cases that may not cover all boundary condi-
tions, focusing primarily on the correctness of the test functions rather than their comprehensiveness.
The annotators pay particular attention to the following aspects:

• Whether the function names, class names, variable definitions, and return types are consistent
with the problem description;

• Whether the test cases exhibit randomness or non-reproducibility;

• Whether the test cases contradict the logic presented in the problem statement;

• Whether there are any precision issues with the test cases;

• Whether the test functions include test cases that are not addressed in the problem description.

We calculate the problem accuracy rates for different programming languages (Python, C++, Java,
JavaScript, Go, Shell), as shown in Table 7. The results indicate that, despite the presence of some
noisy data, our benchmark model still demonstrates high accuracy (87.6%). Furthermore, even after
removing the noise, the current SOTA model shows significant room for improvement (∆43.0),
further validating the high difficulty level of our benchmark. The performance of Claude Opus 4
(Reasoning) in these six languages are only 44.6(∆43.0), highlighting the significant potential for
improvement. Besides, we find that, compared to logic errors in the problem description and errors
in the test functions, the most frequently occurring issue is incomplete problem descriptions. For
example, some test functions reference class or function names that are essential but not explicitly
mentioned in the problem description, or they require natural language outputs for edge cases that are
not explicitly specified in the problem statement, leading to mismatches between the generated code
and the test functions. Interestingly, we observe similar issues in manually annotated benchmarks,
highlighting the significant challenge of creating comprehensive and accurate programming problems
for annotators.

B SETUP OF BENCHMARK COMPARISONS

B.1 MULTI-LOGIC

AutoCodeBench contains tasks that demand executing multiple functionalities, such as implement-
ing both an addition and a multiplication function simultaneously. In contrast, the tasks in other
benchmarks are almost exclusively focused on implementing a single core functionality.

B.2 DIFFICULTY

We rate the difficulty of each benchmark based on the performance of DeepSeek-V3-0324.
Specifically, benchmarks with pass@1 below 40 are assigned five stars; those between 40–50 receive
four stars (e.g., LiveCodeBench-v6: 46.9, AutoCodeBench: 48.1); between 50–60 receive three

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

String & Text Processing

Algorithms & Problem Solving

Object-O
riented Programming

D
ata Structures & C

ollections

Language Fundamentals

Functions & Modules

Web Development & Frameworks

Systems Programming & Low-level Development
Network Programming & Communication

Data Science & Analytics

File
& I/O

 O
pe

rat
ion

s

Con
cu

rre
nc

y &
 A

sy
nc

 P
ro

gr
am

ming

Da
ta

ba
se

 O
pe

ra
tio

ns
 &

 P
er

sis
te

nc
e

O
th

er
s

Tag Count: 14

19 : String & Text Processing, Algorithms & Problem Solving, Object-Oriented Programming, Data Structures & Collections, Language Fundamentals, Functions & Modules, Web Development & Frameworks, Systems Programming & Low-level Development, Network Programming & Communication, Data Science & Analytics, File & I/O Operations, Concurrency & Async Programming, Database Operations & Persistence, Machine Learning & AI, Development Tools & Ecosystem, Mobile & Cross-platform Development, Error Handling & Debugging, Functional Programming, Testing & Quality Assurance, Memory Management & Performance

(a) AutoCodeBench

Algorithms & Problem Solving

Object-Oriented Programming

D
at

a
St

ru
ct

ur
es

 &
 C

ol
le

ct
io

ns

Language Fundam
entals

String & Text Processing

Systems Programming & Low-level Development

Network Programming & Communication

Functions & Modules
File & I/O Operations

Web Development & Frameworks

Con
cu

rre
nc

y &
 Asy

nc
 Prog

ram
ming

Data
 S

cie
nc

e &
 A

na
lyt

ics

O
th

er
s

Tag Count: 13

(b) AutoCodeBench-Lite

Algorithms & Problem Solving

Data Science & Analytics

La
ng

ua
ge

 F
un

da
m

en
ta

ls Data Structures & Collections

Web Development & Frameworks

Object-Oriented Programming

String & Text ProcessingDatabase Operations & Persistence

Mac
hin

e L
ea

rni
ng

 & AI

Con
cu

rre
nc

y &
 A

sy
nc

 P
ro

gr
am

ming

Fi
le

&
I/O

 O
pe

ra
tio

ns

O
th

er
s

Tag Count: 12

19 : Algorithms & Problem Solving, Data Science & Analytics, Language Fundamentals, Data Structures & Collections, Web Development & Frameworks, Object-Oriented Programming, String & Text Processing, Database Operations & Persistence, Machine Learning & AI, Concurrency & Async Programming, File & I/O Operations, Functions & Modules, Network Programming & Communication, Testing & Quality Assurance, Systems Programming & Low-level Development, Development Tools & Ecosystem, Error Handling & Debugging

(c) FullStackBench

Algorithms & Problem Solving

Language Fundam
entals

Data Structures & Collections

Systems Programming & Low-level Development

String & Text Processing

Functional Programming

Fu
nc

tio
ns

 &
 M

od
ule

s

W
eb

 D
ev

el
op

m
en

t &
 F

ra
m

ew
or

ks

O
th

er
s

Tag Count: 9

19 : Algorithms & Problem Solving, Language Fundamentals, Data Structures & Collections, Systems Programming & Low-level Development, Development Tools & Ecosystem, String & Text Processing, Functional Programming, Functions & Modules, Web Development & Frameworks

(d) McEval

Figure 5: Category Distribution of Different Benchmarks.

cpp(186)

go(191)java(188)

javascript(184)

python(196)

shell(188)

csharp(199)

da
rt(2

00
)

eli
xir

(1
98

)

ju
lia

(2
00

) kotlin(200)

perl(200)

php(199)

racket(196)

r(198)

ruby(200)

rust(199)

sca
la(

19
9)sw

ift(
20

0)

ty
pe

sc
rip

t(1
99

)

Languages: 20

1 : cpp, go, java, javascript, python, shell, csharp, dart, elixir, julia, kotlin, perl, php, racket, r, ruby, rust, scala, swift, typescript

(a) AutoCodeBench

racket(106)

scala(97)

swift(95)

dart(94)

r(89)

java(88)

rub
y(8

8)

ko
tlin

(8
4)

ju
lia

(8
2)

csharp(80)

rust(80)

cpp(78)

go(75)

perl(73)

shell(72)

python(65)typ
es

cri
pt(

62
)

eli
xir

(6
1)ph
p(

60
)

ja
va

sc
rip

t(5
7)

Languages: 20

1 : racket, scala, swift, dart, r, java, ruby, kotlin, julia, csharp, rust, cpp, go, perl, shell, python, typescript, elixir, php, javascript

(b) AutoCodeBench-Lite

htm
l

python

go

sql

cpp

php

javascript

R

typescript
ruby
bash

D

scala
rust

csharp

ja
va

Languages: 16
Count: 1687

1 : html, python, go, sql, cpp, php, javascript, R, typescript, ruby, bash, D, scala, rust, csharp, java

(c) FullStackBench

JuliaF#Python

FortranDartPowerShellAWK

Ruby

PHP

Visual Basic

C#

VimScript

Scala

Swift

Kotlin

Sch
em

e
R

G
o

Ja
va

Sc
rip

t

Ty
pe

Sc
rip

t

Elixir

Com
m

on Lisp
CPP

Racket
Erlang

Groovy

Tcl

Pascal

Rust

Lua

C

CoffeeScript
Haskell

Java
ShellEmac

s L
ispPe

rlHT
M

L

M
ar

kd
ow

n

JS
O

N

Languages: 40
Count: 2007

1 : Julia, F#, Python, Fortran, Dart, PowerShell, AWK, Ruby, PHP, Visual Basic, C#, VimScript, Scala, Swift, Kotlin, Scheme, R, Go, JavaScript, TypeScript, Elixir, Common Lisp, CPP, Racket, Erlang, Groovy, Tcl, Pascal, Rust, Lua, C, CoffeeScript, Haskell, Java, Shell, Emacs Lisp, Perl, HTML, Markdown, JSON

(d) McEval

Figure 6: Language Distribution of Different Benchmarks.

stars; between 60–80 receive two stars (e.g., FullStackBench: 67.0, McEval: 72.3); and those
above 80 receive one star. HumanEval and MBPP are excluded from evaluation due to extensive
data leakage and its overly simple problems. For reference, DeepSeek-V3 (October 2024)
already achieves a pass@1 of 91.5 in HumanEval.

B.3 CATEGORY DISTRIBUTION AND LANGUAGE DISTRIBUTION

We prompt Claude Sonnet 4 to generate 20 language-agnostic category labels for classification:

• Core Programming Concepts: Language Fundamentals, Functions & Modules, Object-
Oriented Programming, Functional Programming, Memory Management & Performance,
Error Handling & Debugging

• Data and Algorithms: Data Structures & Collections, Algorithms & Problem Solving,
String & Text Processing, File & I/O Operations, Concurrency & Async Programming

• Application Domains: Network Programming & Communication, Database Operations
& Persistence, Web Development & Frameworks, Mobile & Cross-platform Development,
Systems Programming & Low-level Development

• Advanced Topics and Tooling: Data Science & Analytics, Machine Learning & AI, Testing
& Quality Assurance, Development Tools & Ecosystem

In addition to AutoCodeBench, we conduct task tagging and language distribution analysis for
AutoCodeBench-Lite, FullStackBench, and McEval. The results are presented in Figures 5 and 6.
FullStackBench demonstrates comparable category diversity to AutoCodeBench(-Lite) but suffers
from an imbalanced language distribution. In contrast, McEval exhibits a well-balanced multilingual
distribution but lacks diversity and balance in its category coverage. Our AutoCodeBench(-Lite)
achieves the most comprehensive category coverage while maintaining a balanced multilingual
distribution, enabling thorough and accurate evaluation of LLMs’ multilingual code generation
capabilities.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 8: Pass@1 (%) performance of different base models for 3-shot AutoCodeBench-Complete.

Average Python Cpp Java JS Go Shell Csharp Dart Elixir Julia Kotlin Perl PHP Racket R Ruby Rust Scala Swift TS
Count 50

30B+ Models
DeepSeek-Coder-V2-Base 39.0 24.0 32.0 40.0 44.0 34.0 26.0 64.0 38.0 52.0 46.0 56.0 38.0 36.0 32.0 26.0 40.0 26.0 36.0 42.0 48.0
Qwen2.5-Coder-32B 35.5 36.0 34.0 32.0 32.0 38.0 34.0 58.0 30.0 42.0 38.0 52.0 40.0 32.0 30.0 26.0 30.0 18.0 30.0 34.0 44.0
Qwen2.5-72B 35.9 32.0 22.0 38.0 40.0 22.0 34.0 62.0 22.0 42.0 38.0 46.0 42.0 46.0 28.0 26.0 38.0 28.0 28.0 30.0 54.0

∼8B Models
Seed-Coder-8B-Base 31.6 26.0 22.0 40.0 30.0 32.0 12.0 54.0 24.0 48.0 30.0 48.0 28.0 36.0 22.0 26.0 32.0 18.0 20.0 36.0 48.0
OpenCoder-8B-Base 26.1 22.0 6.0 28.0 34.0 30.0 24.0 52.0 10.0 42.0 32.0 28.0 26.0 24.0 20.0 20.0 28.0 14.0 26.0 14.0 42.0
Qwen2.5-Coder-7B 24.6 20.0 10.0 22.0 28.0 24.0 14.0 46.0 8.0 46.0 32.0 42.0 30.0 30.0 14.0 20.0 18.0 16.0 24.0 14.0 34.0
DeepSeek-Coder-6.7B-Base 22.9 20.0 14.0 26.0 34.0 18.0 18.0 50.0 8.0 44.0 20.0 38.0 28.0 18.0 12.0 14.0 34.0 6.0 10.0 4.0 42.0
Qwen3-8B-Base 22.6 20.0 14.0 18.0 34.0 20.0 12.0 50.0 6.0 34.0 26.0 24.0 32.0 30.0 8.0 20.0 30.0 8.0 14.0 16.0 36.0

Table 9: Pass@1 (%) performance of different models for AutoCodeBench-Lite.

Average Python Cpp Java JS Go Shell Csharp Dart Elixir Julia Kotlin Perl PHP Racket R Ruby Rust Scala Swift TS
Count 65 78 88 57 75 72 80 94 61 82 84 73 60 106 89 88 80 97 95 62
Current Upper Bound 100.0

Proprietary Models and 200B+ Open-source Models
Claude Opus 4.1 (20250805) 69.9 61.5 62.8 65.9 68.4 68.0 70.8 90.0 69.1 78.7 73.2 73.8 67.1 55.0 80.2 68.5 72.7 67.5 56.7 67.4 77.4
Claude Sonnet 4 (20250514) 62.0 53.9 60.3 60.2 50.9 64.0 65.3 78.8 61.7 63.9 53.7 66.7 64.4 61.7 76.4 59.6 62.5 57.5 56.7 52.6 66.1
Claude Opus 4.1 (20250805) 63.8 53.8 61.5 61.4 63.2 61.3 62.5 83.7 62.8 63.9 68.3 73.8 61.6 48.3 68.9 60.7 61.4 65.0 56.7 60.0 72.6
Claude Sonnet 4 (20250514) 59.8 44.6 61.5 60.2 57.9 56.0 65.3 83.8 56.4 62.3 53.7 69.1 65.8 55.0 71.7 50.6 56.8 56.3 49.5 49.5 71.0
GPT-5 (20250807) 67.0 66.2 64.1 52.3 73.7 66.7 73.6 80.0 67.0 72.1 61.0 64.3 62.5 65.0 61.9 71.9 70.5 68.7 58.8 68.4 80.6
o3-high (20250416) 63.2 61.5 59.0 60.2 64.9 33.3 68.1 71.3 67.0 63.9 62.2 70.2 64.4 55.0 51.9 60.7 69.3 72.5 57.7 74.7 77.4
o4-mini (2025-04-16) 60.5 63.1 55.1 54.6 57.9 45.3 62.5 66.3 66.0 73.8 56.1 67.9 64.4 53.3 46.2 50.6 70.5 68.8 58.8 63.2 72.6
GPT4.1 (2025-04-14) 56.9 49.2 57.7 48.9 52.6 38.7 47.2 83.8 54.3 59.0 58.5 70.2 61.6 55.0 53.8 47.2 58.0 63.8 48.5 55.8 79.0
Grok-4 63.0 60.9 64.1 55.7 56.1 61.3 68.1 82.5 55.3 59.0 63.4 69.1 63.0 41.7 72.6 59.6 73.9 65.0 60.8 54.7 66.1
Gemini2.5 Pro 59.1 56.9 59.7 59.1 54.4 50.7 62.5 75.0 64.9 62.3 64.6 71.4 58.9 51.7 53.8 60.7 63.6 37.5 53.6 57.9 61.3
Gemini2.5 Flash 52.9 49.2 56.4 54.6 50.9 45.3 45.8 75.0 56.4 45.0 51.2 63.1 54.8 40.0 34.0 59.6 58.0 58.8 46.4 51.6 61.3
DeepSeek-V3.1 57.5 53.8 61.5 60.2 52.6 37.3 47.2 80.0 57.4 67.2 61.0 63.1 60.3 50.0 55.7 57.3 60.2 61.2 48.5 55.8 58.1
DeepSeek-V3.1 52.2 44.6 51.3 64.8 43.9 33.3 43.1 72.5 43.6 59.0 56.1 57.1 61.6 50.0 51.9 55.1 51.1 50.0 42.3 48.4 66.1
DeepSeek-Coder-V2-Instruct 40.5 29.2 37.2 37.5 26.3 42.7 36.1 66.3 30.9 52.5 34.2 52.4 48.0 40.0 40.6 40.5 47.7 30.0 34.0 39.0 46.8
Hunyuan-TurboS 50.3 43.1 46.2 54.6 45.6 46.7 43.1 75.0 43.6 68.9 56.1 56.0 53.4 48.3 42.5 50.6 52.3 42.5 39.2 43.2 64.5
GLM-4.5-enable 55.0 56.1 54.7 56.1 49.0 54.2 59.4 76.3 39.5 59.3 52.4 63.1 61.6 50.0 49.5 57.8 58.0 50.7 42.9 52.1 61.3
Kimi-K2-0905-preview 53.7 46.2 44.9 51.1 52.6 49.3 51.4 73.7 58.5 65.6 51.2 56.0 56.2 50.0 60.4 48.3 48.9 45.0 48.5 51.6 66.1
ERNIE-X1-Turbo-32K 44.4 50.8 26.3 37.9 49.1 48.0 32.4 46.8 28.7 53.5 63.0 42.9 53.4 38.3 45.3 49.4 50.0 31.2 42.7 45.3 61.3
Qwen3-235B-A22B-Thinking-2507 57.3 55.4 52.6 54.6 64.9 53.3 62.5 80.0 50.0 68.9 56.1 47.6 50.7 46.7 65.1 60.7 62.5 57.5 44.3 51.6 66.1
Qwen3-Coder-480B-A35B-Instruct 51.5 52.3 44.9 59.1 45.6 42.7 52.8 68.8 37.2 59.0 56.1 56.0 57.5 46.7 57.6 43.8 53.4 38.8 40.2 53.7 67.7
Qwen3-235B-A22B-Instruct-2507 49.8 43.1 47.4 55.7 43.9 44.0 54.2 73.8 38.3 45.9 46.3 50.0 67.1 43.3 53.8 51.7 47.7 40.0 37.1 48.4 66.1
Seed1.6-Thinking-250715 53.9 56.9 60.3 58.0 49.1 58.7 48.6 73.8 41.5 52.5 59.8 60.7 54.8 43.3 51.9 55.1 60.2 46.3 40.2 47.4 62.9
Seed1.6-enabled (250615) 53.2 52.3 57.7 51.1 45.6 60.0 55.6 62.5 43.6 52.5 57.3 54.8 57.5 41.7 52.8 60.7 58.0 43.8 41.2 51.6 66.1
Seed1.6-disabled (250615) 48.8 41.5 51.3 50.0 47.4 50.7 43.1 78.8 42.6 52.5 50.0 52.4 56.2 33.3 50.0 46.1 47.7 48.8 29.9 40.0 71.0

200B Open-source Models
GLM-4.5-Air-enable 46.2 53.9 44.9 45.5 45.6 50.7 40.3 72.5 38.3 50.8 42.7 44.1 56.2 45.0 41.5 48.3 47.7 33.8 29.9 40.0 67.7
Qwen3-Next-80B-A3B-Thinking 46.3 50.8 41.0 48.9 59.6 42.7 45.8 76.2 24.5 42.6 47.6 39.3 60.3 41.7 29.2 53.9 54.5 38.7 38.1 44.7 61.3
Qwen3-Next-80B-A3B-Instruct 42.6 43.1 35.9 46.6 42.1 34.7 47.2 66.2 35.1 44.3 43.9 28.6 58.9 45.0 36.8 43.8 40.9 38.7 30.9 42.1 59.7
Qwen3-32B 47.6 50.8 43.6 46.6 43.9 46.8 48.6 72.5 36.2 55.7 47.6 44.1 60.3 45.0 35.9 52.8 44.3 43.8 37.1 46.3 64.5
Qwen3-14B 40.7 46.2 39.7 39.8 42.1 37.3 40.3 62.5 24.5 52.5 41.5 33.3 50.7 33.3 41.5 41.6 43.2 42.5 22.7 33.7 61.3
Qwen3-8B 28.9 29.2 24.4 19.3 35.1 38.7 29.2 51.3 18.1 39.3 28.1 23.8 45.2 25.0 8.5 34.8 37.5 18.8 18.6 20.0 56.5
Qwen3-1.7B 10.8 21.5 2.6 4.6 14.0 10.7 15.3 18.8 6.4 13.1 9.8 7.1 26.0 10.0 1.9 13.5 18.2 0.0 1.0 8.4 27.4
Qwen3-32B 32.3 29.2 25.6 31.8 31.6 32.0 36.1 56.3 25.5 36.1 31.7 33.3 43.8 38.3 25.5 22.5 35.2 25.0 23.7 25.3 51.6
Qwen3-14B 27.8 24.6 20.5 30.7 38.6 16.0 22.2 47.5 16.0 31.2 19.5 34.5 45.2 41.7 22.6 29.2 28.4 25.0 13.4 22.1 45.2
Qwen3-8B 21.4 26.2 6.4 31.8 28.1 20.0 20.8 38.8 16.0 24.6 17.1 23.8 30.1 23.3 18.9 15.7 25.0 8.8 11.3 11.6 43.6
Qwen3-1.7B 7.3 7.7 0.0 1.1 7.0 5.3 12.5 8.8 3.2 8.2 6.1 8.3 21.9 13.3 2.8 9.0 12.5 0.0 2.1 4.2 22.6
Qwen2.5-Coder-32B-Instruct 37.0 33.9 26.9 38.6 40.4 28.0 30.6 57.5 29.8 52.5 31.7 46.4 52.1 43.3 30.2 34.8 40.9 28.8 22.7 35.8 48.4
Qwen2.5-Coder-7B-Instruct 21.5 23.1 6.4 21.6 24.6 12.0 22.2 42.5 16.0 32.8 18.3 33.3 34.3 25.0 17.9 21.4 25.0 5.0 16.5 10.5 33.9
Qwen2.5-Coder-1.5B-Instruct 10.2 12.3 3.9 3.4 17.5 12.0 19.4 16.3 6.4 31.2 1.2 14.3 23.3 8.3 5.7 6.7 12.5 0.0 3.1 3.2 21.0
DeepSeek-Coder-33B-Instruct 27.7 23.1 25.6 23.9 35.1 37.3 26.4 52.5 14.9 59.0 11.0 46.4 39.7 33.3 23.6 14.6 27.3 6.3 26.8 13.7 33.9
DeepSeek-Coder-6.7B-Instruct 19.9 20.0 11.5 20.5 28.1 29.3 16.7 40.0 10.6 39.3 15.9 39.3 24.7 16.7 13.2 10.1 23.9 8.8 11.3 4.2 32.3
Seed-Coder-8B-Instruct 32.7 20.0 25.6 31.8 42.1 28.0 20.8 52.5 27.7 45.9 34.1 41.7 41.1 41.7 36.8 25.8 33.0 18.7 28.9 21.1 46.8
OpenCoder-8B-Instruct 20.1 13.9 11.5 20.5 17.5 25.3 23.6 30.0 17.0 32.8 12.2 22.6 30.1 23.3 15.1 15.7 29.6 7.5 16.5 14.7 30.7

B.4 PROBLEM LENGTH

We use Qwen2.5-32B-Instruct tokenizer to calculate the problem length. For Multi-SWE-
Bench, problem length is not reported, as its tasks depend on extremely large multi-file repositories.

C THE RESULTS OF AUTOCODEBENCH-LITE

The pass@1 values of AutoCodeBench-Lite is shown in Table 9.

D THE RESULTS OF AUTOCODEBENCH-COMPLETE

The pass@1 values of AutoCodeBench-Complete is shown in Table 8.

E LEADERBOARDS

The leaderboards of ACB-Full and ACB-Lite are shown in Figure 7 and 8.

F PERFORMANCE ANALYSIS OF SCALING LAWS

Figure 9 compares parameter scaling and test-time sampling scaling across different models. The
parameter scaling law (left) shows significant variation between models, with Qwen3 (Think)
Series demonstrating the steepest scaling curve, indicating that chain-of-thought reasoning particularly

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

20 25 30 35 40 45 50 55
Average Pass@1

Claude Opus 4.1 (Think)
GPT-5 (20250807)

Claude Opus 4.1
Claude Sonnet 4 (Think)

o3 (high)
Grok-4

o4-mini
Claude Sonnet 4

Gemini2.5 Pro
DeepSeek-V3.1 (Think)

GPT4.1 (2025-04-14)
Qwen3-235B-A22B-Thinking-2507

Kimi-K2-0905-Preview
GLM-4.5-enable
DeepSeek-V3.1

Gemini2.5 Flash
Seed1.6-enabled (250615)
Seed1.6-Thinking-250715

Qwen3-Coder-480B-A35B-Instruct
Hunyuan-TurboS-20250716

Qwen3-235B-A22B-Instruct-2507
Seed1.6-disabled (250615)

Qwen3-32B (Think)
GLM-4.5-Air-enable

Qwen3-Next-80B-A3B-Thinking
ERNIE-X1-Turbo-32K

Qwen3-Next-80B-A3B-Instruct
DeepSeek-Coder-V2-Instruct

Qwen3-14B (Think)
Qwen2.5-Coder-32B-Instruct

Seed-Coder-8B-Instruct
Qwen3-32B
Qwen3-14B

Qwen3-8B (Think)
DeepSeek-Coder-33B-Instruct

Qwen3-8B
Qwen2.5-Coder-7B-Instruct

DeepSeek-Coder-6.7B-Instruct
OpenCoder-8B-Instruct

55.4
53.6

52.6
51.1
51.1
50.9

50.0
49.3

48.7
48.2
48.0

47.7
46.8
46.6

46.2
45.7

45.3
45.0
44.8

43.8
43.1
42.9

41.7
40.8
40.6

39.6
39.6

37.7
37.6

35.8
32.3

31.0
28.6
28.5
28.5

23.3
22.5

20.5
19.3

AutoCodeBench: Overall Performance of LLMs

Reasoning
Non-Reasoning

Figure 7: AutoCodeBench leaderboard showing Pass@1 performance of various LLMs.

benefits larger models. The test-time sampling scaling law (right) reveals more uniform behavior,
with three models showing similar improvement rates from increased sampling during inference.
These results suggest that while test-time sampling provides consistent benefits regardless of model
size, reasoning capabilities scale more aggressively with model size.

G BASELINES

We evaluate a diverse set of open-source models with sizes ranging from 1.5B to 1T parameters, as
well as leading proprietary models. These models are classified based on their families:

• OpenAI: GPT-5 (OpenAI, 2025b), o3 and o4-mini (OpenAI, 2025), and GPT4.1 (Ope-
nAI, 2025a).

• Claude: Claude Opus 4.1 (Anthropic, 2025b) and Claude Sonnet 4 (Anthropic,
2025a).

• Gemini: Gemini 2.5 Pro and Gemini 2.5 Flash (Gemini, 2025).

• DeepSeek: DeepSeek-V3.1 (DeepSeek-AI, 2025a;b) and DeepSeek-Coder Se-
ries (DeepSeek-AI et al., 2024; Guo et al., 2024).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

20 30 40 50 60 70
Average Pass@1

Claude Opus 4.1 (Think)
GPT-5 (20250807)

Claude Opus 4.1
o3 (high)

Grok-4
Claude Sonnet 4 (Think)

o4-mini
Claude Sonnet 4

Gemini2.5 Pro
DeepSeek-V3.1 (Think)

Qwen3-235B-A22B-Thinking-2507
GPT4.1 (2025-04-14)

GLM-4.5-enable
Seed1.6-Thinking-250715

Kimi-K2-0905-Preview
Seed1.6-enabled (250615)

Gemini2.5 Flash
DeepSeek-V3.1

Qwen3-Coder-480B-A35B-Instruct
Hunyuan-TurboS-20250716

Qwen3-235B-A22B-Instruct-2507
Seed1.6-disabled (250615)

Qwen3-32B (Think)
Qwen3-Next-80B-A3B-Thinking

GLM-4.5-Air-enable
ERNIE-X1-Turbo-32K

Qwen3-Next-80B-A3B-Instruct
Qwen3-14B (Think)

DeepSeek-Coder-V2-Instruct
Qwen2.5-Coder-32B-Instruct

Seed-Coder-8B-Instruct
Qwen3-32B

Qwen3-8B (Think)
Qwen3-14B

DeepSeek-Coder-33B-Instruct
Qwen2.5-Coder-7B-Instruct

Qwen3-8B
OpenCoder-8B-Instruct

DeepSeek-Coder-6.7B-Instruct

69.9
67.0

63.8
63.2
63.0

62.0
60.5

59.8
59.1

57.5
57.3

56.9
55.0

53.9
53.7

53.2
52.9

52.2
51.5

50.3
49.8

48.8
47.6

46.3
46.2

44.4
42.6

40.7
40.5

37.0
32.7

32.3
28.9

27.8
27.7

21.5
21.4

20.1
19.9

AutoCodeBench-Lite: Overall Performance of LLMs

Reasoning
Non-Reasoning

Figure 8: AutoCodeBench-Lite leaderboard showing Pass@1 performance of various LLMs.

• Hunyuan: Hunyuan-TurboS (Tencent, 2025).
• Qwen: Qwen3-Next-80B-A3B (Qwen, 2025), Qwen3-235B-A22B-Thinking-2507,
Qwen3-235B-A22B-Instruct-2507, and Qwen3 Series (Yang et al., 2025),
Qwen3-Coder-480B-A35B-Instruct (Qwen, 2025), Qwen2.5-Coder Se-
ries (Hui et al., 2024a).

• Seed: Seed1.6-Thinking (Seed, 2025), Seed1.6 (Seed, 2025) and
Seed-Coder-8B (Seed et al., 2025).

• GLM: GLM-4.5 and GLM-4.5-Air (Zhipu, 2025).
• Other Models: ERNIE-X1-Turbo-32K (Baidu, 2025), Kimi-K2 (Kimi-Team, 2025),

and OpenCoder-8B (Huang et al., 2025).

H HYPOTHESES ON MODEL BIAS IN THE GENERATION PROCESS

It is well-known that models exhibit inherent biases, particularly their tendency to favor their own
outputs—a common phenomenon in automated data synthesis and evaluation tasks (Panickssery
et al., 2024; Chen et al., 2025a). Our automated workflow is no exception to this issue. While
completely eliminating such bias is challenging, we employ several mitigation strategies. Specifically,

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

1.5 4 7 8 14 32 235
Model Parameters (B)

5

10

15

20

25

30

35

40

45

50

Pa
ss

@
1

(%
)

Parameter Scaling Law
Qwen2.5-Coder Series
Qwen3 Series
DeepSeek-Coder Series
Qwen3 (Think) Series

1 3 5 7 9 10
Pass@K

20

25

30

35

40

45

50

55

60 Test-time Sampling Scaling Law

DeepSeek-V3-0324
Qwen2.5-Coder-32B-Instruct
Qwen3-8B

Figure 9: Scaling laws for different models.

Table 10: The average pass@1 scores and rankings of models at different stages.

Initial Stage (Rank) After Simple Problem Filtering (Rank) After Critic Filtering (Rank)

DeepSeek-V3-0324 47.1 (3) 25.7 −21.4 (4) 31.6 +5.9 (4)
DeepSeek-R1-0528 48.9 (2) 28.7 −20.2 (2) 36.2 +7.5 (2)
o3 46.4 (4) 28.1 −18.3 (3) 34.9 +6.8 (3)
Gemini2.5 Pro 51.4 (1) 31.6 −19.8 (1) 38.7 +7.0 (1)
Qwen2.5-Coder-32B-Instruct 39.9 (5) 17.1 −22.8 (5) 22.0 +4.9 (5)

we intentionally only use DeepSeek series models in the workflow to prevent bias from affecting
other model families. We hypothesize that using DeepSeek-V3-0324 for code generation and
DeepSeek-R1-0528 for the Critic process may introduce favorable bias toward DeepSeek families.
To counteract this, we employ DeepSeek-Coder-V2-Lite during the simple problem filtering
phase, creating a ”push-and-pull” mechanism that balances potential biases across different stages.

To quantitatively assess bias, we sampled 3,600 data points across six programming languages
(Python, C++, Java, JS, Go, and Shell) and tracked performance changes at each generation stage,
as shown in Table 10. The results reveal nuanced bias patterns: simple problem filtering negatively
impacts smaller models (Qwen2.5-Coder-32B-Instruct) more than DeepSeek series, while
the Critic process benefits DeepSeek-R1-0528 but surprisingly provides greater improvements
to reasoning models (o3 and Gemini 2.5 Pro) than to DeepSeek-V3-0324. This suggests
that model bias depends not only on model family but also on factors like model size and reasoning
modes. Furthermore, as mutual distillation between models from different families continues, this
bias becomes increasingly difficult to measure. In conclusion, we believe that our automated process
may introduce a favorable bias toward the DeepSeek family of models, but the impact is minimal.

I AUTOCODEINSTRUCT EXPERIMENTAL DETAILS

We apply separate data filtering for the two Instruct models, as the performance varies across
models. This results in 8684 solve-partial (0 < pass rate < 0.6) prompts and 4882 solve-none
(pass rate = 0) prompts for Qwen2.5-Coder-7B-Instruct, 10518 solve-partial and 3294
solve-none prompts for Qwen2.5-Coder-32B-Instruct. During the two-stage GRPO training,
the batch size is set to 128 and 64, respectively for 32B and 7B experiments. The learning rate is set
to 1× 10−6 and the maximum input/output lengths are 8192/8192. The 32B model is trained for 60
steps in the first stage and 80 steps in the second stage, while the 7B model is trained for 70 steps in
both stages. During SFT, the batch size is set to 64, the gradient accumulation steps are set to 2, the
learning rate is 1× 10−5, and both the 32B and 7B models are trained for two epochs. For evaluation,
we adopt greedy decoding for all the models and the maximum output length is set to 16384.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

#CONTEXT#
You are a **{language}** test development expert.
The system will provide you with two inputs:
1. **[QUESTION]** – The problem description, outlining the functionality and constraints that the code under test
should fulfill.
2. **[TEST_FUNCTION]** – The test script, containing several test cases.

Your task is to rigorously review the **[TEST_FUNCTION]** to ensure it truly verifies the requirements of the
[QUESTION], and provide structured review results for the data annotators.

OBJECTIVE
Review the **[TEST_FUNCTION]** according to the following audit rules (in fixed order), providing a boolean value
and a 20-40 word justification for each:
1. Naming/Signature Mismatch – Function names, classes, variables, and return types in the test do not match the
ones described in the question.
2. Randomness/Non-Determinism – The test cases contain random factors, and the results are unstable (e.g., calling
random without a seed or relying on system time).
3. Incorrect Test Target – The test case verifies functionality that is not described in the problem.
4. Precision Handling Issues – High precision requirements use == instead of math.isclose() or similar approximate
comparisons, only using them when precision is needed.
5. Exception Swallowing – The test case catches exceptions (try-except) which obscure the actual errors.
6. Unexecutable Test – The default environment dependencies are okay, but the entry point (like if __name__ ==
"__main__":) is missing, making the test not executable.
7. Irrelevant Requirements – The test case checks for functionality not required by the problem (reasonable edge
cases are exceptions).
8. Other Issues – Any defects not covered by the above rules.

STYLE
- Structured, concise, engineering tone
- Standard JSON format; fields should use snake_case
- Justification should be 20-40 words, in Chinese

TONE
Professional, objective, direct

AUDIENCE
Data annotators with senior development experience, who need to judge the quality of test scripts based on this.

#RESPONSE#
Only output the following JSON structure (without Markdown code block tags):

```json
{
 "rule_results": [
 {
  "rule": "Naming/Signature Mismatch",
  "result": true,
  "reason": "Example: Function name 'add' does not match 'sum' in the problem”
 },

// … 8 items in total in the fixed order
 ],
 "summary": {
  "overall_pass": false,
  "failed_rules": ["Naming/Signature Mismatch", "Randomness/Non-Determinism"]
  "key_points": "Random factors lead to unstable results; test target deviates from the problem's 
requirement”
 }
}

- rule_results: List of 8 rules in fixed order (result should be true or false).
- summary.overall_pass: false if any rule result is false; otherwise true.
- summary.failed_rules: List of all failed rule descriptions; empty if all pass.
- summary.key_points: ≤60 words summarizing the main flaws.

# USER INPUT #
<QUESTION>
{question}
</QUESTION>
<TEST_FUNCTION>
{test_function}
</TEST_FUNCTION>

Figure 10: The English prompt of annotation and critic.

J MULTILINGUAL CODE SANDBOX SERVICE

This service offers a secure and high-performance environment for the compilation and execution
of code in over 30 programming languages. It supports large-scale code data validation, making it
suitable for high-volume, automated testing scenarios. Our multilingual sandbox has the following
features:

• Multilingual Support: The service supports more than 30 programming languages, includ-
ing popular ones like Python, JavaScript, Go, Java, C++, and Rust, providing versatility for
various use cases.

• Security Isolation: Code execution is isolated within Docker containers, ensuring that
each execution environment is separate. Additionally, iptables firewall rules are applied to
maintain a high level of security, preventing unauthorized access or interference.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 11: Statistics of the 1,622 multi-logic programming problems.

#Problems #Test Cases #Langs Prob Len Solu Len Difficulty (E/M/H)

MLPP 1,622 16,131 20 576.4 610.0 238/315/1069

• Smart Code Integration: The system automatically manages the integration of function
code with testing code. It adapts to language-specific syntax, ensuring seamless execution
without requiring manual intervention for code merging.

• High Performance: Powered by a Gunicorn multi-process architecture, the sandbox sup-
ports concurrent execution of multiple code instances, making it capable of handling a high
volume of requests efficiently.

• RESTful API: The service provides a clean and easy-to-use HTTP-based API, allowing
developers to interact with the sandbox programmatically, whether for integrating into larger
applications or automating tasks.

• Extensive Language Support: Beyond the mainstream languages, the sandbox also sup-
ports emerging and niche languages, allowing it to cater to a wide variety of development
environments and user needs.

• Custom Execution Environments: Users can configure specific environments for their
tasks, enabling tailored execution conditions based on their unique requirements.

K PROMPTS FOR AUTOMATED WORKFLOW

The prompt of generating code solution is shown in Figure 11.

The prompt of generating test function is shown in Figure 12.

The prompt of generating programming problem is shown in Figure 13.

The prompt of LLM-as-Critic is shown in Figure 10.

The prompt of translating languages is shown in Figure 14.

L MULTI-LOGIC TASK ANALYSIS

First, we provide a clear definition of multi-logic programming tasks:

Multi-Logic Programming Problem (MLPP). MLPP is a programming task whose correct
solution requires implementing and coordinating multiple core logical units—such as functions,
classes, or modules. Each logical unit corresponds to an independent semantic responsibility or
algorithmic objective.

We further divide Multi-Logic Problems into two categories:

• Intra-Logic Problems: multiple logical units collaborate to achieve a single overarching
functional goal.

• Inter-Logic Problems: multiple logical units address distinct functional goals, each inde-
pendently contributing to the full solution.

Following the structure of Table 3, we perform a detailed analysis on the 1,622 multi-logic problems
in AutoCodeBench. As shown in Table 11, multi-logic problems exhibit substantially longer prob-
lem descriptions and longer canonical solutions compared to the overall dataset, reflecting richer
instruction structure and greater intrinsic difficulty.

In addition, we used DeepSeek-V3.2-Exp to compute (1) the number of logical units contained
in each multi-logic problem, and (2) the distribution of Inter-Logic and Intra-Logic types. On average,
each problem contains 3.37 logical units. Among them, 389 are Inter-Logic, 1,223 are Intra-Logic,

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

# Code Benchmark Construction Task
In order to build the code benchmark, I need you to help me create a Python function, as well as two test functions. Later, I will construct programming problems based on 
them.

## Task Overview
Given a code file or code snippet in any programming language, your task is to **refine and evolve its core logic** and remove non-core logic (if necessary) to create a 
**self-contained**, **verifiable**, **correct** Python function. You also need to create two testing functions for testing: `demo_testing()` and `full_testing()`. Below are 
the detailed requirements:

1. **Separate Code Blocks**: 
- Provide **three distinct code blocks**:
- One block for the rewritten Python functions that contain the core logic.
- Two blocks for the test functions (`demo_testing()` and `full_testing()`).

- The three code blocks are wrapped with ```python and ```.

2. **Test Code in `demo_testing()`**: 
- This function should contain **no more than 2 test cases**. It will be used to **demonstrate** the input-output format.
- For each test case, **hard-code the input values** and print both the input and the corresponding output when `demo_testing()` is executed.
- Avoid edge cases in this function, and focus on basic test cases for demonstration purposes.

3. **Test Code in `full_testing()`**: 
- This function should include a comprehensive set of **at least 7 test cases**.
- These test cases should be designed to thoroughly test the functionality of the converted functions, including:
- **Basic cases** (e.g., test cases used in `demo_testing()`).
- **Boundary cases** (e.g., minimum/maximum values, empty inputs).
- **Edge cases** that test the robustness of the code (e.g., abnormal value, boundary condition checks).

- For each test case, **hard-code the input values** and print both the input and the corresponding output when `full_testing()` is executed.
- The goal of the test function is to provide comprehensive inputs and call the function being tested to obtain the output. Input handling (e.g., validation, edge cases) 

should be done by the function itself, not the test.

4. **Use Standard and Third-Party Python Libraries**: 
- You are allowed to use standard Python libraries (e.g., `math`, `print`) and third-party libraries (if required) for implementing the core logic.
- Ensure that all dependencies are clearly explained in the comments if used.

5. **Executable Code**:
- Provide **self-contained and executable Python code** with hard-coded test inputs.
- Remove any non-core logic such as plots, file I/O, and unused functions. 
- If the original code is not directly executable (e.g., due to dependency on specific business logic or external systems), adapt the code to a self-contained, testable form 

by simulating the required context or simplifying the logic while preserving the core functionality.
- For overly simplistic code (like a function that simply adds two numbers), please evolve its logic to make it more challenging. For overly difficult and complex code (like 

multiple functions and classes containing multiple core logics that make it hard to test), please simplify its logic to make it moderately challenging.

6. **Code Style and Naming**:
- Follow **Pythonic** naming conventions and ensure that function names are **descriptive** and **clear** in conveying their purpose.
- Provide **clear and concise comments** explaining the core logic and the purpose of each function, especially the key steps.

## Output Requirements  

### 1. Converted Python Functions
- **Dependencies**: Use standard Python libraries (e.g., math) and third-party libraries when necessary.
- **Adaptation for Executability**: If the original code depends on external data sources or specific business workflows, modify it to be self-contained by hardcoding inputs, 
simulating dependencies, or simplifying the logic, while preserving the core algorithm.
- **Remove Non-Core Logic**: Eliminate all non-essential parts such as plots, file I/O, and unused functions.
- **Code Style**: Follow good Python coding practices, including proper indentation, consistent naming conventions, and adherence to PEP 8 guidelines. Add comments to 
explain the functionality of the code and clarify key steps.

### 2. Executable Test Functions
- **Function Names**: Use `demo_testing()` and `full_testing()` for the test functions.
- **Inputs**: Hardcode the test inputs within the test functions. Do not pass parameters into the `demo_testing()` or `full_testing()` functions.
- **Output**: Directly print the test inputs and their corresponding outputs to the console. Ensure that outputs are in JSON-serializable types (e.g., strings, integers, floats, 
lists). Do not include the word "Output" in the printed results.
- **Dependencies**: Use standard Python libraries (e.g., math, print) and third-party libraries, if needed, for the core logic.
- **Testing Adaptation**: If the original code's logic is part of a larger system, adapt the `demo_testing()` and `full_testing()` functions to create a self-contained testing 
environment. This may include initializing necessary objects, setting up test data, or mocking external interactions.
- **Code Style**: Follow good Python code style in the test functions, with proper indentation and clarity. Include comments to explain the test setup and key steps in the 
testing process.
- **Test Function Format**: The structure and format of `demo_testing()` and `full_testing()` should be identical, with the only difference being the number of test cases.

### 3. Code Structure  

......

Figure 11: The prompt of generating code solution. Due to the excessive length of the prompt, we
have omitted the latter part.

and 10 fall into both categories. Opus 4.1 achieved 50.6% and 51.5% performance on the Inter-Logic
and Intra-Logic types, respectively.

Figure 16 provides an example of an Inter-Logic problem. The task requires implementing three
separate classes, each serving a different functional purpose—clearly corresponding to independent
logical goals. Figure 17 shows a more complex hybrid case. The problem requires implementing
a Rational class containing multiple internal logical units that jointly support the overarching goal
of “rational number representation and operations,” making them Intra-Logic. At the same time, the
auxiliary function “parse rationals” handles a separate goal of “string parsing,” forming an Inter-Logic
relationship with the Rational class.

The results of Opus 4.1 and these cases indicate that, in multi-logic problems, more complex
instructions, greater logical demands, and intricate relationships among logical units pose greater
challenges for LLMs.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

I'll provide you with a Python code, a test function call (including inputs) that uses this Python function, and the test output obtained after executing that test function call.

Please combine the provided inputs and outputs into an assert statement, and place these `assert` statements inside a new `test` function. You can only use the inputs 
and outputs provided by me. Please do not create your own or modify the test cases.

Please generate a Python test function using assert statements. You will be provided with:
- Python Code: The function(s) to be tested.
- Two Test Function Calls (including inputs): Python code demonstrating how the function is called with various inputs. 
- Test Outputs: The results obtained after executing the provided test function calls.
You will receive two sets of test cases:

Important Considerations for assert statements:
- DO NOT create or modify any test cases. Use only the inputs and outputs provided.
- Avoid assertions that might differ due to floating-point precision across machines. If the original output involves floating-point numbers, and the problem context suggests 
it, consider using math.isclose() or asserting within a reasonable tolerance if the test cases inherently involve such comparisons and precision is a concern. However, 
prioritize direct equality == if the provided outputs are exact.
- All assert statements must be placed within a function named test().
- Please create **two separate** test functions for each of the two sets of test function calls I provide, ensuring they do not interfere with each other.
- Two test function names are both "def test()". They are placed in two code blocks.

Here is an example:
**Code**:
```python
from math import sqrt

def is_prime(n):
if n < 2:

return False
for i in range(2, int(sqrt(n)) + 1):

if n % i == 0:
return False

return True

def nth_prime(n):
if n < 1:

return None
count = 1
i = 2
while count < n:

i += 1
if is_prime(i):

count += 1
return i

```

**Test Function Call 1**:
```python
def demo_testing():

Hard-coded test inputs
test_cases = [1]

for n in test_cases:
Print the input
print(f"Input: {n}")

Core logic
result = nth_prime(n)

Output (JSON-serializable)
print(f"The {n}th prime number is: {result}")

if __name__ == "__main__":
demo_testing()

```

**Test Case Results1**:
```
'Input: 1\nThe 1th prime number is: 2'
```

**Test Function Call 2**
......

Figure 12: The prompt of generating test function. Due to the excessive length of the prompt, we
have omitted the latter part.

M LLM-BASED ERROR ANALYSIS

In this section, we present an error type analysis. As shown in Appendix A, a fully automated pipeline
inevitably introduces a certain amount of noise. To distinguish noisy data from genuinely difficult
tasks, we designed a checklist-based template to systematically categorize error types. The checklist
is as follows:

• Model Solution Errors
– Misunderstanding Problem: The model fails to correctly interpret the problem

statement, leading to a fundamentally incorrect solution.
– Failure to Comprehend Complex Instructions: The model fails to correctly interpret

or decompose multi-step or nuanced requirements in the problem statement, resulting
in conceptually incomplete or irrelevant solutions.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

You are an experienced programming tutor, adept at crafting **clear, concise, and educational programming problems**. I will supply you with a **self-contained, 
executable, and correct Python code**, along with one or more test functions designed to verify its correctness. Your task is to **generate a programming problem that 
directly corresponds to the given Python code and its test cases**.

Here is the code and test functions:
[Python code]
<<<code>>>
[Python code end]

[test function demo]
<<<demo_test>>>
[test function demo end]

[test function]
<<<full_test>>>
[test function end]

Please ensure the problem you generate adheres to the following critical requirements:
1. Language Specification: Explicitly state that solutions must be implemented in Python.
2. Problem Description: Describe the problem concisely and unambiguously using plain language. Avoid technical jargon, unnecessary details, or solution hints.
3. Function/Class Naming: Only mention the exact function or class names used in the test functions. Do not include implementation-specific details beyond what’s in the 
tests.
4. Input/Output Format: Define the input format (types, structure, value ranges). Define the expected output format. If necessary, specify some constraints (e.g., input size 
limits, allowed data types).
5. Example Usage: Use the test case in the aforementioned 'test function demo' to construct example usage. The number of test cases in this is usually no more than three. 
Do not modify or explain the test cases—just copy them verbatim.
6. No Solution Hints: The problem description must not reveal any code solution and any 
test cases beyond what’s in the provided examples.

Please enclose the generated programming problem within <question> and </question> tags.

Figure 13: The prompt of generating programming problem.

Table 12: Top-10 error types.

Type Count
Unreasonable Test Cases 313
Algorithmic Logic Error 218
Missing Functionality 157
Misunderstanding Problem 151
Algorithmic Logic Error + Misunderstanding Problem 121
Insufficient Fundamental Knowledge 108
Algorithmic Logic Error + Missing Functionality 106
Algorithmic Logic Error + Unreasonable Test Cases 73
Algorithmic Logic Error + Insufficient Fundamental Knowledge 57
Omission of Edge Cases 55

– Omission of Edge Cases: The model fails to handle extreme or special input conditions.
– Missing Functionality: The model understands the task but fails to implement all

required components or subtasks in the generated code.
– Algorithmic Logic Error: The algorithmic approach or control logic contains mistakes

leading to incorrect results.
– Insufficient Fundamental Knowledge: The model demonstrates a lack of understand-

ing of basic programming syntax, data structures, or language semantics.
• Problem Design Errors

– Logical Contradiction in the Problem: The problem statement contains internal in-
consistencies or mutually exclusive constraints that make a correct solution impossible.

– Ambiguous Problem Statement: The problem description is unclear or lacks explicit
constraints, leading to multiple valid interpretations.

• Test Design Errors
– Unreasonable Test Cases: The test data deviate from the problem definition.

We applied this checklist to analyze all 1,745 tasks that Claude Opus 4.1 failed to solve, using
DeepSeek-V3.2-Exp as the judge LLM. If an error was attributed to Problem Design or Test
Design, the task was classified as low-quality. Otherwise, we considered it a valid high-difficulty
task. The Top-10 error types are shown in Table 12.

In total, 538 tasks contained Problem Design Errors or Test Design Errors, accounting for 13.7%
of all tasks. The remaining 1,207 tasks were judged to be high-quality and genuinely challenging.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

You are an experienced programming master with expertise in multiple languages, particularly in Php. I will provide 
you with:

1. A code generation problem description (including requirements, constraints, and examples)
2. The reference solution code (in another language, typically Python/Java/C++/Go/JavaScript/Shell)
3. Corresponding test cases functions include demo test cases and full test cases

Your task is to:

1. Accurately translate the problem description into clear English while preserving all technical details. Please emphasize that the problem needs to be solved using Php.
2. Convert the reference solution into idiomatic Php code that:

- Follows Php conventions
- Uses appropriate data structures from Php's standard library
- Follows Php's naming conventions

3. Translate the test cases into Php's testing framework:
- Using assert
- Maintaining the same test coverage as original
- just call the test case in main function, do not use unit test library.

Additional requirements:
- For algorithm problems, maintain the same time/space complexity
- For system design problems, use appropriate Php crates
- Include necessary documentation (/// comments) explaining key decisions

Your answer should be like:
<translated_problem>
new problem
</translated_problem>

<translated_reference_solution>
```php
your code
```
</translated_reference_solution>

<demo_test_cases>
```php
your code
```
</demo_test_cases>

<full_test_cases>
```php
your code
```
</full_test_cases>

Here is the problem, reference solution and test case
[problem]
<<<problem>>>
[problem end]

[reference solution]
<<<code>>>
[reference solution end]

[demo test case]
<<<demo_test>>>
[demo test case end]

[full test case]
<<<full_test>>>
[full test case end]

Figure 14: The prompt of translating languages.

Among these, the dominant failure modes were Algorithmic Logic Errors and Missing Functionality.
Figures 18 and 19 illustrate representative cases. After excluding low-quality tasks, Opus 4.1 still
achieves only 64.3%, demonstrating that the remaining tasks remain substantially challenging.

N THE ORDER OF I/O FORMAT

In this section, we elaborate on the design choice of generating test inputs prior to producing
the programming problem description in the AutoCodeGen pipeline. Although human annotators
typically define the input–output (I/O) format before writing tests, our automated workflow adopts
the reverse order. We show that this alternative workflow is both feasible for LLMs and beneficial in
practice. There are two valid sequences for synthesizing test cases and problem descriptions:

• Generate the test inputs first, followed by the programming problem (including its I/O
specification);

• Generate the I/O specification first, followed by the test inputs.

Both workflows can be handled by modern LLMs. However, the first approach offers an additional
advantage: the public test cases produced during this stage can be directly embedded into the final
problem description, improving clarity and reducing ambiguity in the specification. Below is an
example that illustrates why generating test inputs first is a reasonable design choice.

Consider a code solution such as:

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Please implement the following three network-related functions in Go:

1. ReverseIPAddress: Accepts an IPv4 address of type net.IP and returns its reversed string representation (e.g., 
"192.168.1.1" becomes "1.1.168.192"). If the input is invalid, return an empty string.

2. ReputationLookup: Accepts an IPv4 address as a string and returns its reputation value as a string (e.g., "100"). If the 
input is invalid, return an error.

3. HostsFromCIDR: Accepts a CIDR-formatted string (e.g., "192.168.1.0/24") and returns a string slice of all available host 
IPs within that range (excluding the network and broadcast addresses). If the input is invalid, return an error.

Input/Output Requirements:
- All IP addresses must be in IPv4 format.
- Invalid inputs include malformed or unparsable addresses.
- The CIDR range must be valid and contain at least one available host address.

Example Usage:

// Test case 1: Reverse IP address
ip := net.ParseIP("192.168.1.1")
reversed := ReverseIPAddress(ip)
// reversed should be "1.1.168.192"

// Test case 2: Query reputation
ipStr := "8.8.8.8"
rep, err := ReputationLookup(ipStr)
// rep should be "100", err should be nil

// Test case 3: Get host list from CIDR
cidr := "192.168.1.0/29"
hosts, err := HostsFromCIDR(cidr)
// hosts should be ["192.168.1.1", "192.168.1.2", "192.168.1.3", "192.168.1.4", "192.168.1.5", "192.168.1.6"], err should 
be nil

Figure 15: The prompt of generating code solution. Due to the excessive length of the prompt, we
have omitted the latter part.

def cal_two_sum(a, b):
return a + b

Using explicit specifications and few-shot examples, the model may generate a test-input function
such as:

def private_test_input():
test_cases = [

[1, 2],
[0, 0], # boundary test
[99999999999999999, 3333333333] # stress test

]

When constructing the programming problem, the model infers the input domain from the generated
test cases and produces a description such as: Write a function named cal two sum that computes the
sum of two non-negative integers. If instead the model generates test cases containing floating-point
values:

def private_test_input():
test_cases = [

[1, 2],
[0, 0],
[4.243, 4.222], # stress test
[-0.45, 888], # boundary test

]

The model naturally adapts the problem description accordingly: Write a function named cal two sum
that computes the sum of two floating-point numbers. Therefore, When test inputs are generated first,
the model derives the I/O format by analyzing the input domain represented in the test cases. When the
I/O format is specified first, the model constructs matching test cases based on the declared constraints.
Both approaches are logically consistent, but generating test inputs first leverages the model’s ability
to generalize from concrete examples and simplifies the subsequent problem construction stage.

Finally, regardless of the workflow, AutoCodeGen employs an LLM-as-Critic verification stage to
ensure strict alignment between the generated programming problem and the test function. Any
inconsistent, ambiguous, or underspecified cases are filtered out during this procedure. This ensures
the final benchmark maintains high quality and internal coherence.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

# 3D Camera System Implementation

## Problem Description
You are tasked with implementing a 3D camera system for a game engine. The system should include:
1. A `Vector` class for 3D mathematical operations
2. An `AABB` (Axis-Aligned Bounding Box) class for collision detection
3. A `Camera` class that represents a view frustum in 3D space

The camera should be able to:
- Track its position and orientation in 3D space
- Calculate its view frustum's bounding box
- Determine if objects (represented as AABBs) are within its view frustum

## Class Requirements

### Vector Class
```cpp
class Vector {
public:
 float x, y, z;

 Vector(float x=0, float y=0, float z=0);
 Vector operator+(const Vector& other) const;
 Vector operator-(const Vector& other) const;
 Vector operator*(float scalar) const;
 float dot(const Vector& other) const;
 Vector cross(const Vector& other) const;
 float magnitude() const;
 Vector normalized() const;
 void print() const;
};
```

### AABB Class
```cpp
class AABB {
public:
 Vector min, max;

 AABB(Vector min=Vector(), Vector max=Vector());
 bool contains(const Vector& point) const;
 void print() const;
};
```

### Camera Class
```cpp
class Camera {
public:
 Camera(const string& name="DefaultCamera",
 const Vector& pos=Vector(),
 const Vector& rotator=Vector(),
 float fov=60.0f,
 float zFar=1000.0f,
 float zNear=0.1f,
 float width=800.0f,
 float height=600.0f);

…
};
```

## Example Usage
```cpp
…
```

## Problem Specifications
…

## Constraints
…

## Notes
…

Figure 16: Example of an inter-logic problem. The full content is partially omitted due to length.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

# Rational Number Operations

Implement a class `Rational` to represent and manipulate rational numbers (fractions) with the following capabilities:

## Class Requirements

### Private Members
- `long long numerator`: The numerator of the fraction
- `long long denominator`: The denominator of the fraction
- `long long gcd(long long a, long long b) const`: A helper function to compute the greatest common divisor of two numbers
- `void normalize()`: A helper function to reduce the fraction to its simplest form and ensure the denominator is positive

### Public Members
#### Constructor
- `Rational(long long num = 0, long long denom = 1)`: Creates a Rational number with given numerator and denominator 
(defaults to 0/1). Throws `invalid_argument` if denominator is zero.

#### Arithmetic Operators
- `Rational operator+(const Rational& other) const`: Adds two Rational numbers
- `Rational operator-(const Rational& other) const`: Subtracts two Rational numbers
- `Rational operator*(const Rational& other) const`: Multiplies two Rational numbers
- `Rational operator/(const Rational& other) const`: Divides two Rational numbers (throws `domain_error` if dividing by 
zero)

#### Comparison Operators
- `bool operator==(const Rational& other) const`: Checks equality of two Rational numbers
- `bool operator<(const Rational& other) const`: Checks if this Rational is less than another
- `bool operator>(const Rational& other) const`: Checks if this Rational is greater than another

#### Conversion Functions
- `double to_double() const`: Converts the Rational number to a double
- `string to_string(bool show_parens = false) const`: Returns a string representation of the Rational number. When 
`show_parens` is true, negative numbers should be enclosed in parentheses. The string should be in mixed number form when 
appropriate (e.g., "2 1/3" for 7/3).

#### Getters
- `long long get_numerator() const`: Returns the numerator
- `long long get_denominator() const`: Returns the denominator

### Helper Function
- `vector<Rational> parse_rationals(const string& input)`: Parses a space-separated string of rational numbers (either in 
"a/b" form or whole numbers) and returns a vector of Rational numbers.

## Example Usage

```cpp
Rational a(1, 2);
Rational b(1, 3);
Rational sum = a + b;
cout << sum.to_string(); // Outputs "5/6"

Rational c(7, 3);
cout << c.to_string(); // Outputs "2 1/3"

Rational d(-1, 4);
cout << d.to_string(true); // Outputs "(-1/4)"

string input = "1/2 3/4 -1/3 5";
vector<Rational> numbers = parse_rationals(input);
for (const auto& num : numbers) {
 cout << num.to_string() << " ";
}
// Outputs: "1/2 3/4 -1/3 5 "
```

## Problem Specifications
…
## Constraints
…

## Notes
…

Your solution will be tested against various cases including arithmetic operations, comparisons, and string conversions.

Figure 17: Example of a problem exhibiting both inter-logic and intra-logic components. The full
content is partially omitted due to length.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

[programming problem]
Write a JavaScript function `octalToBinary` that converts a given octal number string into its corresponding binary string.

Input requirements:
- The input is a string representing an octal number.
- The string may be empty or contain non-octal digit characters (characters other than 0-7).
- Valid octal numbers may include leading zeros (e.g., "0000").

Output requirements:
- If the input is a valid octal string, return the corresponding binary string representation.
- If the input is an empty string, return "Error: Empty input".
- If the input contains non-octal digit characters, return "Error: Invalid octal string".
- The binary output should not omit leading zeros (e.g., octal "7" should return "111" and not "111").

Example usage:
```javascript
const assert = require('assert');

const demoTesting = () => {
 assert.strictEqual(octalToBinary("123"), "1010011");
 assert.strictEqual(octalToBinary("7"), "111");
};
```
[Private Test Function]
const assert = require('assert');

const fullTesting = () => {
    assert.strictEqual(octalToBinary("123"), "1010011");
    assert.strictEqual(octalToBinary("7"), "111");
    assert.strictEqual(octalToBinary("0"), "0");
    assert.strictEqual(octalToBinary("777"), "111111111");
    assert.strictEqual(octalToBinary("100"), "1000000");
    assert.strictEqual(octalToBinary("12345670"), "1010011100101110111000");
    assert.strictEqual(octalToBinary(""), "Error: Empty input");
    assert.strictEqual(octalToBinary("abc"), "Error: Invalid octal string");
    assert.strictEqual(octalToBinary("89"), "Error: Invalid octal string");

assert.strictEqual(octalToBinary("0000"), "0000000000");
};
[Code Solution from Opus 4.1]
```javascript
function octalToBinary(octalStr) {
 // Check for empty input
 if (octalStr === '') {
 return "Error: Empty input";
 }

 // Check if all characters are valid octal digits (0-7)
 for (let char of octalStr) {
 if (char < '0' || char > '7') {
 return "Error: Invalid octal string";
 }
 }

 // Convert each octal digit to 3-bit binary representation
 let binaryStr = '';
 for (let digit of octalStr) {
 const octalDigit = parseInt(digit);
 const binaryDigit = octalDigit.toString(2).padStart(3, '0');
 binaryStr += binaryDigit;
 }

// Remove leading zeros, but keep at least one digit
while (binaryStr.length > 1 && binaryStr[0] === '0') {

binaryStr = binaryStr.substring(1);
}

 return binaryStr;
}
```

Logic
Error!

Figure 18: A case of Algorithmic logic errors.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

[programming problem]
Write a Go function to find the lowest common ancestor of two nodes in a binary tree.

Given the root of a binary tree and two nodes p and q in the tree, implement the function `lowestCommonAncestor` to return 
the lowest common ancestor (LCA) of these two nodes. The lowest common ancestor is defined as the lowest node that has both 
p and q as descendants (where a node can be a descendant of itself).

The function signature is as follows:
```go
func lowestCommonAncestor(root, p, q *TreeNode) *TreeNode
```

The `TreeNode` is defined as:
```go
type TreeNode struct {

Val int
Left *TreeNode
Right *TreeNode

}
```

Input constraints:
- All node values in the tree are unique.
- Both p and q exist in the given binary tree.
- The number of nodes in the tree ranges from [2, 10^5].

Example usage:
```go
import "testing"

func TestDemo(t *testing.T) {
 // Create the tree structure for test case 1
 node7 := &TreeNode{7, nil, nil}
 node4 := &TreeNode{4, nil, nil}
 node2 := &TreeNode{2, node7, node4}
 node6 := &TreeNode{6, nil, nil}
……
```

Notes:
- Ensure your solution handles various cases, including but not limited to: p and q in different subtrees, p being an 
ancestor of q, q being an ancestor of p, p and q being the same node, etc.
- Do not modify the tree structure.
- The time complexity should be as efficient as possible.
[Code Solution from Opus 4.1]
```go
func lowestCommonAncestor(root, p, q *TreeNode) *TreeNode {
 // Base case: if root is nil or root is one of the target nodes
 if root == nil || root == p || root == q {
 return root
 }

 // Recursively search for p and q in left and right subtrees
 left := lowestCommonAncestor(root.Left, p, q)
 right := lowestCommonAncestor(root.Right, p, q)

 // If both left and right are non-nil, current node is the LCA
 // This means p and q are in different subtrees
 if left != nil && right != nil {
 return root
 }

 // If only one subtree contains both nodes, return that result
 // If left is non-nil, both nodes are in left subtree
 if left != nil {
 return left
 }
 // Otherwise, both nodes are in right subtree (or both are nil)
 return right
}
```

Missing
the de

finition
of Tree

Node!

Figure 19: A case of Missing functionality.

32


	Introduction
	AutoCodeGen & AutoCodeBench
	AutoCodeGen
	Code Solution Generation
	Test Function Generation
	Programming Problem Generation
	Data Filtering
	Approximate Language Translation

	AutoCodeBench
	Data Overview
	AutoCodeBench-Lite and AutoCodeBench-Complete Construction


	Evaluation
	Evaluation Setup
	Main Results
	Performance Across Popular and Low-Resource Programming Languages
	Performance Across Multi-Logic Programming Problems
	Performance Analysis of Multi-Turn Refinement with Sandbox Feedback
	AutoCodeBench-Complete: Evaluating Base Model Capabilities

	AutoCodeInstruct
	Related Work
	future works
	Conclusion
	Manual Verification
	Setup of Benchmark Comparisons
	Multi-Logic
	Difficulty
	Category Distribution and Language Distribution
	Problem Length

	The results of AutoCodeBench-Lite
	The results of AutoCodeBench-Complete
	Leaderboards
	Performance Analysis of Scaling Laws
	Baselines
	Hypotheses on Model Bias in the Generation Process
	AutoCodeInstruct Experimental Details
	Multilingual Code Sandbox Service
	Prompts for Automated Workflow
	multi-logic task analysis
	LLM-based Error Analysis
	The order of I/O Format

