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ABSTRACT

We introduce Sparse pretrained Radio Transformer (SpaRTran), an unsupervised
representation learning approach based on the concept of compressed sensing for
wireless channels. SpaRTran learns embeddings that focus on the physical prop-
erties of radio propagation to allow for an efficient fine-tuning on radio-based
downstream tasks. SpaRTran uses a sparse gated autoencoder that induces a sim-
plicity bias in the learned representations, resembling the sparse nature of radio
propagation. For signal reconstruction, it learns a dictionary that holds atomic
features, which increases flexibility across signal waveforms and spatio-temporal
signal patterns. Compared to the state of the art, SpaRTran cuts positioning error
by up to 28% and increases top-1 codebook selection accuracy for beamforming
by 26%pts. By pretraining models solely on individual channel measurements, it
is system-agnostic and more versatile, allowing fine-tuning for diverse radio tasks
and substantially reducing labeling costs.

1 INTRODUCTION

Wireless communication networks continuously capture channel state information (CSI), i.e. es-
timates of the channels between transmitters and receivers. Physically, the CSI describes how
the wireless medium, i.e. the physical and geometrical properties of the environment, transforms
(scales, delays, phase-rotates and Doppler-shifts) the transmitted electromagnetic waveforms before
they reach the receivers. In the past, this information was used to equalize the channel influence
minimizing inter symbol interference and signal distortion. Today, the channel is reinterpreted as
a source of spatio-temporal information rather than an impairment leading to new spatially-aware
applications such as beamforming (steering signal energy into a specific direction to improve re-
ception in a targeted area) or wireless positioning. This development is driven by the rise of deep
learning algorithms capable of extracting complex pattern from the channel (Zhang et al., 2019).
However, acquiring labels to train neural networks in an purely supervised manner is labor-intensive
and the dynamic nature of environments requires a constant retraining of the networks to maintain
high performance Stahlke et al. (2022).

Unsupervised learning has shown significant improvements in domains such as natural language
processing (Devlin et al., 2019; Radford et al., 2018) and computer vision (Grill et al., 2020; Caron
et al., 2021; He et al., 2020; Chen et al., 2020), often requiring fewer labeled samples for fine-
tuning. Hence, the paradigm has been applied to train foundation models for wireless channels that
can be efficiently finetuned on various downstream tasks, achieving state-of-the-art accuracy with
significantly less labeled data (Salihu et al., 2024; Ott et al., 2024; Alikhani et al., 2024; Pan et al.,
2025). However, existing approaches still face two key challenges: First, to maximize versatility,
general-purpose wireless foundation models should be pretrained on single-channel measurements
that generalize across system setups and downstream tasks, rather than on full CSI that typically
collects channel measurements from every available antenna, making it specific to a particular sys-
tem configuration. Second, core assumptions of prominent self-supervised learning (SSL) methods
often misalign with CSI. For instance, in vision, separating class representations is sensible, but
CSI measurements vary smoothly across space and thus exhibit subtler relationships (Studer et al.,
2018).

We propose Sparse pretrained Radio Transformer (SpaRTran), which introduces inductive biases by
embedding physical knowledge into both the model architecture and the training process, thereby
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improving training efficiency and the quality of the learned representations. Rather than adapting
existing SSL methods, we propose a novel, purely unsupervised pretraining approach specifically
tailored for CSI. Our physics-informed method draws inspiration from the concept of sparse au-
toencoder (SAE) (Lee et al., 2007) and compressed sensing (CS) (Donoho & Huo, 2001; Candes
et al., 2006). The central premise of CS is that sufficiently sparse representations reduce ambigu-
ity; in contrast, non-sparse representations typically contain numerous insignificant components,
complicating both analysis and signal recovery (Donoho & Huo, 2001). Our contributions are three-
fold: (1) We propose a novel sparsity based pretraining framework that maps the input signals into
high-dimensional sparse vectors and then reconstructs the original signal, conforming to the signal
properties caused by the physical radio signal transmissions. (2) We use a learned dictionary to
obtain sparse signal representations while maintaining flexibility in the employed signal waveforms.
(3) We build on a gated SAE (Rajamanoharan et al., 2024) using a transformer (TF) neural network
as backbone to learn sparse representations while preserving reconstruction fidelity. We extend it
by a phase generator network that integrates complex phase information into the sparse signal coef-
ficients, thereby enabling the representation of signal phases through complex-valued components
while maintaining sparsity via the gating mechanism.

2 RELATED WORK

SpaRTran is an unsupervised representation learning method for pretraining on wireless signals that
integrates techniques from compressed sensing and dictionary learning.

Unsupervised pretraining for wireless channels. In recent years, supervised deep learning rev-
olutionized tasks such as wireless positioning (Salihu et al., 2022; Liu et al., 2022; Zhang et al.,
2023) and beam-management (Ma et al., 2023). Today, unsupervised learning and SSL attracts
high attention in this context. The aim is to leverage cost effective unlabeled channel measure-
ments to pre-train a task agnostic basis model also known as foundation model. Existing works
transfer the pretraining objectives that have been established in domains such as computer vision
or natural language processing to the wireless domain. Here, contrastive (Salihu et al., 2024) and
predictive Alikhani et al. (2024); Catak et al. (2025); Ott et al. (2024); Yang et al. (2025) methods
have been studied as well as their combination (Pan et al., 2025; Guler et al., 2025). However, al-
though most of these methods include a preprocessing stage that accounts for the specific properties
of channel measurements, their pre-training objectives (such as recovering masked inputs or pulling
similar samples closer together in embedding space) are developed for substantially different data
domains. This raises the question of whether an objective that takes the unique physical properties
of wireless signals into account can improve performance over existing methods.

Compressed sensing represents signals by a high-dimensional sparse vector in an overcomplete
basis, assuming they arise from few latent factors. Common applications of CS in wireless systems
include wireless source separation (Donoho, 2006; Candes et al., 2006), direction-of-arrival (DOA)
estimation (Yang et al., 2018), and channel estimation (Berger et al., 2010). Basis pursuit denois-
ing (Chen et al., 2001; Tibshirani, 1996) uses convex relaxation to turn nonconvex sparse recovery
into a convex problem, while greedy methods like orthogonal matching pursuit (OMP) (Tropp &
Gilbert, 2007) iteratively select active atoms; sparse Bayesian learning enforces sparsity via proba-
bilistic priors (Malioutov et al., 2005; Stoica et al., 2011). Recent deep-learning-based CS methods
focus on the compression of the signals reducing complexity and improving reconstruction fidelity
compared to conventional approaches (Machidon & Pejović, 2023). Another direction of research
are SAEs (Cunningham et al., 2023; Bricken et al., 2023). SAEs enforce sparsity via regulariza-
tion in high-dimensional latent spaces, yielding more interpretable features than bottleneck autoen-
coders. Inspired by gated linear units (Dauphin et al., 2017), Rajamanoharan et al. (2024) address
low reconstruction accuracy resulting from biases introduced by the sparsity constraint by decou-
pling the selection of active components from the estimation of sparse coefficients. To the best of
our knowledge, SpaRTran is the first to apply CS to the design of unsupervised pretraining.

Dictionary learning algorithms identify atomic features that sparsely represent underlying data,
i.e., the dictionary is learned empirically from the signals themselves. This enables generalization
across signal types and often leads to increased sparsity (Elad, 2010). A prominent example is the
K-SVD algorithm (Aharon et al., 2006), that iteratively updates the dictionary atoms. Rather than
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using a fixed theoretical dictionary, SparTRan can jointly learn the dictionary, increasing flexibility
across waveforms and spatio-temporal patterns.

3 PROBLEM DESCRIPTION

During a radio signal transmission, the electromagnetic wave interacts with the environment, i.e., the
channel, which affects the signal, resulting in multiple propagation paths arriving at the receiver. The
received signal y(t) can be defined as y(t) = h(t)∗s(t)+w(t), where s(t) is the transmitted signal,
h(t) the channel, w(t) additive white Gaussian noise and ∗ the convolution operator. The channel
impulse response (CIR) h(t) characterizes the radio transmission channel and can be modeled as

h(t) =

K−1∑
k=0

αke
−iφkδ(t− τk), (1)

where τk is the signal transmission delay, αk the magnitude and φk the phase of the k-th propagation
path of the transmitted signal. δ denotes the Dirac delta function and i the imaginary unit. Eq. 1 is
the superposition of several signals, originating from K far field sources. In practice, K is assumed
to be unknown. The bandwidth-limited discrete channel measurement is modeled as

h[m] =

K−1∑
k=0

aksinc[m− τkW ] + wm, (2)

where W is the bandwidth of the system, ak is the complex valued path coefficients, and m ∈
{1, · · · ,M}. From this, we derive the sparse channel representation. Assuming a set of L potential
signals ψl ∈ RM that form a basis, of which only K ≪ L effectively contribute to the received
signal, we can rewrite Eq. 2 as

h =

L−1∑
l=0

alψl +w, (3)

where |αl|> 0 if the l-th signal is an active signal component, and |αl|= 0 otherwise. Note that
we have replaced the sinc-function with a more generic notation ψl. Defining the dictionary Ψ :=
[ψ0, · · · ,ψL−1] allows (3) to be expressed more concise in matrix notation as

h = Ψa+w, (4)

where a = [α0, · · · , αL−1]
T is the sparse coefficient vector, and Ψ is a M × L dictionary matrix.

Eq. 4 describes an underdetermined system of equations. As there is no unique solution, recovering
the sparse channel requires solving the following optimization problem:

min∥a∥0, s.t. ∥Ψa− h∥2 ≤ ϵ, (5)

where ϵ denotes the allowed reconstruction error due to noise. Eqs. (4) and (5) together describe the
radio channel within the framework of compressed sensing (Donoho, 2006; Candes et al., 2006).

3.1 THEORETICAL ANALYSIS

We treat the incoming signal as a time-dependent function f(t) to be expressed in a reproducing ker-
nel Hilbert space (RKHS) H with bases {φi}Ni=0. For the sake of theoretical analysis, we analyze an
invertible operator O : H → H mapping from measured functions f ∈ H to latent representations
f̃ = O[f ]. Our idea is to model the f̃ rather than f itself to reach a more compact representation.
We will first characterize the error of a signal transformed by an invertible operator O. Note that all
proofs for the theorems can be found in the appendix.
Theorem 1. Let H be a reproducing kernel Hilbert space, equipped with a basis {φi}Ni=0. For any
f ∈ H let the best n-term approximator be

σn(f) = min
|I|≤n

∥f −
∑
i∈I

aiφi∥H.

Also define the 1-atomic norm as

∥f∥A1(H) = inf{
∑
i

∥ai∥ : f =
∑
i

aiφi}

3
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Assume there exists an exact recovery condition (ERC (Tropp, 2004), the O(n1/2) rate is optimal
(Klusowski & Siegel, 2025)1) a constant C > 0 such that for every f ∈ H we have

σn(f) ≤ C
∥f∥A1(H)√

n

Let O : H → H be any invertible bounded linear operator with the standard operator norm ∥O∥ =
sup∥f∥H=1 ∥O[f ]∥H. Define the O-atomic norm of f ∈ H as

∥f∥AO
1
= ∥O[f ]∥A1(H)

Then there exists an n-term representation gn in H such that

∥O[f ]− gn∥H ≤ C
∥f∥AO

1√
n

or, in the original space: gn = O[f̃n]

∥f − f̃n∥H ≤ ∥O−1∥C
∥f∥AO

1√
n

The result in Theorem 1 implies that if one tries to bound K functions simultaneously,

max
0≤i≤K

∥fi − fi,n∥ ≤ ∥O−1∥C
max0≤i≤K ∥fi∥AO

1√
n

preconditioning with O improves upon the direct estimation if there exists a common substructure
that allows us to reduce the coefficients in ∥fi∥AO

1
without overly affecting ∥O−1∥.

This is not unexpected: This is exactly what happens in signal smoothing where O flattens singular-
ities, or in differential preconditioning for PDEs. We provide an example of an analytically derived
operator in Appendix B. Instead of using prior knowledge, we decide to learn O by fitting it jointly
with its dictionary Ψ on a dataset of {f0, . . . , fK} such that the operator preconditions the entire set.

Specifically, we can construct such an operator the following way

Theorem 2. Let {fi}Ki=0 be a datset of signals, and H be a hilbert space with a (possibly infinite)
basis {φ}Nj=0. Let R = max0≤i≤K

∑N
j=1 |ai,j | and fix a nonempty index set S ⊂ {1, . . . , N}.

Define
RS := max

0≤i≤K

∑
j∈S

|ai,j | B := max
0≤i≤K

∑
j /∈S

|ai,j |

If B < RS then there exists an operator O such that

max
0≤i≤K

∥fi − fi,n| ≤ C
max0≤i≤K ∥fi∥AO

1√
n

which is strictly better than the original rate C R√
n

Remark 1. The assumptions in Theorem 2 are quite technical, but can be boiled down to “One can
sacrifice a more irrelevant subset S̄ in favor of modeling a relevant subset S with higher weight.” In
practice this is a small assumption for an uninformed selection of the basis.

Of course the “small index set” assumption for Theorem 2 is generally restrictive, but we can easily
generalize the proof towards a low-rank assumption:

Corollary 1. Assume there exists a rank s subspace S, then the same bounds from theorem 2 hold.

One important consequence of Corollary 1 is that we can find better sparse representations by finding
a dense rotation and diagonal scaling. While simple finite operations at first appear to be sufficient
for this, one has to note that the basis set we work with is generally infinite, meaning an orthogonal
projection is not naively parameterizable. We decide to approximate O with a TF network by jointly
minimizing the reconstruction error after applying O together with the codebook {φ}.

4
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Figure 1: Overview of our unsupervised pretraining method - SparTRan.

4 SPARTRAN TRAINING PIPELINE

In general, we consider a set of unlabeled channel measurements M. Our objective is to learn
channel representations that encode the environmental characteristics of the radio signal. To this
end, we introduce a strong sparsity bias into the training process through both model architecture
and loss function design. Our approach employs an encoder that generates a latent representation z
and a decoder that reconstructs the input signal ĥ ∼ M based on z.

A TF architecture (Vaswani et al., 2017) forms the backbone of the encoder. We employ a
lightweight encoder-only-TF with a depth of one and internal latent dimension of Nlatent = 512
using 8 attention heads for the multihead attention mechanism. We use a three-dimensional vector
h̃m, consisting of the real, imaginary and absolute parts of the complex number, to represent the
complex values at the m-th timestep ĥm. To construct the input embedding e we combine windows
of three time steps of the CIR to an input token em = [h̃3m−2, h̃3m−1, h̃3m]T . We project each
input token into the latent space of dimension Nlatent via a learned linear transformation to match
the internal dimensionality of the TF-encoder.

4.1 SPARSE RECONSTRUCTION HEAD

The sparse reconstruction head uses a gating mechanism (inspired by Rajamanoharan et al. (2024))
and a phase generator. The former promotes the reconstruction to be sparse while the latter converts
the real numbered output of the neural network to the complex valued coefficients â. â represents
the reconstructed signal in terms of a overdetermined dictionary Ψ, see Eq. 4. Fig. 1 shows the
gating mechanism (yellow), the phase generator (green), and the dictionary (purple).

We now discuss the gating mechanism in more detail. Approximating the l0-norm with the l1-norm
tends to lead to a non-optimal reconstruction. This is due to the fact that the sparsity penalty, i.e., the
l1-norm, can be reduced at the cost of reconstruction performance (Wright & Sharkey, 2024). Hence,
our strategy for the estimation of x̂ follows the work of Rajamanoharan et al. (2024). The idea is to
separately handle the selection of active atoms from the dictionary (fgate) and the estimation of the
coefficients magnitude (fcoeff). The encoder output is defined by

x̂ = fcoeff(z)⊙ 1(fgate(z)︸ ︷︷ ︸
ρgate

), (6)

where 1 denotes the Heaviside step function, ⊙ the Hadamard product and ρgate is the output of
the gating stage before the binarization step. Fig. 1 shows the gating mechanism (yellow). Due to
the binarization of the gating values, no gradient flows through this path of the network, see grey
arrows in the yellow box of Fig. 1. Thus, an auxiliary loss promotes the detection of active atoms in
fgate. The auxiliary loss measures reconstruction fidelity, but instead of x̂, it uses ρgate to reconstruct
the signal. The dictionary should not be updated by the auxiliary reconstruction task. Hence, we
prohibit the flow of the gradient accordingly (see grey dashed line in Fig. 1).

We now outline our extensions to the original method. Rajamanoharan et al. (2024) restrict the en-
coders output x̂ to real positive numbers. However, this assumption does not hold in our case, as our

1This is equivalent to asserting a generalised jackson-type inequality over the codebook established in
(Temlyakov, 2011)
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goal is to estimate complex-valued path coefficients â. To address this, we interpret the outputs of
fcoeff and fgate as the magnitudes of the complex coefficients. This formulation allows us to suppress
negative values via the gating mechanism without violating the underlying physical channel model.
In addition, we introduce a third function fphase, that generates the phases of the path coefficients.
The final coefficients are then constructed as: â = x̂e−ifphase(z) and ρ′gate = ρgatee

−ifphase(z), where
i denotes the imaginary unit. The output of fphase is constrained to the interval ±π using a scaled
tanh activation function. This leads to the following loss function:

L := ∥h̃− fdec(â, Ψ̂)∥22︸ ︷︷ ︸
reconstruction loss

+λ∥1(ρgate)∥1︸ ︷︷ ︸
sparsity penalty

+ ∥h̃− fdec(ρ
′
gate, Ψ̂frozen)∥22︸ ︷︷ ︸

auxiliary loss

, (7)

with fdec(â, Ψ̂) = Ψ̂â. To enforce non-negativity, Rajamanoharan et al. (2024) employ ReLU
activations for fgate and fcoeff. We observed that this can lead to a situation where certain dictionary
atoms are never activated, i.e., their associated coefficients remain zero, resulting in no gradient
updates, a phenomenon akin to the dying ReLU problem. To mitigate this, we use leaky ReLU
activations (slope 0.01), ensuring that gradients can still propagate even for inactive units.

4.2 DICTIONARY LEARNING

If crucial system parameter, such as signal bandwidth or the receivers sampling frequency, are un-
known, the construction of a dictionary that conforms to the theory is unfeasible. This may occur
when using diverse crowd-sourced signals to train a large foundation model. Hence, instead of using
a fixed dictionary that conforms to the theoretical channel model (Sec. 3), SpaRTran can treat the
dictionary as a learnable parameter Ψ̂, see. Fig. 1, purple box. By, normalizing the atomic entries
to unit norm, they only determine the direction of the contribution, while â provides the amplitude
and phase of the complex-valued signal component. This approach enables the model to learn more
expressive atoms that capture complex interactions, adapt to diverse wireless pulse shapes, and in-
creases dictionary incoherence—improving the ability to identify contributing atoms Donoho & Huo
(2001). However, jointly optimizing an unrestricted dictionary renders problem (5) NP-hard Tropp
(2004).

4.3 FINETUNING

While SpaRTran learns representations for individual transmitter–receiver links, most tasks exploit
correlations across multiple channels. We consider Nr links recorded by an agent traversing the
environment. We aggregate these into the channel stateH = [ĥ1 · · · ĥNr

], denoted the CSI. Hence,
for finetuning, we compute a representation for each available link and concatenate them to form
a complete representation of the CSI. We use small ResNet as finetuning head. It employs three
basic blocks with 12, 32, and 64 channels consisting of two sequential 1D convolutional layers and
a residual connection. The weight sharing of the convolutional layers circumvents an unreasonable
increase in parameters when Nr is large.

5 EVALUATION

We evaluate localization via CSI fingerprinting and codebook selection for beamforming — both
leveraging full CSI complexity. For our experiments we compare three SSL baselines (SWiT (Salihu

Table 1: Fingerprinting (FP) performance for SparTRan and the baselines models for different
amounts of labeled training data evaluated on the FH-IIS dataset (MAE / CE90 in meter).

Method 1% 2% 5% 10% 25% 50% 100%

Masking 0.73 / 1.27 0.61 / 1.08 0.50 / 0.89 0.48 / 0.84 0.42 / 0.75 0.44 / 0.76 0.40 / 0.70
LWM 1.17 / 2.10 0.91 / 1.63 0.72 / 1.27 0.63 / 1.11 0.56 / 0.99 0.55 / 0.97 0.58 / 0.99
SWiT 2.33 / 4.24 2.09 / 3.81 1.90 / 3.46 1.79 / 3.29 1.76 / 3.22 1.65 / 3.01 1.51 / 2.75

SpaRTran 0.77 / 1.40 0.58 / 1.04 0.50 / 0.91 0.41 / 0.74 0.34 / 0.62 0.30 / 0.56 0.30 / 0.55
WiT (Sup.) 1.27 / 2.32 1.05 / 1.88 0.88 / 1.59 0.89 / 1.61 0.66 / 1.21 0.56 / 1.03 0.49 / 0.90
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Table 2: FP performance across different system setups finetuned on 5 000 samples of the KUL
dataset (MAE / CE90 in meter).

Method Pretrain-Set DIS-LoS ULA-LoS URA-LoS URA-nLoS

Masking:
DIS-LoS 0.093 / 0.158 0.065 / 0.118 0.071 / 0.129 1.176 / 1.626

ULA-LoS 0.081 / 0.139 0.067 / 0.116 0.071 / 0.127 1.094 / 1.615
URA-LoS 0.087 / 0.156 0.068 / 0.118 0.073 / 0.131 1.176 / 1.671

URA-nLoS 0.072 / 0.128 0.067 / 0.120 0.073 / 0.139 1.153 / 1.627

SWiT:
DIS-LoS 0.071 / 0.139 0.069 / 0.138 0.057 / 0.119 0.154 / 0.324

ULA-LoS 0.076 / 0.146 0.068 / 0.136 0.058 / 0.119 0.140 / 0.303
URA-LoS 0.070 / 0.138 0.068 / 0.136 0.057 / 0.119 0.156 / 0.327

URA-nLoS 0.077 / 0.148 0.068 / 0.137 0.059 / 0.119 0.152 / 0.326

LWM:
DIS-LoS 0.083 / 0.144 0.084 / 0.151 0.075 / 0.137 0.244 / 0.454

ULA-LoS 0.085 / 0.151 0.082 / 0.146 0.079 / 0.147 0.256 / 0.500
URA-LoS 0.075 / 0.132 0.082 / 0.147 0.065 / 0.122 0.204 / 0.372

URA-nLoS 0.094 / 0.164 0.092 / 0.163 0.083 / 0.151 0.224 / 0.418

SpaRTran:
DIS-LoS 0.127 / 0.186 0.055 / 0.098 0.043 / 0.087 0.071 / 0.131

ULA-LoS 0.065 / 0.114 0.058 / 0.100 0.054 / 0.110 0.075 / 0.139
URA-LoS 0.072 / 0.122 0.048 / 0.085 0.051 / 0.100 0.080 / 0.145

URA-nLoS 0.064 / 0.109 0.048 / 0.082 0.038 / 0.073 0.077 / 0.142
WiT (Sup.): 0.074 / 0.135 0.071 / 0.135 0.059 / 0.108 0.196 / 0.387

Table 3: Top-1 accuracy (%) for codebook selection in the beamforming task. Fine-tuning was per-
formed across task complexities defined by codebook sizes (16, 32, 64, 128) and varying proportions
of labeled training data (1%, 2%, 5%, 10%, 25%, 50%, 100%).

Method Codebook Size 1% 2% 5% 10% 25% 50% 100%

Masking
16 50.7 59.6 68.5 72.4 76.8 78.4 80.6
32 31.6 40.6 53.5 67.6 74.9 78.1 81.2
64 15.9 23.4 33.2 43.6 59.1 64.8 65.0

128 9.4 10.1 13.0 20.8 33.0 40.4 42.1

SWiT
16 56.7 61.3 73.5 78.6 81.3 83.7 84.3
32 40.0 50.6 71.1 76.4 77.2 80.0 81.5
64 30.1 36.7 51.6 60.1 69.5 70.2 68.0

128 18.6 22.6 25.3 36.5 44.6 47.6 41.2

LWM
16 40.3 51.0 68.7 72.5 77.4 79.1 81.2
32 21.0 28.4 51.9 67.3 76.3 82.0 82.4
64 6.8 12.5 38.7 61.3 72.2 67.8 69.4

128 4.0 4.3 10.8 17.5 51.8 44.0 57.7

SpaRTran
16 56.0 71.6 82.8 84.6 89.4 90.0 92.8
32 38.7 73.6 87.6 88.9 90.4 92.9 93.7
64 32.3 54.2 74.4 84.2 86.6 89.5 89.0

128 23.8 25.7 39.9 62.9 70.5 74.5 71.8

WiT (Sup.)
16 56.4 67.3 74.3 80.1 82.3 84.3 85.8
32 44.3 69.1 70.2 79.4 82.1 82.9 84.4
64 31.3 49.0 52.3 60.4 73.3 75.5 77,6

128 15.9 24.2 21.7 34.4 48.4 48.8 49.8

et al., 2024), Masking (Ott et al., 2024), and LWM (Alikhani et al., 2024)) and a supervised method
(WiT (Salihu et al., 2022)), each using a TF backbone. We evaluate all methods on three publicly
available datasets: (i) KUL, a small controlled environment (Bast et al., 2020), (ii) FH-IIS, a larger
and more complex environment (Stahlke et al., 2024), and (iii) DeepMIMO (Alkhateeb, 2019) for
large-scale, diverse urban scenarios used in the codebook selection task. More detailed information
on the baselines and the datasets and how we parameterized them can be found in Appendix C.

Downstream Tasks. We use two downstream tasks to evaluate the performance of SpaRTran:
(1) Radio fingerprinting estimates a position in a known environment by exploiting the high spatial
correlation of channel measurements. Due to multipath the CSI is typically highly characteristic per
position. Assuming a wide-sense static environment (i.e., negligible changes in the radio environ-
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ment between training and inference) a neural network can be trained to map these fingerprints to
positions for localization (Niitsoo et al., 2019; Stahlke et al., 2022), see Secs. 5.1 and 5.2.
(2) Beamforming adapts phases/amplitudes across large phased array antennas to perform directed
signal transmissions, mitigating high path losses and interference. Codebook selection for beam-
forming aims to select the optimal beam from a predefined codebook directly from channel mea-
surements. This reduces the channel estimation overhead (Giordani et al., 2019), see Sec. 5.3.

In Sec. 5.4 we evaluate the approach under several ablations and study the effect of varying values
for sparsity penalty λ and dictionary size L,

5.1 LOCALIZATION IN SMALL DATA REGIME

Table 1 shows the mean absolute error (MAE) and 90th percentile of the cumulative error (CE90)
of SparTRan and the baseline methods on the FH-IIS dataset. SpaRTran offers in most cases the
highest accuracy, demonstrating the effectiveness of the approach. With ≥ 25% of the training data
available, SpaRTran reduces the average MAE and CE90 relative to the best-performing baseline
(”Masking”) by 23% and 19% respectively. SpaRTran significantly outperforms the purely super-
vised approach WiT — an average improvement of 0.67m CE90 and 0.37m MAE — demonstrat-
ing the advantage of unsupervised pretraining. Given very few labeled datapoints (≤ 5% of dataset)
SpaRTran performs competitive to Masking but does not reliably outperform it. We attribute this
to the fact that SpaRTran is trained on single channels rather than the full CSI requiring it to learn
inter channel correlations solely during finetuning. SWiT’s much lower accuracy compared with the
supervised case suggests its rigid pretraining augmentations mismatch the target data. This under-
scores the need for pretraining methods tailored to wireless-signal properties that remain flexible for
different system configurations.

5.2 LOCALIZATION UNDER DOMAIN SHIFT

Table 2 presents the results of wireless localization trained on pairs of scenarios one used for pre-
training the other for finetuning. SpaRTran achieves the best accuracy in most cases. Across all
training pairs, SpaRTran achieves an average improvement of at least 19% in MAE and 28% in
CE90 and reaching MAE ≤ 0.080m and CE90 ≤ 0.145m even in the challenging URA-nLoS
case. While all baseline methods exhibit a marked decline in performance under challenging non-
line-of-sight (nLoS) conditions compared to line-of-sight (LoS) scenarios, SpaRTran maintains a
high accuracy. This highlights SpaRTran’s superior ability to extract meaningful signal features
beyond the dominant LoS path. It should be noted that in the simple LoS scenarios the purely
spervised WiT (Sup.) shows competitive performance to the unsupervised approaches, reaching
MAE ≤ 0.074m and CE90 ≤ 0.135m. This shows that pretrained methods offer the most benefit
in particular complex situations, whereas supervised approaches may perform adequately in simpler
settings even with limited training data.

5.3 BEAMFORMING

Table 3 shows the results for the beamforming downstream task, i.e., selecting the best beam id in
a predefined codebook to steer antenna gain in a specific direction to serve a mobile device. Again,
SpaRTran outperforms the compared methods consistently. Notably, in one of the most challenging
settings — a codebook size of 128 with fine-tuning on only 10 % of the labeled training data —
SpaRTran increases top-1 accuracy by 26 percentage points up to 62.7 % relative to SWiT. It is
noteworthy that in the general picture none of the self-supervised baselines significantly outperforms
the purely supervised method WiT, supporting our view that simply adapting existing pretraining
methods to the wireless domain is insufficient. With only 1% labeled data, SpaRTran’s advantage
diminishes. This likely reflects that it was pretrained on single-channel measurements rather than full
CSI matrices, so fine-tuning must learn inter-channel correlations from very few labeled examples
and thus needs more labeled data to show its full benefit.

5.4 ABLATIONS

Figure 2a shows localization accuracy for the following ablations: backbone not pretrained (initial-
ized with random weights; black), no sparsity induced during pretraining by a gating mechanism
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Figure 2: (a) shows the cumulative density of the wireless localization error under ablations, (b)
shows the localization accuracy in dependency of the dictionary size L and the sparsity coefficient
λ and (c) shows the distribution of number of activations on 10000 datapoints.

(blue), and two regular pretraining variants using a trained dictionary (green) and a fixed dictionary
corresponding to the theoretical channel model (red). Both regular pretraining cases achieve a very
high accuracy of CE90 ≥ 0.145. The learned dictionary incurs a minor CE90 degradation of 0.003m
versus the fixed dictionary, so it remains competitive and is suitable when system configurations are
unknown. SpaRTran reduces CE90 by 66.5% relative to a randomly initialized backbone, demon-
strating its effectiveness. Removing the sparsity-inducing gating worsens performance relative to
the random initialization, underscoring the critical role of the sparsity assumption.

Figure 2b shows the CE90 localization accuracy w.r.t. dictionary size L and sparsity coefficient λ.
Here the best accuracy is achieved with a dictionary size of L = 128 and high levels of sparsity
0.1 ≤ λ ≤ 0.2. This backs up the claim that forcing the model to express the signal with as little
atomic components as possible results in better representations. However, the accuracy reduces
with the highest tested λ. This is caused by a systematic underestimation of the nonzero magnitudes
caused by the strong sparsity penalty, an effect known as shrinkage (Wright & Sharkey, 2024).
While our gated SAE design mitigates shrinking (Rajamanoharan et al., 2024), it still appears at
high λ. Thus, λ balances a tradeoff between sparsity and expressiveness of the representations. It
is crucial to select an large enough dictionary size L, i.e. dimensionality of the latent, in order to
obtain a high reconstruction fidelity. However, in Figure 2b it is noticeable that the accuracy drops
for large L. This is expected, as a larger dictionary leads to more coherent atoms making it difficult
to distinguish which one contributes to the signal (Donoho & Huo, 2001).

Figure 2c shows the distribution of number of activations per atom of a learned dictionary with
L = 128 dependent on λ. In general, higher values of λ (strong sparsity penalty) lead to a less spread
out histogram, i.e. the atoms are activated with equal frequency, indicating a effective diversity of
the learned dictionary. It is noticeable that when λ is chosen very small (λ = 0.001), some atoms
dominate the representation, being activated constantly while others are stalled, an effect akin to
mode collapse.

6 CONCLUSION

We presented SpaRTran, an novel unsupervised method for learning task-agnostic radio channel rep-
resentations based on a gated SAE that integrates a channel model inspired by compressed sensing.
This design reflects the inherent sparsity of physical radio channels, resulting in more meaning-
ful and efficient representations. Unlike existing methods, SpaRTran operates on individual radio
links rather than full CSI matrices, significantly reducing data acquisition effort and decoupling the
model from specific system configurations, making it well-suited for training large, generic foun-
dation models. Finetuned on downstream tasks, SpaRTran outperforms state-of-the-art methods,
achieving up to 28% reduction in positioning error and a 26%pts increases in the top-1 accuracy on
codebook selection for beamforming.
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Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad
Gheshlaghi Azar, and others. Bootstrap your own latent-a new approach to self-
supervised learning. Advances in neural information processing systems, 33:21271–21284,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/f3ada80d5c4ee70142b17b8192b2958e-Paper.pdf.

Berkay Guler, Giovanni Geraci, and Hamid Jafarkhani. A Multi-Task Foundation Model for Wire-
less Channel Representation Using Contrastive and Masked Autoencoder Learning, May 2025.
URL http://arxiv.org/abs/2505.09160. arXiv:2505.09160 [cs].

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum Contrast for
Unsupervised Visual Representation Learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2020. URL https://openaccess.
thecvf.com/content_CVPR_2020/papers/He_Momentum_Contrast_for_
Unsupervised_Visual_Representation_Learning_CVPR_2020_paper.pdf.

Jason M. Klusowski and Jonathan W. Siegel. Sharp Convergence Rates for Matching Pursuit.
IEEE Transactions on Information Theory, 71(7):5556–5569, July 2025. ISSN 1557-9654.
doi: 10.1109/TIT.2025.3564227. URL https://ieeexplore.ieee.org/document/
10976388.

Honglak Lee, Chaitanya Ekanadham, and Andrew Ng. Sparse deep belief net model for visual
area V2. In Advances in Neural Information Processing Systems, volume 20. Curran Asso-
ciates, Inc., 2007. URL https://proceedings.neurips.cc/paper/2007/hash/
4daa3db355ef2b0e64b472968cb70f0d-Abstract.html.

11

http://arxiv.org/abs/2309.08600
http://arxiv.org/abs/2309.08600
https://proceedings.mlr.press/v70/dauphin17a.html
https://proceedings.mlr.press/v70/dauphin17a.html
https://aclanthology.org/N19-1423/
https://aclanthology.org/N19-1423/
http://ieeexplore.ieee.org/document/1614066/
http://ieeexplore.ieee.org/document/1614066/
http://ieeexplore.ieee.org/document/959265/
https://link.springer.com/10.1007/978-1-4419-7011-4
https://link.springer.com/10.1007/978-1-4419-7011-4
https://ieeexplore.ieee.org/abstract/document/8458146
https://proceedings.neurips.cc/paper_files/paper/2020/file/f3ada80d5c4ee70142b17b8192b2958e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/f3ada80d5c4ee70142b17b8192b2958e-Paper.pdf
http://arxiv.org/abs/2505.09160
https://openaccess.thecvf.com/content_CVPR_2020/papers/He_Momentum_Contrast_for_Unsupervised_Visual_Representation_Learning_CVPR_2020_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/He_Momentum_Contrast_for_Unsupervised_Visual_Representation_Learning_CVPR_2020_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/He_Momentum_Contrast_for_Unsupervised_Visual_Representation_Learning_CVPR_2020_paper.pdf
https://ieeexplore.ieee.org/document/10976388
https://ieeexplore.ieee.org/document/10976388
https://proceedings.neurips.cc/paper/2007/hash/4daa3db355ef2b0e64b472968cb70f0d-Abstract.html
https://proceedings.neurips.cc/paper/2007/hash/4daa3db355ef2b0e64b472968cb70f0d-Abstract.html


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Wen Liu, Mingjie Jia, Zhongliang Deng, and Changyan Qin. MHSA-EC: An Indoor Localization
Algorithm Fusing the Multi-Head Self-Attention Mechanism and Effective CSI. Entropy, 24(5):
599, May 2022. ISSN 1099-4300. doi: 10.3390/e24050599. URL https://www.mdpi.com/
1099-4300/24/5/599. Number: 5 Publisher: Multidisciplinary Digital Publishing Institute.

Ke Ma, Zhaocheng Wang, Wenqiang Tian, Sheng Chen, and Lajos Hanzo. Deep Learning for
mmWave Beam-Management: State-of-the-Art, Opportunities and Challenges. IEEE Wireless
Communications, 30(4):108–114, August 2023. ISSN 1558-0687. doi: 10.1109/MWC.018.
2100713. URL https://ieeexplore.ieee.org/abstract/document/9846951.
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A PROOFS

Proof of Theorem 1. Let
u := O[f ] ∈ H

then, by definition of ∥ · ∥A1(H) we have for all ε > 0 a finite set of coefficients ci such that

u =
∑
i∈I

ciφ,
∑
i∈I

|ci| ≤ ∥u∥A1(H) + ε = ∥f∥AO
1
+ ε

Applying ERC to u we get

σn(u) = min
J⊂[N ],|J|≤n

∥∥∥∥∥∥u−
∑
j∈J

ajφj

∥∥∥∥∥∥ ≤ C
∥u∥A1(H)√

n
≤ C

∥f∥AO
1
+ ε

√
n

by definition, we have a
gn =

∑
j∈Jn

ajφj , |Jn| = n

such that

∥u− gn∥H ≤ C
∥f∥AO

1
+ ε

√
n

Finally, set O−1[gn] = f̃n to obtain

∥f − f̃n∥H = ∥O−1[u− gn]∥H ≤ ∥O−1∥∥[u− gn]∥H ≤ ∥O−1∥C
∥f∥AO

1
+ ε

√
n

Now let ε → 0 and we obtain our bound

∥f − f̃n∥H ≤ ∥O−1∥C
∥f∥AO

1√
n

Proof of Theorem 2. Let O be a diagonal operator with weights wi such that O[f ] =
∑

wiciφi. Let
wi be defined as

wi =

{
c j ∈ S

1 j /∈ S

with c > 1. Operators with this weighting have inverse norm ∥O−1∥ = max(1/c, 1) = 1 and

max
0≤i≤K

∥fi∥AO
1
= max

0≤i≤K

∑
j∈S

|ai,j |+
1

c

∑
j∈S

|ai,j | = B +
1

c
max

0≤i≤K

∑
j∈S

|ai,j |

Since, by assumption B < R we may chose any c large enough such that the residual
RS

c
< R−B

Specifically, choose

c >
RS

R−B
then

max
0≤i≤K

∥fi∥AO
1
= B +

RS

c
< B + (R−B) = R

In short, the resulting rate is (nonasymptotically) better than the original one.

Proof of Corollary 1. Let Mdiag be the advantage gained by a diagonal scaler. First apply an or-
thonormal transform V projecting onto s axes (via SVD or polar decomposition), then apply theo-
rem 2. This only adds the burden of back-projecting from V space to the original space, i.e.

max
i

∥fi − fi,n∥ ≤ ∥V −1∥CMdiag/
√
n

which due to orthonormality yields
max

i
∥fi − fi,n∥ ≤ CMdiag/

√
n
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B EXAMPLE PRECONDITIONING OPERATOR

Assume one wants to solve a Poisson differential equation using the Spectral method on the basis
of Legendre Polynomials. Let’s define the Poisson equation −∆u(x) = f(x) for ground truth
f(x) = 1√

1−x2
over x ∈ (−1, 1) with u(−1) = u(1) = 0. Approximating f with Legendre

polynomials has slow decay for spectral methods due to the endpoint singularities. Preconditioning
with Green’s operator

O :=

(
− d2

dx2

)−1

Then
O[f ] = u

is smooth over (−1, 1) and in fact has an analytic interior. Specifically legendre coefficients in f
decay on the order of n−1 due to the singularity, while coefficients in u decay exponentially. For us
this would mean

∥f∥A1
:= inf

{∑
i

|ci||f =
∑
i

ciφi

}
while

∥f∥AO
1
= ∥O[f ]∥A1

= ∥u∥A1

by the convergence rate we get
∥f∥AO

1
<< ∥f∥A1

The norm

∥O−1∥ = ∥ − d2

dx2
∥

over H2 ∩H1
0 - The second order sobolev space cut with the first-order subspace which vanishes on

the boundary - is a fixed constant.

C EXPERIMENTAL SETUP: BASELINES & DATASETS

C.1 BASELINES

Table 4: Comparison of transformer hyperparameter.

Method Nlatent Nhidden Nheads Nblocks #param

Masking 512 1024 8 3 8.7 M
SwiT 384 384 1 1 4.0 M
LWM 64 256 1 12 1.3 M

SpaRTran (ours) 512 1024 8 1 2.6 M

SWiT: Salihu et al. (2024) propose a joint embedding-based approach Grill et al. (2020) called
self-supervised wireless transformer (SWiT), that predicts the output of a momentum encoder, given
different augmented views of the same input signal. The aim is to learn representations that are
invariant to six randomly selected augmentations, diversifying the views.

WiT: Salihu et al. (2022) employs a compact TF model consisting of a single encoder block with
single-head attention that is trained end-to-end in a supervised manner.

Masking: Ott et al. (2024) introduce a predictive objective for learning FP representations, in which
masked portions of the input signal are reconstructed. During training, up to 50% of the input
fingerprint is removed, forcing the model to learn spatiotemporal correlations between the multipath
components (MPCs).

LWM: Alikhani et al. (2024) also use a masking strategy to pre-train the TF model. Here multiple
patches of 15 time steps, of the input signal are gathered to be represented to the network as a token.
They randomly select 15% of patches and, for those, replace 80% with a uniform MASK vector,
10% with random noise, and leave 10% unchanged.
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Table 5: Comparison of dataset configurations.

Dataset fc [GHz] W [MHz] Nr Area

KUL 2.61 20 64 3 m × 3 m
FH-IIS 3.7 100 6 40 m × 30 m

DeepMIMO 3.5 20 32 >1 km2

C.2 DATASETS

KUL Dataset Bast et al. (2020): The dataset comprises four antenna configurations: distributed
antennas (DIS-LoS), a uniform linear array (ULA-LoS), and a uniform rectangular array under both
LoS (URA-LoS) and nLoS conditions (URA-nLoS). Each configuration contains 252,004 CSI sam-
ples with recording positions arranged in a grid-pattern with 5 mm distance. The channels are
measured at 20 MHz bandwidth. We split the dataset randomly into 70 % for training, 10 % for
validation, and 20 % for testing.

FH-IIS Dataset Stahlke et al. (2024): This dataset contains CIR fingerprints collected using a
5G-FR1-compatible software-defined radio system (DL-PRS reference signal) with a bandwidth
of 100 MHz. The recorded environments resembles a industrial hall featuring tall metal shelves,
and a narrow corridor with large walls that introduce signal blockages and complex multipath prop-
agation. The CSI is captured along a random walking trajectory of a person at a sampling rate of
6.6 Hz. Six base-stations are distributed along the perimeter of the localization area. The split sizes
are as follows: 566,589 training, 141,639 validation and 593,022 test samples.

DeepMIMO Dataset Alkhateeb (2019): This dataset is a synthetic dataset generated by a ray-
tracing engine. We configure it to simulate a uniform linear array with 32 antennas at 20 MHz
bandwidth, and 3.5 Ghz carrier frequency. We split the dataset into a pretraining and finetuning sub-
set including 15 scenarios (O1, Boston5G, ASU Campus, New York, Los Angeles, Chicago, Houston,
Phoenix, Philadelphia, Miami, Dallas, San Francisco, Austin, Columbus, Seattle) and 6 scenarios
(Denver, Fort Worth, Oklahoma, Indianapolis, Santa Clara, San Diego) respectively. This yields the
following split sizes: pretraining — 540,272 training and 135,075 validation samples; finetuning —
10,385 training, 1,481 validation, and 1,481 test samples.

We normalize the received signal strength of the FH-IIS and KUL datasets using a global normal-
ization factor. This preserves the relative signal strength differences within the channel measure-
ments, a crucial property for the downstream task of wireless localization. In contrast, DeepMIMO
is normalized per CSI matrix to reduce sensitivity to outliers from large peaks that occur at short
transmitter–receiver distances (signal strength scales roughly with 1/d2).

D LLM DISCLOSURE

We used large language models (LLMs) to assist with drafting and polishing the manuscript and
for literature retrieval/discovery (e.g., to identify related work). Specifically OpenAI GPT-4o and
OpenAI GPT-5 were used to rephrase sentences for clarity and conciseness as well as search and
summarize candidate related works. All LLM-generated text and suggested citations were reviewed,
edited, and validated by the authors; final responsibility for the content, interpretations, and citation
accuracy rests with the authors.
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