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ABSTRACT

This paper investigates the limitations of Recurrent Neural Networks (RNNs) in
algorithmic tasks, particularly in comparison with Transformers. Focusing on a
reasoning task IsTree deciding whether a graph is a tree, we demonstrate that RNNs
with o(n) parameters, even with Chain-of-Thought (CoT), cannot solve this task
for graphs with size n, unlike Transformers which can solve the task with CoT
and only O(log n) bit parameters. Our experiments confirm this representation
gap. To overcome this limitation, we propose augmenting RNNs with in-context
retrieval capabilities, specifically using regular expressions. This enhancement
enables RNNs to solve IsTree and other algorithmic problems in P, maintaining
their memory efficiency and closing the gap with Transformers.

1 INTRODUCTION

Transformer models (Vaswani et al., 2017) have become the dominant choice of the backbone for
large language models (LLMs). The core component of Transformers is its self-attention module,
which allows the model to route information densely across the entire sequence. However, this design
leads to high inference costs for modeling long sequences, including a memory cost that is at least
linear in the sequence length due to the need for maintaining intermediate attention keys and values
for each token, and a time cost quadratic in the sequence length for computing the attention score for
each pair of tokens.

Recently, Recurrent Neural Networks (RNNs) have been an increasingly popular choice in sequence
modeling tasks due to their ability to maintain a memory size constant in sequence length during infer-
ence, thus achieving a better scaling than Transformers. Successful examples include RWKV (Peng
et al., 2023), RetNet (Sun et al., 2023), and Mamba (Gu & Dao, 2023). Most notably, Mamba can
achieve competitive performance with Transformers on several sequence modeling tasks with linear
time and constant memory complexity in sequence length.

The rise of these modern RNNs has led to an interest in understanding their capabilities and limitations
compared to Transformers. Arora et al. (2023) conducted empirical studies to show that RNNs
underperform Transformers on associative recall tasks that can naturally occur in language modeling.
The most relevant work in this direction is Feng et al. (2023a), where they studied the representation
power of language models with Chain-of-Thought (CoT) (Wei et al., 2023), a prompting technique
that asks the model to generate many intermediate tokens before giving the final answer. They
demonstrated a few examples of algorithmic tasks where Transformers can generate a specific
sequence of CoT to solve the tasks, but RNNs cannot follow this sequence exactly. However, these
studies do not exclude the possibility that, with a more careful design of architecture or a better
curation of training data for CoT, RNNs may be able to achieve the same or even better performance
than transformers. There is also a parallel thread of works Li et al. (2021; 2022) that tries to understand
the optimization perspectives of RNNs, which is orthogonal to our work.

Our Contributions. In this paper, we consider a fairly general class of RNNs and take a step forward
by revealing a fundamental limitation of RNNs in solving algorithmic tasks. More specifically, we
showcase a minimal example of a reasoning task that RNNs and Transformers can have a significant
representation gap:

IsTree: Given an undirected graph G of n nodes, determine whether G is a tree.
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Figure 1: We train RNNs (Mamba) and Transformers (LLaMA 2 Touvron et al. (2023)) with a frozen
word embedding and decoding head of three different model sizes (0.5M, 1M, 2M) on IsTree with
three different sizes of graph (16, 32, 64) under three different setups. The graph is generated in the
same way as in the proof of Lemma B.10. We train every model with at least 1M samples using
Adam with a learning rate 1e-3 for the Transformer and 3e-4 for RNNs until convergence, extending
to 5M samples if the model doesn’t converge. Vanilla means the model directly predicts the label.
COT means the model will generate a chain-of-thought process based on DFS (see Algorithm 1)
before prediction. During inference, we will let the model generate the chain of thought until either
generating YES or NO or until a max token limit and evaluate based on the final prediction regardless
of the reasoning process. Retrieval means the model will generate the chain of search queries and
reasoning before prediction (see Algorithm 2). We observe that (1) Both Transformer and RNNs can’t
solve the IsTree question without a chain of thought; (2) RNNs’ performance with chain-of-thought
decays quickly when the number of nodes increase, which is consistent with our theory; (3) All
models reach almost perfect accuracy when enhanced with in-context retrieval.

We assume a standard and realistic assumption that the floating-point precision is O(log n) (Merrill
& Sabharwal, 2023; Liu et al., 2023; Feng et al., 2023b), and prove that any constant-size RNNs are
not able to solve IsTree with arbitrarily many nodes. We also show that even if we allow RNNs to do
Chain-of-Thought (CoT) of any form, RNNs are still not able to solve IsTree. On the flip side, we
show that there exists a constant-size Transformer that can perfectly solve IsTree with CoT, which
is in line with previous works (Anonymous, 2023; Feng et al., 2023a; Liu et al., 2023) showing the
algorithmic reasoning capabilities of Transformer. Our experiments also confirm that RNNs fail to
solve IsTree for large n while Transformers can solve it with ease.

In essence, the above limitation of RNNs holds for all RNNs with o(n)-bit memory, and thus cannot
be overcome without sacrificing their memory efficiency. We further show that allowing RNNs
to invoke function calls to retrieve information in context can be a promising direction to address
this limitation while keeping the RNN size constant. More specifically, we consider one of the
simplest forms of retrieval: RNNs are allowed to search with a regular expression on the sequence
that has been processed so far. We prove that this simple form of retrieval is sufficient to close the
representation gap: RNNs augmented with this in-context retrieval capability can solve IsTree with
arbitrarily many nodes. Beyond IsTree, we also prove that this is sufficient for RNNs to solve any
polynomial time algorithmic problems.

2 THE REPRESENTATION GAP BETWEEN RNNS AND TRANSFORMERS
2.1 DEFINITIONS

Here we introduce definitions that are necessary for understanding our results. We refer to reader
to Appendix A for full definitions.

Language Modeling. A vocabulary V is a finite set of tokens. A word embedding for a token is a
specific vector in Rd that represents the token, and a position embedding for a token at a position
in a sequence is a specific vector in Rd that represents the position. Given a sequence of tokens S,
an embedding function Emb(S) maps each token to a vector in Rd by mixing word and position
embeddings, resulting in a sequence of vectors. See Appendix A.3 for the specific choice of the
embedding function in this paper to ease the comparison between RNNs and Transformers. A
language model is defined as function M : ∪l≥1|V |l → P|V | that maps a prefix to the probability
distribution over the next token, where |V | is the vocabulary size, l is the sequence length, and P|V |
is the probability simplex over |V |. In deep learning, a language model is usually realized by first
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embedding the input tokens into vectors and then applying a neural network (such as Transformers
and RNNs) to process the vectors and output the probability distribution.

Transformer. In the context of language modeling, given a sequence of tokens S, a Transformer
T (S) is a neural network that produces the following outputs:

T (S) = σ
(
W (E) (fL (. . . f1 (Emb (S))))

)
:,l
. (1)

where σ is the column-wise softmax function, W (E) is a frozen predefined word embedding matrix,
fi is the i-th Transformer block. A Transformer block consists of a feed-forward layer and an
attention layer, along with residual connections. See Definition A.4 for details. We call the i-th
transformer block the i-th layer of the transformer.

Recurrent Neural Networks Recently there has been a lot of interest in the linear-time transformer,
which replaces the full-attention calculation with linear-time alternatives. These variants are mostly
special forms of recurrent neural networks that are parallelizable. We will define a general form of
recurrent neural networks containing all of these variants; hence, our analysis will apply to all of
them. A Recurrent Neural Network (RNN) is characterized by two functions: state transition function
t : RΛ

p × Rd
p → RΛ

p and output function o : RΛ
p → Rd

p, where d is the dimension of the state. Let
S ∈ |V |l be the input sequence, the output of a recurrent neural network is defined as:

R(S) = σ
(
W (E)o(sn)

)
:,l
, (2)

∀k ∈ [n], sk = t(sk−1,Emb(S):,k), (3)

where s0 ∈ RΛ
p is a constant vector and W (E) is a frozen predefined word embedding matrix, which

is the same one in the definition of Transformer. We can characterize the complexity of an RNN with
the following three measures,

1. Parameter size P: the number of bit of parameters in t and o.
2. State memory size M: the number of bits in memory required to simulate a fixed parameter

RNN, which in this case is Λ× p.
3. Circuit size C: the number of bit-wise arithmetic operations needed to calculate t and o.

We further constrain ourselves to RNNs with the following properties, which still contain all the
modern variants of linear-time transformers to the best of our knowledge.

Definition 2.1. We say that an RNN is regular if P = Ω(M) and C = Θ̃(P).

Chain of Thought. Given a language model M with vocabulary V and a sequence of tokens
Sin ∈ |V |l0 , we define Chain of Thought (CoT) as the following process of sequence generation:

S0 = Sin, snexti = argmax
j∈V

M(Si)[j], Si+1 = Si ⊕ snexti ,∀i ≥ 0, (4)

The process terminates at Si when argmaxj∈V M(Si)[j] is YES or NO. We say that the language
model can solve a task that expects answer YES or NO within T steps of CoT if the process terminates
at Si where i ≤ T and the final output is correct. We will call the special case where the language
model solves the reasoning task within 0 steps of CoT as solving the reasoning task without CoT.

2.2 REPRESENTATION GAP ON ISTREE

We study the representation gap between RNNs and Transformers on a minimal example of reasoning
tasks, called IsTree: given an undirected graph G of n nodes, determine whether G is a tree, i.e.,
whether every pair of nodes is connected by exactly one simple path. A classical solution to IsTree is
running Depth First Search (DFS), which takes O(n) time.

In the context of language modeling, we can write the graph G as a sequence of tokens, and then the
task of IsTree is to determine whether G is a tree by predicting a YES/NO token with or without
CoT. We use the following tokenization for the graph G:

Tokenize(G) = {<s>, u1,∼, v1, u2,∼ v2, . . . , um,∼, vm}, (5)

where <s> and ∼ are two special tokens representing the start of the sentence and an edge, and ui, vi
are numbers denoting the nodes of the graph.
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Our first result states that RNN with o(n) bit memory cannot solve IsTree, even with an arbitrary
choice of chain of thought. On the other hand, there exists a Transformer with constant size and
O(log n) precision that can generate a chain-of-thought of length n following DFS and perfectly
solve the same question.
Theorem 2.2. For any n and RNN R with o(n) bit memory, R cannot perfectly solve IsTree of size n,
with any length of chain of thought. On the other hand, there exists a Transformer T1 with constant
dimension and depth, and O(log n) precision that can solve IsTree of size n perfectly with Chain of
Thought of length O(n).

2.3 TRANSFORMER CAN SIMULATE RNNS

The above theorem shows the existence of a task where Transformers require exponentially less
memory than RNNs. However, it does not rule out the possibility that there exists a corresponding
task where the Transformer will be more redundant and require exponentially more parameter than
RNNs. However, the following theorem confirms that such a task doesn’t exist for regular RNN
(Definition A.7).
Theorem 2.3. Given any constant A > 0, constant word width and number of special symbols
d, nS > 0, for any n, precision p = Θ(A log n) and RNN R with word embedding W (E) ∈
R(n+nS)×d

p such that each recurrent iteration can be calculated with a circuit with size P(n) ≤ 2p/2,
there exists a Transformer T with O(P(n) logmax{P(n), n}) bit parameter and word embedding[
W (E) 0(n+nS)×d

]
that can simulate the RNN with at most nA step chain-of-thought precisely,

using at most (P(n) + 1)nA step chain of thought on every input with length n.

3 THE FIX: RETRIEVAL AUGMENTED RNNS
3.1 DEFINITIONS

In-Context Retrieval Augmentation Retrieval Augmented Generation means giving the language
model the capability to retrieve relevant information to assist generation. We formally described
the process here. Given a language model M with vocabulary V (containing two additional special
tokens called StartSearch and EndSearch) and the tokenized input sequence Sin ∈ |V |l0 , retrieval
augmented generation generates following sequence of tokenized sequence:

S0 = Sin, s
next
i = argmax

j∈V
M(Si)[j],

Si+1 =

{
Si ⊕ snexti , snexti ̸= EndSearch

Si ⊕ snexti ⊕ RETRIEVE (Si) , otherwise.

Here RETRIEVE looks for the last occurrence of StartSearch at position ls and EndSearch in
S at positon le and treat Detokenize(Sls:le) as a regular expression. The algorithm then evaluate
the regular expression on Detokenize(S1:ls−1) and returns the result. Here Detokenize maps the
tokenized sequence back to the string.

Evaluating a constant length regular expression takes Õ(n) time. However, because all the operation
here is operated on the string, the retrieval functionality can be implemented efficiently on CPUs.
Moreover, the search queries used in the following theorem Theorems 3.1 and 3.2 can be further
optimized to take Õ(1) amortized time.

3.2 RETRIEVAL CAPABILITY CLOSES THE REPRESENTATION GAP

Here we would show that, by simply allowing the model to query its context, RNNs with O(log n)
bit memory could be as powerful as a polynomial-time Turing machine.
Theorem 3.1. Given any constant A,B, for any polynomial-time Turing machine T ∈ TIME(nA)
with B states and vocabulary size B, there exists a retrieval augmented RNNs (see Definition A.9) with
vocabulary of B special symbol, O(A log n+B) bit memory, and O(B2(A log n+B)) parameter,
that can simulate the output of T on any input with length n with a chain of thought of length O(nA).

As a concrete example, we would show that the retrieval augmented RNNs can solve the IsTree
problem with a chain of thought of length O(n).
Theorem 3.2. There exists a retrieval augmented RNNs with O(log n) bit memory and O(log n)
parameter, that can solve IsTree of size n with a chain of thought of length O(n).
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A NOTATIONS AND DEFINITIONS

We will first define the necessary definitions and notations.

A.1 REASONING TASKS ON GRAPHS.

The reasoning tasks we consider in this paper are all defined on graphs. Without otherwise specified,
we will use n as the number of vertices and m as the number of edges. Without loss of generality, we
will assume the vertices are labeled by [n].

We will focus on decision problems on graphs, which are defined as follows:
Definition A.1 (Decision Problem on Graphs). A decision problem on graph is a function f : G →
{YES,NO}, where G is the set of all possible graphs.

We will use the following decision problem as our main example:
Definition A.2 (IsTree). IsTree(G) = YES if G is a tree, and IsTree(G) = NO otherwise.

One can view IsTree as a minimal example of reasoning tasks. One of the classical solutions to IsTree
is running Depth First Search and this algorithm takes O(n) time.

A.2 NUMERICAL PRECISION.

We would consider computation models with fixed numerical precision in this paper. We will use p
to denote the precision of the number of bits to represent real numbers. We will use Rp to denote
the set of all real numbers that can be represented by p-bit floating point numbers. We will use
ROUND(x, p) to denote the rounding function that rounds x to the nearest number in Rp. We will
assume p is an odd number without loss of generality.

Rp =

{
(2bp − 1)

(
p−1∑
i=1

bi2
(p−1)/2−i

)
: ∀i ∈ [p], bi ∈ {0, 1}

}
. (6)

For calculation over Rp, we will assume the calculation is exact and the result is rounded to Rp at the
end, that is, for operator ⊕, we will have

ROUND(x, p)⊕p ROUND(y, p)

=ROUND(ROUND(x, p)⊕ ROUND(y, p), p)) .

We will additionally define Zp as the set of all integers that can be represented by p-bit floating
point numbers. We will define 1/[m] as the set of unit fractional { 1

i }i∈[m]. Further, we will define
ROUND(1/[m], p) as the rounding of 1/[m] to Rp. We will additionally define for any real number
x ∈ {0, 1}, next(x) = 1

m+1 where m = argmink∈Z |x− 1
k |.

We will assume p = O(log n) in this paper and state the constant explicitly when necessary.

A.3 MODELS

Tokenization. To tokenize a graph G, we will order its edges E = {(ui, vi) | ui < vi} randomly
and tokenize it into the following string:

Tokenize(G) = {<s>, u1,∼, v1, . . . , um,∼, vm}. (7)

We hereby assume there are constant number of more special tokens that are not the same as any
number token, which are listed below:

• <s>: the first special token, indicating the start of a sentence.
• ∼: the second special token, indicating an edge.
• YES: the third special token, indicating the answer is yes.
• NO: the fourth special token, indicating the answer is no.

7



Under review at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

• StartSearch: the fifth special token, indicating the start of a search query.

• EndSearch: the sixth special token, indicating the end of a search query.

We will denote the total number of special tokens as nS and the total vocabulary size as |V | = n+nS .
We will further define the detokenization function Detokenize,

Detokenize(S) = “S1 S2 . . . Sl”.

Here each Si is either a number or a special token, which we will treat as a character.

Embedding Functions. We will use d to denote the dimension of the embedding and wi to denote
the i-th standard basis vector in Rd.

We will separate the embedding function into two parts: the word embedding and the position
embedding. For the word embedding, we will use iw1 + i2w2 ∈ Rd to represent the embedding of
the vertice i in the tokenization of the graph. For the k-th special token, we will use w2+k to represent
its embedding. For example, the embedding of ∼ is w2. We will denote the word embedding matrix
as W (E) ∈ R|V |×d.

For the position embedding, we will use lwd to represent the position embedding of the l-th token in
the tokenization of the graph, which is a hyperparameter. The final embedding of any token sequence
is the sum of the word embedding and the position embedding. We will use Emb to denote the
embedding function.

This embedding function will be fixed and shared across all models we consider in this paper and
will not be learned during training, hence we will not consider it as part of the model parameters.

Language Modeling. In this work, we will consider the difference between Transformer and
Recurrent Neural Networks on reasoning task, which is a special case of language modelling. We
will define language modelling as follows:

Definition A.3 (Language Model). A language model is a function M : ∪L
l=1|V |l → P|V |, where

|V | is the vocabulary size, l is the sequence length, and P|V | is the probability simplex over |V |.

We will now formally define the two types of language models we consider in this paper.

Transformers.
Definition A.4 (Transformer Block). Let X ∈ Rd×l be the input matrix, where l is the sequence
length. The output of a transformer block f is defined as:

f(X) = X +A(X) + g(X +A(X)),

A(X) =

H∑
h=1

W (V,h)Xσ

((
W (K,h)X

)⊤
W (Q,h)X

√
d

+ C

)
, (8)

where g is a column-wise ReLU feed-forward network with width w and output dimension d, A is
the scaled dot-product attention, σ is the column-wise softmax function, W (K,h), W (Q,h), W (V,h)

are the learnable parameters and H is the number of heads, and C =


0 0 . . . 0

−∞ 0 . . . 0
...

...
...

...
−∞ −∞ . . . 0

 ∈ Rl×l

is a mask to prevent the attention from attending to future tokens.

Definition A.5 (Transformer). Let S ∈ |V |l be the tokenized input sequence, the output of a
transformer is defined as:

T (S) = σ
(
W (E) (fL (. . . f1 (Emb (S))))

)
:,l
. (9)

where σ is the column-wise softmax function, fi is the i-th transformer block. We will call the i-th
transformer block the i-th layer of the transformer and denote its feed-forward layer and attention
layer as gi and Ai respectively.
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Recurrent Neural Networks Recently there has been a lot of interest in the linear-time transformer,
which replaces the full-attention calculation with linear-time alternatives. These variants are mostly
special forms of recurrent neural networks that are parallelizable. We will define a general form of
recurrent neural networks containing all of these variants; hence, our analysis will apply to all of
them.
Definition A.6 (RNN). A recurrent neural network is characterized by two functions: state transition
function t : RΛ

p ×Rd
p → RΛ

p and output function o : RΛ
p → Rd

p, where d is the dimension of the state.
Let S ∈ |V |l be the input sequence, the output of a recurrent neural network is defined as:

R(S) = σ
(
W (E)o(sn)

)
:,l
, (10)

∀k ∈ [n], sk = t(sk−1,Emb(S):,k), (11)

where s0 ∈ RΛ
p is a constant vector.

We can characterize the complexity of an RNN using the following three measures,

1. Parameter size P: the number of bit of parameters in t and o.
2. State memory size M: the number of bit in memory requires to simulate a fixed parameter

RNN, which in this case is Λ× p.
3. Circuit size C: the number of bit-wise arithmetic operations needed to calculate t and o.

We will further constrain ourselves to RNNs with the following properties, which still contains all the
modern variants of linear-time transformers to the best of our knowledge.

Definition A.7. A recurrent neural network (Definition A.6) is regular if P = Ω(M) and C = Θ̃(P).

A.4 LANGUAGE MODELS FOR REASONING.

Chain of Thoughts. We will now define how do we use language models to solve reasoning tasks
utilizing the following technique called chain of thought.
Definition A.8 (Chain of Thought). Given a language model M with vocabulary V and the tokenized
input sequence Sin ∈ |V |l0 , chain of thought (CoT) generates following sequence of tokenized
sequence:

S0 = Sin, (12)

snexti = argmax
j∈V

M(Si)[j], (13)

Si+1 = Si ⊕ snexti ,∀i ≥ 0. (14)

The process terminates at Si when argmaxj∈V M(Si)[j] is YES or NO. The language model can
solve the reasoning task within T steps of CoT if the process terminates at Si where i ≤ T and the
final output is correct. We will call the special case where the language model solves the reasoning
task within 0 steps of CoT as solving the reasoning task without CoT.

Retrieval Augmentation. We will show in this paper that retrieval augmentation is a necessary
technique to solve reasoning tasks for recurrent neural networks. We will define retrieval augmentation
as follows:
Definition A.9 (Retrieval Augmented Generation). Retrieval Augmented Generation means giving
the language model the capability to retrieve relevant information to assist generation. We formally
described the process here. Given a language model M with vocabulary V (containing two additional
special tokens called StartSearch and EndSearch) and the tokenized input sequence Sin ∈ |V |l0 ,
retrieval augmented generation generates following sequence of tokenized sequence:

S0 = Sin,

snexti = argmax
j∈V

M(Si)[j],

Si+1 =

{
Si ⊕ snexti , snexti ̸= EndSearch

Si ⊕ snexti ⊕ RETRIEVE (Si) , otherwise.

9
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Here RETRIEVE looks for the last occurrence of StartSearch at position ls and EndSearch in S
at positon le and treat Detokenize(Sls:le) as a regular expression. The algorithm then use the regular
expression on Detokenize(S1:ls−1). If the regular expression ever matches, the RETRIEVE will
return the match. If the regular expression never matches, RETRIEVE will return special token
FAILED.

Similar to Definition A.8, we can define the notion of solving the reasoning task within T steps of
retrieval augmented generation and solving the reasoning task without retrieval augmented generation.

We will note that assuming |V | = O(n) and every search query and the result is of length O(1), the
regular expression evaluation can typically be evaluated in O(n) time.

B OMITTED PROOF

B.1 BUILDING BLOCKS OF TRANSFORMERS CONSTRUCTION

We will show in this section some construction for basic functionality using Transformer Blocks.
This construction will be used in the following sections to prove the main results.

We will always use X ∈ Rd×l
p as the input to the Transformer Block, where d is the dimension of the

input, and l is the length of the sequence. We will first outline all the building functionality and then
show how to implement them.
Definition B.1 (Copying Function). For integer s, index set I1, I2 ⊂ [d− 20] satisfying |I1| = |I2|,
a copying function COPY[s, I1, I2] satisfies the following, ∀X ∈ Rd×l

p , then

COPY[s, I1, I2](X)I2,k = xI1,max{k−s,0} ∀k ≤ [m]

COPY[s, I1, I2](X)Ic
2 ,k

= 0 ∀r ∈ [m]

Definition B.2 (Counting Function). For index set I1, I2 ⊂ [d− 20], |I1| = |I2| ≤ 10 and index i, a
counting function COUNT[I1, I2, i] satisfies the following, if ∀v ∈ I1 ∪ I2, k ∈ [l], Xv,k ∈ Zp and
Xv,k ̸= 0, then

COUNT[I1, I2, i](X)i,k =
1∑k

h=1 1[XI1,h = XI2,k] + 1
∀k ∈ [l].

COUNT[I1, I2, i](X)ic,k = 0 ∀k ∈ [l].

Definition B.3 (Matching Function). For index set I1, I2, I3, I4 ⊂ [d− 20], |I1| = |I2| ≤ 10, |I3| =
|I4|, a matching function Match[I1, I2, I3, I4] satisfies the following, if ∀v ∈ I1∪ I2, k ∈ [l], Xv,k ∈
Zp, then

Match[I1, I2, I3, I4](x)I3,k = XI4,k∗ ∀k ∈ [l]

where k∗ =

{
min{h | XI1,h = XI2,k}, {h | XI1,h = XI2,k} ≠ ∅
1, otherwise

.

Definition B.4 (Matching Next Function). Given any interger constant A, assuming p > 10A log n,
for index set I1, I2, I3, I4 ⊂ [d − 20], |I1| = |I2| ≤ 10, |I3| = |I4|, and a special counting index
a, a matching next function MatchNext[I1, I2, I3, I4, a] satisfies the following, if X satisfies the
following condition:

1. ∀v ∈ I1 ∪ I2, k ∈ [l], Xv,k ∈ Zp,

2. Xa,k ∈ ROUND(1/[nA], p) ∪ {0},

3. For any k ∈ [l], given any k ≥ k, the counting index multiset Sk = {Xa,k′ | XI1,k′ =
XI2,k} takes consecutive and disjoint values in ROUND(1/[nA], p), that is, there exists uk, vk ∈
ROUND(1/[nA], p) such that Sk = [uk, vk] ∩ ROUND(1/[nA], p).

then, we have

MatchNext[I1, I2, I3, I4, a](X)I3,k = XI4,k∗ ∀k ∈ [l]

where k∗ = arg min
h∈{h|XI1,h=XI2,k}∪{1}

|Xa,h − next(Xa,k)|.

10
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Now we will show how to implement these functions using Transformer Blocks. The construction
here is motivated by the construction in Feng et al. (2023a) with some modifications.

Lemma B.5 (Copying Blocks). For integer s, index set I1, I2 ⊂ [d − 10] satisfying |I1| = |I2|, a
copying function COPY[s, I1, I2] can be implemented with 1 feedforward block g and 1 attention
block A with 1 attention head. Formally, when Xd,k = k, it holds that

A (g (X) +X) = COPY[s, I1, I2](X).

Proof of Lemma B.5. We will use the feedforward block to calculate X2
k,d and 1 and have

(g(X) +X)d−1,k = k2

(g(X) +X)d−2,k = 1.

∀i ̸∈ {d− 1, d− 2}, (g(X) +X)i,k = Xi,k.

We will use X ′ to denote g(X) +X . Then we will choose W (K),W (Q) such that

W (K)X ′
:,k′ = n

 1
k′

k′2


W (Q)X ′

:,k =

−(k2 + s2 − 2sk)
2k − 2s
−1


Hence ((

W (K)X
)⊤ (

W (Q)X
))

k′,k

=− n
(
k′2 − k′(2k − 2s) + k2 + s2 − 2sk

)
=− n(k − s− k′)2

Hence we have

argmax
k′<k

((
W (K)X

)⊤ (
W (Q)X

))
k′,k

= max{k − s, 0}.

Also, for any k′ ≤ k, k′ ̸= max{k − s, 0}, we have((
W (K)X

)⊤ (
W (Q)X

))
k′,k

−
((

W (K)X
)⊤ (

W (Q)X
))

max{k−s,0},k
< −n.

Hence after the column-wise softmax and rounding to p = O(log n) bit, we have(
σ

((
W (K)X

)⊤ (
W (Q)X

)))
k′,k

= 1[k′ = max{k − s, 0}].

We will then choose W (V ) such that

W (V )X ′
I2,k′ = X ′

I1,k′ = XI1,k′ ∀k′ ∈ [l].

W (V )X ′
Ic
2 ,k

′ = 0 ∀k′ ∈ [l].

This then concludes that

A (g (X) +X) = COPY[s, I1, I2](X).

The proof is complete.

11
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Lemma B.6 (Counting Blocks). For index set I ⊂ [d− 20] satisfying |I1| = |I2| ≤ 10, a counting
function COUNT[i, I1, I2] can be approximated with 1 feedforward block g and 1 attention block A
with 1 attention head. Formally, when Xd,k = k and X3,k = 1[k = 1], XI1,1 = 0, it holds that

A (g (X) +X)i,k = ROUND(COUNT[s, I1, I2](X)i,k, p) .

A (g (X) +X)ic,k = 0.

Proof of Lemma B.6. We will use the feedforward block to calculate X2
v,k, v ∈ I1 ∪ I2 and have

(g(X) +X)d−i,k = X2
I1[i],k

, i ∈ [|I|].

(g(X) +X)d−|I|−i,k = X2
I2[i],k

, i ∈ [|I|].
(g(X) +X)d−2|I|−1,k = 1.

∀i ̸∈ {d− i | i ∈ [2|I|+ 1]}, (g(X) +X)i,k = Xi,k.

We will use X ′ to denote g(X) +X . Then we will choose W (K),W (Q) such that

W (K)X ′
:,k′ = n

1 + 1[k′ = 1]
XI1[i],k′

X2
I1[i],k′


i∈[I]

W (Q)X ′
:,k =

 X2
I2[i],k

−XI2[i],k

1


i∈[I]

Hence,

((
W (K)X

)⊤ (
W (Q)X

))
k′,k

=− n

|I|∑
i=1

(
X ′2

I2[i],k′ −XI1[i],k′(2XI2[i],k) +X2
I2[i],k

)
+ n1[k′ = 1]

|I|∑
i=1

X2
I[i],k.

=− n

|I|∑
i=1

(XI1[i],k′ −XI2[i],k)
2 + n1[k′ = 1]

|I|∑
i=1

X2
I2[i],k

.

Hence we have

max
k′<k

((
W (K)X

)⊤ (
W (Q)X

))
k′,k

= 0.

Equality holds when k′ = 1 or XI1[i],k′ = XI2[i],k for all i ∈ [|I1|].

Also, for any k′ ≤ k, k′ ̸= 1 or XI1[i],k′ ̸= XI2[i],k for some i ∈ [|I1|], we have((
W (K)X

)⊤ (
W (Q)X

))
k′,k

< −n.

Hence after the column-wise softmax and rounding to p = O(log n) bit, we have(
σ

((
W (K)X

)⊤ (
W (Q)X

)))
k′,k

= ROUND

(
1∑k

h=1 1[XI1,h = XI2,k] + 1
, p

)

Here the O
(

1
nA

)
term comes from the fact that the softmax is rounded to p = O(log n) bit.

12
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We will then choose W (V ) such that

W (V )X ′
i,k′ = X ′

3,k′ = 1[k′ = 1] ∀k′ ∈ [l].

W (V )X ′
Ic,k′ = 0 ∀k′ ∈ [l].

This then concludes that

A (g (X) +X)i,k = ROUND(COUNT[s, I1, I2](X)i,k, p) .

A (g (X) +X)ic,k = 0.

Lemma B.7 (Matching Blocks). Given any constant c, for index set I1, I2, I3, I4 ⊂ [d− 20], |I1| =
|I2| ≤ 10, |I3| = |I4|, a matching function Match[I1, I2, I3, I4] can be implemented with 1 feed-
forward block g and 1 attention block A with 1 attention head. Formally, when Xd,k = k,X3,k =
1[k = 1], XI1,1 = 0 and k ≤ nc, it holds that

A (g (X) +X) = Match[I1, I2, I3, I4](X)

Proof. We will use the feedforward block to calculate k2, X2
v,d, v ∈ ∪I1 ∪ I2 as in the proof

of Lemmas B.5 and B.6.

We then choose W (K),W (Q) such that((
W (K)X

)⊤ (
W (Q)X

))
k′,k

=− n4c+1

|I|∑
i=1

(XI1[i],k′ −XI2[i],k)
2 − nk′2

+ 1[k′ = 1]

n4c+1

|I|∑
i=1

X2
I2[i],k

+ n− n2c+2

 .

The detailed construction of W (K),W (Q) is omitted here since it is similar to the proof of Lemmas B.5
and B.6.

We will discuss several cases for the distribution of
((

W (K)X
)⊤ (

W (Q)X
))

k′,k
. It always holds

that
((

W (K)X
)⊤ (

W (Q)X
))

1,k
= −n2c+2.

1. If there doesn’t exists k′, such that Xk′,I1 = Xk,I2 , then for any i > 1, we have((
W (K)X

)⊤ (
W (Q)X

))
i,k

< −n4c+1.

2. If there exists k′, such that Xk′,I1 = Xk,I2 , then for such k′, we have((
W (K)X

)⊤ (
W (Q)X

))
k′,k

= −nk′2 > −n2c+1. The rest of the entries are all

smaller than −n4c+1. Finally, the largest k′ satisfying that Xk′,I1 = Xk,I2 will corre-

sponds to a
((

W (K)X
)⊤ (

W (Q)X
))

k′,k
that is at least n larger than the second largest((

W (K)X
)⊤ (

W (Q)X
))

k′,k
, as in the proof of Lemma B.5.

Concluding the above discussion, we have after the column-wise softmax and rounding to p =
O(log n) bit,(
σ

((
W (K)X

)⊤ (
W (Q)X

)))
k′,k

=

{
1[k′ = min{h | XI1,h = XI2,k}], {h | XI1,h = XI2,k} ≠ ∅
1[k′ = 1], otherwise

13
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Further, we will choose W (V ) such that

W (V )X ′
I3,k′ = X ′

I4,k′ = XI4,k′ ∀k′ ∈ [l].

W (V )X ′
Ic
3 ,k

′ = 0 ∀k′ ∈ [l].

This then concludes that

A (g (X) +X) = Match[I1, I2, I3, I4](X)

This concludes the proof.

Lemma B.8 (Matching Next Blocks). Given any constant A, c, for index set I1, I2, I3, I4 ⊂
[d − 20], |I1| = |I2| ≤ 10, |I3| = |I4| and a special counting index a, a matching next func-
tion MatchNext[I1, I2, I3, I4, a] can implement with 1 feedforward block g and 1 attention block A
with 1 attention head. Formally, when Xd,k = k,X3,k = 1[k = 1], XI1,1 = 0 and k ≤ nc, it holds
that

A (g (X) +X) = MatchNext[I1, I2, I3, I4, a](X)

Proof. We will use the feedforward block to calculate the following next function, where

next(x) =


1
2 , x ≥ 2

3 .
1
3 ,

3
5 > x > 2

5 .
1
4 ,

7
20 > x > 3

10

x− x2 + x3, x ≤ 11
40 .

The value can be arbitrary for x ∈ [ 1140 ,
3
10 ] ∪ [ 25 ,

7
20 ] ∪ [ 35 ,

2
3 ].

The purpose of this is to approximate the next function for x ∈ ROUND(1/[nA], p), and we have
the following lemma.

Lemma B.9. For large enough n and any x ∈ ROUND(1/[nA], p), we have

|next(x)− next(x)| ≤ next(x)3 +O

(
1

n10A

)
.

Proof. We always have ROUND(1/[nA], p) ∩
(
[ 1140 ,

3
10 ] ∪ [ 25 ,

7
20 ] ∪ [ 35 ,

2
3 ]
)
= ∅. We will discuss

several cases for x ∈ ROUND(1/[nA], p).

1. If x ≥ 3
10 , then next(x) = next(x).

2. If x ≤ 7
20 , it holds that |x− 1/m| ≤ 1/n10A,m ≥ 3, then

next(x) = x− x2 =
1

m
− 1

m2
+

1

m3
+O

(
1

n10A

)
=

1

m+ 1
− 1

m3(m+ 1)
+O

(
1

n10A

)
This then concludes the proof.

We then choose W (K),W (Q) such that((
W (K)X

)⊤ (
W (Q)X

))
k′,k

=− n4A+3

|I|∑
i=1

(XI1[i],k′ −XI2[i],k)
2 − n4A+1(next(Xa,k)−Xa,k′)2

+ 1[k′ = 1]

n4A+3

|I|∑
i=1

X2
I2[i],k

+ n4A+1X2
a,k − n4A+2

 .
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Again, the detailed construction of W (K),W (Q) is omitted here since it is similar to the proof
of Lemmas B.5 and B.6.

We will discuss several cases for the distribution of
((

W (K)X
)⊤ (

W (Q)X
))

k′,k
. It always holds

that
((

W (K)X
)⊤ (

W (Q)X
))

1,k
= −n4A+2.

1. If there doesn’t exists k′, such that Xk′,I1 = Xk,I2 , then for any i > 1, we have((
W (K)X

)⊤ (
W (Q)X

))
i,k

< −n4A+3.

2. If there exists k′, such that Xk′,I1 = Xk,I2 , then for such k′, we have((
W (K)X

)⊤ (
W (Q)X

))
k′,k

= −n3A(next(Xa,k) − Xa,k′)2 > −n4A+1. The rest of the

entries are all smaller than −n4A+2.

It remains to discuss the distribution of
((

W (K)X
)⊤ (

W (Q)X
))

k′,k
for k′ satisfying Xk′,I1 =

Xk,I2 . When X satisfies the condition in Definition B.4, we have that Sk = {Xa,k′ | Xk′,I1 =
Xk,I2} takes consecutive and disjoint values in ROUND(1/[nA], p). Hence, if |Sk| > 2, suppose
y, z ∈ Sk satisfies that

|y − next(Xa,k)| = min
x∈Sk

|x− next(Xa,k)|

|z − next(Xa,k)| = min
x∈Sk,x ̸=y

|x− next(Xa,k)|.

We will discuss several cases for y, z.

• If y − next(Xa,k) and z − next(Xa,k) are both negative, then y > z, we have,(
y − next(Xa,k)

)2 − (z − next(Xa,k)
)2

= (y − z)(y + z − 2next(Xa,k))

≤ −(y − z)2 ≤ − 1

4n4A
.

.
• If y − next(Xa,k) and z − next(Xa,k) are both positive, then y < z, and same as above we

have (
y − next(Xa,k)

)2 − (z − next(Xa,k)
)2

= (y − z)(y + z − 2next(Xa,k))

≤ −(y − z)2 ≤ − 1

4n4A
.

.
• If y − next(Xa,k) and z − next(Xa,k) have different signs, then according to Lemma B.9,

we have, y = ROUND(next(Xa,k), p) because Sk takes consecutive and disjoint values in
ROUND(1/[nA], p). This then implies that(

y − next(Xa,k)
)2 − (z − next(Xa,k)

)2
≤O(

1

n10A
) +

1

next6(Xa,k)
−
(

1

next(Xa,k)(next(Xa,k) + 1)

)2

≤− 1

4n4A
.

Concluding, we always have for any k′′ ̸= k∗ = argmaxk′,k

((
W (K)X

)⊤ (
W (Q)X

))
k′,k((

W (K)X
)⊤ (

W (Q)X
))

k′,k

−
((

W (K)X
)⊤ (

W (Q)X
))

k∗,k

≤ −n

4
.
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Concluding the above discussion, we have after the column-wise softmax and rounding to p =
O(log n) bit,(
σ

((
W (K)X

)⊤ (
W (Q)X

)))
k′,k

= 1

[
k′ = arg min

h∈{h|XI1,h=XI2,k}∪{1}
|Xa,h − next(Xa,k)|

]
.

Further, we will choose W (V ) such that

W (V )X ′
I3,k′ = X ′

I4,k′ = XI4,k′ ∀k′ ∈ [l].

W (V )X ′
Ic
3 ,k

′ = 0 ∀k′ ∈ [l].

This then concludes the proof.

B.2 PROOF OF THEOREM 2.2

We will now proceed to prove our first theorem, which states that Transformers with chain-of-thought
can solve IsTree perfectly, while RNNs cannot. We will first restate the theorem here.

Theorem 2.2. For any n and RNN R with o(n) bit memory, R cannot perfectly solve IsTree of size n,
with any length of chain of thought. On the other hand, there exists a Transformer T1 with constant
dimension and depth, and O(log n) precision that can solve IsTree of size n perfectly with Chain of
Thought of length O(n).

Proof of Theorem 2.2. We will prove this theorem by proving the following lemmas.

Lemma B.10. For any n and RNN R with o(n) memory, R can’t perfectly solve IsTree of size n.

Lemma B.11. There exists a Transformer T with constant depth and width, and O(log n) precision,
that can solve IsTree of size n perfectly with Chain of Thought.

This proof is a direct combination of Lemmas B.10 and B.11.

B.2.1 PROOF OF LEMMA B.10

Proof of Lemma B.10. The key observation is that the recurrent form of RNNs allowed the algorithm
to be run in a streaming fashion with o(n) bit memory. Here streaming means that the algorithm
gets to look at each bit of the memory sequentially and can only update a constant size of memory.
However, any streaming algorithm for IsTree requires Ω(n) memory. This result is well known in the
literature of streaming algorithms. We will demonstrate the proof of it here for completeness.

Lemma B.12. Consider the following two-party game, where Alice receives string x ∈ {0, 1}n and
Bob receives an integer k, and Bob wants to know the value of xk. If only Alice is allowed to send
signal to Bob, then Ω(n) bit communication complexity is required.

Proof of Lemma B.12. Suppose there exists a communication protocal where B only receives o(n)
bit and can perfectly decides xk. Because Alice don’t know k, the protocal must send the same
message to Bob for all k. Hence Bob can actually reconstruct the whole string x with n bit with o(n)
bit communication. This is a contradiction.

Lemma B.13. Consider the following two-party game, where Alice receives string x ∈ {0, 1}n and
Bob receives an integer k, and Bob wants to know whether xk = xk−1. If only Alice is allowed to
send information, Ω(n) bit communication complexity is required.

Proof of Lemma B.13. We can reduce this problem to the problem in Lemma B.12. Considering the
game in Lemma B.12, given any x ∈ {0, 1}n, we can construct x̃i =

∑i
j=1 xi mod 2. Then x̃ is a

string of length n with only 0 and 1. Moreover, xk = xk−1 if and only if x̃k = x̃k−1. Hence, if Bob
can solve the problem in Lemma B.13 with o(n) bit, he can solve the problem in Lemma B.12. This
is a contradiction.
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Now suppose that we have a streaming algorithm for IsTree with only o(n) memory. We shall prove
Alice and Bob in Lemma B.13 can use it to solve the original question with o(n) memory.

Consider the following graph with n+2 nodes. There is a node i corresponding to each xi for i ∈ [n]
and two special nodes n + 1, n + 2. Node i will be connected to n + 1 if xi = 0 and to n + 2 if
xi = 1. Moreover, k − 1 and k will be connected. Now the original answer Bob wants is False if and
only if the graph is a Tree. Hence, given access to the streaming algorithm, Alice can run it on the
edges that she knows exist and send the memory to Bob. Bob can then run it on the edges that he
knows exist. Combining they will be able to solve the original problem. This is a contradiction.

Moreover, as RNN with chain-of-thought is also a streaming algorithm, it also requires Ω(n) memory.

B.2.2 PROOF OF LEMMA B.11

Proof of Lemma B.11. The proof is two-folded. We will first define an algorithm that can solve
IsTree by generating a sequence of vertices of length O(n), and then we will show that this sequence
can be generated by a Transformer with constant depth and width, and O(log n) precision as a Chain
of Thought.

Algorithm 1 Depth-First Search Algorithm
Require: A graph G = (V,E) with n vertices and E has an ordering e1, . . . , em.

1: Initialize two stacks of vertices S1, S2 with S1 = [v1], S2 = ∅.
2: while S1 is not empty do
3: Let v be the top of S1. Yield v.
4: if there exists a neighbor u of v not in S1 ∪ S2 then
5: Choose u such that edge (u, v) has the smallest possible order and push u to S1.
6: else
7: Pop v from S1 and push v to S2.
8: end if
9: end while

Algorithm for IsTree. We define Algorithm 1 as a depth-first search algorithm that can generate a
sequence of vertices of length O(n) that can be used to solve IsTree. We will use two stacks S1, S2

to store the vertices. S1 will be used to store the vertices that are not yet visited, and S2 will be used
to store the vertices that are already visited. The algorithm will start with S1 = [v1] and S2 = ∅. At
each step, the algorithm will pop the top of S1 and push it to S2. Then it will push all the neighbors of
the popped vertex that are not in S1 ∪ S2 to S1. The algorithm will terminate when S1 is empty. We
will denote the yielded vertice sequence for G as A(G). The following lemma shows the connection
between the result of the algorithm and the IsTree problem.

Lemma B.14. For any graph G, A(G) is a tree-traversal of a spanning tree of the connected
component of G containing v1. Hence IsTree(G) is True if and only if G has n− 1 edges and A(G)
contains 2n− 1 vertices.

Proof of Lemma B.14. First, every vertices in the connected component of G containing v1 will be
visited. This is because the algorithm will always push all the neighbors of the popped vertex that
are not in S1 ∪ S2 to S1. Hence, the algorithm will terminate when all the vertices in the connected
component of G containing v1 are visited.

Second, every two consecutive vertices in the yielded sequence will be connected by an edge. This
is because the algorithm will always push one of the neighbors of the popped vertex that are not in
S1 ∪S2 to S1. Hence, every two consecutive vertices in the yielded sequence will be connected by an
edge. On the other hand, the combination of these edges will form a tree because the algorithm will
never push a vertex that is already in S1 ∪ S2 to S1. Hence, the yielded sequence is a tree-traversal of
a spanning tree of the connected component of G containing v1.

Construction of Transformer. We will now show that the yielded sequence of Algorithm 1 can
be generated by a Transformer with constant depth and width, and O(log n) precision as a Chain
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of Thought. The Transformer will generate a valid yielded sequence but can terminate early if the
graph is not a tree. We will now describe the Transformer in detail. We will assume the input token
sequence S is as followed,

S = Tokenize(G), v1, . . . vr (15)

for some r ≥ 0 and v1 . . . vr is a valid yielded sequence. The length of Tokenize(G) is 3n− 2 with
3 tokens for each edges and 1 special token <s>. We will further denote the input to first layer X as
Emb(S). We will similarly denote the input to layer ℓ as X(ℓ). We will also denote the output of last
layer as Xout.

1. Layer 1 and Layer 2 Attention. The attention at Layer 1 will output zero and the FFN at Layer
1 and Attention at Layer 2 will implement a counting function (Definition B.2) to count the
number of vertices n appears in the previous token sequence and write ROUND

(
1
n , p
)

in a new
dimension i1 as a result.

2. Layer 2 FFN and Layer 3 Attention. The FFN at Layer 2 and Attention at Layer 3 will implement
a copying function (Definition B.1) copying the first dimension and the counting dimension i1 of
each token to its successor at two new dimension i2 and i3 . For each edge, this moves type of the
first vertice and the number of time the first vertice appears to ∼. For every vertice in the chain of
thought, this moves type of the previous vertice to them.

3. Layer 3 FFN and Layer 4 Attention. The FFN at Layer 3 and Attention at Layer 4 will implement
another copying function, copying the dimension i2 and i3 of each token to its successor at two
new dimension i4 and i5. Especially, for each edge, this moves type of the first vertice and the
number of time the first vertice appears to the position corresponding to the second vertices.

4. Layer 4 FFN. This FFN will process the information gathered from previous layer and prepare
for the next layer. It will make sure the following properties hold for X(5),

• For every token, the position number, its square and 1 will be kept in the last three dimension.
• For the first vertices in each edges, ∼ and <s> The rest dimension will be zero.
• For the second vertices of each edges (a, b), there will be four dimensions i6, i7, i8, i9 with

value a, b and na,e, nb,e, where na,e = ROUND( 1
1+#aappears up to current edge , 1).

• For vertice vl in v1, . . . , vr, there will be four dimensions i10, i11, i12, i13 with value vl, vl−1

and v2l , v
2
l−1 (v0 = 0).

5. Layer 5 Attention. Combining with the previous Layer 4 FFN layer, we will implement two
match functions with two attention heads matching (i10, i11) or (i11, i10) with (i6, i7) at Layer
5 Attention, i.e. finding the edge in input for each step in chain of thought, we will then copy
nvl,(vl,vl−1) to dimensions i8 and i9.

6. Layer 6. We will use Layer 5 FFN and Layer 6 Attention to implement the match function that
match dimension i10 of current token to i10 in previous token. This will match vl to the first
appearance of vl in chain of thought and we will copy i11 of the matched token to i22. This
dimension will be the first predecessor of vl in the chain of thought (0 for v1). We will denote this
predecessor of vl to be f(vl) as it is the father of vl in the tree. Now we will need to split into
two cases depending on whether vl−1 is f(vl). If vl−1 = f(vl) or vl−1 = 0 (for v1), we will set
dimension i8 to be 1 and i9 to be 0. Otherwise, we will keep dimension i8 and i9 as nvl,(vl,vl−1).

7. Layer 7. Now we will use Layer 6 FFN and Layer 7 Attention with two attention heads to
implement two match next functions1 (Definition B.4) which use i8 or i9 as the counting index,
and match vl at i10 to i6 or i7 respectively. We will then copy dimensions i6 to i9 of the matched
tokens to i14 to i21 (because there will be two of them).

The match next function will be able to retrieve the first edge containing v1. For any i ≥ 2, one
of the matches next function will be able to retrieve the next edge containing vi after (vi, vi+1)
if it exists. If it doesn’t exist, the corresponding counting dimension will either be zero or no
smaller than nvl,(vl,vl−1). We will use Layer 6 FFN to decide whether the next edge exists and
set dimension i14 of the output of Layer 6 to be the other edge in the next edge if it exists, or 0

1The constant A here in Definition B.4is 1
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otherwise and i15, i16 of the output of layer 6 to be the counting dimension of the next edge if it
exists, or 0 otherwise. For each edges in the original input, we will also set dimension i15, i16 to
be the counting dimension of the edge.

8. Layer 8 Attention We will grab the next edge again, in the same manner as Layer 6, but this time
using dimension i15 and i16. The necessity of this step is that the next edge containing (vi−1, vi)
in the original graph can be the same as the (f(vl), vi) and in such case we need to check whether
the next edge after this edge.

9. Layer 8 FFN. We now have, at each position corresponding to vl, the first edge (f(vl), vl) in the
yielded sequence containing vl and the other vertex in the edge containing vl that hasn’t been
visited if it exists. If they don’t exist, the corresponding dimension will be zero. This allow us
to use Layer 8s FFN to decide the next vertex in the yielded sequence, which is exactly the first
vertex different with f(vl) in the two edges if they exist, or f(vl) otherwise. We will use Layer 8
FFN to calculate the potential next vertex and put it in dimension i23 and its square in i24.

10. Layer 9 Attention. Combining with Layer 8 FFN, we will match i23 of the current token to i10 of
the previous token to find the first appearance of the potential next vertex in the chain of thought.
We will then copy dimension d of the matched token to i25. This value being 1 will imply this
vertex has never appeared in the chain of thought before and any other value will imply the vertex
has appeared before.

11. Layer 9 FFN. We can now check several cases,

• If the potential next vertex v is either f(vr) ̸= 0 or never appears in the chain-of-thought
sequence, then Layer 9 will output n[−v, 1,−1, . . .− 1], which will decodes to v.

• If the potential next vertex v is not f(vr) and appears in the chain-of-thought sequence, then
Layer 9 will output nw6, which will decodes to NO, because the chain of thought has already
visited v and hence the graph is not a tree.

• If vr = 1 and the potential next vertex v is f(vr) = 0, this means the chain of thought has
finished. In this case, layer 9 FFN will check whether the position is 3n−2+2n−1 = 5n−3
and output nw5 if it is, or output nw6 otherwise, which will decodes to YES and NO
respectively.

This concludes the construction of the Transformer.

B.3 PROOF OF THEOREM 2.3

We will now prove Theorem 2.3. We will first restate the theorem for convenience.

Theorem 2.3. Given any constant A > 0, constant word width and number of special symbols
d, nS > 0, for any n, precision p = Θ(A log n) and RNN R with word embedding W (E) ∈
R(n+nS)×d

p such that each recurrent iteration can be calculated with a circuit with size P(n) ≤ 2p/2,
there exists a Transformer T with O(P(n) logmax{P(n), n}) bit parameter and word embedding[
W (E) 0(n+nS)×d

]
that can simulate the RNN with at most nA step chain-of-thought precisely,

using at most (P(n) + 1)nA step chain of thought on every input with length n.

Proof. The proof is motivated by the Theorem B.15 from Anonymous (2023).

Theorem B.15 (Theorem 3.3 of Anonymous (2023)). For any n and any circuit with size T (n) and
input size n, there exists a Transformer with constant depth and precision, O(log n) width, and a
position embedding with size O(T (n) log n), such that for any input S of length n, the Transformer
computes the output of the circuit on S using T (n) steps.

However, direct utilization of Theorem B.15 is not feasible because we are interested in (1) O(log n)
precision Transformer, and (2) simulating the RNN for nA step, which would corresponding to a
circuit with nAP(n) in size. However, as the calculation is recurrent, we can encode the RNN circuit
in O(P(n)) parameter instead.
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To do so, we will unroll the circuit of each recurrent step of the RNN into P(n) gates. We will then
assign each gate a unique id in [P(n)] and assume the circuit is calculated in the order of the gate id
in the following manner.

1. Each gate has a type t(i), which is either a constant gate outputting 1, an input gate, a
hiddenstate gate, an AND gate or a XOR gate.

2. Each gate i’s output depends on two values l(i) and r(i). If t(i) is a constant gate, then
l(i) and r(i) are assigned to be 0. When it is an input gate, l(i) will be assigned to be the
coordinate of the input embedding, and r(i) will be assigned to be the index of the bit of
the value at l(i) coordinate. When it is a hiddenstate gate, l(i) will be assigned to be the
coordinate of the hiddenstate embedding, and r(i) will be assigned to be the index of the
bit of the value at l(i) coordinate. If it is an AND gate or a XOR gate, l(i) and r(i) will be
assigned to be the id of the two gates that it depends on.

We will further assume without loss of generality that the hiddenstate gate is the first pΛ gate. The
output of the last pΛ gate will be the next hiddenstate. We will also assume that the last p(Λ + d) to
pΛ−1 gates are the output gates. We will now first describe the chain of thought that the Transformer
will output and then construct the Transformer.

Chain of thought Taking any input S with length n, the transformer will output a sequence of
0 and 1 tokens. The first n tokens will be the same as the input sequence. For each a ≥ 0 and
b ∈ [P(n) + 1], the n+ a (P(n) + 1) + b token is

1. the output of gate b when RNN circuit is calculating the output at a position plus 1, if
b ≤ P(n).

2. the n+ a+ 1 token in the RNN chain of thought, if b = P(n) + 1.

Construction of the Transformer.

1. Layer 1. The first attention layer will output zero and the first FFN layer will be of
width O(P(n)), encoding all the gate information. The output of the first layer at position
n+ a (P(n) + 1) + b will have the following coordinate:

• The input i will be encoded in the first dimensions.
• a, a2, b, b2 will be encoded in four different dimensions.
• The gate type t(s(b)) will be encoded in the next dimension, where s(b) = (b + 1)
mod (P(n) + 1) If b = P(n)− 1, then the gate type will be encoded as 0.

• The necessary dependence l(s(b)), l2(s(b)) and r(s(b)), r2(s(b)) will be encoded in
the next two dimensions.

• A constant 1 will be encoded in the next dimension.

2. Layer 2 Attention. Together with the Layer 1 FFN, the Layer 2 Attention will implement
two match functions (Definition B.3) to copy the output of gate l(b+ 1) and r(b+ 1) when
RNN circuit is calculating the output at a position. When the type of gate b+ 1 is not AND
or XOR, the result will not be used in following calculation.

3. Layer 2 FFN Layer 2 FFN will be of width O(1). The output of the layer will be

• When b < P(n) and t(s(b)) is AND or XOR or constant, one dimension of the output
will be the output of gate b+1 when RNN circuit is calculating the output at a position.

• When b < P(n) and t(s(b)) is a input or hiddenstate gate or b = P(n) + 1, two
dimensions of the output will be the position in the current chain of thought where the
input bit or hiddenstate bit is copied from and its square.

• When b = P(n), the output remains the same as the input to Layer 3 FFN.
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4. Layer 3 Attention. Layer 3 Attention will be of width O(1). Together with Layer 2 FFN,
the Layer 3 Attention will implement match functions (Definition B.3) to copy the output at
position where the input bit or hiddenstate bit is copied from. When the type of gate b+ 1 is
not input or hiddenstate gate, the result will not be used in following calculation.

5. Layer 3 FFN Layer 3 FFN will be of width O(1). The output of the layer will be

• When b ̸= P(n), one dimension of the output will be output of gate s(b) when RNN
circuit is calculating the output at a+ 1[b = P(n) + 1] position.

• When b = P(n), the output remains the same as the input to Layer 4 FFN.

6. Layer 4 Layer 4 Attention will have p − 1 heads and each head will be of width O(1).
Head h ∈ [p − 1] will copy the first dimension of the output of Layer 3 FFN at position
n+ a(P (n) + 1) + b− (p− h) and weight each of them by 2−h+(p−1)/2 and add them in
one dimension. The Layer 4 FFN will calculate r when the first dimension of the input is
1 and −r otherwise. Hence, for each a ≥ 0, the n + a (P(n) + 1) − hp, h ∈ [Λ : Λ + d]
token contains a dimension i1 which is the k − Λ dimension of the output of the RNN at
position a.

7. Layer 5 Layer 5 Attention will have d + 1 heads and each head will be of width O(1).
Head h ∈ [d + 1] will copy the dimension i1 of the output of Layer 4 FFN at position
n+ a(P (n) + 1) + b− (h+ Λ)p to a disjoint dimension ih+1. The Layer 5 FFN will then
make sure the output of Layer 5 satisfies the following:

• When b ̸= P(n), one dimension of the output will be n times the output of gate s(b)
when RNN circuit is calculating the output at a + 1[b = P(n) + 1] position plus 1,
which will decode to the corresponding value.

• When b = P(n), the first d dimension of the output will be the same as the output of
the RNN at position a, and the rest dimension will be 0, which will decode to the same
token as the chain of thought of the RNN at position a+ 1.

This concludes the construction of the Transformer.

B.4 PROOF OF THEOREM 3.1

In this section, we will prove Theorem 3.1. We will first restate the theorem for convenience.
Theorem 3.1. Given any constant A,B, for any polynomial-time Turing machine T ∈ TIME(nA)
with B states and vocabulary size B, there exists a retrieval augmented RNNs (see Definition A.9) with
vocabulary of B special symbol, O(A log n+B) bit memory, and O(B2(A log n+B)) parameter,
that can simulate the output of T on any input with length n with a chain of thought of length O(nA).

Proof of Theorem 3.1. We will denote the state of T as 1, . . . , B (we will use 1 as the initial state)
and the vocabulary of T as 1, . . . , B. We will assume T operates on an infinite tape TAPE, which
is a sequence of cells indexed by Z. We will also assume that the tape is initialized with all cells
being 0 except for the n cell starting at 1. The turing machine also has a pointer p that points to a
cell in the tape. The pointer is initialized to 1. At each time step, the turing machine reads the cell
pointed by POINTER and updates the cell pointed by POINTER and the pointer p according to
the transition function δ : [B + 1]× [B] → [B]× [B]× {−1, 1}, which takes the current state and
the current cell value (could be empty, which corresponds to B + 1) as input and outputs the new
state, the new cell value and the direction to move the pointer. The turing machine halts when the
state is B. Because T ∈ TIME(nA), the turing machine will always halt in nA step. We will use
TAPE[t, i] as the value on the i-th cell on TAPE before the t timestep. We will use POINTER[t]
as the value of the pointer before the t timestep.

We will first define the sequence that the retrieval augmented RNN will generate and then construct
an RNN that can generate such sequence.

Sequence generation. The input token sequence Sin will be as followed,

Sin = <s>, 1,TAPE[1, 1], 1, 2,TAPE[1, 2], 2, . . . , n,TAPE[1, n], n
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Here all the symbols on the tape are represented by one special symbol in the vocabulary. Given
this input token sequence, the retrieval augmented RNN will generate the following output token
sequence,

S = Sin,StartSearch, (POINTER[1] (.) POINTER[1].*$),EndSearch,

SearchResult(1),

POINTER[1],TAPE[2,POINTER[1]],POINTER[1]

. . .

StartSearch, (POINTER[t] (.) POINTER[t].*$),EndSearch,

SearchResult(t)

POINTER[t],TAPE[t+ 1,POINTER[t]],POINTER[t],

Here SearchResult(t) is defined as

SearchResult(t) =

{
FAILED; if POINTER[t] is empty cell before t

TAPE[t,POINTER[t]];otherwise

Clearly, the output token sequence simulates the turing machine T on the tape TAPE due to the
following lemma.

Lemma B.16. Given any t ∈ [nA] and i ∈ [nA], the last string in S that contains i, i as a substring
is i,TAPE[t, i], i if TAPE[t, i] is not empty and is the empty string otherwise.

Proof. The proof is by induction, for t = 1, the result clealy holds. For any t ≥ 2, we only need to
notice that POINTER[t− 1] is the only cell that can be updated at time t− 1.

Construction of RNN It is easy to see that the retrieval oracle will generate the correct
SearchResult(t) given the input S/ Therefore, we will only need to construct an RNN that can
generate the rest part of S given SearchResult(t).

The construction of the RNN to generate S is as followed. We will first describe the state of RNN
given any prefix S ′ of S and then describe the transition function necessary to generate the state.

The hidden state of RNN should contain the following dimension,

1. 1 dimension t′ counting the number of StartSearch in S ′.

2. 1 dimension counting the number of EndSearch in S ′, disregarding the last token.

3. 1 dimension storing the state of the turing machine before t′.

4. 1 dimension storing the pointer of the turing machine before t′.

5. 1 dimension storing the state of the turing machine before t′ + 1, when the first two
dimensions are the same.

6. 1 dimension storing the pointer of the turing machine before t′ + 1, when the first two
dimensions are the same.

7. 1 dimension storing the value of TAPE[t′,POINTER[t′]], when the first two dimensions
are the same, and t′ ≥ 1.

8. 10(B + 10) dimensions storing the last 10 tokens In S ′.

Now we will describe the transition function necessary to generate the state. The last 10(B + 10)
dimensions can be maintained trivially using a linear combination of the last 10(B + 10) dimension
of the previous state and the embedding of the last token. The first 2 dimensions can be maintained by
adding 1 to the first dimension if the last token is StartSearch and adding 1 to the second dimension
if the third last token (which is maintained in the previous state) is EndSearch.

Now based on the last 10(B + 10) dimension, the RNN can determine which of the following cases
the current state is in,
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1. The current token is StartSearch, in this case the model needs to update the third and fourth
dimension to the fifth and sixth dimension of the previous state.

2. The current token is between StartSearch and EndSearch (including the EndSearch), in
this case the model don’t need to update the first seventh dimension.

3. The current token is the search result. In this case, the model needs to update the fifth
to seventh dimension. The seventh dimension is determined by the current token, which
has an one-to-one correspondence with the cell value. The fifth and sixth dimension can
be computed by a FFN with O(B2) width by taking state at time t′, POINTER[t′] and
TAPE[t′,POINTER[t′]] as input.

4. The current token is after search result and before the next StartSearch. In this case, the
state don’t need to the model don’t need to update the first seventh dimension.

Also, in all the position, the RNN has all the information needed to compute the next token and can
implement the mapping in an O(B2)-wide network. The proof is complete.

B.5 PROOF OF THEOREM 3.2

In this section, we will prove Theorem 3.2. We will first restate the theorem for convenience.
Theorem 3.2. There exists a retrieval augmented RNNs with O(log n) bit memory and O(log n)
parameter, that can solve IsTree of size n with a chain of thought of length O(n).

Proof of Theorem 3.2. We will first define the sequence that the retrieval augmented RNN will
generate and then construct an RNN that can generate such sequence.

Sequence Generation. We will use a variant of Algorithm 1 to generate the sequence and we will
use the concatenation of the tokenization of the sequence returned by Algorithm 2 as the sequence
that the retrieval augmented RNN will generate.

RNN Construction. We can use similar proof in Theorem 3.1 by having the RNN to memorize
local sequences and determine the phase of Algorithm 2 it is in. The RNN will maintain the length of
S2 and the top of S1 in the state and it is easy to check that the retrieval function will retrieve the
correct result for each search query. The way to determine the next vertex in the stack is the same as
in the proof of Lemma B.11. We will omit the simple but tedious detailed construction here.
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Algorithm 2 Depth-First Search Algorithm with Retrieving
Require: A graph G = (V,E) with n vertices and E has an ordering e1, . . . , em.

1: Initialize two stacks of vertices S1, S2 with S1 = [v1], S2 = ∅, a list L with L = ∅, and a vertex
v′ = FAILED.

2: while S1 is not empty do
3: Let v be the top of S1. Push v to L.
4: Generate the regular expression r2 = ((\d +) - v)
5: Let f(v) be the predecessor of v in S1 for the first time and FAILED when v = v1.
6: Push StartSearch, r2,EndSearch, f(v) to L.
7: if v′ ̸= f(v) then
8: Generate the regular expression

r1 = (v ~ v’|v’ ~ v)(?:(?!v ~ \d +|\d + ~ v).)*?(v ~ (\d +)|(\d +) ~ v)

9: else
10: Generate the regular expression r1 = (v ~ (\d +)|(\d +) ~ v)
11: end if
12: Push StartSearch, r1,EndSearch to L.
13: if there exists a neighbor u of v such that (u, v) has larger order than (v, v′) when v′ ̸= f(v)

or there exists a neighbor u of v such that u ̸= f(v) when v′ = f(v) then
14: Choose u such that edge (u, v) has the smallest possible order and push u to L. Let v′′ = u.
15: else
16: Push FAILED to L. Let v′′ = FAILED.
17: end if
18: if v′′ = f(v) ̸= FAILED then
19: Generate the regular expression

r3 = (v ~ v”|v” ~ v)(?:(?!v ~ \d +|\d + ~ v).)*?(v ~ (\d +)|(\d +) ~ v)

20: Push StartSearch, r3,EndSearch to L.
21: if there exists a neighbor u of v such that (u, v) has larger order than (v, v′′) then
22: Choose u such that edge (u, v) has the smallest possible order and push u to L. Let

v′′ = u.
23: else
24: Push FAILED to L. Let v′′ = FAILED.
25: end if
26: end if
27: if v′′ = FAILED then
28: Pop v from S1. Push v to S2. Let v′ = v.
29: else
30: Generate the regular expression r4 = ((\d +) - v”)
31: Push StartSearch, r4,EndSearch, 0 to L.
32: if v′′ is not in S1 then
33: Push FAILED, v,−, v′′ to L.
34: Push v′′ to S1. Let v′ = v.
35: else
36: Let f(v′′) be the predecessor of v in S1 for the first time and FAILED when v′′ = v1.
37: Push f(v′′),NO to L.
38: return L.
39: end if
40: end if
41: end while
42: if S2 has n vertices then
43: Push YES to L.
44: return L.
45: else
46: Push NO to L.
47: return L.
48: end if
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