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ABSTRACT

We introduce a mixture of heterogeneous experts framework called MECATS,
which simultaneously forecasts the values of a set of time series that are related
through an aggregation hierarchy. Different types of forecasting models can be
employed as individual experts so that the form of each model can be tailored to the
nature of the corresponding time series. MECATS learns hierarchical relationships
during the training stage to help generalize better across all the time series being
modeled and also mitigates coherency issues that arise due to constraints imposed
by the hierarchy. We further build multiple quantile estimators on top of the point
forecasts. The resulting probabilistic forecasts are nearly coherent, distribution-free,
and independent of the choice of forecasting models. We conduct a comprehensive
evaluation on both point and probabilistic forecasts and also formulate an extension
for situations where change points exist in sequential data. In general, our method
is robust, adaptive to datasets with different properties, and highly configurable
and efficient for large-scale forecasting pipelines.

1 INTRODUCTION

Forecasting time-series with hierarchical aggregation constraints is a common problem in many
practically important applications (Hyndman et al., 2011; 2016; Lauderdale et al., 2020; Taieb et al.,
2017; Zhao et al., 2016). For example, retail sales and inventory records are normally at different
granularities such as product categories, store, city and state (Makridakis et al., 2020; Seeger et al.,
2016). Generating forecasts for each aggregation level is necessary in developing high-level and
detailed view of marketing insights. Another prominent example is population forecast at multiple
time granularities such as monthly, quarterly, and yearly basis (Athanasopoulos et al., 2017). Normally,
data at different aggregation levels possess distinct properties w.r.t. sparsity, noise distribution,
sampling frequency etc. A well-generalized forecasting model should not only focus on the accuracy
for each time series, but also exhibit coherency across the hierarchical structure. However, generating
forecasts for each time series independently, using common multivariate forecasting models, does not
lead to forecasts that satisfy the coherency requirement.

A major group of works for hierarchical time series forecasting employ a two-stage (or post-training)
approach (Ben Taieb & Koo, 2019; Hyndman et al., 2011; 2016; Wickramasuriya et al., 2015), where
base forecasts are firstly obtained for each time series followed by a reconciliation among these
forecasts. The reconciliation step involves computing a weight matrix P taking into account the
hierarchical structure, which linearly maps the base forecasts to coherent results. This approach
guarantees coherent results but relies on strong assumptions (Gaussian error assumption; (Hyndman
et al., 2011; 2016; Wickramasuriya et al., 2015) also require unbiased base forecast assumption).
Moreover, computing P is expensive because of matrix inversion, making this method unsuitable for
large-scale forecasting pipelines. Another line of work attempts to learn inter-level relationships dur-
ing the model training stage. (Han et al., 2021) provides a controllable trade-off between forecasting
accuracy of single time series and coherency across the hierarchy, which connects reconciliation with
learned parameters of forecasting models. However, one needs to modify the objective functions of
the individual models, which is not always possible, especially for encapsulated forecasting APIs.

In this work, we propose Mixture-of-Experts for Coherent and Aggregated Time Series (MECATS)
that brings together the power of multiple heterogeneous models. MECATS can also learn hierarchical
relationships to generate coherent results and significantly improve the overall accuracy compared
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Figure 1: Overview of method: (left) a three-level structure for aggregated time series; bottom-level
vertices: v4 to v7; aggregated-level vertices: v1 to v3; each vertex represent a uni-variate time series.
(Right) the mixture-of-expert framework to generate probabilistic forecasts at each vertex.

with previous baselines. We also build an uncertainty wrapper on top of the mixture-of-experts (ME)
predictions to simultaneously produce multiple quantile predictions that are reasonably coherent
and independent to the choice of forecasting models. In summary, key contributions of MECATS
include: 1. improve the performance of point prediction by learning to combine forecasts from a set
of heterogeneous models; 2. build user-specified multiple quantile estimations that are model-free
and approximately coherent. In addition, MECATS can also be applied on general multi-variate or
univariate time series data, and is robust to abrupt changes in the data.

2 RELATED WORKS

Forecasting Models Models for time series span a wide range of categories. ARIMA(p,d,q)
(Hyndman et al., 2008b; Zhang, 2003) is able to model many time series with trend and seasonality
components, but its performance is normally poor on long term forecast and series with change-points.
Dynamic regression models (Taylor & Letham, 2018) extend ARIMA by inclusion of other external
variables, but the process requires expertise and experimentation. If all variables are concurrent,
difficulties in forecasting external variables will result in poor forecasts. State-space models (Durbin &
Koopman, 2012; Hyndman et al., 2008a; West et al., 1985) provides a more general and interpretable
framework for modeling time series by sequentially updating information to give better estimates;
Kalman filter (Welch et al., 1995) and exponential smoothing (Hyndman et al., 2008a) are both
prominent examples. Deep Neural Networks (Becker et al., 2019; Krishnan et al., 2015; Lai et al.,
2018; Rangapuram et al., 2018; Salinas et al., 2020; Wen et al., 2017) can improve the ability to model
complex data with enough history. However, it is very difficult to obtain single model that works well
in diverse situations. More discussions in hierarchical forecasting can be found in Appendix B and C.

Uncertainty Measurement A common choice to measure uncertainty for forecasting models is
to add a Gaussian symmetric noise distribution to the point prediction. Bayesian methods make
assumptions on prior and loss functions. However, these assumptions are not always fulfilled
(Blundell et al., 2015; Iwata & Ghahramani, 2017; Kuleshov et al., 2018; Lakshminarayanan et al.,
2016; Sun et al., 2019). Multiple observation noise models (Salinas et al., 2020) and normalizing
flow (Durkan et al., 2019; Gopal & Key, 2021) can generalize to any noise distribution, but it is left
to human’s expertise to choose appropriate likelihood function. Quantile regression (Gasthaus et al.,
2019; Han et al., 2021; Tagasovska & Lopez-Paz, 2018) avoids distributional assumptions and can be
flexibly combined with many forecasting models. But extra efforts are needed to prevent quantile
crossing, and (possibly) make each quantile coherent across the hierarchical structure.

Mixture of Experts ME (Jacobs et al., 1991; Masoudnia & Ebrahimpour, 2014; Yuksel et al., 2012)
is a localized, cooperative ensemble learning (Hastie et al., 2009; Polikar, 2006; Rokach, 2010)
method for enhancing the performance of machine learning algorithms. It captures a complex model
space using a combination of simpler learners. The standard way to learn an ME model is to train a
gating network and a set of experts using EM-based methods (Chen et al., 1999; Jordan & Jacobs,
1994; Ng & McLachlan, 2007; Xu et al., 1994; Yang & Ma, 2009). The gating network outputs
either experts’ weights (Chaer et al., 1997; 1998) or hard labels (Garmash & Monz, 2016; Shazeer
et al., 2017). Prior works have studied ME for regular time series data, where ME showed success in
allocating experts to the most suitable regions of input (Lu, 2006; Weigend et al., 1995). Hierarchical

2



Under review as a conference paper at ICLR 2022

ME has also been applied in the speech-processing literature (Chen et al., 1995; 1996a;b) for text
dependent speaker identification. However, these works only employed experts of the same type with
limited representation power (Cacciatore & Nowlan, 1994; Chaer et al., 1997; Weigend et al., 1995;
Zeevi et al., 1997). Most recently, Bhatnagar et al. (2021) developed a library to forecast time series
using heterogeneous models. The way they combine multiple predictions is through simple averaging
or model selection based on a user defined metric. In this paper, we propose the MECATS framework
that can not only learn the most suitable adaptive combination of a set of heterogeneous models, but
also estimate arbitrary quantiles given the point prediction. MECATS is designed for multi-variate
time series with hierarchical constraint, and its simplified variant also works for normal time series.

3 PROBABILISTIC FORECASTS OF AGGREGATED TIME SERIES

Figure 1 (left) shows a hierarchical graph structure with three levels. Each vertex represents time
series data aggregated on different variables related through a domain-specific conceptual hierarchy
(e.g., product categories, time granularities etc). We use {V,E} to represent the graph structure,
where V := {v1, v2, . . . , v7} is the set of vertices and E := {e1,2, e1,3, . . . , e3,7} is the set of
edges. Let N be the number of vertices; {xvi1:Ti

}Ni=1 be the set of univariate time series associated
with the hierarchical structure, where xvi1:Ti

= [xvi1 , x
vi
2 , . . . , x

vi
Ti

], Ti is the forecasting start point,
and xvit ∈ R denotes the value of ith time series at time t. For the most common use case, we
assume ei,j ∈ {−1, 1}, and xvit =

∑
ei,j∈E ei,j x

vj
t , which means data at parent vertices is (signed)

summation of their children vertices. Ideally, the forecasts should satisfy:

P (xviTi+1:Ti+h
| xvi1:Ti

; Θe), s.t. |xvit −
∑
ei,j∈E

ei,j x
vj
t | = 0, ∀t ∈ [Ti + 1, Ti + h],

where h is the forecasting horizon and Θe represents the experts’ parameters. Note that it is
straightforward to extend linear aggregations to non-linear case and weighted edges. The {V,E}
representation is equivalent to the S matrix used in hierarchical forecasting literatures (Appendix B).

3.1 POINT FORECASTS USING MIXTURE OF HETEROGENEOUS EXPERTS

The ME framework enables a set of experts (Θe) and a gating network (Θg) to cooperate with each
other on a complex task. We introduce a model setM = {M1, . . . ,ML} which contains L experts
with both high-variance and low-variance models. Let Θ = {Θe,Θg} be the collection of parameters,
the prediction of xviTi+1:Ti+h

can be written in terms of the experts and gating networks

P (x̂viTi+1:Ti+h
| xvi1:Ti

,Θ) =

L∑
l=1

P (l | xvi1:Ti
,Θg) · P (x̂viTi+1:Ti+h

| l, xvi1:Ti
,Θe), (1)

where P (l | xvi1:Ti
,Θg) in Eq (1) represents the lth output of gating network, henceforth denoted

by gl(xvi1:Ti
,Θg) instead. Since the experts within M may have distinct ways to represent pre-

dictive uncertainty, it is unreasonable to simply combine their confidence intervals. We therefore
restrict our discussion to point prediction E[x̂viTi+1:Ti+h

| l, xvi1:Ti
,Θe] from each expert for now. A

commonly used method to train mixture-of-experts is through the EM algorithm (Jordan & Xu,
1995), where the latent variable and model parameters are iteratively estimated. Since many appli-
cations nowadays utilize complex models that are pre-trained in offline settings, we can simplify
the EM procedure by disentangling the training of pre-specified experts and gates. Assume the
time stamp ti ∈ [1, Ti], by having the set of experts {Ml}Ll=1 trained offline on xvi1:ti , we first ob-
tain the set of pre-trained experts that generate point predictions {x̂viti+1:Ti

(l)}Ll=1. The same set
of time series is then processed by a sliding window that is used to train the gating network NNg:
sw(xvi1:ti) = [xvi1:ω, x

vi
2:ω+1, . . . , x

vi
ti−ω+1:ti

] ∈ R(ti−ω+1)×ω×1, where ω is the window length, and
{gl(xvi1:Ti

,Θg)}Ll=1 = NNg(sw(xvi1:ti)) is the set of weights.

We then train the gating network on a separate validation set. The outputs {gl(xvi1:Ti
,Θg)}Ll=1

captures the generalization ability of each pre-trained expert, i.e., higher gl(xvi1:Ti
,Θg) indicates more

importance of the lth expert for node vi. The objective for training the gating network at vertex vi is

Lrecon = Lvi(x̂
vi
ti+1:Ti

, xviti+1:Ti
) + λK · ‖x̂viti+1:Ti

−
∑
ei,j∈E

ei,j x̂
vj
tj+1:Tj

‖2, (2)
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Figure 2: Model structure for generating probabilistic forecasts at vertex i. Left: point prediction
generated by mixture-of-experts, Lrecon is used to train gating network NNg. Right: uncertainty
wrapper built on top of black-box forecasting models to generate a set of quantile estimations.

where x̂viti+1:Ti
=
∑L
l=1 gl(x

vi
1:Ti

,Θg) x̂
vi
ti+1:Ti

(l), and K is the aggregation level of vi. The loss
Lrecon not only involves forecast at vi, but also forecasts at its child vertices. By minimizing Lrecon,
we enable the gating network to learn across adjacent levels, and maximize the likelihood estimate of
xviti+1:Ti

through controlling the weight on each expert. By using the regularized objective for gating
network, we bypass adding regularization terms for each expert, which is often impractical. The
overall structure of the point forecasting framework is shown in Figure 2 (left).

Eq (2) provides a controllable trade-off between coherency and accuracy at vi, which helps the model
generalize better, and is more effective than two-stage reconciliation methods when applying on
large-scale hierarchical structures. This formulation can also be combined with a bottom-up training
approach in (Han et al., 2021), where the gating networks at the bottom level are first trained, and
use the forecasting results to progressively reconcile higher-level gating networks, till the root is
reached. In contrast, one needs to reconcile both higher (previously visited) and lower-level model
at an intermediate vertex if the top-down training method is applied, since other forecasts at that
intermediate level might have changed. This bottom-up training procedure can be run in parallel on
training vertices at the same aggregation level because they are mutually independent. Therefore, one
can efficiently obtain coherent forecasts through one pass of the bottom-up training.

We now discuss how MECATS can provide accurate and coherent forecasts and how it different from
other methods such as SHARQ (Han et al., 2021) and MinT (Hyndman et al., 2011).

Proposition 1. Coherency Condition for MECATS

Assume k experts are assigned to vi, and its corresponding child vertices. Each expert generates
forecast {x̂jvi}

k
j=1, which are not necessarily unbiased. WLOG, assume x̂1vi ≤ x̂

2
vi ≤ · · · ≤ x̂

k
vi . If

ground truth xvi ∈ [x̂1vi , x̂
k
vi ], then MECATS can generate coherent forecasts.

Remark Note that other reconciliation methods like MinT, requires forecasting model at every
vertex to be unbiased. This is not a realistic assumption given the likelihood of changing dynamics
at different aggregation levels. SHARQ also requires unbiasedness assumption at the bottom level
vertex. However, the assumption of MECATS is weaker as it only requires the true value to lie in the
convex hull formed by forecasts from each expert. Therefore, the increased number of heterogeneous
experts brings more robustness to the forecasts. More discussions can be found in Appendix A.

3.2 MODEL-FREE MULTIPLE QUANTILE FORECASTS

Adding uncertainty measurements to point forecasts provide a more comprehensive view of such
forecasts. We resort to quantiles for characterizing uncertainty. Since there is neither distributional nor
model assumptions in our framework, one cannot simply compute the quantiles of a given distribution,
or combine the quantile loss from the base models. The target of uncertainty measurement is therefore
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a black-box. Specifically, for each vertex vi, one only has access to the input xvi1:ti and output x̂viti+1:Ti

of the ME framework.

We first introduce conditional quantile regression for our forecasting problem, which is used to train
the uncertainty wrapper. For each quantile value τ ∈ [0, 1] and input xvi1:ti , the aim of quantile
regression is to estimate the τ th quantile function q(τ, xvi1:ti) := inf{x̂vit ∈ R : F (x̂vit | x

vi
1:ti
,Θ) ≥

τ}, where F is the CDF function of p(x̂vit | x
vi
1:ti
,Θ) for any forecasting time stamp t ∈ [ti, Ti]. The

quantile estimation at each τ is achieved by minimizing the pinball loss function Lq defined by

Lq(y1:T , τ) =

T∑
t=t

(yt − q(τ, y1:t)) · (τ − 1[yt < q(τ, y1:t)]) (3)

where 1[·] is the indicator function. Ideally, the estimated quantiles q(τ, xvi1:ti) are monotoni-
cally increasing w.r.t. τ . We call it quantile crossing if this condition is not satisfied. Quantile
crossing is a common problem when n ≥ 2 quantile estimators are evaluated by minimizing e.g.,∑n
s=1 Lq(x

vi
1:Ti

, τs). Solutions from prior works include imposing additional constraints in model
training, or post-processing the multiple quantile estimations. We introduce a novel approach to
simultaneously generate multiple quantile estimations without quantile crossing issues. The core idea
is to model the derivative of quantile estimations using neural networks:

{q(τs, y1:t, ŷt+1:T ; Θu)}ns=1, ∀τs ∈ [0, 1]⇐
∫ 1

−1
φ(t, y1:t; Θu) dt+ C0(y1:t, ŷt+1:T ) (4)

where φ(t, xvi1:ti ; Θu) is parameterized by neural networks (Θu) whose outputs are made to be strictly
positive; C0(xvi1:ti , x̂

vi
ti+1:Ti

) is a data-driven coefficient, and [−1, 1] represents the range of 2τs − 1
with τs ∈ [0, 1]. We can then obtain any quantile estimations from the result of integration. By
integrating upon a strictly positive estimator, the results are therefore monotonically increasing within
[−1, 1], and also w.r.t. τs. The quantile estimators are then trained using a pinball loss in Eq (3) to
learn the network φ. Eq (3) and (4) together define our multiple quantile forecaster (Figure 2 right).
This formulation has also been studied in unconstrained monotonic neural networks (Wehenkel &
Louppe, 2019). By using this work, we can only obtain one quantile estimation at a time instead of
generating the entire range of quantiles simultaneously. Furthermore, Eq (4) only needs to access the
input and output of the ME framework, which means it does not make any assumption on forecasting
models or gating networks, and is compatible with any black-box model.

Training of Multi-Quantile Generator In order to train the integrand neural network φ, an effi-
cient solution is to use Clenshaw-Curtis quadrature to approximate the integral

∫ 1

−1 φ(t, xvi1:ti ; Θu) dt.

Given
∫ 1

−1 φ(t) dt, we can transform this problem by a change of variable:
∫ π
0
φ(cos θ) sin θ dθ.

Here, we define a mapping Tk : [−1, 1]→ R and its recurrent relationship

T0(z) := 1, T1(z) := z, Tk+1(z) := 2zTk(z)− Tk−1(z), k ≥ 1. (5)

The recurrence in Eq (5) can also be written as Tk(cos θ) = cos(kθ). The mapping Tk is called
Chebyshev polynomials. Note that we can write φ(cos θ) as its Chebyshev polynomial approximation:
φ(cos θ) = 1

2c0(xvi1:ti)+
∑∞
k=1 ck(xvi1:ti)·Tk(cos θ), where {ck(xvi1:ti)}

∞
k=0 are coefficients. Normally,

a finite number of terms can achieve sufficient precision for approximation:

φ(cos θ) ≈ 1

2
c0(xvi1:ti) +

d−1∑
k=1

ck(xvi1:ti) · Tk(cos θ) (6)

is a d degree Chebyshev polynomial approxiamtion of φ(cos θ). Therefore we have∫ π

0

φ(cos θ) sin θ dθ =

∫ π

0

φ(cos θ) d cos θ =

∫ 1

−1

[
1

2
c0(xvi1:ti) +

d−1∑
k=1

ck(xvi1:ti) · Tk(z)

]
dz,

where z = 2τs − 1,∀τs ∈ [0, 1]. By the recurrent definition in Eq (5), the integral of the Chebyshev
polynomial Tk corresponds to a new Chebyshev polynomial∫

T0(z) dz = T1(z),

∫
T1(z) dz =

T2(z)

4
− T0(z)

4
,

∫
Tk(z) dz =

Tk−1(z)

2(k − 1)
− Tk+1(z)

2(k + 1)
.
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Figure 3: Pre-trained experts’ weight curve from vertices at different aggregation levels. The most
suitable representation of each time series can be found in diverse combinations of experts.

Therefore, the integration result can also be written in terms of Chebyshev polynomials: Φ(z) =
1
2C0(xvi1:ti) +

∑d−1
k=1 Ck(xvi1:ti) · Tk(z), where the new Chebyshev coefficients {Ck(xvi1:ti)}

d−1
k=1 can

be obtained from the original coefficients

Ck(xvi1:ti) =
ck−1(xvi1:ti)− ck+1(xvi1:ti)

4k
, 0 < k < d− 1, Cd−1(xvi1:ti) =

cd−2(xvi1:ti)

4(d− 1)
. (7)

The above derivation shows that the integral operation in Eq (4) can be replaced by Chebyshev
polynomial approximation below:

q(τs, x
vi
1:ti
, x̂viti+1:Ti

; Θu) =

d−1∑
k=1

Ck(xvi1:ti) · Tk(2τs − 1) + C0(xvi1:ti , x̂
vi
ti+1:Ti

). (8)

Since the polynomials Tk can be obtained in a recurrent manner instead of explicitly computed
(Clenshaw, 1955), estimating Chebyshev coefficients {ck(xvi1:ti)}

d−1
k=0 in Eq (6) is therefore a necessary

step. The coefficients can be obtained from a linear transformation of the set of neural network
outputs {φ(tk, x

vi
1:ti

; Θu)}d−1k=0 evaluated at {tk}d−1k=0, where tk = cos
(
π(k+ 1

2 )

d

)
, k ∈ [0, d) are the

Chebyshev roots. The linear transformation (Rd → Rd) is implemented by the Discrete Cosine
Transform (DCT) algorithm, which gives {ck(xvi1:ti)}

d−1
k=0 by transforming the set of output scalars.

Connection to Point Forecast We now link the multiple quantile forecasts to point forecast by
imposing the point forecast as a constraint of the distribution formulated by all the quantiles. Assume
that x̂viti+1:Ti

is constrained to be the median value of the quantiles, i.e., q(0.5, xvi1:ti , x̂
vi
ti+1:Ti

) =
x̂viti+1:Ti

, we can obtain the value of coefficient C0 as

C0(xvi1:ti , x̂
vi
ti+1:Ti

) = 2 · x̂viti+1:Ti
− 2

d−1∑
k=1,k even

(−1)k/2Ck(xvi1:ti). (9)

In fact, one can impose the point forecast to be any summary statistic of the quantile distribution and
the form of C0 can be derived accordingly (details in Appendix D). Building this connection to the
combined point forecast regularizes each quantile estimation to be more coherent.

In summary, MECATS shows some very good properties compared to previous methods. It can
borrow strength from arbitrary forecasting models in a plug-and-play manner, leading to accurate and
robust forecasts in all situations. The connection between its point forecasts and quantile estimations
can also improve the performance of probabilistic forecasts. Additionally, MECATS tackles model
dependency and quantile crossing problems that have not been addressed by SHARQ and also does
not need strong assumptions made by the two-stage reconciliation methods.

4 EXPERIMENTS

In this section, we evaluate MECATS from different aspects. Our experiments include: 1. coherent
forecasts on hierarchically aggregated time series data (section 4.1 - 4.3); 2. real-time forecasting
under change of time series dynamics (section 4.4). Our results show that MECATS can significantly
improve performance and is adaptive to temporal sequences with different properties.
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Figure 4: (a), (b) Probabilistic forecasting examples generated by MECATS at vertex 5 and 31 when
τs = [0.05, 0.3, 0.5, 0.7, 0.95]. (c) SHARQ at same τs, results showing mild quantile crossing.

4.1 POINT FORECAST

We implemented various combinations of different forecasting models and reconciliation methods.
For forecasting models, both single models and mixtures are evaluated. We employed linear auto-
regressive model (AR), RNN-GRU (Chung et al., 2014), LSTNet (Lai et al., 2018), and DeepAR
(Salinas et al., 2020) as the single models, and a mix of dynamic linear models (DLM) (West &
Harrison, 2006), Auto-ARIMA (Hyndman et al., 2008b), Facebook Prophet (Taylor & Letham, 2018)
with LSTNet and DeepAR as the chosen set of experts. We also implemented ensemble averaging and
model selection (MS) (Bhatnagar et al., 2021) to combine predictions. Since LSTNet and DeepAR
are global models (Januschowski et al., 2020), which learn across a set of time series, we only need
to train one model for the hierarchy. The rest of the experts are trained on univariate time series,
where we assign one model for each vertex. In other words, one can include both global models and
univariate models in MECATS. However, we will not discuss how to make the best selection of each
heterogeneous expert, which is beyond the scope of this paper. In terms of reconciliation methods,
we implemented state-of-the-art method SHARQ (in-training) (Han et al., 2021), post-training
reconciliations (Wickramasuriya et al., 2015) and base forecast for comparison. We conducted our
experiments on multi-step forecast using 4 public time-series datasets with hierarchical aggregation:
Australian Labour, M5, Wikipedia webpage views and AE-Demand. Due to the space constraint, we
defer the results of Wikipedia and AE-Demand datasets into Appendix H. Figure 3 illustrates the
weight evolution for each expert as the gating network is trained and reconciled on vertices at each
level using the Australian Labour dataset. According to the plots, the gating network emphasizes the
DLM expert for time series at the top aggregated level; as the level becomes lower, DLM becomes less
dominant and other experts begin to carry more weights at some vertices. Finally, at a bottom-level
vertex where data becomes noisy, a different set of experts takes charge of the forecast. Results
measured by MASE (Hyndman & Koehler, 2006) averaged across each random experiment are shown
in Table 1 (also see Appendix H for full results). MECATS generates the best multi-step point forecast
among all combinations of forecasting models and reconciliation methods. Our results show that
the set of heterogeneous experts brought together by ME can significantly improve the forecasting
quality compared to using a single model. In addition, we have also validated the effectiveness of
in-training reconciliation for enhancing the generalization of different forecasting models.

4.2 MULTIPLE QUANTILE FORECASTS

We now evaluate the multi-quantile generator built on top of our multi-step point forecasts. The neural
network models φ(tk, x

vi
1:ti

; Θu) are trained on mini-batches of training data sw(xvi1:ti) generated by
sliding windows, along with the set of Chebyshev roots {tk}d−1k=0. We train d number of models φ
where each of them is evaluated at one tk. The Chebyshev polynomial coefficients {ck(xvi1:ti)}

d−1
k=0

in Eq (6) can then be obtained by applying type-II DCT transformations into d model outputs,
where further computations using {ck(xvi1:ti)}

d−1
k=0 in Eq (7) and (8) produce quantile estimations

q(τs),∀τs ∈ [0, 1]. Procedures for generating point forecasts remain unchanged as the multi-quantile
generator is an independent module. Figure 4 demonstrates probabilistic forecasting results on
arbitrary chosen vertices in the M5 dataset. The multi-quantile forecasts can well-capture the
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Figure 5: (a), (b) Coherent loss of point forecast w.r.t. regularization strength λ on labour and M5
dataset. (c) Relationship between point forecast coherency and average of quantile coherency.

Model \ Recon SHARQ Base
Post-training

MinT-shr MinT-sam MinT-ols
AR 75.59±.50 (.194) 77.74±.33 (.207) 85.32±.60 (.197) 93.77±1.3 (.200) 91.72±1.3 (.202)

RNN 61.73±.32 (.126) 66.64±.50 (.157) 68.28±.77 (.132) 74.31±.31 (.133) 74.41±.81 (.136)
LSTNet 61.22±.50 (.113) 65.83±.53 (.137) 67.94±.54 (.125) 72.89±.49 (.130) 72.55±.81 (.130)
DeepAR 60.39±.34 (.121) 62.81±.38 (.134) 64.36±.43 (.135) 68.60±.69 (.141) 69.13±.82 (.147)
Average 63.77±.59 (.122) 64.72±.16 (.136) 64.21±.18 (.141) 69.14±.26 (.142) 68.98±.32 (.141)

MS 58.04±.35 (.120) 62.81±.38 (.134) 64.36±.43 (.135) 68.60±.69 (.141) 69.13±.82 (.147)
MECATS 49.47±.33 (.081) 54.73±.08 (.089) 52.42±.19 (.098) 56.83±.06 (.104) 57.94±.24 (.103)

AR 70.16±.47 (.248) 70.94±.47 (.263) 82.05±.51 (.265) 85.69±.59 (.267) 85.60±.47 (.269)
RNN 64.18±.34 (.114) 66.35±.45 (.183) 73.67±.44 (.159) 77.82±.27 (.168) 77.26±.45 (.168)

LSTNet 65.78±.49 (.104) 66.54±.46 (.159) 72.75±.40 (.135) 77.24±.25 (.154) 77.45±.24 (.153)
DeepAR 62.16±.20 (.112) 63.22±.30 (.126) 71.22±.42 (.131) 74.35±.41 (.138) 74.59±.43 (.132)
Average 64.67±.39 (.137) 65.92±.21 (.139) 73.26±.19 (.146) 78.51±.09 (.152) 77.93±.16 (.151)

MS 60.87±.32 (.123) 63.01±.11 (.124) 69.74±.12 (.129) 72.42±.32 (.134) 73.69±.15 (.134)
MECATS 50.97±.31 (.085) 57.34±.07 (.087) 62.46±.33 (.096) 69.39±.24 (.097) 68.82±.29 (.106)

Table 1: Forecasting performance measured by averaged MASE↓ and CRPS↓ (within bracket) on
Australian Labour (upper) and M5 competition (lower) data. All experiments are repeated 5 times.

uncertainty in difference time series. As a comparison, we also show an example of SHARQ trained
with LSTNet model, where the multi-quantile estimations are less constrained by the mean forecast.
Note that SHARQ is a very strong baseline, providing results superior to specific observation noise
model such as Gaussian or negative binomial distribution. However, quantile crossing is possible
since SHARQ cannot guarantee strict monotonicity w.r.t τs. We use CRPS (Matheson & Winkler,
1976) to measure the probabilistic forecasts as shown in Table 1, our baseline uncertainty estimations
include Gaussian noise for post-training methods and the multiple quantile regression of SHARQ.

4.3 COHERENCY ANALYSIS

Proposition 1 states that MECATS can generate coherent point forecasts given the ground truth time
series lies in the convex hull formed by forecasts from each expert. However, during empirical studies,
we found it not easy to eliminate the coherent loss, due to various reasons such as inappropriate
choice of experts or bad training of gating networks. We then tune parameter λ that controls the
strength of penalty for coherent loss. We observe that by choosing λ in an appropriate range, coherent
loss can be mitigated without sacrificing forecasting accuracy. Figure 5 (a), (b) have shown that
MECATS can achieve nearly coherent results. Note that post-processing methods such as MinT, can
reduce the coherent loss to a very small value at the cost of decreased accuracy, since the summation
of bottom-level forecasts is forced to be aligned with higher-level forecasts. Figure 5 (c) shows that
the improved coherency of point forecast can positively affect the coherency of quantiles. However,
since the additive property does not hold for quantiles (Han et al., 2021), there still exists non-zero
coherent loss in certain quantiles. More results can be found in Appendix H.
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(c) Online change-point detection on WTI Oil Price data

MSE BOCPD-MS ME ME-CP

EIA 3.15±.04 2.67±.02 2.65±.02

Snow 0.68±.02 0.60±.01 0.58±.01

Nile 0.55±.09 0.57±.04 0.54±.05

Bee 1.74±.22 1.32±.13 1.29±.12

(d) Predictive loss on real data

Table 2: Results on improving mixture of heterogeneous experts using online change-point detection.

4.4 FORECASTING UNDER CHANGE OF DYNAMICS

We show that MECATS can be robust to change of dynamics in time series data. Since ME has been
proven to be reasonably adaptive to abrupt changes (Chaer et al., 1997; Weigend et al., 1995), we
further alleviate the jump of loss during the transient period in adapting to new dynamics with the
help of Bayesian online change-point detection (BOCPD) (Adams & MacKay, 2007): after detecting
change-points, we re-initialize the weights to its average value. We assume new samples come with a
batch size of 1, and both gating network and experts’ parameters Θ = {Θg,Θe} are updated at each
step. Table 2 (a) demonstrates the original gating networks’ behavior when change-point occurs at
step 2050 (step 1200 is the starting point of online updates) on simulated data. The network adapts
to the new dynamics at around step 2700. With the help of change-point detection, loss during this
transient period can be greatly reduced (Table 2 (b)). We follow the procedure in the change-point
detection literature (Adams & MacKay, 2007; Knoblauch & Damoulas, 2018) to evaluate our method
on several real-world sequential data. Table 2 (c) and (d) show that our method can detect most
changes and also quantitatively outperform BOCPD with model selection (Knoblauch & Damoulas,
2018), detailed experiment settings and backgrounds can be found in the Appendix E.

5 CONCLUSION

Forecasting hierarchically aggregated time series is a key but understudied problem with many
applications. In this work, we propose MECATS that utilizes mixture-of-experts to adaptively bring
together the power of multiple forecasting models. MECATS learns to combine a set of heterogeneous
experts while also performs multiple quantile estimations in a model-free manner. MECATS has
demonstrated superior results in both accuracy and coherency in hierarchical time series forecasting,
and is robust to change of dynamics in sequential data. The substantially more flexibility that MECATS
offers in terms of using a customized mix of heterogeneous experts for improving a specific time series
forecast comes at an increased computational cost. It also introduces a few more hyper-parameters.
Our future research will focus on ameliorating the costs when a large number of forecasts need to
be done. In particular, we would like to further investigate situations where data resources are more
constrained, such as short sequences or sequences with missing entries.
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Ethics Statement Forecasts that are coherent and accurate, adaptive to changes in the nature of
the time series, and also yield confidence intervals, result in solutions that are more reliable and
trustworthy, critical requirements for widespread adoption and safe deployment. So our social impact
is mostly positive since robustness and reliability of a predictive model are important aspects of
responsible AI solutions. In addition, using a modular structure like mixture of heterogeneous experts
may allow the use of simpler base models that are more interpretable by humans, without sacrificing
the accuracy of the overall solution. In addition, this work does not involve human subjects, and also
does not raise any discrimination/bias/fairness concerns. All information of public datasets, models
and hyper-parameters can be found in Appendix F.

Reproducibility We have submitted the source code of this work in a zip file as part of the
supplementary materials. Implementation instructions can also be found under the same file.
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A PROOF OF PROPOSITION

Proposition 1. Coherency Condition for MECATS

Assume k experts are assigned to vi, and its corresponding child vertices. Each expert generates
forecast {x̂jvi}

k
j=1, which are not necessarily unbiased. WLOG, assume x̂1vi ≤ x̂

2
vi ≤ · · · ≤ x̂

k
vi . If

ground truth xvi ∈ [x̂1vi , x̂
k
vi ], then MECATS can generate coherent forecasts.

PROOF. Given vertices V = {v1, v2, . . . , vn}, where v1 is the root vertex and {vj}nj=2 are its
children. For each expert, we obtain the following hierarchical forecasts

x̂1v1 =

n∑
j=2

x̂1vj + δ1; x̂2v1 =

n∑
j=2

x̂2vj + δ2 . . . x̂kv1 =

n∑
j=2

x̂kvj + δk, (10)

where {δi}ki=1 ∈ R is the coherent error of expert i. The gating network generates a set of weights
{wivj}

k
i=1 ∈ [0, 1] for experts at vj . We can then rewrite Eq (10) as follows

k∑
i=1

wiv1 x̂
i
v1 =

n∑
j=2

k∑
i=1

wivj x̂
i
vj +

k∑
i=1

wiδi. (11)

Given xvj ∈ [x̂1vj , x̂
k
vj ], then {δi}ki=1 cannot be all strictly positive or negative. Therefore, we can

find a set of weights {wi}ki=1 such that
∑k
i=1 wiδi = 0, so MECATS is coherent.

Remark The ideal value of wi in Eq (11) can be written as wi =
wi

v1
x̂i
v1
−
∑n

j=2 w
i
vj
x̂i
vj

x̂i
v1
−
∑n

j=2 x̂
i
vj

. By

minimizing Lrecon, the gating network should generate weights {wivj}
k
i=1 such that

∑k
i=1 w

i
vj x̂

i
vj =

xvj , since xvj ∈ [x̂1vj , x̂
k
vj ] can be written as the convex combination of each expert’s forecast. The

generated weights should also satisfy wiv1 x̂
i
v1 −

∑n
j=2 w

i
vj x̂

i
vj = wiδi. There is normally a trade-off

between accuracy and coherency in empirical evaluations.

B POST-TRAINING AND IN-TRAINING RECONCILIATION

In this section, we briefly discuss our baseline approaches: post-training (Ben Taieb & Koo, 2019;
Hyndman et al., 2011; 2016; Wickramasuriya et al., 2015) and in-training (Han et al., 2021) reconcil-
iation methods mentioned in the main paper as additional reference.

v1

v2

e1,2

v3

e1,3

v4 v5 v6 v7

Figure 6: Left: an example of a three-level structure for aggregated time series data. Right: The
associated S matrix that defines the hierarchical structure.

B.1 OLS AND MINT METHOD

Given the example of three-level hierarchical structure in the main paper, define a mapping matrix
S, that encapsulates the mutual relationships among each vertex (Figure 6). Denote bt ∈ Rm,
at ∈ Rk as the observations at time t for the m and k series at the bottom and aggregation level(s),
respectively. Then S ∈ {0, 1}n×m, and each entry Sij equals to 1 if the ith aggregated series contains
the jth bottom-level series, where i = 1, ..., k and j = 1, ...,m. Denote IT = {y1, y2, ..., yT } as
the time series data observed up to time T ; b̂T (h) and ŷT (h) as the h-step ahead forecast on the
bottom-level and all levels based on IT . Let êT (h) = yT+h − ŷT (h) be the h-step ahead conditional
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base forecast errors and β̂T (h) = E[b̂T (h) | IT ] be the bottom-level mean forecasts. We then have
E[ŷT (h) | IT ] = S · β̂T (h).

The goal of the post-training (or two-stage) reconciliation approach is to compute some appropriately
selected matrix P ∈ Rm×n to combine the base forecasts linearly: ỹT (h) = SP ŷT (h). Here, P
maps the base forecasts ŷT (h) into forecasts at the most disaggregated level and are then summed
up by S to obtain the reconciled forecasts. We define ỹT (h) as the reconciled forecasts which are
coherent by construction. Assume E[êT (h) | IT ] = 0, then the reconciled forecasts ỹT (h) will be
unbiased if and only if SPS = S, which leads to the unbiased base forecast assumption:

E[ỹT (h) | IT ] = E[ŷT (h) | IT ] = S · β̂T (h) (12)

The optimal combination approach proposed by (Hyndman et al., 2011), is based on the assumption
in Eq (12) and solve the regression problem below using the ordinary least square (OLS) method:

ŷT (h) = S · β̂T (h) + εh, (13)

where εh is the independent coherency error with zero mean and Var(εh) = Σh. The OLS estimator
of β̂T (h) taken into account the coherency error is given by

β̃T (h) = (S>Σ>h S)−1S>Σ>h ŷT (h), (14)

which is an unbiased, minimum variance estimator. The optimal P is (S>Σ>h S)−1S>Σ>h . The
reconciled mean estimation can therefore be obtained accordingly. We further define the reconciliation
error as ẽT (h) = yT+h − ỹT (h), the original problem can also be formulated as

min
P∈P

E[‖ẽT (h)‖22 | IT ] subject to E[ỹT (h) | IT ] = E[ŷT (h) | IT ] (15)

If the assumption 12 still holds, then minimizing Eq (15) reduces to

min
P∈P

Tr(Var[ẽT (h) | IT ]) subject to (12), (16)

where Tr(.) denotes the trace of a matrix that corresponds to a trace minimization problem (MinT). In
(Wickramasuriya et al., 2019), the proposed optimal solution of P obtained by solving this problem
is given by

P = (S>W−1h S)−1S>W−1h , (17)
where Wh = E[êT (h)ê>T (h) | IT ] is the variance-covariance matrix of the h-step-ahead base forecast
errors, which is different from the coherence errors Σh in OLS reconciliation method given in Eq
(14). There are various covariance estimators for Wh considered in (Wickramasuriya et al., 2019),
the most effective one is the shrinkage estimator with diagonal target, and can be computed by

Wh = (1− α)Ŵs + αŴd, Ŵs =
1

T

T∑
t=1

êt(1)êt(1)>, (18)

where Ŵd = diag(Ŵs) and α ∈ (0, 1]. A simpler substitution is Wh = khŴs,∀h, where kh > 0.
This is a sample covariance estimator for h = 1. The above three methods discussed, are implemented
as MinT-ols. MinT-shr, and MinT-sam approaches in the main paper.

B.2 RELAXED UNBIASEDNESS ASSUMPTION

The above methods are based on the unbiasedness assumption in Eq (12). However, in many situations
it is likely that the forecasting models are mis-specified. (Ben Taieb & Koo, 2019) proposed a method
to relax this assumption. In particular, the objective function in (15) can be decomposed as

E[‖yT+h − ỹT (h)‖22 | IT ] (19)

= ‖SP · (E[ŷT (h) | IT ]− E[yT+h | IT ]) + (S − SPS) · E[bT+h | IT ]‖22 (20)
+ Tr(Var[yT+h − ỹT (h) | IT ]), (21)

where (20) and (21) are the bias and variance terms of the revised forecasts ỹT (h). Assumption 12 in
MinT method renders (20) to 0. Therefore, directly minimize the objective in (19) provides a more
general form of reconciliation represented by following empirical risk minimization (ERM) problem:

min
P∈P

1

(T − T1 − h+ 1)n

T−h∑
t=T1

‖yt+h − SP ŷt(h)‖22, (22)
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Coherent Matrix Inversion Probabilistic Model Agnostic Unbiased Assumption Quantile Crossing
Base No No No Yes No N.A.
BU Yes No No Yes Yes N.A.

MinT Yes Yes No Yes Yes N.A.
ERM Yes Yes No Yes No N.A.

SHARQ Approx. No Yes No No Yes
MECATS Approx. No Yes Yes No No

Table 3: Comparison on different properties of reconciliation methods.

where T1 < T is the number of observations used for model fitting. According to (Ben Taieb &
Koo, 2019), this method demonstrates better empirical performance than MinT, particularly when
the forecasting models are mis-specified. However, this approach does not perform very well in our
implementation when combining with mixture-of-experts. Hence we do not report its results in the
main paper due to space constraints. An implementation of this method can also be found in the
submitted Python code.

B.3 IN-TRAINING RECONCILIATION

Post-training reconciliation are effective methods in many situations, but they introduce additional
computational complexity in the inference step, due to the inversion of S matrix. This is particularly
undesirable when reconciling a significant amount of time series in industry forecasting pipelines.
In (Han et al., 2021), the authors proposed a method called SHARQ that enables forecasting model
to learn across hierarchical structure during model training. Given the same vertex and edge graph
representation in the main paper, the core idea is to modify the objective function of forecasting
model to incorporate additional information from adjacent aggregation levels as a regularization term:

Lrecon = Lvi(x̂
vi
ti+1:Ti

, xviti+1:Ti
) + λK · ‖x̂viti+1:Ti

−
∑
ei,j∈E

ei,j x̂
vj
tj+1:Tj

‖2. (23)

Note that this formulation is similar to the gating network objective discussed in the main paper.
However, Eq (23) is designed to be an objective function for a single model. Normally, this type of
method requires the model to be trained in a gradient based approach, which is not always the case.

Furthermore, SHARQ provides distribution-free probabilistic forecasts through multi-quantile es-
timation, and calibrate each quantile on top of the coherent point estimation. The multi-quantile
estimation is achieved through replacing Lvi by multiple quantile loss, and the calibration step is
done through minimizing another loss function for arbitrary quantile level τ at vertex i:

Lq :=

f (Qτi −Q0.5
i

)
−
∑
ei,k∈E

ei,k f
(
Qτk −Q0.5

k

)
+ Var(ε)

2

. (24)

The idea of calibration in Eq (24) is to make sure the distance measures of each quantile estimation to
the point estimation are also coherent across the given hierarchical structure. This can serve as an extra
step after obtaining the multi-quantile estimator and coherent point predictor, but there is no strict
guarantee about the monotonicity w.r.t. the quantile level τ . Overall, SHARQ provides a controllable
trade-off between coherency and forecasting accuracy of a single time series. It reduces the inference
time by removing the post-processing step required by aforementioned methods. However, one
cannot combine any model with this approach, and it is also unrealistic to use one forecasting model
to represent the entire hierarchy of time series. MECATS has successfully addressed this problem by
employing the mixture-of-experts framework. It has also improved the uncertainty estimation by
generating more coherent probabilistic forecast specified by any quantile.

C COMPARISON WITH RELATED METHODS

In Table 3, we compare the available reconciliation approaches on different aspects to illustrate
the advantage of MECATS. Note that the base method refers to regular multi-variate forecast with-
out reconciliation. MECATS has therefore addressed major problems in hierarchical time series
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forecasting. In addition, previous works by Rangapuram et al. (2021) and Taieb et al. (2017) also
addressed the same problem using different methods. In particular, Taieb et al. (2017) proposed
to use copula to aggregate bottom-level distributions to higher levels. However, this method only
reconciles point forecasts and obtain higher-level distributions in a bottom-up fashion. This causes
potential problems such as error accumulation in highly aggregated levels. To avoid this, one needs
to require reasonable probabilistic predictions at the bottom-level beforehand. Also, the possible use
of high-dimensional copula in real applications is another drawback. Rangapuram et al. (2021) also
addresses the reconciliation problem during model training stage. It first formulates a constrained
optimization problem as the objective of reconciliation, and then incorporates this as an add-on layer
during model training. However, this method requires distributional assumptions and is designed for
deep neural network based forecasting models.

D PROCEDURES FOR TRAINING MULTI-QUANTILE GENERATOR

In this section, we discuss more details and backgrounds in training the multiple quantile forecasters
of MECATS. Implementation of this method can also be found in the submitted code repository.

D.1 CHEBYSHEV POLYNOMIAL APPROXIMATION

Chebyshev polynomial is an important subject in numerical methods (Dahlquist & Björck, 2008). It
is one type of orthogonal polynomials and widely used in numerical integration. The polynomial is
defined as a mapping Tk : [−1, 1]→ R and its recurrent relationship

T0(z) := 1, T1(z) := z, Tk+1(z) := 2zTk(z)− Tk−1(z), k ≥ 1. (25)
This recurrence can also be written as Tk(cos θ) = cos(kθ). As mentioned in the main paper, zeros
of the kth Chebyshev polynomial Tk is located in the range of [−1, 1], which can be computed by

tk = cos

(
π(k + 1

2 )

d

)
, k ∈ [0, d). (26)

Using trigonometric properties of the cosine function, we can prove the Chebyshev polynomials
are orthogonal with each other. Therefore, the approximation using Chebyshev polynomials gives
a linearly independent system. Then for arbitrary continuous function φ(z) → R, z = 2τs − 1 ∈
[−1, 1], it can be approximated using Chebyshev polynomials by

φ(z) ≈ 1

2
c0T0(z) + c1T1(z) + · · ·+ cd−1Td−1(z), (27)

where ci =
∑d−1
k=0 φ(tk) cos

(
iπ(k+ 1

2 )

d

)
, i ∈ [0, d).We can use this expression to efficiently compute

the value of ci using the DCT method in O(d log d) time. According to (Dahlquist & Björck, 2008),
Eq (27) is a good approximation when d is sufficiently large. In our experiments, we use d = 16.

D.2 COMPUTING CHEBYSHEV COEFFICIENTS

We now discuss how to compute the coefficients for quantile estimations. As mentioned in the
main paper, φ(t, xvi1:ti ; Θu) is the neural network that approximates the derivative of quantiles. We
evaluate φ(t, xvi1:ti ; Θu) at its d uniformly distributed roots for d-dimension truncated Chebyshev
polynomial approximation, i.e., {φ(tk, x

vi
1:ti

; Θu)}d−1k=0. During implementation, we first use the
sliding window approach to process the input data xvi1:ti , where sw(xvi1:ti) can be processed by φ(Θu)

in a common supervised learning way. {tk}d−1k=0 serves as an additional feature of φ(Θu) input. The
φ(Θu) : Rbs×(ω+1) → Rbs×1 is implemented as a multilayer perceptron (MLP) with strictly positive
output, where bs and ω represent the batch size and window length, respectively. Since the MLP
should be evaluated at multiple roots, we combine sw(xvi1:ti) ∈ Rbs×ω with different {tk}d−1k=0 and
feed them into d replicates of MLP respectively. The outputs of d MLP are then transformed by the
type-II DCT algorithm to obtain the coefficients {ck(xvi1:ti)}

d−1
k=0. Full procedure in computing the

Chebyshev coefficients can be found in Algorithm 1, which returns the set of coefficients {Ck}d−1k=0

with size Rbs×d. These coefficients are then used to compute multiple quantile values by iteratively
combining with Chebyshev polynomials defined in Eq (25), where z = 2τs − 1 ∈ [−1, 1] and τs can
be any specified quantiles. This step is also discussed in Eq (8) of the main paper.
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Algorithm 1 Compute Chebyshev Coefficients for Multi-Quantile Estimations
Input: time series data sw(xvi1:ti), Chebyshev polynomial degree d, MLP φ(Θu), point forecast x̂viti+1:Ti

.
Process:
{tk}d−1

k=0 = cos
(
π(k+ 1

2
)

d

)
, k ∈ [0, d)

Tk ← Repeat({tk}d−1
k=0, d

bs
d
e+ 1) B repeat tk vector dbs

d
e+ 1 times

sw(Tk) ∈ Rbs×d B generate d vectors of roots by rolling window on Tk with step size 1
for j = 0, . . . , d− 1 do
Xj ← concat[sw(Tk)[:, j], sw(xvi1:ti)] ∈ Rbs×(ω+1) B combine different root values with time series
Oj ← φj(Xj ,Θu)
Pj ← softplus(Oj + 1e−5) + 1e−3 B strictly positive outputs

end for
{ck}d−1

k=0 ← DCT({Pj}d−1
j=0 )

{Ck}d−1
k=0 ← Ck =

ck−1−ck+1

4k
, 0 < k < d− 1, Cd−1 =

cd−2

4(d−1)

C0 = 2 · x̂viti+1:Ti
− 2

∑d−1
k=1,k even(−1)k/2Ck B assume point predictions are median value

Return: {Ck}d−1
k=0

D.3 CONNECTION TO POINT FORECAST

Although the above framework can simultaneously generate multiple quantile estimations, it is helpful
to set the point forecast x̂viti+1:Ti

to be a constraint (e.g., a summary statistic) of the distribution
formulated by quantiles. We discuss two cases when x̂viti+1:Ti

is the median or mean value of the
predictive distribution. The constraint is reflected on Chebyshev coefficient C0 which is computed
specifically in the algorithm. If x̂viti+1:Ti

is the median estimation, we have q(0.5, xvi1:ti , x̂
vi
ti+1:Ti

) =

x̂viti+1:Ti
, since Tk(0) = 0 when k is odd and Tk(0) = (−1)k/2 when k is even, and

q(0.5, xvi1:ti , x̂
vi
ti+1:Ti

) =

d−1∑
k=1

Ck(xvi1:ti) · Tk(0) +
1

2
C0(xvi1:ti , x̂

vi
ti+1:Ti

), (28)

we can therefore obtain the value of C0 given the point forecasts are median:

C0(xvi1:ti , x̂
vi
ti+1:Ti

) = 2 · x̂viti+1:Ti
− 2

d−1∑
k=1,k even

(−1)k/2Ck(xvi1:ti). (29)

Similarly, if x̂viti+1:Ti
is determined to be the mean prediction, by definition we have∫ 1

−1
z · q(z, xvi1:ti , x̂

vi
ti+1:Ti

) dz =

∫ 1

−1
z ·

[
d−1∑
k=1

Ck(xvi1:ti) · Tk(z) +
1

2
C0(xvi1:ti , x̂

vi
ti+1:Ti

)

]
dz

=
1

2
C0(xvi1:ti , x̂

vi
ti+1:Ti

) +

d−1∑
k=1

Ck(xvi1:ti)

∫ 1

−1
z · Tk(z) dz. (30)

Since Chebyshev polynomials are symmetric, we have∫ 1

−1
z · Tk(z) dz = [1 + (−1)k+1]

∫ 1

0

z · Tk(z) dz. (31)

Then Eq (31) is zero if k is even. Otherwise, according to the recurrence of Chebyshev polynomial∫ 1

−1
z · Tk(z) dz =

[
Tk−2(z)

2(k − 2)
− Tk+2(z)

2(k + 2)

] ∣∣∣∣∣
1

0

=
2

k2 − 4
. (32)

Combine Eq (32) with Eq (30) and impose
∫ 1

−1 z · q(z, x
vi
1:ti
, x̂viti+1:Ti

) dz = x̂viti+1:Ti
, we then have

C0(xvi1:ti , x̂
vi
ti+1:Ti

) = 2 · x̂viti+1:Ti
− 4

d−1∑
k=1,k odd

Ck(xvi1:ti)

k2 − 4
. (33)
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Algorithm 2 Training MECATS
Input: Graph structureG = {V,E}, I1 = {xvi1:ti}

N
i=1, I2 = {xviti+1:Ti

}Ni=1, test set I3 = {xviTi+1:Ti+h
}Ni=1,

experts {Mi}Ni=1, gating networks {Gi}Ni=1, uncertainty wrappers {Ui}Ni=1, quantile levels {τs}ns=1.
Process:
for each vertex vi at level [K,K− 1, . . . , 1] do

pretrain expertsMi on Ivi1

if vi at bottom aggregation level then
train Gi on Ivi1 ∪ I

vi
2 using Lvi in Eq (2)

else
train Gi on Ivi1 ∪ I

vi
2 using Lrecon in Eq (2)

end if
x̂viti+1:Ti

← {Mi, Gi, Ivi1 }
train Ui on Ivi1 ∪ I

vi
2 ∪ x̂

vi
ti+1:Ti

using Lq in Eq (3)
end for
Update experts {Mi}Ni=1 on I2
Output: Coherent quantile forecasts starting at Ti + 1← {{Mi}Ni=1, {Gi}Ni=1, {Ui}Ni=1, I3, {τs}ns=1}.

Results in Eq (29) and Eq (33) have shown that our multiple quantile forecasts can be constrained on
point forecasts from the modularized ME framework, making the whole distribution more coherent
across the hierarchical structure. During our implementation, we use median constraint on the point
prediction. Note that we can also derive the value of C0 following similar procedure for other
summary statistics such as maximum or minimum value.

D.4 PROCEDURE FOR TRAINING MECATS

Algorithm 2 wraps up the overall procedure of expert pretraining, point forecast, and multiple quantile
forecasts. Note that in practice, we can parallelize training on time series data at the same level.

E BACKGROUND IN ONLINE CHANGE-POINT DETECTION

We now discuss related works (Adams & MacKay, 2007; Knoblauch & Damoulas, 2018) in online
change-point detection and how they are integrated into MECATS.

E.1 BAYESIAN ONLINE CHANGE-POINT DETECTION

Define rt be the run length at time t, D be a set of N i.i.d. observations with {xn}Nn=1, and x(l)
is the set of observations with run length l. BOCPD performs prediction of the next data point by

P (xt+1 | x1:t) =
∑
rt

P (xt+1, rt | x1:t) =
∑
rt

UPM predictive︷ ︸︸ ︷
P (xt+1 | rt, x(l)) ·

RL posterior︷ ︸︸ ︷
P (rt | x1:t), (34)

where UPM predictive is the underlying probabilistic model (UPM) predictive, it can also be written
as P (xt+1 | rt = l, x(t−l):t). Conjugate-exponential models are convenient for integrating with the
change-point detection framework. The general form for any member of exponential family (EF) is

P (x | η) = h(x)g(η) exp{η>u(x)}, (35)

where η is the natural parameter, h(x) is the underlying measure, u(x) is the sufficient statistic of
data and g(η) is a normalizer. The conjugate prior with hyper-parameters V,X is

P (η | X ,V) = f(X ,V) g(η)V exp{η>,X}, (36)

the posterior after observing N data points can be written as

P (η | X,X ,V) ∝ g(η)N+Vexp{η>(

N∑
n=1

u(xn) + X )}. (37)
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Algorithm 3 Loss Mitigation for Mixture of Heterogeneous Experts
Input: ME (expertsM, gating network G) initialized on data D = x1:Ti ; conjugate exponential model E ;
model initial parameters V(0)

0 = Vprior, X (0)
0 = Xprior; batch size m; constants β0, γ; stepN =∞.

Process:
for new sample batch p = 0, 1, . . . do
x̂Ti+pm:Ti+(p+1)m ← ME(M, gl(D,Θg))
Rpm:(p+1)m = xTi+pm:Ti+(p+1)m − x̂Ti+pm:Ti+(p+1)m

change_point← BOCPD(E , Rpm:(p+1)m)
if change_point then
N = 0

end if
gshr(D,Θg) = (1− β0 e−N/γ) · gl(D,Θg) + β0 e

−N/γ · g
if e−N/γ < 0.1 then
N =∞ B remove the weight buffer if the shrinkage factor is sufficiently low

else
N = N + 1

end if
online prediction← ME(M, gshr(D,Θg))
D ← D ∪ {xTi+pm:Ti+(p+1)m}
Update parameter Θg of gating network G
Update the expertsM B this step is optional if updatingM is expensive

end for
Return: online prediction

Therefore, the parameter update for obtaining new data points are:

V ′ = Vprior +N, X ′ = Xprior +

N∑
n=1

u(xn). (38)

We can skip the integration of EF posterior for computing the UPM predictive. Instead, we use
the parameter update rules to make prediction at time t by t − 1. Denote p(xt | rt−1 = l, x(l)) as
P (xt | V(l)

t−1,X
(l)
t−1). As new datum sequentially arrives, parameters at previous step are prior for the

following step, i.e.,

V(0)
t = Vprior, X (0)

t = Xprior,

V(l)
t = V(l−1)

t−1 + 1, X (l)
t = X (l−1)

t−1 + u(xt). (39)

Eq (39) is an important step in online change-point detection. Our use case is a special case of the
conjugate-exponential models, which estimates the unknown mean µ of a Gaussian distribution with
fixed variance σ2 (Murphy, 2007). The conjugate prior has the form

P (µ) ∝ exp

(
− 1

2σ2
0

(µ− µ0)2
)
∝ N (µ | µ0, σ

2
0). (40)

Define D = (x1, . . . , xn) be the observed data, its likelihood has a similar form

P (D | µ) ∝ exp
(
− n

2σ2
(x− µ)2

)
∝ N (x | µ, σ

2

n
). (41)

Then the posterior can be computed by

P (µ | D) ∝ P (D | µ, σ) · P (µ | µ0, σ
2
0) (42)

∝ exp

[
− 1

2σ2

∑
i

(xi − µ)2

]
· exp

[
− 1

2σ2
0

(µ− µ0)2
]

(43)

= exp

[
− 1

2σ2

∑
i

(x2i + µ2 − 2xiµ)− 1

2σ2
0

(µ2 + µ2
0 − 2µ0µ)

]
. (44)
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Algorithm 4 Bayesian Online Change-point Detection
Function BOCPD(E , Rt):

Compute UPM predictive probability: π(l)
t−1 = P (Rt | V(l)

t−1,X
(l)
t−1)

Compute growth probability: P (rt = rt−1 + 1, R1:t) = P (rt−1, R1:t−1) · π(l)
t−1 · (1−H(rt−1))

Compute change-point probability: P (rt = 0, R1:t) =
∑
rt−1

P (rt−1, R1:t−1) · π(l)
t−1 ·H(rt−1)

Calculate evidence: P (R1:t) =
∑
rt
P (rt, R1:t)

Calculate run length posterior: P (rt | R1:t) = P (rt, R1:t)/P (R1:t)
if argmax

rt

P (rt | R1:t) == 1 and t 6= 1 then

change_point← True
else

change_point← False
end
Update model parameters using Eq (39)
return change_point

End Function

Since the product of two Gaussian distributions is still a Gaussian distribution, we have

P (µ | D) ∝ exp

[
−µ

2

2

(
1

σ2
0

+
n

σ2

)
+ µ

(
µ0

σ2
0

+

∑
i xi
σ2

)
−
(
µ2
0

2σ2
0

+

∑
i x

2
i

2σ2

)]
(45)

→ exp

[
− 1

2σ2
n

(µ2 − 2µµn + µ2
n)

]
(46)

= exp

[
− 1

2σ2
n

(µ− µn)2
]

(47)

By matching the coefficients of µ2 between Eq (45) and Eq (47), we can obtain the updating equation
for σ2

n, where σ2 is the known observation noise variance and σ2
0 is the prior variance:

− µ2

2σ2
n

= −µ
2

2

(
1

σ2
0

+
n

σ2

)
→ 1

σ2
n

=
1

σ2
0

+
n

σ2
. (48)

Then, by matching coefficients of µ we get

µµn
σ2
n

= µ

(∑n
i=1 xi
σ2

+
µ0

σ2
0

)
→ µn = σ2

n

(
µ0

σ2
0

+
nx

σ2

)
. (49)

Eq (48) and Eq (49) are therefore the updating equations discussed in the main paper. Furthermore,
the run length posterior is proportional to the joint distribution P (rt | x1:t) = P (rt,x1:t)∑

r′t
P (rt′ ,x1:t)

. This

joint distribution can be computed recursively by

P (rt, x1:t) =
∑
rt−1

UPM predictive︷ ︸︸ ︷
P (xt | rt, x(l))

Changepoint prior︷ ︸︸ ︷
P (rt | rt−1)

Recursive term︷ ︸︸ ︷
P (rt−1, x1:t−1), (50)

where the change-point prior P (rt | rt−1) has nonzero mass at only two outcomes: rt = rt−1 + 1 or
rt = 0, and can be written as

P (rt | rt−1) =

{
H(rt−1 + 1) if rt = 0

1−H(rt−1 + 1) if rt = rt−1 + 1
0 otherwise

(51)

The function H is the hazard function that is commonly used in survival analysis. Based on the above
derivation, we show how to perform loss mitigation for our mixture of heterogeneous experts method
on temporal sequences with change-points. Detailed procedures are shown in Algorithm 3 and 4.

E.2 CHANGE-POINT DETECTION WITH MODEL SELECTION

Standard BOCPD method uses single conjugate-exponential model for change-point detection and
prediction. It has also been extended to online model selection, where a model distribution is added
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to the original change-point detection procedure. The new recursion formula has changed to

P (rt, x1:t,mt) =
∑

mt−1,rt−1

P (xt | rt, x(l))×
Model dist. term︷ ︸︸ ︷

P (mt | rt−1, x1:t−1,mt−1)×

P (rt | rt−1)× P (rt−1, x1:t−1,mt−1), (52)

and the change-point detection procedure in Algorithm 4 is also changed accordingly by incorporating
the model distribution. The resulting algorithm, called BOCPD-MS, performs prediction, model
selection and change-point detection online. However, BOCPD-MS restricted its models universe to
be Bayesian and also homogenous (e.g., Gaussian process or auto-regressive). Our method, which
extends BOCPD into multiple heterogeneous models and adaptively find the best model combination
online, has a similar flavor, but demonstrates better empirical performance than BOCPD-MS.

E.3 INTEGRATING MECATS WITH ONLINE CHANGEPOINT DETECTION

In many real applications, samples are collected and become available sequentially, which requires
the model to be updated in an online manner. It is possible that the change of dynamics will occur
in such settings. Although the ME framework has proven to be reasonably adaptive when abrupt
changes occur (Chaer et al., 1997; Weigend et al., 1995), it still requires a certain amount of time
to learn the new dynamics. In the main paper, we propose to alleviate the jump of loss during the
transient period in adapting to new dynamics by combining a change-point detection algorithm
with ME. Time series change-point detection methods span a range of categories between online
and offline (Aminikhanghahi & Cook, 2017; Truong et al., 2020; van den Burg & Williams, 2020).
We borrow strength from BOCPD (Adams & MacKay, 2007) that predicts change-points using a
Bayesian method.

Consider an ME initialized on a univariate sequential dataset x1:Ti , with new data from the same
source becoming sequentially available in mini-batches with batch size m. Both gating network
and experts are continuously updated by such new samples. Since BOCPD assumes its data is
of i.i.d nature, we focus on the residuals instead of the original sequence: Rpm:(p+1)m =
xTi+pm:Ti+(p+1)m − x̂Ti+pm:Ti+(p+1)m, where p ≥ 0 is the number of mini-batches. We assume
the underlying model of the residual R is Gaussian with unknown mean, i.e., µ ∼ N (µ0, σ

2
0), R ∼

N (µ, σ2), where σ2 is the known observational noise variance, and σ2
0 is the prior variance. This

model belongs to the category of conjugate-exponential models, and is convenient for integrating
with the change-point detection scheme. Our goal is to estimate the unknown mean µ of R, given
the conjugate prior p(µ) ∝ N (µ | µ0, σ

2
0) and posterior p(µ | xTi:Ti+m) ∝ N (µ | µm, σ2

m), from
the results in Eq (48) and (49), we have the online updating equation of parameters as: 1

σ2
m

=

1
σ2
0

+ m
σ2 , µm = σ2

m

(
µ0

σ2
0

+ mx
σ2

)
, where x defines the mean of m samples. This equation serves as

an important step in online change-point detection. When change-point occurs at time stamp t0. We
replace original weights with gshr, which is a combination of weights using a shrinkage factor:

gshr(x1:Ti+pm,Θg) = (1− β0 e−(t−t0)/γ) · gl(x1:Ti+pm,Θg) + β0 e
−(t−t0)/γ · g, (53)

where g = 1/L is the equally averaged weight; β0 and γ are constants. By Eq (53), we obtain new
weights that are brought closer to the average weight when change-point occurs. The importance of
g decays exponentially as the experts’ weights {gl(x1:Ti+pm,Θg)}Ll=1 adapt to new dynamics. We
employ this strategy in our experiments at section 4.4. By integrating MECATS with BOCPD, it is
equivalent to add online model selection to the original change-point detection algorithm.

F MODELS, DATASETS AND EVALUATION METRICS

F.1 FORECASTING MODELS AS SINGLE EXPERTS

Considering diverse situations, the base models we used span a variety of categories: from classical
forecasting method to recently prominent deep learning models. All the employed experts have
preexisting packages that are public online. We summarize this information below:

• DLM: https://pydlm.github.io/; license: BSD-3-Clause License.
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• Auto-ARIMA: https://alkaline-ml.com/pmdarima/0.9.0/index.html; license: Zope Public
License.

• Facebook Prophet: https://facebook.github.io/prophet/; license: MIT License.

• LSTNet: https://github.com/laiguokun/LSTNet; license: MIT License.

• DeepAR: https://github.com/zhykoties/TimeSeries; license: Apache-2.0 License.

F.2 DATASETS INFORMATION

We provide detailed information of the real and simulated datasets we used in our experiments. All
the data is obtained under the consent from its owner. To the best of our knowledge, it does not
contain personally identifiable information or offensive content.

Australian Labour This dataset1 contains monthly employment information ranging from Febru-
ary 1978 to August 2019 with 500 records for each series. This dataset contains categorical features
that can be aggregated across to formulate corresponding hierarchical structures, while we choose
three features to obtain a 4-level symmetric structure. Specifically, the 32 bottom level series are
hierarchically aggregated using labor force location, gender, and employment status.

M5 Competition This dataset2 involves the unit sales of various products ranging from January
2011 to June 2016 in Walmart. It involves the unit sales of 3,049 products, classified into 3 product
categories (Hobbies, Foods, and Household) and 7 product departments, where these categories are
disaggregated. The products are sold across ten stores in three states (CA, TX, and WI). We formulate
a 4-level hierarchy in this work, starting from the bottom-level individual item to unit sales of all
products aggregated for each store.

Wikipedia Page View This dataset3 contains daily views of 145k various Wikipedia articles
ranging from July 2015 to December 2016. We sample 150 bottom-level series from 145k series and
aggregate to obtain upper-level series. The aggregation features include the type of agent, type of
access, and country codes. We then obtain a 5-level hierarchical structure with 150 bottom series.

AE-Demand This dataset4 collected weekly records on the demand of Accident & Emergency
(A&E) departments in the UK spanning 7 November 2010 to 7 June 2015. The demands are classified
into three types: major A&E, single specialty and other/minor A&E. Forecasting at different time
granularity is necessary for better planning and scheduling of resources. We formulate a four-level
temporal hierarchical structure, with weekly data at the bottom level, and aggregated to obtain
bi-week, month and quarter level. We use the same way to represent temporal hierarchy as in
(Athanasopoulos et al., 2017).

Change-point Detection Data The real-data used to evaluate our change-point detection applica-
tion is general temporal sequence without hierarchical structure. Specifically, the WTI oil price data
is obtained from U.S. Energy and Information Administration5 (EIA). The rest of the data (Snowfall,
Nile, and Bee Dance) was experimented by (Knoblauch & Damoulas, 2018) and is available on the
Github repository6.

Simulation Experiment Below is the function used to generate simulated sequential data in section
4.3 of the main paper, assume x ∈ [0, 1] and f is a deterministic function:

f(x) =

 3 + 3x+ 0.1 · sin(60x) if x < 0.8
3 + 3x+ 0.1x2 · sin(60x) if x ≥ 0.8 and x < 0.9

10 + 5x4 + sin(60x) otherwise.
(54)

1https://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/6202.0Dec%202019?OpenDocument
2https://mofc.unic.ac.cy/wp-content/uploads/2020/03/M5-Competitors-Guide-Final-10-March-2020.docx
3https://www.kaggle.com/c/web-traffic-time-series-forecasting
4https://cran.r-project.org/web/packages/thief/index.html
5https://www.eia.gov/
6https://github.com/alan-turing-institute/bocpdms/tree/master/Data

23



Under review as a conference paper at ICLR 2022

We randomly generated 2000 samples using this function and applied Gaussian noise sample-wise
with zero mean and 0.05 variance. The first 80% of data is used to initialize the ME framework
offline. The rest 20% is used in online updating, and the change-point occurs at 90%.

F.3 EVALUATION METRICS

Mean Absolute Scaled Error (MASE) Denote ŶT (h) and YT (h) as the h-step ahead forecast
at time T and its ground truth, respectively. The MASE is commonly used to evaluate the point
forecasting performance. It is defined by

MASE =
100
H ×

∑H
h=1 |YT (h)− ŶT (h)|

1
T−1

∑T
t=2 |YT (t)− YT (t− 1)|

. (55)

Similarly, normalized root mean squared error (NRMSE) is another commonly used scaled error to
evaluate time series forecasting.

Continuous Ranked Probability Score (CRPS) CRPS measures the compatibility of a cumulative
distribution function F with an observation x as:

CRPS(F, x) =

∫
R
(F (z)− I{x ≤ z})2 dz (56)

where I{x ≤ z} is the indicator function. CRPS attains its minimum when the distribution F and the
distribution formulated by x (can be either scalar or vector) are equal. We used properscoring
to compute CRPS. For simplicity, we compute the CRPS results of the one-step ahead forecasts.

Coherent Loss Given m vertices in the hierarchy at time T , we compute the coherent loss by

1

H

H∑
h=1

m∑
i=1

‖Ŷ iT (h)−
∑
ei,k∈E

Ŷ kT (h)‖1. (57)

G HYPER-PARAMETERS AND EXPERIMENT SETTINGS

We list all the hyper-parameters and experiment settings in our empirical evaluations. We have also
submitted a Python implementation of all the experiments along with this Appendix. Details of how
to run these experiments can be find in the README file under the submitted code. Note that as
for single models’ parameters, we leave most of the original parameters unchanged (parameters that
the authors claimed in their papers or used in code), while we only modify model training related
parameters (e.g., learning rate, batch size, epoch) to generate better predictions on a specific dataset.
We run all experiments on a NVIDIA GeForce RTX 3090 4-GPU machine. The hyper-parameters are
determined by grid searching on the range specified by our applications.

Gating Networks NNg
LSTM recurrent layer: Rbs×ω×1 → Rbs×1

fc layer with 60-dim and Tanh: Rbs×1 → R60×1

fc layer with 5-dim and Softmax: R60×1 → R5×1

recurrent hidden dimension: 1
recurrent layer dimension: 3
batch size: 16
fc hidden dimension: 60
learning rate: 1e-4
number of epochs: 1200
reconciliation parameter λK: 0.1

MLP φ(Θu)

fc layer with 120 dims and ReLU: Rbs×(ω+1) → Rbs×120

fc layer with 120 dims and ReLU: Rbs×120 → Rbs×120

fc layer with 60 dims and ReLU: Rbs×120 → Rbs×60

fc layer with 60 dims and ReLU: Rbs×60 → Rbs×60

fc layer with 10 dims and ReLU: Rbs×60 → Rbs×10

fc layer with 1 dims and Softplus: Rbs×10 → Rbs×1

d: 16
learning rate: 1e-4
number of epochs: 600
quantiles τs: [0.95, 0.7, 0.3, 0.05]
point forecast: median
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Single Models’ Parameters

DeepAR

batch size: 16
learning rate: 1e-4
number of epochs: 50
LSTM layers: 3
number of class: 1
co-variance dimension: 1
LSTM hidden dimension: 40
embedding dimension: 20
sample times: 200
LSTM dropout: 0.1
predict batch: 256
stride: 1

LSTNet

batch size: 16
learning rate: 1e-3
number of epochs: 1000
optimizer: adam

RNN-GRU

batch size: 16
learning rate: 5e-4
number of epochs: 1000
hidden dimension: 5
recurrent layer dimension: 3

DLM
trend degree: 2
discount factor: 0.95
prior co-variance: 1e7

General Hyper-parameters
forecast recursive step: 1
train/validation/test: 0.6/0.2/0.2
online update batch size: 1
online update epoch: 5
hazard function initial value: 1e-3
prior mean µ0: 0
prior variance σ2

0 : 2
observation variance σ2: 1
weight decay factor τ : 2

H ADDITIONAL RESULTS

H.1 HIERARCHICAL TIME SERIES FORECAST

Table 4 - 20 shows hierarchical time series forecasting results on Australian Labour, M5, AE-Demand
and Wikipedia datasets by each aggregation level. Similar to the main paper, the results are in the
form of MASE ± error(CRPS). We have included simple baseline methods such as bottom-up
(BU) aggregation, as well as ensemble averaging and model selection used in Bhatnagar et al. (2021).
In addition, we intended to compare with Rangapuram et al. (2021); Taieb et al. (2017), but their
state-of-the-art implementations are not available. We will add comparison to these methods once the
implementations are made public. The following results are averaged over 5 random experiments.

Recon \Model
Level 0

AR RNN-GRU LSTNet DeepAR
BU 104.31 ±2.89 (.463) 86.89 ±0.44 (.379) 84.51 ±0.02 (.384) 80.12 ±0.31 (.321)

Base 66.74 ±0.32 (.157) 54.21 ±0.28 (.161) 54.63 ±0.07 (.173) 52.33 ±0.42 (.054)
MinT-sam 85.42 ±0.74 (.175) 63.41 ±0.04 (.091) 61.89 ±0.36 (.101) 57.62 ±0.69 (.100)
MinT-shr 81.42 ±0.19 (.175) 59.47 ±0.48 (.094) 58.61 ±0.28 (.098) 51.37 ±0.87 (.091)
MinT-ols 86.02 ±1.37 (.155) 64.11 ±1.21 (.112) 60.72 ±0.97 (.101) 56.39 ±0.44 (.121)
SHARQ 61.44 ±0.62 (.190) 52.07 ±0.45 (.085) 52.75 ±0.95 (.071) 51.84 ±0.22 (.045)
Average 49.34 ±0.65 (.075)

MS 45.12 ±0.23 (.085)
MECATS 38.84 ±0.04 (.035)

Table 4: Australian Labour dataset, level 0
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Recon \Model
Level 1

AR RNN-GRU LSTNet DeepAR
BU 91.46 ±1.63 (.357) 85.36 ±0.87 (.341) 85.12 ±0.49 (.307) 79.97 ±0.13 (.297)

Base 82.61 ±0.15 (.227) 69.78 ±0.85 (.142) 67.48 ±0.92 (.108) 59.68 ±0.68 (.104)
MinT-sam 84.72 ±1.89 (.186) 71.35 ±0.17 (.134) 70.63 ±0.02 (.121) 65.23 ±0.52 (.127)
MinT-shr 78.52 ±0.83 (.186) 65.23 ±1.08 (.137) 67.45 ±0.21 (.123) 60.43 ±0.14 (.132)
MinT-ols 82.69 ±0.24 (.192) 71.22 ±0.06 (.123) 70.46 ±0.59 (.124) 64.72 ±0.37 (.134)
SHARQ 74.91 ±0.71 (.176) 58.69 ±0.41 (.120) 57.86 ±0.03 (.104) 57.63 ±0.68 (.112)
Average 60.87 ±0.33 (.119)

MS 55.61 ±0.74 (.107)
MECATS 48.64 ±0.78 (.082)

Table 5: Australian Labour dataset, level 1

Recon \Model
Level 2

AR RNN-GRU LSTNet DeepAR
BU 87.78 ±2.41 (.336) 79.62 ±0.96 (.312) 81.23 ±0.66 (.324) 77.14 ±0.06 (.275)

Base 75.15 ±0.21 (.231) 70.42 ±0.51 (.158) 69.84 ±0.96 (.113) 67.16 ±0.25 (.185)
MinT-sam 92.57 ±0.49 (.205) 75.52 ±0.76 (.148) 74.81 ±0.45 (.142) 69.99 ±0.12 (.152)
MinT-shr 83.47 ±1.14 (.201) 68.74 ±0.16 (.144) 68.12 ±0.47 (.135) 67.44 ±0.16 (.149)
MinT-ols 89.61 ±1.24 (.212) 74.89 ±0.18 (.142) 75.05 ±0.93 (.137) 72.44 ±1.76 (.158)
SHARQ 79.56 ±0.04 (.197) 64.02 ±0.09 (.132) 62.89 ±0.88 (.124) 60.03 ±0.26 (.134)
Average 69.29 ±0.42 (.138)

MS 60.03 ±0.26 (.134)
MECATS 49.17 ±0.36 (.097)

Table 6: Australian Labour dataset, level 2

Recon \Model
Level 3

AR RNN-GRU LSTNet DeepAR
BU 86.44 ±0.63 (.213) 72.13 ±0.34 (.167) 71.38 ±0.15 (.154) 72.05 ±0.18 (.193)

Base 86.44 ±0.63 (.213) 72.13 ±0.34 (.167) 71.38 ±0.15 (.154) 72.05 ±0.18 (.193)
MinT-sam 112.36 ±2.18 (.234) 86.97 ±0.28 (.159) 84.21 ±1.12 (.156) 81.56 ±1.43 (.185)
MinT-shr 97.86 ±0.23 (.226) 79.68 ±1.34 (.153) 77.59 ±1.18 (.144) 78.19 ±0.55 (.168)
MinT-ols 108.56 ±2.42 (.249) 87.42 ±1.78 (.167) 83.96 ±0.76 (.158) 82.95 ±0.69 (.175)
SHARQ 86.44 ±0.63 (.213) 72.13 ±0.34 (.167) 71.38 ±0.15 (.154) 72.05 ±0.18 (.193)
Average 75.56 ±0.94 (.156)

MS 71.38 ±0.15 (.154)
MECATS 61.22 ±0.14 (.110)

Table 7: Australian Labour dataset, level 3

Recon \Model
Level 0

AR RNN-GRU LSTNet DeepAR
BU 97.62 ±1.21 (.372) 84.37 ±0.12 (.293) 82.13 ±0.28 (.289) 79.98 ±0.11 (.301)

Base 64.24 ±0.42 (.277) 59.87 ±0.46 (.198) 57.63 ±0.31 (.178) 54.29 ±0.34 (.071)
MinT-sam 88.56 ±0.54 (.126) 73.62 ±0.34 (.150) 74.12 ±0.29 (.113) 68.22 ±0.51 (.097)
MinT-shr 78.56 ±0.76 (.169) 68.21 ±1.13 (.126) 66.78 ±0.06 (.096) 65.04 ±0.23 (.087)
MinT-ols 83.34 ±0.03 (.194) 72.16 ±0.24 (.144) 72.46 ±0.17 (.122) 69.64 ±0.74 (.096)
SHARQ 62.74 ±0.23 (.262) 56.31 ±0.17 (.054) 54.49 ±0.28 (.058) 51.69 ±0.05 (.039)
Average 59.61 ±0.38 (.104)

MS 51.69 ±0.05 (.070)
MECATS 42.61 ±0.14 (.046)

Table 8: M5 dataset, level 0
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Recon \Model
Level 1

AR RNN-GRU LSTNet DeepAR
BU 85.62 ±0.34 (.345) 82.16 ±0.13 (.256) 80.87 ±0.23 (.249) 78.12 ±0.24 (.261)

Base 69.78 ±0.86 (.244) 63.22 ±0.32 (.167) 62.19 ±0.17 (.138) 59.36 ±0.28 (.127)
MinT-sam 84.31 ±0.72 (.249) 76.21 ±0.13 (.155) 75.33 ±0.05 (.153) 71.39 ±0.75 (.122)
MinT-shr 81.39 ±0.68 (.245) 71.62 ±0.35 (.154) 70.34 ±0.19 (.134) 69.12 ±0.34 (.132)
MinT-ols 84.69 ±0.48 (.201) 75.11 ±0.85 (.157) 76.21 ±0.04 (.148) 72.16 ±0.43 (.124)
SHARQ 68.92 ±0.47 (.212) 62.16 ±0.27 (.079) 61.64 ±0.87 (.089) 58.74 ±0.12 (.103)
Average 60.48 ±0.58 (.133)

MS 54.72 ±0.63 (.116)
MECATS 49.75 ±0.22 (.084)

Table 9: M5 dataset, level 1

Recon \Model
Level 2

AR RNN-GRU LSTNet DeepAR
BU 81.69 ±0.13 (.304) 76.42 ±0.08 (.221) 76.32 ±0.26 (.233) 75.39 ±0.42 (.219)

Base 74.26 ±0.03 (.259) 69.46 ±0.74 (.178) 72.76 ±0.93 (.164) 67.18 ±0.22 (.142)
MinT-sam 82.29 ±0.49 (.308) 77.69 ±0.37 (.173) 77.43 ±0.21 (.168) 75.12 ±0.04 (.154)
MinT-shr 82.77 ±0.16 (.297) 75.44 ±0.26 (.167) 73.42 ±0.43 (.148) 72.16 ±0.82 (.147)
MinT-ols 86.21 ±0.72 (.312) 78.13 ±0.56 (.172) 76.93 ±0.17 (.164) 74.98 ±0.15 (.147)
SHARQ 73.53 ±0.59 (.246) 65.37 ±0.63 (.134) 72.03 ±0.41 (.113) 66.17 ±0.26 (.142)
Average 68.29 ±0.25 (.143)

MS 65.02 ±0.24 (.142)
MECATS 53.61 ±0.42 (.101)

Table 10: M5 dataset, level 2

Recon \Model
Level 3

AR RNN-GRU LSTNet DeepAR
BU 75.46 ±0.57 (.272) 72.86 ±0.27 (.189) 73.56 ±0.41 (.156) 72.04 ±0.36 (.164)

Base 75.46 ±0.57 (.272) 72.86 ±0.27 (.189) 73.56 ±0.41 (.156) 72.04 ±0.36 (.164)
MinT-sam 87.59 ±0.61 (.385) 83.76 ±0.24 (.194) 82.06 ±0.46 (.182) 82.67 ±0.35 (.179)
MinT-shr 85.49 ±0.42 (.349) 79.41 ±0.01 (.189) 80.46 ±0.93 (.162) 78.54 ±0.29 (.158)
MinT-ols 88.14 ±0.64 (.369) 83.62 ±0.15 (.199) 84.18 ±0.57 (.178) 81.59 ±0.38 (.161)
SHARQ 75.46 ±0.57 (.272) 72.86 ±0.27 (.189) 73.56 ±0.41 (.156) 72.04 ±0.36 (.164)
Average 70.29 ±0.34 (.168)

MS 72.04 ±0.36 (.164)
MECATS 57.89 ±0.47 (.109)

Table 11: M5 dataset, level 3

Recon \Model
Level 0

AR RNN-GRU LSTNet DeepAR
BU 103.41 ±2.03 (.396) 96.32 ±0.89 (.337) 92.33 ±0.41 (.312) 93.43 ±0.56 (.281)

Base 79.65 ±0.83 (.189) 71.24 ±0.75 (.163) 67.32 ±0.48 (.273) 74.35 ±0.76 (.232)
MinT-sam 91.31 ±0.97 (.139) 72.23 ±0.67 (.169) 69.13 ±0.36 (.282) 76.88 ±0.56 (.243)
MinT-shr 88.41 ±0.79 (.136) 71.31 ±0.14 (.167) 65.83 ±0.27 (.269) 73.28 ±0.19 (.236)
MinT-ols 90.37 ±0.45 (.142) 74.28 ±0.26 (.174) 68.93 ±0.25 (.278) 79.21 ±0.82 (.256)
SHARQ 77.23 ±0.35 (.123) 68.19 ±0.29 (.113) 64.45 ±0.48 (.213) 71.21 ±0.45 (.211)
Average 67.32 ±0.29 (.164)

MS 64.45 ±0.48 (.213)
MECATS 59.89 ±0.32 (.145)

Table 12: AE-Demand dataset, level 0
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Recon \Model
Level 1

AR RNN-GRU LSTNet DeepAR
BU 97.12 ±0.31 (.324) 88.62 ±0.36 (.274) 86.81 ±0.33 (.189) 90.13 ±0.07 (.222)

Base 83.74 ±0.82 (.264) 69.24 ±0.41 (.207) 66.28 ±0.12 (.155) 79.12 ±0.46 (.172)
MinT-sam 86.79 ±0.42 (.252) 73.24 ±0.63 (.215) 68.38 ±0.15 (.167) 80.31 ±0.73 (.180)
MinT-shr 85.24 ±0.65 (.241) 70.22 ±0.32 (.201) 63.67 ±0.28 (.151) 76.47 ±0.26 (.162)
MinT-ols 87.79 ±0.44 (.231) 74.23 ±0.61 (.232) 69.23 ±0.41 (.171) 82.56 ±1.25 (.187)
SHARQ 75.91 ±0.42 (.203) 66.57 ±0.24 (.199) 65.11 ±0.31 (.159) 74.09 ±0.32 (.133)
Average 63.58 ±0.72 (.129)

MS 63.72 ±0.36(.131)
MECATS 55.72 ±0.73 (.122)

Table 13: AE-Demand dataset, level 1

Recon \Model
Level 2

AR RNN-GRU LSTNet DeepAR
BU 94.23 ±0.45 (.302) 85.37 ±0.27 (.214) 83.72 ±0.55 (.198) 87.62 ±0.48 (.223)

Base 87.41 ±0.76 (.247) 72.34 ±0.26 (.164) 69.88 ±0.35 (.147) 80.38 ±0.78 (.184)
MinT-sam 87.97 ±0.42 (.258) 74.22 ±0.24 (.171) 72.46 ±0.38 (.158) 82.45 ±0.18 (.204)
MinT-shr 86.32 ±0.36 (.235) 71.49 ±0.46 (.143) 67.12 ±0.25 (.129) 79.48 ±0.39 (.178)
MinT-ols 88.72 ±0.37 (.242) 73.52 ±0.85 (.166) 71.98 ±0.37 (.153) 84.29 ±0.73 (.207)
SHARQ 78.97 ±0.45 (.203) 68.25 ±0.47 (.131) 68.01 ±0.22 (.126) 76.05 ±0.53 (.191)
Average 70.44 ±0.09 (.124)

MS 68.01 ±0.22 (.126)
MECATS 62.55 ±0.14 (.111)

Table 14: AE-Demand dataset, level 2

Recon \Model
Level 3

AR RNN-GRU LSTNet DeepAR
BU 90.33 ±0.49 (.231) 87.35 ±0.69 (.225) 82.47 ±0.28 (.192) 84.58 ±0.63 (.236)

Base 90.33 ±0.49 (.231) 87.35 ±0.69 (.225) 82.47 ±0.28 (.192) 84.58 ±0.63 (.236)
MinT-sam 91.23 ±0.43 (.244) 88.42 ±0.74 (.229) 85.63 ±0.79 (.234) 86.43 ±0.75 (.256)
MinT-shr 89.58 ±0.89 (.241) 86.17 ±0.73 (.217) 83.14 ±0.12 (.202) 84.92 ±0.37 (.227)
MinT-ols 92.24 ±0.53 (.252) 87.98 ±0.44 (.229) 85.77 ±0.87 (.228) 87.74 ±0.46 (.254)
SHARQ 90.33 ±0.49 (.231) 87.35 ±0.69 (.225) 82.47 ±0.28 (.192) 84.58 ±0.63 (.236)
Average 73.22 ±0.37 (.135)

MS 82.47 ±0.28 (.192)
MECATS 71.45 ±0.43 (.125)

Table 15: AE-Demand dataset, level 3

Recon \Model
Level 0

AR RNN-GRU LSTNet DeepAR
BU 94.23 ±0.72 (.276) 91.14 ±0.23 (.238) 91.24 ±0.37 (.226) 92.34 ±0.47 (.244)

Base 75.12 ±0.25 (.182) 74.01 ±0.23 (.174) 73.92 ±0.16 (.162) 73.98 ±0.22 (.171)
MinT-sam 87.41 ±0.33 (.209) 78.32 ±0.48 (.196) 77.14 ±0.49 (.172) 77.54 ±0.69 (.181)
MinT-shr 86.12 ±0.24 (.196) 77.64 ±0.25 (.187) 76.53 ±0.36 (.169) 75.88 ±0.25 (.176)
MinT-ols 88.03 ±0.32 (.217) 80.93 ±0.31 (.205) 79.32 ±0.75 (.185) 77.45 ±0.34 (.184)
SHARQ 74.25 ±0.31 (.181) 70.36 ±0.24 (.147) 70.55 ±0.42 (.167) 69.67 ±0.58 (.168)
Average 66.42 ±0.16 (.128)

MS 69.67 ±0.58 (.168)
MECATS 63.27 ±0.73 (.117)

Table 16: Wikipedia dataset, level 0
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Recon \Model
Level 1

AR RNN-GRU LSTNet DeepAR
BU 89.76 ±0.27 (.282) 89.71 ±0.56 (.212) 90.02 ±0.24 (.221) 90.86 ±0.23 (.216)

Base 79.86 ±0.39 (.212) 76.33 ±0.65 (.177) 75.38 ±0.44 (.165) 74.54 ±0.47 (.167)
MinT-sam 88.27 ±0.38 (.293) 79.34 ±0.49 (.195) 80.23 ±0.32 (.193) 78.46 ±0.29 (.191)
MinT-shr 84.79 ±0.76 (.263) 75.58 ±0.27 (.167) 77.49 ±0.34 (.183) 77.45 ±0.34 (.187)
MinT-ols 87.82 ±0.28 (.244) 82.11 ±0.72 (.204) 82.69 ±0.48 (.202) 80.36 ±0.67 (.204)
SHARQ 72.63 ±0.36 (.173) 73.06 ±0.42 (.159) 72.34 ±0.26 (.161) 71.34 ±0.58 (.179)
Average 72.01 ±0.52 (.157)

MS 68.24 ±0.33 (.151)
MECATS 65.14 ±0.46 (.143)

Table 17: Wikipedia dataset, level 1

Recon \Model
Level 2

AR RNN-GRU LSTNet DeepAR
BU 88.16 ±0.26 (.267) 88.21 ±0.42 (.237) 86.49 ±0.43 (.224) 89.64 ±0.37 (.212)

Base 81.32 ±0.14 (.188) 81.29 ±0.34 (.192) 78.65 ±0.31 (.188) 77.42 ±0.36 (.179)
MinT-sam 86.24 ±0.34 (.242) 83.64 ±0.48 (.219) 83.67 ±0.46 (.221) 84.14 ±0.27 (.187)
MinT-shr 85.41 ±0.77 (.239) 80.09 ±0.12 (.189) 82.17 ±0.95 (.206) 82.13 ±0.88 (.176)
MinT-ols 90.31 ±0.42 (.284) 83.31 ±0.24 (.214) 84.68 ±0.74 (.238) 84.54 ±0.44 (.193)
SHARQ 74.63 ±0.35 (.175) 76.15 ±0.34 (.135) 75.56 ±0.41 (.179) 74.62 ±0.19 (.155)
Average 74.37 ±0.83 (.147)

MS 74.62 ±0.19 (.155)
MECATS 69.48 ±0.33 (.142)

Table 18: Wikipedia dataset, level 2

Recon \Model
Level 3

AR RNN-GRU LSTNet DeepAR
BU 87.62 ±0.57 (.269) 86.45 ±0.78 (.243) 85.57 ±0.12 (.279) 86.79 ±0.32 (.349)

Base 83.26 ±0.44 (.232) 82.23 ±0.73 (.224) 80.33 ±0.21 (.207) 79.12 ±0.23 (.298)
MinT-sam 86.57 ±0.63 (.256) 85.36 ±0.85 (.240) 86.02 ±0.56 (.284) 84.57 ±0.36 (.314)
MinT-shr 86.22 ±0.31 (.244) 81.69 ±0.49 (.221) 84.57 ±0.19 (.251) 82.89 ±0.61 (.304)
MinT-ols 88.23 ±0.37 (.289) 84.78 ±0.57 (.216) 86.44 ±0.34 (.286) 83.24 ±0.43 (.310)
SHARQ 78.95 ±0.25 (.198) 78.42 ±0.34 (.201) 79.63 ±0.41 (.191) 80.37 ±0.22 (.301)
Average 81.38 ±0.65 (.278)

MS 79.63 ±0.41 (.191)
MECATS 75.69 ±0.76 (.189)

Table 19: Wikipedia dataset, level 3

Recon \Model
Level 4

AR RNN-GRU LSTNet DeepAR
BU 86.44 ±0.64 (.321) 85.12 ±0.62 (.345) 82.41 ±0.82 (.179) 84.77 ±0.49 (.241)

Base 86.44 ±0.64 (.321) 85.12 ±0.62 (.345) 82.41 ±0.82 (.179) 84.77 ±0.49 (.241)
MinT-sam 98.19 ±0.85 (.588) 87.44 ±0.22 (.359) 87.39 ±0.11 (.224) 92.21 ±1.32 (.368)
MinT-shr 95.89 ±0.27 (.423) 85.26 ±0.38 (.332) 86.01 ±0.37 (.211) 91.47 ±0.66 (.337)
MinT-ols 99.41 ±0.19 (.602) 88.41 ±0.37 (.384) 86.89 ±0.35 (.220) 93.16 ±0.93 (.384)
SHARQ 86.44 ±0.64 (.321) 85.12 ±0.62 (.345) 82.41 ±0.82 (.179) 84.77 ±0.49 (.241)
Average 84.68 ±0.42 (.221)

MS 79.65 ±0.24 (.186)
MECATS 76.88 ±0.72 (.163)

Table 20: Wikipedia dataset, level 4
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H.2 COHERENCY ANALYSIS

The following results are coherent loss computed using Eq (57), which is averaged across 5 random
experiments. Note that base forecasts refer to single-model base forecast. λbottom level is the parameter
that controls the strength of regularization from the bottom level forecasts.
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Figure 7: Coherency analysis, Australian Labour dataset.
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Figure 8: Coherency analysis, M5 dataset.
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Figure 9: Coherency analysis, AE-Demand dataset.
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Figure 10: Coherency analysis, Wikipedia dataset.

H.3 MECATS IN DEPLOYMENT

MECATS has also been tested within a large financial software company for cash flow forecasting.
The hierarchy consists of 5 vertices, where the top level vertex represents the total expense of one user,
the four bottom level vertices are the first top, second top, third top and the rest of expenses of the
corresponding user. We conducted experiments on 12,000 users’ data, which has the same hierarchical
structure, and compared with already deployed baseline methods (PyDLM, PyDLM + MinT-shr)
using normalised root mean squared error (NRMSE). Figure 11 (a-e) shows the NRMSE results on
corresponding vertex, where each figure represents the cumulative value of NRMSE distribution over
12,000 users at each percentile. It can be seen from the results that MECATS outperforms the baselines
at every percentile. In addition, given the time series between each hierarchy are short sequences
with sparsity issues at the bottom level, we did not employ deep neural network based models that are
more prone to overfitting. The four experts include Auto-ARIMA, FB-Prophet, PyDLM and simple
average. Figure 12 and 13 show the percentage of these experts with the highest and lowest weights
over 12,000 hierarchies. The advantage of combining experts is obvious given no expert dominates
the forecasts.

(a) (b) (c)
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(d) (e)

Figure 11: NRMSE results on 12,000 users

Figure 12: Percentage of experts with the highest weight by vertex.

Figure 13: Percentage of experts with the lowest weight by vertex.
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