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Abstract

How to balance memorisation and generalisation in generative models remains
an open task. To investigate this, we employ Bayesian methods, which have
recently been proposed to predict the uncertainty of generated samples. In our
work, we employ the Riemannian Laplace approximation, from which we can
sample generative models that resemble the trained one. Our geometry-aware
approach yields improved results compared to the Euclidean counterpart.

1 Introduction

Figure 1: A generative model can learn to
memorise the data seen during training. We
propose reducing memorisation of a trained
generative model ( ) by adding noise to the
learnt model parameters θ∗ through sampling
from an approximate posterior distribution
θ ∼ q (θ). While a Euclidean approximate
posterior ( ) reduces memorisation, account-
ing for the geometry ( ) reduces memorisa-
tion without breaking the fit.

The success of modern generative models has raised
questions about their capacity to merely memorise
data or generate beyond the latter. While it is essential
that a generative model captures the data distribution,
it is critical in several applications to avoid overfit-
ting to specific training examples. Our work focusses
on diffusion models, for which the problem of mem-
orisation has been extensively discussed in recent
work, raising concerns about privacy and copyright
infringement [2, 4, 6, 7, 14, 18].

In this paper, we raise the question:

Can we reduce memorisation in modern generative
models through uncertainty on their parameters?

To mitigate memorisation in modern generative mod-
els, we adopt a Bayesian treatment of the model pa-
rameters, using the Laplace approximation (LA) for
defining a conceptually simple approximate posterior
distribution. The Laplace approximation is defined
as a Gaussian centred at the maximum a posteriori
(MAP) estimate, however, it is often an overly crude
approximation of the true posterior [1]. To address
this issue, we make use of the Riemannian Laplace
approximation [1, 21] that leverages the geometric
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structure of the true posterior. Through experiments on flow matching, we demonstrate that introduc-
ing uncertainty on the model parameters while respecting the true posterior geometry is an effective
way to reduce memorisation without forgetting how to generalise.

Specifically, our contributions are:

• We extend a method for estimating generative uncertainty as in [13] to adapt to the geometric
structure of the model. Specifically, we define a geometry-informed approximate posterior
distribution over model parameters of diffusion-like generative models.

• We provide empirical evidence that respecting the geometric structure can help generative
models generalise rather than memorise, as our posterior predictive is based on parameter
samples from high-density regions of the true posterior.

2 Methods

Notation. A neural network is a function fθ : X → Y, where X ∈ RD and Y ∈ RM are the input
and output spaces, respectively. This function depends on the model parameters θ ∈ Θ ⊆ RK , where
Θ denotes the parameter space. Using a training data set D = {

(
xi,yi

)
}Ni=1 we aim to find a fixed

set of parameters that minimise a loss function, i.e.

θ∗ = argmin
θ

L (θ,D) = argmin
θ

1

N

N∑
i=1

ℓ (fθ (xi) ,yi) , (1)

where ℓ is the per-sample loss, for example the sum of squared errors.

Bayesian deep learning. One way to quantify uncertainty of a neural network is to consider the
variation in the outputs of an ensemble of learners. Instead of training multiple neural networks, a
common approach is to treat the model parameters in a Bayesian manner by defining a posterior
distribution over the model parameters using Bayes’ rule. We can consider the negative log-posterior
as a loss function given by

Lpost (θ,D) = −
(
log p (D|θ) + log p (θ)− log p (D)

)
(2)

∝ − log p (D|θ)− log p (θ) . (3)

Although the log-posterior is intractable, the fact that the log-joint is proportional to it allows us
to define an approximate posterior distribution over the model parameters that respects the local
geometry at the optimum. We can define this distribution post-hoc using the Laplace approximation:

q (θ|D) = N (θ|θ∗,Σ) , (4)

where θ∗ = argminθ Lpost is the maximum a posteriori (MAP) estimate and Σ−1 = ∇2
θLpost (θ

∗,D).
For further reading we recommend the book [17].

Riemannian Laplace approximation. A recent work [1] introduced a Riemannian formulation
of the Laplace approximation, which outperforms the conventional Laplace approximation by re-
specting the geometric structure of the true posterior. This approach constrains samples from the
approximate posterior to lie within high-density regions of the true posterior, while the Euclidean
Laplace approximation has no such guarantee.

We define the (posterior) loss manifold as the graph of the posterior loss function (Equation 3):

M = {h (θ) | θ ∈ Θ} = {θ1, . . . ,θK ,Lpost (θ) | θ ∈ Θ} ∈ R(K+1), (5)

which yields a submanifold of R(K+1). This parametrisation has also been considered in [1, 9, 11,
19], for instance. The Riemannian Laplace approximation qM (θ|D) is obtained by considering a
distribution of vectors v ∼ N (0,Σ) in the parameter space Θ, and sampling θs ∼ qM (θ|D) as the
endpoint of the geodesic starting at the MAP estimate θ∗ with initial velocity v. A geodesic defines
the locally shortest path on a manifold and, in mathematical terms, satisfies the geodesic equation:

α̈k(t) = −
n∑

i,j=1

α̇i(t)α̇j(t) · Γk
ij(α(t)), (6)
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where Γk
ij define the Christoffel symbols. In practice, we solve this second order ODE using the

Runge-Kutta method [5] of order 5, subject to the initial conditions

α(0) = θ∗ and α̇(0) = v.

We evaluate at t = 1 to obtain a sample from the Riemannian approximate posterior, θs = α(1). A
similar approach is taken in [12] in the context of input data augmentation and we provide further
details in Appendix A.

Flow matching. Assume we have N data samples {xi
∗}Ni=1 ∈ X ⊆ RD from an unknown

distribution p∗. Our goal is to find a generator function gθ that maps samples from a known base
distribution x0 ∼ p0 to new samples x̂ = gθ (x0) that approximately belong to p∗. In flow matching,
the generator’s output solves an initial value problem (IVP) of the form

x(0) = x0, ẋ(t) = uθ(x(t), t), (7)

where uθ : RD × [0, 1] → RD is a velocity field, represented by a neural network with parameters θ.
Usually, the base distribution is the unit Gaussian distribution p0 = N (0, ID) and the IVP is solved
with an Euler scheme. We denote the distribution of generated samples by p̂.

To learn the velocity field uθ, we optimise the following loss function:

LFM (θ) = Et∼U[0,1],x∗∼p∗,x0∼p0

[
∥uθ (xt, t)− (x∗ − x0)∥22

]
. (8)

We denote a sample from the conditional probability path by xt ∼ pt (·|x∗) and consider a Gaussian
conditional optimal transport path, thus xt = tx∗+(1− t)x0 for uniformly distributed time samples
t ∼ U[0,1]. For further reading, we recommend the lecture notes [10].

Nearest neighbour memorisation measure. We say that a point is memorised if it is much closer
to one point from the training set than to all others [4, 20]. This measure is easy to compute using the
Euclidean distance. A generated data sample, x̂, is memorised if for a fixed threshold c ∈ (0, 1),

∥x̂− x(1) (x̂)∥2 ≤ c∥x̂− x(2) (x̂)∥2, (9)

where x(1) (x̂) and x(2) (x̂) are the closest and second closest training samples to x̂, respectively.
The corresponding memorisation ratio [4] of a generator gθ is given by

1

N

N∑
i=1

1

[
∥x̂i − x(1)

(
x̂i
)
∥2 ≤ c∥x̂i − x(2)

(
x̂i
)
∥2
]
, (10)

where {x̂i = gθ
(
xi
0

)
| xi

0 ∼ p0}Ni=1 is a set of N generated data points.

3 Experiment

We consider a one-dimensional flow matching problem. Specifically, we let the true target distribution
p∗ be an equally weighted mixture of Gaussians (GMM) with means {µ1, µ2} = {−1.5, 1.5}
and variances σ2

1 = σ2
2 = 0.1. We define the base distribution as the unit Gaussian distribution

p0 = N (0, 1). For constructing a generative model that memorises (i.e. overfits), we construct a
naively simple training set by restricting the samples to consist of only 2 data samples: µ1 and µ2.
We visualise the learning problem and the overfitted velocity field in Figure 2 (left).

We adopt a Bayesian treatment of the model parameters using the Euclidean and Riemannian Laplace
approximations by setting the flow matching loss, LFM, as the log-likelihood term, log p (D|θ),
and choosing a uniform prior over the weights. We sample S = 1000 model realisations θs ∼
q (θ|D), which gives S = 1000 different generator function gθs for each method. We apply these
generator functions to N = 1000 noise samples drawn from the base distribution p0 and analyse the
memorisation ratio and generalisation of the generated data in Figure 3. We refer to Appendix B for
further details on the experimental setup.
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Figure 2: We consider a 1D flow matching toy problem with a Gaussian base distribution p0 and a
Gaussian mixture model (GMM) as the target distribution p∗. Left: the learnt conditional vector field
uθ (xt, t) : R × [0, 1] → R at the optimal parameters θ∗ for xt ∈ [−3, 3] and t ∈ [0, 1]. Each line
( ) is a sample path obtained by following the trajectory of a noise sample x0 ∼ p0 using uθ∗ to
form the distribution of generated samples x̂ ∼ p̂. The distribution of generated samples p̂ overfits to
the two fixed training samples ( ) and we say that the generator gθ∗ has learnt to memorise rather than
generalise to p∗. Right: we consider S = 1000 different model realisations θs ∼ q (θ|D) drawn from
a Euclidean and Riemannian approximate posterior, respectively. Each realisation gives a specific
velocity field (similar to left). We show the standard deviation per (xt, t)-coordinate computed over
the S different velocity fields.

Toy example results. The results in Figure 2 indicate that the standard deviation of the velocity
field is higher in the Euclidean than the Riemannian setting across the entire domain. Ignoring the
local intrinsic structures of the loss manifold, the Euclidean setting treats all directions equally. The
Riemannian approach on the other hand accounts for the slope and the perturbations progress more
hesitantly into low-probability regions, which results in a more controlled exploration of the parameter
space. The heat map reveals a clear correspondence between the underlying vector field and the
Riemannian standard deviation. In regions where the vector field has low magnitude, the standard
deviation is small, whereas the standard deviation increases in regions with larger magnitudes. This
suggests that the Riemannian approach dynamically adapts to the underlying landscape and allows
larger perturbations only when the model is confident. This is also reflected in the symmetry patterns:
the learnt vector field is an odd function in x, while the Riemannian standard deviation is even, which
suggests that velocity fields associated to parameter samples from the Riemannian posterior still
respect the symmetry of the original learnt model. The Euclidean heat map has no such symmetry.

Figure 3 reveals that adding noise to the model parameters by sampling the approximate posterior
distributions reduces memorisation, no matter the choice of distance threshold c. While data points
generated with the Euclidean approximate posterior exhibit less memorisation than data points
generated with the Riemannian approach and the non-Bayesian model, this reduced memorisation
comes at the comes at the expense of poorer generalisation to the true underlying distribution. In
contrast, the generated data distribution using the Riemannian approach still memorises less than the
original generator gθ∗ while generalising better than the other two approaches.

4 Discussion

Balancing generalisation and memorisation. Our results highlight that reducing memorisation
alone does not guarantee improved generalisation; rather, we observe a delicate trade-off between
memorisation and generalisation. The Euclidean method exhibits the least memorisation, suggesting
that the parameter perturbation encourages a broader variance over the output space. However,
this comes at the cost of poorer generalisation, demonstrating that counteracting memorisation too
aggressively can prevent the model from learning meaningful structures. The Riemannian method, on
the other hand, provides a good balance: it still exhibits less memorisation than the baseline, while
achieving substantially stronger generalisation.

How should we measure generalisation? The nearest neighbours memorisation ratio defined in
Equation 10 is easy to evaluate, however a downside is the dependence on Euclidean distance, which
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Figure 3: Left: The memorisation ratio (Equation 10) as a function of the distance threshold c when
generating data from the target distribution, the learnt distribution and the learnt distribution under a
Bayesian and Riemannian Bayesian treatment of the model parameters. Right: The generalisation
error computed as the KL-divergence between the target distribution and the generated data distri-
butions. For efficiency, we perform 50 repetitions of computing KL-divergences from a subset of
100 generated data samples and plot the means and standard errors in the bar plot. The generated
data distributions correspond to pushing noise samples from p0 through the generator gθ using the
learnt model θ∗ (top), using several models sampled from the Euclidean Laplace approximation
(middle), and using several models sampled from the Riemannian Laplace approximation (bottom).
We visualise the resulting distributions using kernel density estimation. See Appendix B for details.

does not take the structure of the data manifold into account and therefore does not necessarily align
with semantic similarity in the data domain. Furthermore, the choice of the constant c is somewhat
arbitrary. We conclude that the nearest neighbours memorisation ratio may be more suitable for a
global than a per instance memorisation measure.

Different measures for memorisation have been proposed, for example in [18]. The latter work
compares the local intrinsic dimension (LID) of the ground truth data manifold and of the learnt data
manifold. We say that a point is memorised if the dimension of the learnt manifold is lower than the
dimension of the ground truth manifold. This measure carries a nice geometric flavour and provides
more qualitative information about the structure of the learnt distribution than merely evaluating
distances between points. However, the estimation of the LID is computationally heavy and harder to
evaluate, although improvements have been made in [15].

Conclusion, limitations and future work. As we have demonstrated empirically, adopting a
geometry-informed Bayesian treatment of the model parameters can help reduce memorisation,
without loosing generalisation capabilities. This finding is based on a simple one-dimensional
example with only two training points being the means of a 2-component mixture of Gaussians. This
allowed for visually interpreting the effects of our Riemannian Bayesian treatment of the model
parameters, however recent work [3] suggests that the local dynamical structure of diffusion models
and dimension of the data sets impacts memorisation and that the dataset must be exponentially large
in input space dimension to not be memorised. In future revisions, we plan to extend the experimental
part to more complex toy experiments as well as real datasets that exhibit meaningful manifold
structure. Additionally, we will provide the associated theoretical justification for our proposed
design, and larger-scale experiments on generative image models.
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A A brief excursion to differential geometry.

The (posterior) loss manifold is the graph of the posterior loss function 3:

M = {h (θ) | θ ∈ Θ} = {θ1, . . . ,θK ,Lpost (θ) | θ ∈ Θ} ∈ R(K+1).

Here,
h : Θ → RK+1, h(θ) = (θ,Lpost (θ))

is the parametrisation of M induced by Lpost.

We equip M with the pullback metric as follows. Consider two smooth curves

α1, α2 : [0, 1] → Θ

in the parameter space, such that α1(0) = α2(0) = θ. Then

γ1 = h ◦ α1, γ2 = h ◦ α2 : [0, 1] → M

are smooth curves on M, intersecting at p = h(θ). We evaluate the scalar product at p ∈ M by
computing

⟨α̇1(0), α̇2(0)⟩G = α̇1(0)G(θ)α̇2(0)
⊤

= ⟨γ̇1(0), γ̇2(0)⟩,

where the matrix G(θ) is given by

G(θ) = ∇θh∇θh
⊤ = IK +∇θL(θ)∇θL(θ)⊤. (11)

We refer to locally shortest paths on a manifold as geodesics. A curve γ (t) = h ◦ α(t) on the
manifold is a geodesic if and only if α(t) satisfies the geodesic equation:

α̈k(t) = −
n∑

i,j=1

α̇i(t)α̇j(t) · Γk
ij(α(t)). (12)

Here, Γk
ij define the Christoffel symbols. If M is regular and complete, then for each point p ∈ M

and each unit tangent vector v ∈ TpM in the tangent space at p, there exists precisely one geodesic
through p in the direction of v. For further details, we refer the reader to the classic textbook in
differential geometry [16] or the lecture notes [8].

B Experimental details

We adopt a Bayesian treatment of the parameters of uθ , by defining the likelihood term in Equation 3
as the flow matching loss LFM (θ) and use a uniform prior over the weights. This corresponds to
placing the Laplace approximation at the maximum likelihood estimate found from training the flow
model with gradient descent. We consider the dataset D as a fixed collection of data-noise pairings
and equidistant time samples, i.e. D = {ti = i

N ,xi
0,x

i
∗}Nn=1, for ensuring a deterministic loss.

We sample S = 1000 model realisations from the Euclidean approximate posterior θs
E-LA ∼ q (θ|D)

and additionally use these as initial velocities for obtaining S = 1000 samples from the Riemannian
approximate posterior θs

R-LA ∼ qM (θ|D). For both approximate posterior methods, we compute the
velocity field over a space-time grid for each of the model realisations θs. We visualise the variation
over the associated velocity fields in Figure 2 (right).
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Next, we sample N = 1000 points from the base distribution and push these through the generator
associated to every model realisation. This gives us a set of N × S generated points for each
approximate posterior. We formalise this as:

{x̂i
E-LA}N×S

i=1 = { gθs(x
i
0) | xi

0 ∼ p0, θ
s
E-LA ∼ q (θ|D) }N,S

i=1,s=1 (13)

{x̂i
R-LA}N×S

i=1 = { gθs
(xi

0) | xi
0 ∼ p0, θ

s
R-LA ∼ qM (θ|D) }N,S

i=1,s=1 (14)

and visualise the memorisation ratio for various distance thresholds c in Figure 3 along with the
distributions of generated samples (p̂, p̂E-LA, p̂R-LA) and report the KL-divergence to the true target
distribution p∗ as a measure of generalisation.
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