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ABSTRACT

Time series anomaly detection plays a critical role in many dynamic systems.
However, previous approaches have primarily relied on unimodal numerical data,
overlooking the importance of complementary information from other modalities.
In this paper, we propose a novel multimodal time series anomaly detection model
(MindTS) that focuses on addressing two key challenges: (1) how to achieve se-
mantically consistent alignment across heterogeneous multimodal data, and (2)
how to filter out redundant modality information to enhance cross-modal interac-
tion effectively. To address the first challenge, we propose Fine-grained Time-text
Semantic Alignment. It integrates exogenous and endogenous text information
through cross-view text fusion and a multimodal alignment mechanism, achiev-
ing semantically consistent alignment between time and text modalities. For the
second challenge, we introduce Content Condenser Reconstruction, which filters
redundant information within the aligned text modality and performs cross-modal
reconstruction to enable interaction. Extensive experiments on six real-world mul-
timodal datasets demonstrate that the proposed MindTS achieves competitive or
superior results compared to existing methods. We further conduct forecasting
extension experiments to assess the transferability of MindTS.

1 INTRODUCTION

Time series anomaly detection identifies anomalous events that significantly deviate from the ma-
jority within time series data. It has been widely applied in various high-risk domains, including
healthcare monitoring, financial fraud detection, and network intrusion detection (Wen et al.,2022;
Li et al.| 2021} |Yang et al., 2023a} Boniol et al.| 2022} 2024; |Sylligardos et al., 2023)).

In various real-world scenarios, data often exists in a multimodal form, such as time series (Liu
& Paparrizos, [2024; Dai et al., 2024), text (Enevoldsen et al., |2024; |Chen et al. 2024b), im-
ages (Costanzino et al., |2024; Zhou et al.| [2024; Bhunia et al., 2024)), and videos (Li et al., [2024;
Chen et al., [2024a; |[He et al., [2024), which collectively serve as complementary heterogeneous in-
formation sources. Among these, the text modality, which contains contextual descriptions and
provides rich background information for time series, is easy to obtain due to its wide availability.
For instance, financial experts combine transaction data on stocks with reports and policies to detect
market anomalies. Despite this, most existing anomaly detection models remain confined to uni-
modal numerical frameworks (Yang et al., 2023b; [Wang et al.,|2023;|Song et al.||2023; |Shentu et al.,
2025; [Wu et al.| 2025), overlooking the potential of utilizing multimodal data. Therefore, building
multimodal time series anomaly detection models naturally becomes a natural and necessary step
forward. In this work, we focus on the time series and text modalities, rather than aiming to build
a universal multimodal framework that also handles image or video modalities. This focus further
raises a key research question: how can we effectively integrate text information and time series?

Since different modalities reside in distinct semantic spaces, achieving precise alignment between
text and time series is crucial for leveraging textual information effectively. A straightforward ap-
proach (Jin et al., [2023; Zhou et al. 2023} |Gruver et al., |2023} |(Cao et al., |2023; [Kowsher et al.|
2024) is to generate endogenous text from the time series itself using large language models (LLMs),
which naturally ensures modality alignment (Figure[Ta). However, such text typically offers limited



Under review as a conference paper at ICLR 2026

Time: ~N A

Exogenous fext:

(- - - —
The air quality index in

time series
representation

4 endogenous text
representation

exogenous text
representation

cross-view text
representation

A} )
fusion = ¥
Q

a is aligned with b
under the unified

representation space

l LLM New York, NY showed
poor levels of NO2. New
York City has the
nation's highest cancer
risk due to air pollution,
with residents being
60% more likely to get
cancer from air
pollutants than people
nationwide. ...... a State
Assistance Contract
(SAC) to encourage
environmental protection.

Endogenous text:

|/ The details of the input time

I series are provided below:

b

I [Statistic 1]: The maximun of
<max_val>.

| [Statistic 2]: The minimun of

I <min_val>.

: [Statistic 3]: The overall trend

1 is <unpward or downward>.

(a) (b) (c)

Figure 1: (a) LLM-based methods generate endogenous text from time series without incorporating
exogenous information. (b) Exogenous-based methods incorporate text information by retrieving
background knowledge from the web. The absence of connecting lines indicates that the two modal-
ities are not aligned. (c) MindTS employs cross-view fusion to ensure semantic consistency between
the exogenous text and the time series, enabling more precise alignment across modalities.

semantic richness, as it can only capture intrinsic patterns within the time series. To address this
limitation, recent studies (Liu et al.; |2024b; L1 et al.| [2025]) have explored incorporating exogenous
text, such as news reports or documents, as external contextual information. However, the effective-
ness of such methods heavily depends on the quality of exogenous text. The external information
sources are often scattered, making semantic alignment with the time series inherently difficult (Fig-
ure[Ib). Therefore, a key challenge is how to incorporate informative exogenous text while ensuring
semantic consistency and alignment with the time series.

Moreover, while text provides complementary information to time series, it may also introduce
redundant content that hinders anomaly detection. Existing multimodal time series methods perform
direct fusion strategies (Liu et al. [2024bj [Jin et al.l 2023), assuming that all text information is
equally useful. This overlooks the lengthy details or irrelevant descriptions within the text modality,
which may dilute the contribution of genuinely informative content. In natural language processing,
recent approaches (Cha et al., 2023} [Liang et al., [2023) filter text representations using techniques
such as random masking or by applying random semantic parsing functions, such as paraphrasing,
summarization, or translation, to perturb the text for filtering (Ji et al., 2024). However, when applied
to multimodal time series, such strategies fail to consider the relevance of text content to the time
series, which may result in high-value text information being randomly masked while low-value
text information is retained. Therefore, another key challenge is how to mitigate the impact of
redundant content on cross-modal interaction through an effective filtering mechanism.

To address these challenges, we propose MindTS, a Multimodal Time Series Anomaly Detection
with Semantic Alignment and Condensed Interaction. Specifically, we propose a fine-grained time-
text semantic alignment module that divides the text into two complementary views: exogenous text
and endogenous text. The exogenous text contains background information from external sources,
suitable for sharing across different time steps. In contrast, the endogenous text is derived directly
from the time series, exhibiting time-specific characteristics correlated with temporal patterns. To
achieve semantic consistency alignment between time-text pairs, we apply cross-view fusion to in-
tegrate the complementary strengths of the two text views. The resulting fused text is further aligned
with the time series (Figure[Ic). Furthermore, we propose a content condenser reconstruction mech-
anism to filter redundant text information and enhance the effectiveness of cross-modal interaction.
Specifically, given aligned text representations as input, the content condenser filters out redundant
information from the text by minimizing mutual information, resulting in condensed text representa-
tions. The condensed text representations are then used to reconstruct the masked time series, which
strengthens cross-modal interaction. The contributions are summarized as follows:

* We propose a novel fine-grained time—text semantic alignment method that jointly exploits
both exogenous and endogenous text representations of time patches. The exogenous text
introduces external background knowledge, while the endogenous text captures specific
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characteristics directly derived from time series. By integrating these two complementary
text views, our approach ensures more precise semantic alignment with text and time series.

* We propose a novel method, content condenser reconstruction, to filter redundant textual
information. By performing cross-modal reconstruction of time series from condensed text,
the content condenser reconstruction enhances interaction between modalities.

* Our proposed multimodal anomaly detection model, MindTS, has been extensively evalu-
ated on multimodal datasets. Compared with existing unimodal baselines and multimodal
time series frameworks, MindTS achieves competitive or superior performance.

2 RELATED WORK
2.1 TIME SERIES ANOMALY DETECTION

Time series anomaly detection has been extensively studied, and existing methods can be broadly
categorized into non-learning (Breunig et al., [2000; |Goldstein & Dengel, 2012} Yeh et al.| [2016),
classical machine learning (Liu et al.l 2008; Ramaswamy et al., 2000; [Shyu et al.l 2003} |Yairi et al.,
2001), and deep learning (Xu et al., |2021; |Deng & Hooil 2021} |Yang et al.| [2023b; |Shentu et al.}
20235). Deep learning methods can be further divided into reconstruction-based, prediction-based,
and contrastive learning-based. DADA (Shentu et al., |2025) adopts a dual-adversarial decoder
framework to reconstruct both normal and abnormal series, where abnormal samples are expected
to yield high reconstruction errors. GDN (Deng & Hooi, 2021) couples structure learning with
graph neural networks by using attention over neighboring sensors to forecast values, and derives
anomaly scores from prediction errors. DCdetector (Yang et al.,[2023b) is the first to introduce con-
trastive learning into time series anomaly detection. It maps samples into a shared embedding space,
where normal points exhibit strong correlation with others, while anomalous points show weak cor-
relations. Although these methods have achieved impressive performance in unimodal time series
anomaly detection, they often overlook the rich semantic information available in other modalities,
which limits their robustness in complex real-world scenarios.

2.2 MULTIMODAL TIME SERIES ANALYSIS

Multimodal approaches mainly exploit time series and textual information to enhance the robust-
ness and effectiveness of time series analysis. Unlike traditional unimodal time series methods,
multimodal time series analysis (MMTSA) presents greater challenges due to the complexity of
cross-modal interaction and heterogeneous data integration. With the recent advances in LLMs,
mainstream research in MMTSA (Liu et al.| [2024b; |[Pan et al., [2024; |[Liu et al., 2024c; [ Kowsher:
et al) [2024; Wang et al.l 2025) has focused on transforming time series data into text or image
formats and feeding them into LLMs or vision models, respectively. These approaches typically
employ a multimodal fusion network to integrate information across modalities and boost overall
model performance. For instance, LLM-Mixer (Kowsher et al., [2024) decomposes time series into
seasonal and trend components, and feeds them along with textual prompts into a frozen pre-trained
LLM. The LLM then generates predictions by leveraging both semantic knowledge and temporal
structure. Time-MMD (Liu et al.| [2024b)) attempts to incorporate exogenous text to improve time
series analysis tasks. However, exogenous textual sources are often scattered and weakly correlated
with the semantics of specific time segments. Relying solely on hard alignment through temporal
step synchronization overlooks deeper semantic associations between time and text. Furthermore,
text data often contains much redundant content. Without appropriate selection mechanisms, cross-
modal interaction may introduce semantic redundancy, which hinders the identification of anoma-
lous patterns. To address these issues, our proposed method achieves precise alignment between se-
mantically consistent time-text representations by integrating exogenous and endogenous text infor-
mation. Moreover, we introduce a mutual information minimization mechanism and a cross-modal
reconstruction strategy to achieve text compression and modality-level time series reconstruction.
These strategies improve the model’s ability to identify anomalous patterns.

3 METHODOLOGY

Given input time series of length 7' as X = (x1,...,27) € RT*P where D is the number of
features. Traditional unimodal time series anomaly detection outputs Y = (y1,...,yr) € {0,1}7,
where y; = 1,t € {1,2,..., T}, indicates that timestamp ¢ is identified as an anomaly. In the task of
multimodal time series anomaly detection, we consider the time series data with other modalities.
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Figure 2: MindTS overview. Given an input time series X, we first apply instance normalization and
patching, then encode the patches using a time encoder. (a) Each patch generates its corresponding
endogenous text O. Along with the input exogenous text C, both views are encoded and (b) fused
via cross-view fusion to obtain fused text representations Zy,. Time and text representations are
then semantically aligned via a multimodal alignment layer. (c) To mitigate textual redundancy, the
aligned text is compressed using a content condenser. Finally, (d) the condensed text Z,, is used to
reconstruct the masked time series, enhancing cross-modal interaction.

Here we specifically focus on fusing a time series modality X with a text modality, where the exoge-
nous text modality is represented as a sequence of length S, given by C = (cy, ..., cs) € RS, Sim-
ilar to the unimodal time series anomaly detection, the problem of multimodal time series anomaly
detection also determines whether y; is an anomaly or not.

3.1 OVERALL FRAMEWORK

In order to resolve the problem of multimodal time series anomaly detection, we propose the model
MindTS, as illustrated in Figure 2] This model provides an anomaly identification mechanism from
a cross-modal perspective based on the input time series and text.

The time series is first input to instance norm layer to perform instance normalization and channel-
independent processing (Ulyanov et al.l|2017; Kim et al.|[2021), then the result is output to patching
& time encoder layer for the fine-grained modeling of patches. By the widely used time transformer
(Nie et al., [2022), the following results are derived through the time encoder:

P ={P}..Pirc.---,Pil,.} = Patching(X), Hyme = TimeEncoder(P), (1)

time> *~ time> time

where Pi, . € RP*P denotes the i-th patch of X, Hime € RYXdmodet | N = [T'— p] /I + 1 is the total
patch number, p is the patch size and [ is the horizontal sliding stride. Furthermore, endogenous text
0= {01, 0?,...,o } are generated for each patch, where o' is the text prompt generated by LLMs
based on the ¢-th patch. In addition, X is processed through patching & masking and a shared-weight

time encoder to obtain the masked time representation, denoted as Hyjpe.

Next, endogenous text O and exogenous text C are fed into text encoder to model their text repre-
sentations HY,, and H,, respectively. Based on them, the cross-view text fusion layer is employed
to capture semantic dependencies, resulting in the text representation as Zy, which is semantically
correlated with the corresponding patch representation Hyy,.. Subsequently, a multimodal alignment

layer is employed to align semantically consistent time-text pairs.

Finally, based on the aligned text representations Zi.y, the content condenser filters out redundant
text, giving rise to condensed text Z,. It is then utilized together with the masked time representa-

tion Hy;me by cross-modal reconstruction, which produces the final output X and facilitates modality
interaction. Reconstruction error is the anomaly score.

4
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3.2 FINE-GRAINED TIME-TEXT SEMANTIC ALIGNMENT

The fine-grained time-text semantic alignment consists of three components: 1) the endogenous text
generation, 2) the cross-view text fusion and 3) the multimodal alignment strategy. Specifically,
cross-view text fusion is designed to integrate text from different views (endogenous and exogenous
text), helping enhance semantic consistency between text and time series. The multimodal alignment
aims to guide the alignment between time representations Hy;,e and text representations Zey, from
cross-view text fusion within a unified space.

Endogenous text generation. To mitigate semantic drift and output uncertainty in directly convert-
ing time series into natural language (Kowsher et al., [2024} Jin et al., [2023)), we design endogenous
text prompt templates (e.g., mean, extrema, trend) and generate specific endogenous text for each
patch. In this case, the limitations caused by generating a single global prompt can be avoided, and
the dynamic property of the time series is matched.

The text encoder leverages open-source LLMs (Liu et al.} 2024a; Radford et al., 2019) to encode the
endogenous text, resulting in the time-specific text representation HY,, € RY *@model ag follows:
HY, = TextEncoder({o", 0%, ...,0" }), (2)

text

where o' € R®*@modet ¢ is the LLM’s vocabulary size. This prompt leverages the semantic knowl-
edge of LLM to enhance semantic consistency with the time series. On the other hand, to fully ex-
ploit the exogenous text C information, we treat it as a shared text across all patches. This approach
ensures that the model does not lose background context due to the limited scope of individual
patches. Similarly, the exogenous text encoded by a text encoder, resulting in HS,, € R1*dmoder,

Cross-view text fusion. To leverage the rich background knowledge in exogenous text and the
strong semantic relevance of endogenous text to time series, MindTS integrates text information
from endogenous and exogenous text views, introducing background knowledge while enabling
precise mapping to specific patches. Specifically, we adopt a cross-view attention mechanism that
can selectively extract complementary information from two text views. To enhance semantic con-
sistency with the time series and extract the most relevant background information, we use the
endogenous text HY, as the query and the exogenous text H¢,, as the key and value to obtain the
fused text representation Ziy. This process is expressed as:

Z.x = LayerNorm (Ztexl + FeedForward (th)> , 3)
Lioxt = LayerNorm (ng[ + CrossAttn(Hfgxt, ngt, ng:)) , )

where Zy is intermediate variable. LayerNorm(-) denotes layer normalization as widely adopted
in (Vaswani et al., 2017; |Q1u et al., [2025} |Chen et al., [2024c), FeedForward(-) denotes a multi-layer
feedforward network, and CrossAttn(Q, K, V) represents the cross-attention layer.

Multimodal alignment strategy. Time series manifest as continuous signals with strong temporal
dependencies, while text is discrete, making semantic alignment between the two modalities dif-
ficult. Traditional methods (e.g., add or concatenation) fail to capture the semantic alignment. To
address this, we employ contrastive learning to explicitly align the two modalities, enhancing seman-
tically consistent alignment by pulling positive pairs (aligned time-text) closer and pushing negative
(unrelated ones) farther. Specifically, the similarity matrix between the two representations, Hjne
and Zy, is indicated as follows:

k(ht11me? ztext) T k(ht11me7 Ztext)
_ . NXxN
KTT o N : 1 k(hflmea ztext) N € R ’ (5)
k(htlme’ Ztext) o k(htlme’ Zlext)
where k(-, -) denotes the similarity between time and text representations. If j = g, the & (h, L er Zinxt)
is identified as a positive pair. Therefore, multimodal alignment loss £, 4 is defined as:
N exp (kB e Zhea) /7)

)

1
EMA:_W Zlog

+ Z €xXp k(hiqimea ztgext)/T)
=S exp (ke 7)/7)

Z] 1 €Xp (k(hﬁme, ztext)/T>
(6)

where 7 denotes the temperature.
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3.3 CONTENT CONDENSER RECONSTRUCTION

As shown in Figure Q], the content condenser reconstruction includes: 1) the content condenser, and
2) the cross-modal reconstruction. Specifically, after aligning fine-grained representations that are
semantically consistent across modalities, the content condenser filters redundant text information
via masking. It utilizes the condensed text representation to reconstruct the time series.

Content condenser. Inspired by the Information Bottleneck (IB) principle (Tishby et al., 2000;
Tishby & Zaslavsky, [2015), we propose the content condenser to filter redundant representations
based on the aligned text representation Zy. This process produces a condensed text representation
Z..,, while preserving essential information for time series. Formally, the objective of finding the
optimal condensed representation Z,, is defined as:

Z*

con

= arg <ziiiiﬁzlm.) I(Ziext; Zeon) + R(X, Zion), (7)

where I(-;-) denotes the mutual information between aligned and condensed text representations.
Minimizing it encourages the model to learn more compact representations. R(-,-) denotes the
reconstruction objective. Reconstruction methods detect anomalies by low errors on normal points
and high errors on anomalies. Based on this, we introduce cross-modal reconstruction to ensure the

condensed text retains sufficient information to recover the time series X.

Specifically, given the aligned text representations Zy;, we use an MLP to compute a probability
matrix ¥ = [1;],. A binary mask F ~ Bernoulli(¥) € {0, 1}% is then sampled, where the higher
the value of 1);, the more likely it is to sample F; = 1. The condensed representation is obtained
as Zeon = Ziext © F, where © is the element-wise multiplication. To enable gradient propagation
during sampling, we adopt the straight-through estimator trick (Jang et al., 2016).

In order to control the marginal distribution of condensed text, thus regulating the condensing level,
from the idea of latent distribution with variational auto-encoders, we introduce the distribution
G(Zcon) ~ Hf\;l Bernoulli(r) subject to a hyperparameter i € (0, 1). By adjusting the value of ,
we can restrain the condensing degree of the proposed model. To quantify the mutual information,
the following lemma is proposed to get the upper bound before building the loss function.

Lemma 1. For the mutual information I(Zext; Zicon ), there exists the following tight upper bound
that can approximate its value:

I(Ztext; Zcon) < EZtext [KL(P(ZCOH|ZteXt)|‘G(ZCOII))L ()

where KL(-) denotes the Kullback—Leibler (KL) divergence, defined as KL(P(x)||G(x)) =

> P(x)log g(—);)), IP(-) is the probability distribution and G(-) is a variational approximation. The

proof is given in Appendix|B|

Utilizing the upper bound in Lemma([I] we can compute the KL divergence to obtain the loss function
Lcc as follows:
¥ 1 —1s

N
ccc=2¢ilog;+<1—wi>logl_u. ©)
i=1

Another issue is that the condensed text might possess a large difference between the -th patch and
the (¢+1)-th patch, which results in the discontinuity and instability of the condenser reconstruction.

To avoid this problem, we introduce ¢; = +/(%;+1 — ©;)? to compute the mask score difference of

two Bernoulli samplings. Then, Lgps = % Zf\:ll ¢; is proposed to guarantee the smoothness of
condensed text representation, ensuring stability in the learned features. In summary, the loss of the
content condenser module is defined as Lo, = Lo + Lsu-

Cross-modal reconstruction. To enhance cross-modal interaction, a straightforward approach
would be to perform time series reconstruction directly from the entire time series and the con-
densed text. However, as the time series itself contains abundant information for reconstruction, this
process cannot fully encourage the model to capture deeper cross-modal dependencies. To address
this, we design a more challenging objective: time series reconstruction with the random masked
time series X and condensed texts Z¢,,. This design strengthens cross-modal dependency and en-
courages the condensed representation to preserve richer time series—related information. As shown
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in Figure (d), X is processed by patching & masking to obtain X, which is then encoded by a time
encoder to produce Hiime. The encoder shares weights with another time encoder. Given the inputs
I:Itime and Z, the reconstructed output X € RT*P is obtained X = Projection (Urr), and Urr is
denoted as:

con?

Urr = FeedForward (I:Itime + CrossAttn (I:Itime, Z! Zéon))) , (10)

where Zéon = MSA(Zcon, Zcon, Zicon) denotes the self-attention layer. The cross-modal reconstruc-

tion function is formalized as:

Lre = [X =X (1)

2
» .

3.4 JOINT OPTIMIZATION AND INFERENCE

Our total loss £ primarily consists of three components: the multimodal alignment loss L4, the
condenser loss based on condensed text L1, and the cross-modal reconstruction loss £ ge.. There-
fore, the proposed total loss function is written as:

»C:»CMA+£CL+£Rec; (12)

During the inference stage, the anomaly score at the current timestamp is computed based on the
mean squared error between the time input X and its reconstructed output.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. We conduct experiments using 6 real-world datasets (Weather, Energy, Environment, KR,
EWIJ, and MDT) to assess the performance of MindTS. Each dataset contains both numerical time
series and corresponding exogenous text. More details of the datasets are included in Appendix[A.1]

Baselines. We extensively compare MindTS against 17 baselines, including (1) LLM-based meth-
ods: LLMMixer (LMixer) (Kowsher et al., |2024), UniTime (UTime) (Liu et al.| 2024c), GPT4TS
(G4TS) (Zhou et al.,[2023)); (2) Pre-trained methods: DADA (Shentu et al., 2025)), Timer (Liu et al.,
2024d), UniTS (Gao et al.,|2024); (3) Deep learning-based methods: ModernTCN (Modern) (Luo &
Wang, [2024)), TimesNet (TsNet) (Wu et al., 2023), DCdetector (DC) (Yang et al.,2023b), Anomaly
Transformer (A.T.) (Xu et al.| 2021)), PatchTST (Patch) (Nie et al.,[2022), TranAD (Tuli et al., 2022)),
iTransformer (iTrans) (Liu et al.,[2023); (4) Non-learning methods: PCA (Shyu et al.,2003), [Forest
(IF) (L1u et al.l 2008), LODA (Pevny, 2016), HBOS (Goldstein & Dengel, 2012). Further details
concerning baselines are available in Appendix [A.2]

Metrics. We adopt Label-based metric: Affiliated-F1-score (Aff-F) (Huet et al., 2022) and Score-
based metric: VUS-PR (V-PR) (Paparrizos et al., 2022), VUS-ROC (V-ROC) (Paparrizos et al.|
2022) as evaluation metrics. We report the algorithm performance under a total of 16 evaluation
metrics in the Appendix More implementation details are presented in the Appendix

4.2 MAIN RESULTS

We evaluate MindTS with 17 competitive baselines on 6 real-world datasets, as shown in Table E}
MindTS achieves state-of-the-art (SOTA) performance across all datasets under the Aff-F, V-PR, and
V-ROC metrics, which demonstrates that MindTS effectively combines multimodal data to detect
anomalies. We further incorporate the 11 recent methods that perform well, as shown in Table [1]
into the multimodal time series framework MM-TSFLib (Liu et al.,[2024b), as reported in Table
MM-TSFLib integrates textual information by performing linear interpolation between the output
of time series models and bag-of-words-based text embeddings. Although this framework provides
a simple yet effective way to incorporate text, MindTS achieves the best or most competitive results
on all datasets, demonstrating the superior ability of MindTS to capture and integrate multimodal
semantics. More baselines and metrics evaluation results can be found in Appendix [Cl Additional
forecasting extension results are provided in Appendix

4.3 MODEL ANALYSIS

We analyze the effectiveness of fine-grained time-text semantic alignment and content condenser
reconstruction, and visualize the anomaly scores. We conducted additional analytical experiments,

which are presented in Appendix [E] Kl
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Table 1: Results of MindTS compared with unimodal and LLM-based methods

on six real-world

datasets. These methods only use the time series in the dataset. The best results are highlighted in

bold, and the second-best results are underlined.

Datasets | Metric | MindTS DADA LMixer UTime Timer UniTS G4TS Modern TsNet DC AT Patch TranAD iTrans PCA IF  LODA HBOS
Aff-F 82.66 69.01 73.68 76.46 75.46 76.17 72.56 81.06 80.58 42.80 4922 77.17 77.81 7537 6491  54.06 52.55 47.70
‘Weather V-PR 57.48 30.00 43.47 51.90 43.21 44.35 41.30 52.13 50.09 1833 19.17 50.03 52.08 4256  47.13  49.66  55.03 46.58
V-ROC 82.64 61.03 71.71 78.45 7322 75.08 70.03 81.14 81.91 45.56 4332 79.97 78.75 7337 5738 56.45 57.00 54.16
Aff-F 74.37 64.38 65.85 61.98 60.20 63.84 66.37 70.76 66.00 47.07 4339 66.85 49.69 70.81 57.65 62.03 6345 55.85
Energy V-PR 50.36 34.18 30.35 32.88 29.46 31.04 31.68 36.60 38.61 2257 19.69 3441 33.80 35.82 4430  46.03 48.63 42.57
V-ROC 74.44 54.37 53.04 49.97 46.03 51.15 53.10 65.05 5947 4593 31.56 5831 56.37 63.06 53.07 53.61 55.90 51.50
Aff-F 85.29 84.11 84.36 81.71 84.19 83.06 72.26 81.07 80.41 6224 5975 81.17 61.41 74.43 55.63  46.50 46.45 2225
Environment V-PR 56.79 54.20 52.94 48.87 51.42 50.24 23.94 42.26 50.64 7.69 18.14  45.78 491 24.87 17.87 894 18.66 52.15
V-ROC 93.78 87.69 89.75 91.77 92.10 92.03 66.79 89.78 87.97 4128 5198 90.86 14.20 73.81 37.08 46.20 50.69 51.03
Aff-F 90.28 84.22 71.80 88.58 89.55 82.24 79.56 84.42 8547 6194 7099 79.52 73.26 7949 5811 6938  60.96 64.78
KR V-PR 53.15 45.90 15.13 46.87 51.41 43.32 38.23 39.95 51.60 8.48 7.94 36.18 28.42 2737 24.19 4331 51.82 52.06
V-ROC 89.86 70.82 52.79 73.55 75.99 73.93 67.81 88.87 79.00 43.04 4197 7465 41.05 76.12 4751 60.70  59.99 61.41
Aff-F 83.89 81.26 66.86 78.22 78.06 77.61 76.65 81.57 81.82 48.10 59.03 7582 69.22 78.27 51.06 67.55 72.06 71.03
EWJ V-PR 50.42 43.36 15.21 32.39 33.17 39.32 35.63 44.75 43.15 15.37 10.85 36.08 17.80 28.98 19.38  37.81 40.08 41.19
V-ROC 84.12 71.79 46.80 64.49 67.72 7391 67.95 83.88 75776 47.10  31.75  71.56 49.60 72.16 4526 59.24 61.65 62.07
Aff-F 89.19 77.99 67.65 76.28 78.51 75.57 80.81 80.81 80.08 47.33 66.12 7947 63.93 78.66  54.66 5374  55.06 52.33
MDT V-PR 65.44 46.81 19.10 38.94 38.38 37.61 44.81 52.18 50.53 1572 1593  41.67 14.34 36.36 2293 3532 44.63 44.77
V-ROC 83.02 66.76 47.06 61.00 60.28 58.67 62.30 82.30 79.56 45.02 4453  77.69 28.55 71.87 44.09  54.02 55.98 55.30
Table 2: The notation with * indicates the results of extending the baselines to their multimodal

versions using the recent time series multimodal framework MM-TSFLib, where both time series

and text data from datasets are utilized.

Datasets | Metric | MindTS DADA* LMixer* UTime* Timer* UniTS* G4TS* Modern* TsNet* Patch* TranAD* iTrans*
Aff-F 82.66 69.73 76.30 73.93 75.37 76.38 76.82 81.50 80.09 77.05 71.73 75.36

‘Weather V-PR 57.48 30.42 45.94 43.19 43.36 44.58 45.83 53.42 50.53 50.17 52.09 40.30
V-ROC 82.64 61.51 75.29 73.71 73.26 75.21 74.61 81.67 82.06 80.08 78.72 70.11

Aff-F 74.37 64.80 61.46 65.38 60.36 65.42 67.38 72.13 66.71 66.28 50.53 72.49

Energy V-PR 50.36 34.38 30.91 30.44 29.57 31.34 31.83 37.44 38.88 34.66 33.74 36.21
V-ROC 74.44 55.63 49.06 49.85 46.39 51.89 53.52 66.37 59.80 58.47 56.38 65.62

Aff-F 85.29 83.84 83.76 76.73 84.52 83.43 84.44 81.36 80.21 81.71 61.38 76.02

Environment | V-PR 56.79 54.20 51.22 35.64 51.20 50.06 56.65 41.36 50.39 4552 4.93 25.85
V-ROC 93.78 88.02 91.74 84.20 92.02 91.98 90.22 89.14 88.14 90.87 14.29 73.66

Aff-F 90.28 84.22 90.03 77.38 89.61 83.06 88.29 84.87 85.84 79.52 72.50 78.39

KR V-PR 53.15 45.68 52.98 37.12 51.56 44.27 57.93 40.86 51.73 36.37 28.47 28.12
V-ROC 89.86 72.08 75.21 66.96 75.92 74.25 80.43 89.22 78.94 74.80 41.24 77.17

Aff-F 83.89 81.41 78.23 73.20 79.05 78.04 81.37 81.88 81.92 76.49 69.03 78.23

EWJ V-PR 50.42 43.18 34.06 25.71 33.36 39.99 43.93 45.41 43.28 36.22 17.87 29.79
V-ROC 84.12 71.06 69.37 67.57 68.19 74.39 76.93 83.98 7591 7221 49.85 74.11

Aff-F 89.19 77.89 78.31 72.33 77.93 76.70 81.86 81.68 80.62 78.87 63.60 77.47

MDT V-PR 65.44 47.22 42.61 25.31 38.23 37.78 52.65 45.88 52.30 41.85 14.55 33.88
V-ROC 83.02 68.06 61.72 49.16 60.21 58.82 73.39 82.66 73.57 71.72 28.88 69.95

Ablation study. To ascertain the impact of different

modules within MindTS, we conduct ablation

studies on: (a) remove the exogenous text representation; (b) remove the endogenous text represen-
tation; (c) delete the time-text semantic alignment; (d) remove the content condenser mechanism;
(e) remove the cross-modal reconstruction module; (f) reverse the order of the alignment and content
condenser mechanism. Figure [3]illustrates the distinct contribution of each component.

We make the following observations: Ours denotes
the complete model. (a) and (b) removing either of
the text representations from the two views leads to
a notable performance decline. This indicates that
integrating the complementary information from en-
dogenous and exogenous texts helps improve the
model performance; (c) removing the time-text se-
mantic alignment module leads to a drop, indicat-
ing that effective modality alignment is essential for
ensuring reliable anomaly detection; (d) removing
the content condenser leads to significant perfor-
mance degradation, likely due to redundant infor-
mation from text negatively impacting the model;
(e) removing cross-modal reconstruction also leads
to performance degradation, suggesting that it en-
hances cross-modal interaction and helps extract
time-relevant discriminative features from the text;
(f) when the alignment and content condenser order

Aff-F

ours a

a2
ours a

Figure 3: Ablation studies for MindTS,
with the highest metrics highlighted in dark-
colored bars.

is reversed, the model performance degrades. This may be because filtering is applied before align-
ment, causing potentially useful time-relevant information to be discarded prematurely.
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Figure 4: Results of the sensitivity analysis. The vertical coordinate shows the Aff-F score, with
higher scores representing better performance. The dark line represents the mean of 5 experiments,
and the light area represents the range.

Parameter sensitivity. We also study the parameter sensitivity of the MindTS. Figure ] shows the
performance under different patch sizes p, time series mask ratios m, and compression strengths y in
the Energy and MDT. As the experimental results show, model performance initially improves and
then declines as the patch size increases. Note that a small patch size indicates a larger memory cost.
In our experiments, the patch size is usually set to 6. Furthermore, we find that maintaining a mask
ratio near 50% generally leads to better performance. As the mask ratio increases, reconstructing
the original time series becomes more challenging, leading to poorer model performance. Besides,
we further investigate the impact of the compression strength . As shown in the results, the model
maintains high performance across a broad range of u values (0.1 to 0.9), suggesting that the content
condenser is robust to varying compression levels. This stability indicates that MindTS effectively
balances semantic preservation and redundancy reduction across different compression strengths.

Visual analysis. Figure[5|shows how MindTS works by visualizing different datasets. The first row
shows the original data distribution along with the ground-truth anomaly positions, and the MindTS
anomaly scores in the third row. It can be seen that MindTS can robustly detect anomalies. More
detailed visualization cases can be found in Appendixes[D} [F

KR N EW) MpT N N Energy N Weather

Input

Time Series

o A
LN

Anomaly Score
(MindTs)

Figure 5: Visualization comparisons of anomaly scores from MindTS for all datasets.

5 CONCLUSION

In this work, we propose a highly capable multimodal time series anomaly detection, named
MindTS. The model is designed to address the limitations of existing unimodal approaches by ef-
fectively leveraging both time series data and textual information. Overall, it integrates text repre-
sentations from both endogenous and exogenous views, enabling a fine-grained understanding of
text semantics for precise time-text alignment. In addition, the content condenser filters out re-
dundant information. The condensed text is further utilized for cross-modal reconstruction of the
time series, optimizing cross-modal interaction. These components collectively empower MindTS
with strong anomaly detection capabilities. Comprehensive experiments demonstrate that MindTS
achieves competitive or superior performance.
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ETHICS STATEMENT

Our work exclusively uses publicly available benchmark datasets that contain no personally identi-
fiable information. No human subjects are involved in this research.

REPRODUCIBILITY STATEMENT

The performance of MindTS and the datasets used in our work are real, and all experimental re-
sults can be reproduced. We have released our model introduction in an anonymous repository:
https://anonymous.4open.science/r/MindTS-Code-53B3/. Once the paper is accepted, we will re-
lease the complete model code and parameters.
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THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, we only adopt large language models in our methodology and endogenous text genera-
tion. Specifically, we employ large language models as the text encoder of MindTS to extract textual
features. To generate endogenous text for the multimodal time series corpus, we provide raw time
series to the models, encouraging them to produce descriptions of data characteristics. Note that we
do not use large language models in writing.

A EXPERIMENTAL DETAILS

A.1 DATASETS

The Table [3] provides a summary of the statistics for the publicly available real-world datasets (Liu
et al.,[2024b; |Dong et al.,[2024)). To ensure broad coverage and initial relevance of exogenous text to
time series, text sources are collected through web search and targeted crawling, combining widely
sourced online content with domain-related reports. To ensure semantic relevance between exoge-
nous text and time-series data, 2-3 domain-specific keywords are defined for each dataset and used
for web search. For each keyword, the top-ranked search results are collected, and structured infor-
mation such as timestamp, source, title, and content is extracted. For report-based sources (e.g., gov-
ernmental or institutional reports), all available documents are parsed, and only the sections whose
topics match the corresponding domain characteristics are retained. To prevent future ground-truth
leakage, two safeguards are applied. First, all collected texts contain explicit timestamps, ensuring
that no future documents are matched with past observations. Second, each text is further separated
into historical factual statements and predictive descriptions, and only factual content is retained.
This prevents any predicted future outcomes or implicitly revealed future values from leaking into
the model. To comprehensively evaluate the performance of MindTS, we evaluate 6 real-world
datasets that cover 4 domains. The anomaly ratio varies from 5.81% to 17.23%, the range of feature
dimensions varies from 1 to 9, and the sequence length varies from 1622 to 15981. Exogenous texts
are often collected from diverse sources such as official reports and news articles, which tend to
focus on background context or general conditions. We refer to such text as background text, and
the majority of the datasets we used also fall into this category. Therefore, our work focuses on this
type of text. Temporal alignment is achieved through binary timestamps that mark the start and end
dates of each text (Liu et al.,|2024b). This provides a feasible and realistic alignment strategy. For
example, in the energy dataset, exogenous texts are energy reports from the U.S. Energy Informa-
tion Administration, which describe contextual factors such as market demand and economic cycles.
Similar background-oriented alignment is common in industrial monitoring and other domains. Im-
portantly, our model does not heavily rely on strict temporal alignment. MindTS can operate under
window-level matching, making it applicable to practical scenarios where text is loosely or sparsely
aligned with time series.

To investigate whether MindTS can be extended to broader multimodal time series tasks, we also
evaluate its forecasting performance on three widely used benchmark datasets covering agriculture,
climate, and social good|Liu et al.|(2024b)). Detailed statistics are provided in Table E[

Table 3: Statistics and descriptions of datasets used for multimodal time series anomaly detection.
AR (%) denotes anomaly ratio.

EWJ
MDT

9.96 2658 2009.11.16 - 2020.6.9  Finance and news information collected from various financial
11.17 2732 2009.8.6 - 2020.6.12  news websites such as NASDAQ, Bloomberg, and others.

. Avg Total Timespan .
Dataset Dim AR (%) Length (start - end) Description
‘Weather 4 17.10 12339 2012.7.17 - 2023.10.20 Temperature and humidity statistics and reports collected from government websites.
Energy 9 17.23 1622 1993.4.5-2024.4.29  Gasoline price statistics and energy reports are collected from the U.S. Energy Information Administration.
Environment 1 5.81 15981 1980.1.1 -2023.9.30  Air Quality Index data and related reports collected from the U.S. Environmental Protection Agency and NBC.
KR 1 6.21 2655 2009.9.15 - 2020.4.1  Financial datasets include numerical stock data from Yahoo

1

1

A.2 BASELINES
We extensively compare MindTS against 19 baselines, including (1) LLM-based methods:

LLMMixer (LMixer) (Kowsher et al., [2024), UniTime (UTime) (Liu et all [2024c), GPT4TS
(G4TS) (Zhou et al., 2023), CALF (Liu et al. 2025); (2) Pre-trained methods: DADA (Shentu
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Table 4: The statistics of evaluation datasets for the forecasting task.

Prediction Avg Total Timespan
Length Length (start - end)

Agriculture 1 {6, 8,10, 12} 496 1983-2024 Retail Broiler Composite.
Climate 5 {6,810, 12} 496 1983-2024 Drought Level.
SocialGood 1 {6, 8,10, 12} 900 1950-2024 Unemployment Rate.

Dataset Dim Description

et al.; 2025), Timer (Liu et al., [2024d), UniTS (Gao et al., 2024); (3) Deep learning-based meth-
ods: ModernTCN (Modern) (Luo & Wang, |2024])), TimesNet (TsNet) (Wu et al., 2023), DCdetector
(DC) (Yang et al., 2023b), Anomaly Transformer (A.T.) (Xu et al.| [2021), PatchTST (Patch) (Nie
et al., 2022), TranAD (Tuli et al., 2022), DualTF (Nam et al., [2024), iTransformer (iTrans) (Liu
et al.| [2023); (4) Non-learning methods: PCA (Shyu et al.l [2003), IForest (IF) (Liu et al.| |2008),
LODA (Pevnyl 2016), HBOS (Goldstein & Dengel, 2012).

LLMMixer (LMixer) (Kowsher et al., [2024): Incorporates multi-scale decomposition of
time series data and leverages pre-trained LLMs to process both multi-scale signals and
textual prompts, effectively utilizing the semantic knowledge of LLMs for comprehensive
temporal analysis.

UniTime (UTime) (Liu et al.,2024c): Focuses on prompt engineering by introducing learn-
able prompts, prompt pools, and domain-specific instructions to elicit domain-relevant tem-
poral knowledge from large language models.

GPTATS (G4TS) (Zhou et al.L[2023)): Adopts selective fine-tuning of key LLM components
such as positional encodings and layer normalization, enabling efficient adaptation to time
series data while retaining most of the model’s pre-trained capabilities.

CALF (L1u et all [2025): Proposes a cross-modal fine-tuning framework that mitigates
distributional discrepancies between the temporal prediction and the aligned textual source
branches, enhancing alignment across modalities.

DADA (Shentu et al.| 2025)): Develops a general-purpose anomaly detection model for time
series, pre-trained on a wide range of domains and readily adaptable to various downstream
tasks.

Timer (Liu et al., [2024d)): Unifies heterogeneous time series into a single sequence and
performs predictive anomaly detection using a sequence modeling approach.

UniTS (Gao et al.|[2024): Transforms multiple tasks into a unified token-based representa-
tion using a prompt-based framework. For anomaly detection, it generates masked tokens
and utilizes denoised outputs to identify anomalies.

ModernTCN (Modern) (Luo & Wang, [2024): Adopts a purely convolutional architecture to

decouple and model temporal, channel-wise, and variable-wise relationships in multivariate
time series.

TimesNet (TsNet) (Wu et al., 2023): Employs a modular structure to decompose complex
temporal patterns into different frequency components and maps one-dimensional time se-
ries into a two-dimensional space to jointly model intra- and inter-period dynamics.

DCdetector (DC) (Yang et al.|[2023b): Uses contrastive learning from both patch-wise and
point-wise perspectives to discriminate between normal and anomalous patterns.

Anomaly Transformer (A.T.) (Xu et al., 2021): Based on the hypothesis that anomalies
exhibit stronger associations with nearby time points, it uses a minimax strategy to amplify
association differences and enhance anomaly discrimination.

PatchTST (Patch) (Nie et al.,2022): Applies channel-independent patching to multivariate
time series, improving the model’s ability to capture localized temporal features.

TranAD (Tuli et al.| |2022): A Transformer-based Anomaly Detection Model that amplifies
reconstruction error through adversarial training.

DualTF (Nam et al.l [2024): Employs a dual-domain architecture with nested sliding win-
dows, where outer and inner windows handle time and frequency domains, respectively,
aligning their anomaly scores to enhance detection.
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e iTransformer (iTrans) (Liu et al.,|2023)): Embeds time information into variable tokens and
applies attention mechanisms to model multivariate correlations.

* PCA (Shyu et al [2003): Detects anomalies by measuring the deviation of samples in the
principal component space, assuming anomalies lie far from the normal data distribution.

* [Forest (IF) (Liu et al [2008): Detects anomalies by explicitly isolating them through re-
cursive partitioning rather than modeling normal behavior.

* LODA (Pevny, 2016): Approximates joint distributions using multiple one-dimensional
histograms to identify outliers.

¢ HBOS (Goldstein & Dengell 2012): An unsupervised histogram-based anomaly detection
method.

A.3 METRICS

This subsection introduces the metrics used in this study, which are mainly categorized into two
types. The first is label-based metrics, including Affiliated Precision (Aff-P), Affiliated Recall (Aff-
R), and Affiliated F1-score (Aff-F) (Huet et al., [2022)), Accuracy (Acc), Precision (P), Recall (R),
F1-score (F1), Range Precision (R-P), Range Recall (R-R), and Range F1-score (R-F) (Tatbul et al.,
2018). The second is score-based metrics, including the Area Under the Precision-Recall Curve
(A-P) (Davis & Goadrich, |2006), the Area Under the Receiver Operating Characteristic Curve (A-
R) (Fawcett, 2000), the Range Area Under the Precision-Recall Curve (R-A-P), the Range Area
Under the Receiver Operating Characteristic Curve (R-A-R) (Paparrizos et al., 2022), the Volume
Under the Precision-Recall Surface (V-PR), and the Volume Under the Receiver Operating Char-
acteristic Surface (V-ROC) (Paparrizos et al.| [2022). MindTS evaluates all metrics to assess each
method’s performance.

A.4 IMPLEMENTATION DETAILS

We adhere to the evaluation protocol proposed in TFB (Q1u et al., 2024)) during testing by disabling
the “drop last” operation, ensuring a fair comparison across all models. We conduct experiments
using Pytorch with NVIDIA Tesla-A800-80GB GPUs. We employ the Adam optimizer (Kingma &
Bal [2015) during training. All baselines are based on our runs, using the identical hardware. We
employ official or open-source implementations published on GitHub and follow the configurations
recommended in their papers. The initial batch size is 64, which can be halved (down to a minimum
of 8) if an Out-Of-Memory (OOM) error occurs. We assign equal weights of 1 to optimization objec-
tives. Experiments show that this sample configuration delivers stable and competitive performance,
indicating that additional tuning is unnecessary.
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B LEMMA PROOFS
In this section, we explain the proof of Equation equation [§]in our paper.

Proof. The definition of mutual information is described as

P(Z exty Zcon
I(Ztext; Zcon) == Z Z P(Ztexta Zcon) IOg #

Ziext Zicon ( P()Z[eXt)P(Zcon) (13)
P Ztext; Zcon :|
=Bz Zwn 108 50— n0
Ziext, L [ g P(Zeorx)P(Zeon)

Then, by introducing a variational approximation G(Z.o,), we can further derive that

P(Ziexts Zcon)
E o8 57— Pz
Ziex,Zeon 108 P(Ziext)P(Zeon)

P(Zcon|ztexl)

=E log ——————— 14

ZiwZen |08 "7, (14)
[ P(Zcon | Ztexl) G(Zcon) :|

=Ez.. 2., |log———F— +10 .

Do 2 L 8 G(ZCOH) s ]P(Zcon)
Based on the KL-divergence, the second term of the above equation can be rewritten as
G(ZCOH)} |: G(ZCOD):|
E lo =E N P(Zicop) 1o
Ziext; Zeon |: g ]P(Zcon) Zlexllzuon ( Co ) g P(Zcon)

P(Z 15
= _Ezlcxl‘zcon |:]P><Zcon) 1Og G((Z(::)Z))] ( )
= ~Ezi|Zen [KL(P(Zeon)||G(Zeon))] -

Such that
I(Ztexd Zcon) = EZW [KL(P(ZCOH|Ztext)‘|G(Zcon))} - Ezlcxl‘zcon [KL(P(ZCOH)HG(ZCW))] (16)

< EZW [KL(P(ZCOH|Ztext) ‘ |G(Zconm

It should be noted that G(Z,,) is a variational approximation, such that the distribution G(Z,,)
can approximate P(Z..,) in the process of optimization, that is G(Zcon) = P(Zcon). In this case,
1(Ziex; Zeon) = Bz, [KL(P(Zcon|Ziext)||G(Zeon))], and the upper bound presented in Lemmais
tight. The proof is completed. O
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C ADDITIONAL EXPERIMENTAL RESULTS

In this section, we present the performance of MindTS and 19 numerical-only unimodal methods
on additional evaluation metrics. Specifically, Tables [SHI0| present the comparative evaluation re-
sults across the following metrics: (AUC-ROC, R-AUC-ROC, VUS-ROC), (Accuracy), (AUC-PR,
R-AUC-PR, VUS-PR), (Precision, Recall, F1-score), (Range-Recall, Range-Precision, Range-F1-
score), and (Affiliated-Precision, Affiliated-Recall, Affiliated-F1-score), respectively.

Tables[TT] [T2} [I3] [[4} [I3]and [I€] present the extension of 19 numerical-only unimodal methods
into multimodal forms using the MM-TSFLib framework (Liu et al., 2024b)), and compare them
with MindTS across a comprehensive set of 16 evaluation metrics.

Table 5: Average A-R (AUC-ROC), R-A-R (R-AUC-ROC) and V-ROC (VUS-ROC) accuracy for
MindTS and all numerical-only unimodal methods. The best results are highlighted in bold, and the
second-best results are underlined.

Datasets | Weather | Energy | Environment | KR | EWJ | MDT
Metric ‘ A-R  R-A-R  V-ROC ‘ A-R  R-AR V-ROC‘ A-R  R-A-R  V-ROC ‘ A-R R-AR V-ROC‘ A-R  R-A-R  V-ROC ‘ A-R  R-A-R  V-ROC

HBOS 64.47  54.12 54.16 | 60.80  51.06 51.50 | 5642 50.79 51.03 | 75.16  61.80 61.41 7182 61.02 62.07 | 60.26  54.86 55.30
LODA 69.67  56.88 57.00 | 59.54 5622 5590 | 5844  50.54 50.69 | 73.74  60.27 59.99 | 71.40  60.60 61.65 | 66.69 5556 55.98
IF 67.81  56.69 5645 | 6032 52.64 53.61 5237 4596 46.20 | 7445  61.10 60.70 | 69.20  57.94 59.24 | 6392 53.52 54.02
PCA 67.17  57.80 5738 | 61.14  52.64 53.07 | 48.60 3571 37.08 | 63.58 51.01 4751 | 5435 4378 4526 | 5451  41.90 44.09
iTrans 4122 7445 7337 | 65.60 64.25 63.06 | 8235 7098 73.81 8322 7441 76.12 | 76.37  68.29 72.16 | 79.32  67.65 71.87
DulTF | 64.49 2895 57.84 | 49.90  38.00 3836 | 46.64 31.84 6.30 68.77 5545 54.51 7412 60.49 64.31 7513 60.50 63.38
TranAD | 85.51 79.38 78.75 | 67.01  56.65 56.37 | 2632 9.85 1420 | 60.64  37.02 41.05 | 60.35 44.11 49.60 | 44.10 24.47 28.55

Patch 82.02  80.47 79.97 | 66.70  61.39 58.31 94.17 9112 90.86 | 82.15 7272 74.65 | 7853  69.26 71.56 | 84.55 7561 77.69
AT 4711 43.11 45.02 | 38.68 31.52 31.56 | 61.88 51.42 5198 | 5125 40.18 4197 | 43.81  27.50 3175 | 56.44 4141 44.53
DC 4790 4541 4556 | 48.75 4539 4593 | 5498 39.34 4128 | 5297 4175 43.04 | 5340  45.69 47.10 | 53.82  43.65 45.02
TsNet 81.10  83.11 8230 | 71.36  61.56 59.47 | 91.84  87.56 8797 | 85.88 78.29 79.00 | 82.39 74.22 75.76 | 86.67  77.01 79.56

Modern | 80.66  82.36 81.14 | 70.80  65.34 65.05 | 93.53  90.25 89.78 | 93.39  89.77 89.78 | 87.82 83.72 83.88 | 88.77 81.59 82.30
GATS 7447 7143 70.03 | 66.54 53.54 53.10 | 7579  63.10 66.79 | 7830  65.15 67.81 75.58  64.86 67.95 | 7479  59.00 62.30

CALF 7048  64.67 63.63 | 61.56  59.26 57.35 | 59.54 4491 5735 | 65.09 48.82 5322 | 6770 5557 59.03 | 53.13 3541 39.81
UniTS 81.22  75.55 75.08 | 63.38  52.12 5115 | 95.19  92.55 92.03 | 8095 71.29 7393 | 7987 71.32 7391 73.19  56.72 58.67
Timer 80.86  73.73 7322 | 60.54  46.82 46.03 | 9536  92.37 92.10 | 66.72  74.61 7599 | 76.15  64.71 75.99 | 75.65 5878 60.28
UTime 81.09  79.32 7845 | 64.17 5101 4997 | 9513 92.16 9177 | 8236  71.49 7355 | 7771 67.15 64.49 | 7559 5898 61.00
LMixer | 79.60  72.54 7171 6131 5525 53.04 | 9299 87.83 89.75 | 6577  49.01 5279 | 57.69 4175 46.80 | 60.30 4244 47.06
DADA | 66.37  61.95 61.03 | 6233 5578 54.37 | 7033 87.27 5437 | 79.53  69.91 70.82 | 79.11  68.44 7179 | 79.04  63.94 66.76

MindTS | 84.06  83.80 82.64 | 81.26 7551 7444 | 9633  94.04 93.78 | 93.51  89.60 89.86 | 87.95 83.19 84.12 | 9046 83.15 83.02

Table 6: Average ACC (Accuracy) measures for MindTS and all numerical-only unimodal methods.
The best results are highlighted in bold, and the second-best results are underlined.

Datasets | Weather | Energy | Environment | KR | EW]J | MDT

Metric | ACC | ACC | ACC | ACC | ACC | ACC
HBOS | 84.60 | 59.69 94.87 95.86 | 87.03 | 90.48
LODA | 87.60 | 52.92 92.03 95.85 | 86.28 | 90.48
IF 85.62 | 5538 84.87 94.54 | 86.84 | 88.10
PCA 6272 | 59.08 49.27 82.11 | 72.18 | 65.02
iTrans | 67.02 | 53.85 81.46 77.97 | 68.70 | 77.84
DulTF | 53.65 | 23.08 42.89 86.44 | 85.90 | 63.92
TranAD | 64.67 | 67.08 29.20 90.21 | 64.66 | 41.58
Patch 7776 | 49.85 90.06 84.37 | 85.53 | 83.88
AT 67.10 | 57.54 90.37 78.53 | 50.56 | 57.33
DC 72.85 | 71.08 54.45 72.32 | 82.71 | 74.36
TsNet | 8136 | 68.00 87.21 87.95 | 80.26 | 86.45
Modern | 8128 | 51.38 90.72 89.08 | 88.16 | 84.80
G4TS 65.19 | 39.38 82.37 7401 | 79.51 | 83.70
CALF | 6301 | 6831 66.18 87.19 | 76.70 | 71.25
UniTS | 7180 | 45.54 90.97 87.38 | 79.14 | 85.16
Timer | 6673 | 44.92 90.03 93.79 | 81.77 | 8242
UTime | 81.12 | 61.23 90.06 91.90 | 77.26 | 85.71
LMixer | 6576 | 45.23 89.97 76.27 | 71.43 | 6557
DADA | 5839 | 59.38 94.19 9247 | 8571 | 87.18
MindTS | 8476 | 80.00 |  90.09 | 9115 | 88.91 | 93.96
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Table 7: Average A-P (AUC-PR), R-A-P (R-AUC-PR) and V-PR (VUS-PR) accuracy measures for
MindTS and all numerical-only unimodal methods. The best results are highlighted in bold, and the
second-best results are underlined.

Datasets | Weather | Energy | Environment | KR | EWJ | MDT
Metric | AP R-A-P VPR | AP R-AP VPR| AP RAP VPR| AP RAP VPR| AP RAP VPR | AP RAP VPR

HBOS 31.16 4637 4658 | 21.55 42.14 4257 | 1697 49.84 5030 | 41.09 51.69 52.06 | 25.24 3848 41.19 | 28.66 43.16 4477
LODA | 4122 5475 55.03 | 20.75 4894 48.63 | 9.98 18.19 18.66 | 40.14 51.31 51.82 | 24.16 3746 40.08 | 29.81 43.18 44.63
IF 3544 49.65 49.66 | 21.17 4519 46.03 | 6.18 8.28 894 | 3221 43.07 4331 | 22.86 3474 37.81 | 2241 33.63 3533
PCA 25.02 4747 4713 | 21.69 43.89 4430 | 567 16.05 17.87 | 10.18 1899 22.13 | 1099 1649 1937 | 1229 1953 2293
iTrans 41.22 4293 4256 | 35.63 3571 3582 | 3490 23.09 24.87 | 36.05 2495 2737 | 3442 2499 2898 | 4691 3294 36.36
DulTF | 2522 2895 29.27 | 22.58 2294 23.52 | 535 547 6.53 | 21.96 17.73 17.92 | 4245 31.17 3375 | 39.84 3152 3383
TranAD | 60.90 52.04 52.08 | 36.38 33.17 33.80 | 7.09 4.49 491 | 5323 28.04 2842 | 27.85 1520 17.80 | 25.69 13.11  14.33
Patch 5339 49.81 50.03 | 3425 3525 3441 | 5892 4565 4578 | 53.60 3532 36.18 | 4791 3337 36.08 | 5411 3970 41.67
AT 1671 1885  19.17 | 14.02 1924 19.69 | 14.06 1622 18.14 | 7.01 6.44 7.94 8.97 9.01 10.85 | 15.02 1320 1593
DC 17.08 18.06 1833 | 17.69 21.77 2257 | 6.48 6.55 7.69 8.10 7.04 849 | 10.88 1252 1537 | 11.59 1330 1572
TsNet 47.65 5058 50.09 | 42.05 38.17 38.61 | 64.14 50.62 50.64 | 67.47 5283 51.60 | 5499 41.84 43.15 | 6557 48.60 50.54
Modern | 51.98 52,67 52.13 | 33.16 35.64 36.60 | 5534 4250 4226 | 56.93 40.69 3995 | 53.36 43.86 4475 | 6548 51.72 52.18
G4TS 4412 4137 4130 | 33.75 31.10 31.68 | 3537 22.14 2394 | 56.78 37.53 38.23 | 46.75 32.83 3563 | 60.40 4248 4481
CALF 37.38 3498 3507 | 3232 3261 3349 | 9.19 7.49 8.96 | 2526 1325 16.04 | 22.74 17.53 20.66 | 16.25 1254 15.15
UniTS 49.19 4431 4435 | 27.51 3070 31.04 | 64.13 50.55 50.24 | 5539 40.75 43.32 | 5033 36.79 39.32 | 53.44 36.14 37.61
Timer 48.87 4320 4321 | 38.05 2881 2946 | 6452 51.17 5142 | 66.72 5159 5141 | 4401 30.67 33.17 | 5586 37.54 38.38
UTime | 54.67 52.18 51.90 | 37.96 32.25 3288 | 62.59 48.80 4887 | 63.22 4636 46.87 | 4343 3031 3239 | 56.00 3732 3894
LMixer | 49.71 4340 4347 | 32.85 3059 3035 | 6449 4995 5294 | 28.19 1325 1513 | 1881 1236 1521 | 19.86 1530 19.10
DADA | 29.80 29.86 30.00 | 37.81 3347 34.18 | 70.33 5596 56.20 | 63.55 4695 4590 | 55.24 41.61 4336 | 63.03 44.63 46.81

MindTS | 58.38 57.85 57.48 | 50.99 50.19 5036 | 69.46 5681 5679 | 67.52 52.64 53.15 | 6175 4931 5042 | 7651  66.2 6544

Table 8: Average P (Precision), R (Recall) and F1 (F1-score) accuracy measures for MindTS and
all numerical-only unimodal methods. The best results are highlighted in bold, and the second-best
results are underlined.

Datasets

Weather | Energy | Environment | KR | EWJ | MDT
Metric R Fl | P R Fl | P R Fl | P R Fl | P R Fl | P R Fl

HBOS 5861 3389 4294 | 24.14 6250 3483 | 9231 1290 22.64 | 7391 51.52 60.71 | 38.89 52.83 44.80 | 64.52 32.79 4348
LODA | 73.97 4242 5392 | 2229 69.64 33.77 | 26.21 2043 2296 | 76.19 4848 59.26 | 36.84 65.73 4341 | 6286 36.07 45.83
IF 62.09 40.76 4921 | 23.03 6429 3439 | 815 1559 10.70 | 56.67 51.52 53.97 | 37.31 47.17 41.67 | 4545 3279 38.10
PCA 27.81 7393 4041 | 2416 9643 3512 | 551 4785 9.88 | 1556 4242 2276 | 13.18 32.07 18.68 | 13.89 40.98 20.75
iTrans 3048 7251 4292 | 2267 6786 3421 | 19.67 7096 3081 | 18.84 7879 30.41 | 2244 66.04 3349 | 30.00 73.33 42.65
DulTF 17.27  99.53 2943 | 17.76  46.43 30.00 | 543 53.76 9.87 5.82 81.82 10.87 | 36.90 5849 4526 | 31.50 65.57 42.55
TranAD | 31.65 9194 47.08 | 2524 69.64 32.70 | 2.29 26.88 428 | 17.48 5455 2647 | 13.02 47.17 2041 | 8.65 4426 1448
Patch 37.50 7322 49.60 | 21.96 8393 3481 | 3436 7796 47.70 | 2449 7273 36.64 | 36.36 60.38 4539 | 39.05 67.21 49.40
AT 13.89 1778 1559 | 9.02 1786 1250 | 23.48 29.03 2596 | 741 3030 11.90 | 855 4340 1439 | 1400 4590 2546
DC 1265 995 11.14 | 1538 10.71 12.63 | 7.07 5484 1253 | 746 3030 11.98 | 1563 18.87 17.09 | 15.04 27.87 19.54
TsNet 4640 5806 51.58 | 21.40 82.14 3395 | 29.24 84.41 4343 | 47.17 7576 58.14 | 37.14 73.58 4937 | 43.69 7377 54.88
Modern | 46.48 62.56 53.33 | 29.63 7143 41.88 | 35.66 74.19 48.17 | 33.77 7879 4727 | 4405 69.81 54.01 | 40.68 78.69 53.63
G4TS 27.80 7227 40.16 | 20.70 8393 3322 | 1446 6989 2396 | 1698 81.82 74.01 | 4328 54.72 4833 | 37.72 7049 49.14
CALF 2570 69.19 3748 | 26.67 50.00 3478 | 797 4570 13.58 | 23.08 4545 30.61 | 2222 56.60 31.94 | 18.68 27.87 22.39
UniTS 3588 8246 50.00 | 20.20 73.21 31.66 | 3596 8333 50.24 | 30.23 79.79 30.23 | 2695 7170 39.18 | 44.19 62.30 51.70
Timer 3179 86.02 4642 | 20.53 69.64 31.71 | 38.13 89.78 53.53 | 45.00 81.82 58.04 | 30.36 64.15 41.21 | 36.00 73.77 48.39
UTime | 4599 59.72 51.96 | 18.75 69.64 29.55 | 3527 8494 49.84 | 41.94 7879 5474 | 2671 73.58 39.20 | 45.12 60.66 51.75
LMixer | 29.14 8294 43.13 | 2095 7857 33.08 | 32.59 86.55 47.35 | 12.80 4849 2025 | 11.64 5094 1895 | 18.82 5246 27.71
DADA | 2403 6635 3529 | 20.10 73.21 31.54 | 50.00 7796 60.92 | 37.50 7272 49.48 | 38.14 69.81 4933 | 4483 6393 53.70

MindTS | 5477 6256 5841 | 45.16 7500 5638 | 36.21 92.47 52.04 | 3940 7879 5253 | 4634 7170 5630 | 69.44 81.97 75.19

o~

Table 9: Average R-R (Range-Recall), R-P (Range-Precision) and R-F (Range-F1-score) accuracy
measures for MindTS and all numerical-only unimodal methods. The best results are highlighted in
bold, and the second-best results are underlined.

Datasets | Weather | Energy | Environment | KR | EWJ | MDT
Metric | RR RP RF | RR RP RF | RR RP RF | RR RP RF | RR RP RF | RR RP RF

HBOS 22.51 36.88 2796 | 57.14 1.51 294 | 1050 92.11 18.85 | 48.15 7255 57.88 | 58.18 53.72 55.86 | 34.62 89.91 49.99
LODA | 27.78 7030 3982 | 67.86 20.64 31.65 | 1939 3155 24.02 | 4444 7738 5646 | 58.18 47.86 5252 | 3577 86.74 50.65
IF 28.08 50.24 36.02 | 64.29 5.13 9.50 | 1527 10.16 12.20 | 48.15 53.03 5047 | 51.36 50.52 50.94 | 33.85 63.78 44.22
PCA 61.71 1198  20.07 | 60.71 1.42 2.78 | 44.68 545 9.71 | 3926 10.81 16.95 | 34.09 1558 21.38 | 37.31 1647 22.86
DulTF 9399 12.08 2141 | 9500 634 1189 | 5437 443 819 | 7481 935 16.62 | 6409 4220 50.89 | 6885 37.61 48.65
iTrans 87.59 2328 36.79 | 73.10 19.49 30.78 | 70.35 19.32 30.31 | 81.48 15.01 2535 | 74.55 2041 3205 | 74.62 2744 40.13
TranAD | 84.84 24.02 37.44 | 4286 6.25 1090 | 24.63 445 754 | 5037 3266 39.62 | 51.36 14.64 2278 | 46.54 1894 26.92
Patch 62.83 3429 4437 | 76.67 11.28 19.67 | 78.77 37.10 50.44 | 7630 23.26 35.65 | 65.00 40.67 50.03 | 66.73 41.78 51.39
AT 2282 1472 17.92 | 22.86 1072 14.60 | 27.99 2477 26.28 | 31.85 599 10.08 | 4591 553 9.87 | 45.00 1034 16.81
DC 13.57 1497 1424 | 1671 1696 16.84 | 53.05 553 10.09 | 2444 6.56 10.34 | 16.18 10.87 13.00 | 26.54 14.58 18.82
TsNet 69.90 4145 5204 | 7405 1345 2276 | 8435 2693 4082 | 80.00 5392 6442 | 79.55 38.08 S51.51 | 71.54 4449 5486
Modern | 72.13 3946 51.01 | 7543 21.64 33.63 | 76.17 3827 5094 | 8123 41.04 5453 | 7773 49.72 60.64 | 79.04 42.01 54.86
GATS 76.08 21.70 33.77 | 78.57 1743 16.08 | 63.97 2381 3471 | 8519 22.85 36.04 | 68.64 3878 49.56 | 7231 39.02 50.69
CALF 6143 21.01 31.31 | 53.00 1944 2845 | 4648 6.88 11.99 | 51.85 14.05 22.10 | 61.73 21.85 3228 | 36.54 16.70 22.93
UniTS 79.39 30.15 4370 | 65.00 10.50 18.09 | 84.11 37.00 51.39 | 8593 30.37 44.88 | 80.91 2732 4085 | 66.15 3893 49.01
Timer 79.51 2520 3827 | 60.71 13.12 21.57 | 88.27 39.86 54.92 | 83.70 5556 66.78 | 7091 36.96 48.59 | 73.08 43.00 54.14
UTime | 66.97 4038 50.38 | 59.76 12.61 20.83 | 83.31 37.00 5125 | 83.70 4781 60.86 | 80.91 3429 4816 | 62.88 4563 52.89
LMixer | 70.37 2238 3395 | 77.14 1282 21.99 | 8577 30.81 4534 | 48.89 1135 1843 | 51.27 10.52 1746 | 52.69 1520 23.59
DADA | 65.03 2032 3097 | 75.00 21.13 3247 | 79.15 48.18 59.90 | 74.81 49.54 59.61 | 7545 4199 5395 | 6481 50.50 56.77

MindTS | 66.32 4571 5412 | 71.19  34.09 46.10 | 9243 3596 51.77 | 8395 4298 56.85 | 80.91 49.01 61.04 70.28  76.06

%
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Table 10: Average Aff-P (Affiliated-Precision), Aff-R (Affiliated-Recall) and Aff-F (Affiliated-
Flscore) accuracy measures for MindTS and all numerical-only unimodal methods. The best results
are highlighted in bold, and the second-best results are underlined.

Datasets

Weather | Energy | Environment | KR | EWJ | MDT
Metric ‘ Aff-P Aff-R  Aff-F ‘ Aff-P Aff-R  Aff-F ‘ Aff-P  Aff-R  Aff-F ‘ Aff-P Aff-R  Aff-F ‘ Aff-P Aff-R  Aff-F ‘ Aff-P Aff-R  Aff-F

HBOS 7447 3509 4770 | 54.62 57.14 5585 | 9443 12.61 2225 | 89.44 50.78 64.78 | 80.15 64.76 71.03 | 91.16 3630 52.33
LODA 81.60 38.78 5255 | 54.15 76.60 6345 | 71.07 3449 4645 | 96.99 4444 6096 | 79.74 6573 7206 | 91.26 3942 5556
IF 7625 41.88 7625 | 5450 7196 62.03 | 51.31 4252 46.51 | 8620 5805 69.38 | 79.18 5889 67.55 | 87.66 3875 53.74
PCA 59.14 7193 6491 | 5488 60.71 57.65 | 46.75 68.64 5562 | 61.94 4444 5175 | 5393 4848 51.06 | 56.98 5251 54.66
DulTF 55.12 9843 70.66 | 5322 99.39 69.32 | 50.04 87.83 63.76 | 49.01 88.62 63.11 | 7697 8047 78.68 | 76.21 80.53 78.31
iTrans 6498 9695 77.81 | 57.03 93.37 70.81 | 62.84 9126 7443 | 69.84 92.23 7949 | 66.91 9427 7827 | 69.46 90.65 78.66
TranAD | 64.62 92.16 7597 | 51.45 48.05 49.69 | 46.21 90.38 61.15 | 7525 71.37 73.26 | 56.68 88.87 69.22 | 51.82 8343 63.93
Patch 68.56 88.24 77.17 | 53.34 89.52 66.85 | 76.41 86.56 81.18 | 74.63 8509 79.52 | 74.19 7753 7582 | 7594 8334 79.47
AT 51.98 46.73 49.22 | 50.88 37.89 4344 | 7295 50.59 59.75 | 6490 7834 70.99 | 48.69 73.89 5870 | 61.41 71.50 66.07
DC 46.00 40.02 4280 | 66.01 3657 47.07 | 53.20 7498 62.24 | 61.26 62.64 6194 | 62.57 39.06 48.10 | 50.62 44.67 47.46
TsNet 7272 9035 80.58 | 53.07 87.26 66.00 | 70.05 94.35 80.41 | 86.06 8551 8579 | 75.06 89.92 81.82 | 76.93 83.50 80.08
Modern | 72.80 9145 81.06 | 60.89 84.47 70.76 | 77.12 85.44 81.07 | 79.60 89.87 84.42 | 7825 8533 81.64 | 75.60 86.79 80.81
GATS 59.73 9241 7256 | 53.06 88.58 66.37 | 6425 8294 7241 | 70.00 92.14 79.56 | 7454 79.84 77.10 | 77.43 8450 80.81
CALF 5589 91.67 69.77 | 59.14 78.18 67.34 | 5292 92.19 6724 | 6925 77.11 7297 | 6231 83.07 7121 | 5401 6833 6033
UniTS 6475 9248 76.17 | 53.58 7853 63.70 | 76.77 90.47 83.06 | 76.67 83.68 8224 | 69.18 8838 77.61 | 7582 7508 7545
Timer 63.70 9257 7546 | 5294 69.75 6020 | 7878 9241 8505 | 91.52 87.67 89.55 | 7285 84.08 78.06 | 78.02 79.00 78.51
UTime 69.40 85.12 7646 | 5276 75.12 6198 | 76.30 8794 81.71 | 83.61 8354 8858 | 68.09 91.89 7822 | 7890 73.84 76.28
LMixer | 6236 90.03 73.68 | 52.52 8826 6585 | 7791 9198 84.36 | 6324 8457 7236 | 5291 90.79 66.86 | 61.40 7530 67.65
DADA | 56.23 89.32 69.01 | 52.34 83.61 63.38 | 82.81 8546 84.11 | 86.72 81.86 8422 | 7790 8492 8126 | 81.81 7451 77.99

MindTS | 76.88 89.37 82.66 | 71.50 7747 7437 | 77.38 9501 8529 | 8591 9524 90.28 | 77.99 90.74 83.89 | 90.80 87.64 89.19

Table 11: Average A-R (AUC-ROC), R-A-R (R-AUC-ROC) and V-ROC (VUS-ROC) accuracy for
MindTS and baselines within the MM-TSFLib. The best results are highlighted in bold, and the
second-best results are underlined.

Datasets | Weather | Energy | Environment | KR | EWJ | MDT
Metric | AR RAR V-ROC | AR RAR VROC | AR R-A-R VROC | AR RAR VROC| AR RAR V-ROC | AR RAR VROC
iTrans* | 7348 7121 7011 | 6776 6707 6562 | 8133 70.60  73.66 | 8428 7571 7717 | 7823 7067 741l | 7811 6636  69.95

TranAD* | 85.51  79.33 78.72 | 67.00  56.66 56.38 | 2651 9.93 14.29 | 60.76  37.23 41.24 | 60.55 4436 49.85 | 44.36  24.82 28.88
Patch* 82.18  80.59 80.08 | 66.89  61.57 5847 | 9417 91.14 90.87 | 8228 7294 74.80 | 78.68  69.48 72.21 84.55  75.65 7772
TsNet* 81.28  83.22 82.06 | 71.53  61.97 59.80 | 91.91  87.70 88.14 | 8592  78.32 7894 | 8252 74.40 7591 82.05  68.57 73.57

Modern* | 53.07  81.67 81.67 | 7161  66.80 66.37 | 9276  89.53 89.14 | 93.66  90.20 89.22 | 87.96 83.90 83.98 | 88.99 8195 82.66
G4TS* 7893 7557 74.61 66.38  53.91 5352 | 9453 90.08 90.22 | 86.86  79.93 80.43 | 8336  75.52 7693 | 84.05 71.67 73.39
CALF 78.16 7246 71.88 | 66.57 6198 58.06 | 88.73  82.04 83.03 | 76.93  63.26 64.90 | 70.55  56.51 59.80 | 68.76  50.65 54.04
UniTS* | 81.38  75.67 75.21 63.89  52.76 51.89 | 95.16  92.50 9198 | 8129 71.69 7425 | 80.34 7191 7439 | 7335  56.87 58.82
Timer 80.96  73.74 73.26 | 60.65 47.01 46.39 | 9531  92.02 92.02 | 84.08 74.61 7592 | 76.59 6539 68.19 | 7554  58.66 68.19
UTime* | 79.71 7428 73.71 60.32  51.81 49.85 | 90.12  83.40 84.20 | 7845 65.34 66.96 | 76.07 6599 67.57 | 6495 4555 49.16

LMixer* | 82.77  75.73 7529 | 6294 4993 49.06 | 9525  92.04 91.74 | 84.02 74.58 75.21 77.63  67.12 69.37 | 76.83  60.21 61.72
DADA* | 67.03  62.52 61.51 63.08 57.33 55.63 | 93.10 87.74 88.02 | 80.22 71.03 72.08 | 7828 67.45 7106 | 7971 6552 68.06

MindTS | 84.06  83.80 82.64 | 81.26 7551 7444 | 9633  94.04 93.78 | 93.51  89.60 89.86 | 87.95 83.19 .84.12 | 9046 83.15 83.02

Table 12: Average ACC (Accuracy) measures for MindTS and baselines within the MM-TSFLib.
The best results are highlighted in bold, and the second-best results are underlined.

Datasets | Weather | Energy | Environment | KR | EWJ | MDT

Metric | ACC | ACC | ACC | ACC | ACC | ACC
iTrans* | 7609 | 63.69 87.31 70.62 | 7444 | 73.44
TranAD* | 64.67 | 70.15 44.73 87.95 | 6447 | 6538
Pach* | 7459 | 44.92 90.22 8437 | 8553 | 8132
TsNet* | 8201 | 66.15 93.25 94.35 | 84.02 | 76.92
Modern* | 80.23 | 62.46 90.50 89.45 | 87.22 | 84.62
GATS* | 69.89 | 4185 93.00 95.10 | 8534 | 91.21
CALF* | 6475 | 52.62 84.90 8136 | 80.45 | 79.12
UniTS* | 7058 | 47.69 90.09 89.27 | 8421 | 86.08
Timer* | 6750 | 4554 91.43 93.60 | 81.02 | 85.16
UTime* | 68.11 | 47.69 76.81 87.01 | 69.74 | 73.99
LMixer* | 68.69 | 52.00 90.56 94.92 | 82.14 | 88.46
DADA* | 61.02 | 45.54 94.22 92.47 | 86.84 | 87.18
MindTS | 8476 | 80.00 | 9009 | 9115 | 88.91 | 93.96
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Table 13: Average A-P (AUC-PR), R-A-P (R-AUC-PR) and V-PR (VUS-PR) accuracy measures
for MindTS and baselines within the MM-TSFLib. The best results are highlighted in bold, and the
second-best results are underlined.

Datasets

‘Weather | Energy | Environment | KR | EWJ | MDT
Metric A-P R-A-P V-PR ‘ A-P R-A-P  V-PR ‘ A-P R-A-P V-PR A-P R-A-P  V-PR A-P R-A-P V-PR A-P R-A-P  V-PR

iTrans* | 38.56 40.43 4030 | 35.68 36.17 36.21 | 3535 2391 2585 | 3789 25.61 28.12 | 33.63 2574 29.79 | 44.10 30.76  33.88
TranAD* | 60.91 52.04 52.09 | 36.34 33.13 3374 | 7.08 4.51 493 | 5327 28.07 2847|2789 1525 17.87 | 26.06 1331  14.55
Patch* 53.69 4995 50.17 | 3466 3551 34.66 | 58.65 4540 4552 | 53.60 3557 36.37 | 47.92 3345 3622 | 5452 39.92 4185
TsNet* | 4829 51.00 50.53 | 4247 3847 3888 | 63.82 5039 50.39 | 67.58 53.03 51.73 | 55.04 4195 4328 | 60.61 4155 5230
Modern* | 53.07 54.17 53.42 | 33.98 36.64 3744 | 5431 4153 4136 | 57.71 41.72 4086 | 5448 44.64 4541 | 6584 5231 45.88
G4TS* | 4931 4579 4583 | 3355 31.23 31.83 | 69.72 56.82 56.65 | 72.14 5899 57.93 | 57.69 4231 4393 | 68.63 51.69 52.65
CALF* | 4286 41.39 4143 | 3848 3510 34.11 | 4376 3042 31.72 | 51.19 3122 3152 | 3208 21.30 23.62 | 4275 26.64 28.70
UniTS* | 49.56 44.54 4458 | 27.56 31.03 3134 | 64.10 50.30 50.06 | 56.86 41.93 44.27 | 50.62 37.54 39.99 | 53.74 3628 37.78
Timer* | 49.24 4332 4336 | 37.69 2891 29.57 | 6431 5097 5120 | 66.57 51.81 51.56 | 4423 30.88 3336 | 5556 3736 38.23
UTime* | 46.37 43.05 43.19 | 32.68 30.32 3044 | 48.17 3455 3564 | 57.39 3770 37.12 | 33.10 2382 2571 | 39.63 2272 253l
LMixer* | 52.74 4590 4594 | 36.74 3038 3091 | 64.84 51.14 51.22 | 68.67 54.04 5298 | 4475 31.84 34.06 | 60.18 4195 42.61
DADA* | 3022 3028 30.42 | 3830 33.77 3438 | 70.37 5599 56.20 | 63.28 46.69 45.68 | 55.06 4134 43.18 | 63.19 4513 4722

MindTS | 58.38 57.85 57.48 | 50.99 50.19 50.36 | 69.46 56.81 56.79 | 67.52 52.64 53.15 | 6175 4931 5042 | 7651 6620 65.44

Table 14: Average P (Precision), R (Recall) and F1 (F1-score) accuracy measures for MindTS and
baselines within the MM-TSFLib. The best results are highlighted in bold, and the second-best
results are underlined.

Datasets Weather | Energy | Environment | KR | EWJ | MDT
Metric P R FI | P R FI | P R FI | P R FI | P R FI | P R F1

iTrans* | 36.62 54.50 43.81 | 2578 5893 3587 | 26.19 6505 3735 | 15.64 84.84 2642 | 22.15 6226 32.67 | 2640 77.05 39.33
TranAD* | 31.65 91.94 47.08 | 27.47 4464 3401 | 252 2258 454 | 2687 5455 36.00 | 1344 47.17 2092 | 1235 3443 1818
Patch* 3770 7441 50.04 | 2140 82.14 33.95 | 3484 7849 4826 | 2449 7273 36.64 | 36.36 60.38 4539 | 33.60 68.85 45.16
TsNet* | 47.77 5592 51.53 | 29.55 69.64 4149 | 4479 69.35 5443 | 53.19 7576 62.50 | 3545 73.58 4785 | 29.56 77.05 42.73
Modern* | 44.68 65.64 53.17 | 28.57 78.57 41.90 | 34.87 73.12 4722 | 3467 7879 48.15 | 4176 71.70 5278 | 40.50 80.33 53.85
GATS* 33.67 7844 4512 | 2044 82.14 32.74 | 4460 8441 5836 | 57.78 7879 66.67 | 37.62 71.70 49.35 | 59.15 68.85 63.64
CALF* | 30.14 80.57 4387 | 23.66 7857 36.36 | 25.04 80.11 38.16 | 20.54 69.70 31.72 | 27.43 5849 37.35 | 28.80 59.02 38.71
UniTS* | 3495 83.65 49.30 | 21.50 76.79 33.59 | 3541 8548 50.08 | 3421 7879 47.71 | 3524 69.81 46.84 | 41.94 63.93 50.65
Timer* 32.66 84.83 47.17 | 19.60 69.64 30.59 | 39.37 87.63 5433 | 49.06 7879 60.47 | 2931 64.15 40.24 | 4020 6721 50.31
UTime* | 32.64 81.28 46.57 | 20.00 67.86 30.89 | 18.97 9140 3142 | 27.50 66.67 3894 | 21.88 79.25 34.29 | 23.18 57.38 33.02
LMixer* | 3464 8578 4935 | 21.59 67.86 3276 | 36.88 87.63 5191 | 56.82 75.76 64.95 | 3091 64.15 41.72 | 4881 67.21 56.55
DADA* | 2509 6445 36.12 | 19.90 7143 31.13 | 50.17 7742 60.89 | 43.40 69.70 5349 | 4045 6792 50.70 | 4494 6557 5333

MindTS ‘54,77 62.56  58.41 ‘ 45.16 75.00 56.38 ‘ 3621 9247 52.04 ‘ 39.40 79.09 5253 ‘ 46.34 7170 56.30 | 69.44 81.97 7519

Table 15: Average R-R (Range-Recall), R-P (Range-Precision) and R-F (Range-F1-score) accuracy
measures for MindTS and baselines within the MM-TSFLib. The best results are highlighted in
bold, and the second-best results are underlined.

Datasets

Weather | Energy | Environment | KR | EWJ | MDT
Metric R-R R-P R-F ‘ R-R R-P R-F ‘ R-R R-P R-F ‘ R-R R-P R-F ‘ R-R R-P R-F ‘ R-R R-P R-F

iTrans* | 57.06 28.34 37.87 | 60.48 21.28 3148 | 63.78 2431 3520 | 8420 10.59 18.81 | 70.00 20.27 31.43 | 7846 2560 38.60
TranAD* | 87.59 2286 36.26 | 39.29 11.04 17.24 | 21.13 354  6.06 | 50.37 2875 36.61 | 51.36 15.69 24.04 | 36.53 19.41 2535
Patch* 7628 2640 39.23 | 73.10 13.12 22.25 | 79.48 3828 51.67 | 76.30 23.26 35.65 | 65.00 39.94 49.48 | 67.50 35.81 46.80
TsNet* 68.30 4444 5385 | 57.86 28.17 37.89 | 71.63 4448 5488 | 80.00 5885 67.82 | 79.55 38.61 51.99 | 7538 26.87 39.62
Modern* | 77.18 37.38 5037 | 77.57 24.80 37.58 | 7537 37.65 5022 | 8123 42.62 5591 | 80.00 4745 59.57 | 80.96 41.71 55.05
GATS* 78.89 2493 3789 | 72.62 1382 23.22 | 83.97 4696 60.23 | 83.70 64.52 72.87 | 78.64 4441 56.76 | 68.65 6101 64.61
CALF* | 7330 19.52 30.83 | 72.14 13779 23.16 | 7995 24.08 37.02 | 72.59 19.19 3035 | 6409 29.55 4045 | 59.81 29.60 39.60
UniTS* | 80.79 27.05 40.53 | 70.00 18.24 28.94 | 85.96 36.04 50.78 | 8593 34.94 4958 | 78.64 3793 5118 | 66.15 41.09 50.69
Timer* 76.94 2487 3759 | 60.71 1029 17.60 | 86.19 4123 5578 | 83.70 57.29 68.02 | 7091 37.62 49.16 | 67.50 49.55 57.15
UTime* | 74.30 19.17 3048 | 63.10 16.05 2559 | 90.21 17.39 29.16 | 71.11 2895 41.15 | 86.36 26.74 40.84 | 57.88 22.11 31.99
LMixer* | 78.67 26.09 39.18 | 57.14 14.18 2273 | 85.77 37.99 52.66 | 82.22 62.37 7093 | 7091 36.33 48.05 | 66.54 53.16 59.10
DADA* | 6245 20.51 30.88 | 7143 17.66 27.29 | 78.44 4840 59.86 | 7481 49.54 59.61 | 7409 4523 56.17 | 65.58 49.58 56.47

MindTS | 66.32 4571 5412 | 71.19 34.09 46.10 | 9243 3596 51.77 | 83.95 4298 56.85 | 80.91 49.01 61.04 | 82.88 70.28 76.06

Table 16: Average Aff-P (Affiliated-Precision), Aff-R (Affiliated-Recall) and Aff-F (Affiliated-
Flscore) accuracy measures for MindTS and baselines within the MM-TSFLib. The best results
are highlighted in bold, and the second-best results are underlined.

Datasets | Weather | Energy | Environment | KR | EWJ | MDT
Metric | Aff-P Aff-R  Aff-F | Aff-P  Aff-R  Aff-F | Aff-P Aff-R  Aff-F | Aff-P Aff-R  Aff-F | Aff-P Aff-R  Aff-F | Aff-P Aff-R  Aff-F

iTrans* 6534 89.01 7536 | 61.39 8849 7249 | 68.74 85.01 76.02 | 66.33 9580 7839 | 67.35 93.65 7823 | 65.66 9448 7747
TranAD* | 65.06 96.53 77.73 | 55.68 46.25 50.53 | 46.37 8521 6138 | 72.94 72.07 7250 | 56.74 88.12 69.03 | 58.33 67.33  63.60
Patch* 65.00 9559 77.05 | 5279 89.04 66.28 | 76.82 87.27 81.71 | 7463 8509 79.52 | 7407 7753 76.49 | 73.28 85.38 78.87
TsNet* 7296 8877 80.09 | 59.98 70.49 66.71 | 78.96 81.50 80.21 | 86.98 84.73 8584 | 7523 8992 81.92 | 70.26 94.56 80.62
Modern* | 71.93 94.02 81.50 | 61.88 87.67 72.13 | 77.34 85.83 81.36 | 80.39 89.87 84.87 | 77.77 8627 81.88 | 75.68 88.72 81.68
G4TS* 65.88 92.12 76.82 | 52.88 88.23 67.38 | 80.78 88.46 84.44 | 91.78 85.05 8829 | 76.80 86.52 81.37 | 86.29 77.87 81.86
CALF* | 60.87 9423 7396 | 56.97 85.13 6826 | 70.34 92.85 80.04 | 67.34 83.77 75.02 | 67.43 83.71 74.69 | 69.62 70.81 70.80
UniTS* | 64.53 9292 76.38 | 55.64 7936 6542 | 76.52 91.71 83.43 | 78.10 88.68 83.06 | 73.47 8322 78.04 | 78.40 75.08 76.70
Timer* 64.15 9136 7537 | 5324 69.68 6036 | 79.02 90.84 84.52 | 91.52 87.67 89.61 | 73.11 86.05 79.05 | 79.84 75.68 77.93
UTime* | 61.34 93.03 7393 | 5442 8187 6538 | 63.38 97.22 76.73 | 71.38 8449 7738 | 60.36 9298 7320 | 68.40 76.74 7233
LMixer* | 65.68 82.77 76.30 | 5497 69.68 61.46 | 78.10 90.01 83.76 | 92.60 87.59 90.03 | 71.76 8598 7823 | 84.87 72.70 78.31
DADA* | 57.53 8849 69.73 | 5295 8346 64.80 | 82.94 8475 83.84 | 86.72 81.86 8422 | 80.16 8270 81.41 | 81.44 7462 77.89

MindTS | 76.88 89.37 82.66 | 71.50 77.47 74.37 | 77.38 9501 8529 | 8591 9524 90.28 | 77.99 90.74 83.89 | 90.80 87.64 89.19
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D VISUALIZATION CASE STUDIES

To enable intuitive performance comparison, we conduct a comparative visualization of anomaly
scores between MindTS and GPT4TS (the original model and within the MM-TSFLib), as shown in
Figure[6] MindTS exhibits the most distinguishable anomaly scores compared to existing methods.
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Figure 6: Visualization comparisons of anomaly scores between MindTS and GPT4TS for all
datasets.

E ADDITIONAL MODEL ANALYSIS

E.1 COMPARISON OF DIFFERENT LLMS

To more convincingly demonstrate that the performance improvements of our work stem primarily
from architectural design rather than reliance on specific LLMs, we conducted experiments with
different LLMs. As shown in Table our findings indicate that MindTS maintains stable perfor-
mance across different LLMs and even achieves competitive results when using BERT. This suggests
that the choice of LLMs does not exhibit a significant correlation with MindTS performance, and
different LLMs can be flexibly adopted within MindTS.

Table 17: Comparison of different LLMs. Metrics include Aff-F, V-PR, and V-ROC for each dataset.

Method | ‘Weather | Energy | Environment | KR | EWJ | MDT
Metric ‘ Aff-F~ V-PR  V-ROC ‘ Aff-F V-PR  V-ROC ‘ Aff-F V-PR  V-ROC ‘ Aff-F  V-PR  V-ROC ‘ Aff-F ~ V-PR  V-ROC ‘ Aff-F V-PR  V-ROC

GPT2 82.71 57.81 8297 | 73.38 4378 6840 | 8495 5283 9396 | 91.21 5588 90.15 | 81.39 4897 80.96 | 85.56 60.24  80.81
BERT 80.48 57.84 8267 | 72.99 4307 66.65 | 84.75 5425 92.14 | 87.05 53.75 91.61 | 84.63 4395 7885 | 8230 53.68 7637
LLAMA | 81.34 5693 8239 | 75.64 4921 74.58 | 84.83 5299 92.86 | 90.81 5324 8517 | 80.17 4576 8233 | 8548 5924 8190
DeepSeck | 82.66 57.48  82.64 | 7437 5036 7444 | 8529 5679 9378 | 90.28 53.15 89.86 | 83.89 5042 8412 | 89.19 6544  83.02

E.2 CROSS-VIEW TEXT FUSION ANALYSES

In this paper, we use the endogenous text H,, as the query and the exogenous text HS,, as the key
and value to obtain the fused text representation Zy; to enhance semantic consistency with the time
series and extract the most relevant background information. We further conduct additional exper-
iments comparing different attention strategies to demonstrate the effectiveness of this design: (a)
MindTS (g/kv reverse), setting HS, as query and HY,, as key/value; (b) Mind TS (self-attention), us-
ing self-attention only; (c) MindTS (two-way), replace the one-way cross-attention with a two-way
block where exogenous text also queries endogenous features; and (d) MindTS, setting HY,, as

tex
query and H,, as key/value.
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As shown in Table [18] the configuration where HY,, is used as the query and HS,, as the key/value

yields the best performance. In cross-view attention, using HY,, as query and HS,, as key/value
allows the model to better extract supplementary information from exogenous text that is most rel-
evant to each time patch. By contrast, relying solely on self-attention limits the model’s ability to
directly learn interactions between different text modalities. Although two-way cross-attention de-
sign possesses a certain level of representational capacity, it does not bring significant performance
improvements on most datasets.

Table 18: Evaluation of cross-view text fusion variants.

Datasets | Weather | Energy | Environment | KR | EWJ | MDT

Metric ‘ Aff-F V-PR  V-ROC ‘ Aff-F V-PR  V-ROC ‘ Aff-F V-PR  V-ROC ‘ Aff-F V-PR  V-ROC ‘ Aff-F V-PR  V-ROC ‘ Aff-F V-PR  V-ROC
8229 5733 8227 7373 4822 73.06 | 83.94 5549 9264 | 87.14 50.72 88.72 8271 4999 8434 | 8795 6507 8230
81.69 56.69 8246 | 7247 48.17 TL.I8 8579 56.54 9341 8727 5248  90.31 8296 4628  83.59 8382 57.67 77.80

7943  57.17 8270 | 7257 4464 7042 | 8447 53.17 93.17 | 87.39 5454 9177 | 77776 4692 7828 | 81.12 5762 7523
82.66 5748 82.64 | 7437 5036 7444 | 8529 56.79 9378 | 90.28 53.15 89.86 | 83.89 5042 84.12 | 89.19 6544 83.02

MindTS (g/kv reverse)
MindTS (self-attention)
MindTS$ (two-way)
MindTS

E.3 COMPARISON WITH LLM CONCISER

To further illustrate the effectiveness of the content condenser, We add comparative experiments
among the following four model variants: (a) w/o text, input includes only time series (no text);
(b) w/o filtering, input includes time series and text, where the text is used without any redundancy
filtering; (¢) LLM-based compression, input includes time series and text, where the text is processed
by LLM-based compression for redundancy filtering (the content condenser is removed); (d)content
condenser, input includes time series and text, where the text is processed by our proposed content
condenser for redundancy filtering.

As shown in Table[T9] variant (d) achieves the best performance across all evaluation metrics. Vari-
ant (b) performs the worst, even lower than (a), indicating that unfiltered text introduces redun-
dancy that degrades performance. This confirms the existence of text redundancy. Variant (c) with
LLM-based compression to filter the text achieves better results than (a) and (b), demonstrating that
compression helps alleviate redundancy to some extent. Most importantly, variant (d) significantly
outperforms the LLM-based compression approach, highlighting the effectiveness of our proposed
content condenser. Unlike LLMs, our module is explicitly optimized under the multimodal objec-
tive to preserve time-aligned semantics and suppress irrelevant textual content, thereby enhancing
outlier detection performance. In contrast, LLM-based compression considers text-only semantics,
which fails to capture time-aligned semantics.

Table 19: Ablation on text redundancy filtering strategies. The best results are highlighted in bold.

Datasets | (a) w/o text | (b) w/o filtering | (¢) LLM-based compression | (d) content condenser
Metric | Aff-F V-PR  V-ROC | Aff-F  V-PR  V-ROC | Aff-F V-PR  V-ROC | Aff-F - V-PR - V-ROC

KR 84.11 45.11 7943 | 8052 37.82 7438 | 87.32 4795 88.52 90.28 53.15  89.86
EWJ 81.87 4522 7932 | 7879 3847 80.03 | 80.26 42.90 78.84 83.89 5042 84.12
MDT 84.00 5832 81.68 | 81.79 5140 7543 | 8431 58.74 81.13 89.19 6544  83.02

E.4 MULTIMODAL ANALYSIS

In Table we observe that compared to time series unimodal settings, incorporating time-text
multimodal settings consistently yields better results. Notably, on some datasets (e.g., Energy and
MDT), MindTS outperforms the baselines. As reported in Table 3 of the paper, these datasets are
relatively small in size but have high anomaly ratios, making anomalies more densely distributed
and easier to detect. For models with strong reconstruction capacity, this setting increases the risk
of overfitting, as anomalies may also be reconstructed too well, thereby degrading detection perfor-
mance. In contrast, simpler methods are less prone to reconstructing anomalies, which sometimes
results in competitive outcomes. Nevertheless, across all datasets, MindTS consistently demon-
strates superior performance over unimodal settings, effectively integrating multimodal information
to enhance anomaly detection.
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Table 20: The results of MindTS and MindTS(unimodel) across all datasets (all results in %, best
results are highlighted in bold).

Method | Weather | Energy | Environment | KR | EWJ | MDT
Metric ‘ Aff-F V-PR V-ROC ‘ Aff-F V-PR  V-ROC ‘ Aff-F V-PR V-ROC ‘ Aff-F V-PR  V-ROC ‘ Aff-F  V-PR  V-ROC ‘ Aff-F  V-PR  V-ROC
MindTS(unimodel) | 75.96  45.69 74.19 73.14  46.66 71.36 80.16  44.28 86.43 84.11 45.11 79.43 81.87 4522 79.32 84.00 5832 81.68

69.01 3000 61.03 | 6438 34.18 5437 | 84.11 5420 87.69 | 8422 4590 70.82 | 8126 4336 7179 | 7799 4681  66.76

ModernTCN 81.06 52.13  81.14 | 70.76 36.60 6505 | 81.07 4226 89.78 | 8442 3995 88.87 | 81.57 4475 8388 | 80.81 52.18 8230
Timer 7546 4321 7322 | 6020 2946  46.03 | 84.19 5142 9210 | 89.55 5141 7599 | 78.06 33.17 67.72 | 78.51 3838  60.28
MindTS 82.66 5748 82.64 | 7437 5036 7444 | 8529 5679 9378 | 90.28 53.15 89.86 | 83.89 5042 84.12 | 89.19 6544  83.02

E.5 VARIANT OF CONTENT CONDENSER

To provide a more comprehensive analysis, we examine a content condenser variant that explicitly
conditions its token retention probabilities on both text and unmasked time patches.

As shown in Table 2] our original design still outperforms the variant in most cases. This is because
allowing the content condenser to access unmasked time patches introduces a potential shortcut.
While the intention is to provide additional guidance, it makes the model focus on the time series
modality. This variant tends to identify text that appears superficially aligned with known temporal
patterns, rather than selecting text based on its actual semantic contribution to the reconstruction
task, which is achieve by the cross-modal semantic complementarities. As a result, the ability of the
condenser to filter redundant content may be reduced.

To assess the contribution of the smoothness term Lg;s, we conduct an ablation study. As shown
in Table 22] removing Lsys leads to a performance drop. This suggests that the absence of the
smoothness constraint enforced by Lg); may lead the model to generate incoherent and unstable
compressed outputs.

Table 21: Performance comparison of content condenser variants conditioned with and without
unmasked time patches. The best results are highlighted in bold.

Method | ‘Weather | Energy | Environment | KR | EWJ | MDT
Metric ‘ Aff-F V-PR  V-ROC ‘ Aff-F V-PR  V-ROC ‘ Aff-F V-PR V-ROC ‘ Aff-F V-PR  V-ROC ‘ Aff-F V-PR  V-ROC ‘ Aff-F  V-PR  V-ROC

82.02 56.74 8236 | 7329 49.01 7320 | 8246 56.77 93.89 | 8993 51.16 90.55 | 81.89 47.05 83.77 | 85.59 6272  80.67
82,66 5748 82.64 | 7437 5036 7444 | 8529 5679 9378 | 90.28 53.15 89.86 | 83.89 5042 8412 | 89.19 6544  83.02

Condenser Variant
MindTS

Table 22: Ablation study on Lgas (all results in %, best results are highlighted in bold).

Method | Weather | Energy | Environment | KR | EWJ [ MDT
Metric ‘ Aff-F  V-PR  V-ROC ‘ Aff-F  V-PR  V-ROC ‘ Aff-F  V-PR  V-ROC ‘ Aff-F  V-PR  V-ROC ‘ Aff-F  V-PR  V-ROC ‘ Aff-F  V-PR  V-ROC

MindTS (w/o Lsar) | 81.59 5588  81.48 | 73.26 4853  73.18 | 8340 54.19 91.58 | 8849 49.20 8831 | 8257 4925 83.64 | 8629 6323 8l.11
MindTS 82.66 5748 8264 | 7437 5036 7444 | 8529 5679 93.78 | 90.28 53.15 89.86 | 83.89 5042 84.12 | 89.19 6544 83.02

E.6 INFERENCE TIME

In Table 23] we compare MindTS with other models across different datasets in terms of inference
time and memory cost. Overall, MindTS achieves competitive inference time while maintaining su-
perior detection performance. Regarding memory usage, the additional cost is moderate and remains
well within the capacity of modern hardware, making MindTS practical for real-world deployment.

Table 23: Run times and memory costs on different datasets. Lower values represent better perfor-
mance. The notation with % denotes results obtained by extending the baselines using the recent
time-series multimodal framework MM-TSFLib.

Method \ Inference Time (s) | Memory Cost (GB)
‘ MDT KR EWJ ‘ MDT KR EWJ
MindTS 0.2302 0.1977 0.4130 14.69 14.62 14.41

ModernTCN* 0.1582  0.1383  0.3965 13.61 13.66  13.57
GPT4TS™ 02676  0.2425 04716 13.85 13.89 13.80
LLMMixer™ 0.2585  0.2104  0.4619 14.13 14.08 13.97
UniTime* 0.2537  0.2462  0.4760 14.20 14.15 14.06
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E.7 EXOGENOUS TEXT QUALITY ANALYSIS

From Table|24|to Table we compare different types of exogenous text quality variations to eval-
uate the robustness of our model: (a) noisy, by introducing random spelling errors within sentences;
(b) irrelevant, by replacing the original sentences with unrelated text from different domains; and
(c) incomplete, by removing portions of the text descriptions.

As shown in Table [24] under single-type settings, the performance of MindTS only slightly de-
creases compared to the clean setting. As shown in Table when the noise strength is within
a reasonable range (e.g., 0.2 and 0.4), the content condenser effectively filters out redundant text
information, thereby mitigating its impact. As a result, MindTS still maintains robust performance.
Under more challenging conditions, such as multiple text types combinations (Table or high
noise intensity (e.g., 0.8), the performance degradation becomes more noticeable. Nevertheless, the
overall results remain within acceptable bounds. Additionally, we clarify that the exogenous texts
in our datasets are collected from real-world sources (e.g., news, public reports), which inevitably
contain redundant or partially irrelevant content. Nevertheless, MindTS consistently achieves strong
results across multiple realistic datasets, demonstrating its robustness and adaptability to real-world
text quality variation.

Table 24: Results under different types of exogenous text quality variations (all results in %, best
results are highlighted in bold).

Method | MindT$S | MindTS (noisy) | MindTS (irrelevant) | MindTS (incomplete)
Metric | Afi-F VPR V-ROC | Aff-F VPR V-ROC | Aff-F V-PR V-ROC | Aff-F VPR V-ROC

MDT 89.19 6544 83.02 | 8745 62.12 81.02 | 86.54 60.10 80.17 | 87.85 6195  80.59
Energy | 74.37 5036 7444 | 7253 4742 7216 | 7221 4652 7129 | 73.13 47.62  73.50

Table 25: Results of the noisy method under different noise strengths (s).

Dataset | MindTS | s=0.2 | s=04 | s=0.6 | s=0.8
Metric ‘ Aff-F V-PR  V-ROC ‘ Aff-F  V-PR  V-ROC ‘ Aff-F  V-PR  V-ROC ‘ Aff-F V-PR  V-ROC ‘ Aff-F  V-PR  V-ROC
MDT ‘ 89.19 6544  83.02 ‘ 87.45 62.12  81.02 ‘ 86.38  60.03  79.46 ‘ 83.71 58.71 78.69 ‘ 79.84 55.21 76.46

Energy | 74.37 5036 74.44 | 7253 4942  73.16 71.17 4826  70.03 69.35 4722  69.97 66.69 45.02  66.13
Table 26: Results under combined types of exogenous text quality variations.
MindTS MindTS MindTS MindTS
Method ‘ MindTS ‘ (noisy + irrelevant) ‘ (noisy +i plete) (irrel t+i plete) ‘ (three types)

Metric | Aff-F VPR V-ROC | AffF V-PR V-ROC | Aff-F VPR V-ROC | AfF V-PR - V-ROC | Af-F - VPR V-ROC

MDT 89.19 6544 83.02 | 8491 5729 7823 | 8528 55.60 7834 | 84.81 5834 77.68 81.64 5217 7528
Energy | 74.37 50.36 74.44 | 7033 4471 70.18 | 71.89 4586 6996 | 69.74 4526 70.51 66.05 42.08 66.88
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F ALIGNMENT VISUALIZATION ANALYSIS

In this section, we visualize the learned similarity matrix between time series and text representa-
tions before and after alignment (see Figure[7). Before alignment, the similarity distribution appears
scattered, indicating weak semantic correspondence between modalities. After alignment, the simi-
larity becomes more concentrated along the diagonal, revealing clear associations between relevant
time series and text representations. This demonstrates that the proposed alignment module success-
fully establishes cross-modal consistency, thereby enhancing the model’s ability to utilize textual
information.

similarity heatmap before alignment similarity heatmap after alignment

09 8 7 6 5 4 3 2 1 0
110 9 8 7 6 5 4 3 2 1 0

0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11

Figure 7: Visualization comparisons between before and after alignment. The x-axis denotes time
representations of each patch, while the y-axis represents text representations of each patch.

In addition, we present qualitative visualizations that illustrate how alignment improves anomaly
detection decisions. Specifically, we compare the anomaly score with and without alignment, as
shown in Figure[8] The first row shows the original data with ground-truth anomaly positions, the
second row displays the anomaly scores of the model with multimodal alignment, and the third
row presents the anomaly scores of the model without multimodal alignment. When alignment is
applied, the model exhibits more distinguishable anomaly scores around true abnormal regions. In
contrast, the model without alignment fails to effectively increase the gap between the anomaly
scores of normal points and anomalies, leading to many false positives.

KR EW) MDT
1 B

Input
Time Series

Anomaly Score
(MindTs)

Anomaly Score
(MindTS_Without_Compare)

Figure 8: Visualization comparisons of the anomaly score between with and without alignment.

G PROMPT DESIGN ANALYSIS

The endogenous prompt in MindTS is constructed using the template shown in Figure[9] Inspired by

the analyses in TimeLLM (2023) and HiTime (2024), we explore how different

prompt designs affect model performance as follows:
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(1) Template variant (MindTS-T): prompts gen-
erated using a different template formulation, as

shown in Figure [Dataset description]: The weather data includes
temperature and humidity statistics as well as reports

(2) Statistical variant (MindTS-S): removing parts of | Soliected from government websites.

the statistical descriptors: (a) keeping only dataset [Task description]: Reconstruct the <seq_len> steps
description, (b) removing min, max, median values, given the previous <seq_len> steps.

(c) removing trend information, (d) removing lag in- [Input statistics]:

formation: - Minimum value: <min_value>

’ - Maximum value: <max_value>

. . . . - Median value: <median_value>

3) T.emporal granularity variant (MindTS-TG): ~ Trend of input: <trend_description>
changing endogenous text generation from the per- - Top k lags: <lags>

patch level to the per-sample level. \[End prompt] J

/[STar'T prompt] I
*kk

As shown in Table[27] altering only the template for-
mulation while keeping the content unchanged has
almost no impact on performance. When a few statistical descriptors are removed, the performance
decline is minor. However, when most of the statistics are omitted (MindTS-S(a)), performance
drops more noticeably, as the generated endogenous text becomes too sparse to convey meaning-
ful information. Changing the temporal granularity of endogenous prompt generation also leads
to noticeable performance differences, primarily because coarse-grained endogenous text weakens
MindTS’s ability to achieve fine-grained alignment. These results together confirm MindTS’s ro-
bustness to reasonable variations in prompt design. We clarify that the selected statistical descriptors
represent fundamental characteristics of time series. Therefore, the performance improvement does
not depend on carefully tuning the prompts but rather arises from the intrinsic capabilities of the
proposed model.

Figure 9: Prompt example.

Table 27: Ablation on endogenous prompt design across different variants.

Dataset | Metric | MindTS MindTS-S(a) MindTS-S(b) MindTS-S(c) MindTS-S(d) | MindTS-T MindTS-TG

Aff-F 89.19 83.22 87.59 87.62 87.14 88.38 84.78

MDT V-PR 65.44 57.27 64.05 64.49 64.33 64.65 58.49
V-ROC 83.02 78.72 82.75 82.13 82.90 83.19 80.75

Aff-F 74.37 66.65 73.74 74.03 73.85 74.21 69.31

Energy V-PR 50.36 44.29 48.77 49.25 49.81 49.34 45.32
V-ROC 74.44 68.59 72.33 71.78 72.66 72.14 67.97

H TIME SERIES FORECASTING EXPERIMENTAL RESULTS

Although MindTS is primarily designed for anomaly

detection, its architectural components are inher- :

ently extensible. MindTS proposes a fine-grained [ [2ier, o nethr dte s enpers
time-text semantic alignment mechanism consisting from government websites. [Task]: Reconstruct the
of endogenous text generation, cross-view text fu- | «seq_len> steps given the previous <seq_len> steps.
sion, and a multimodal alignment strategy to ensure Em‘;f i ';::“;Sj;mf';‘;”j":’;’;'jn:“:ﬁi : ol fo
that time series and text semantics are consistently | «downward> trend, and top k lags are <lags.
matched. Since accurate alignment is crucial for
multimodal tasks involving heterogeneous semantic
spaces, the alignment mechanism in MindTS pos-
sesses extensibility. Moreover, MindTS incorporates
a content condenser to filter redundant textual information before cross-modal interaction. Redun-
dant text is a common challenge in many multimodal applications. Together, these components
make MindTS applicable to other multimodal time series applications.

Figure 10: Different template formulation.

To further evaluate extensibility, MindTS is adapted to time series forecasting and compared with
forecasting-oriented baselines |Li et al.| (2025); [Liu et al.[(2024b). As shown in Table@ MindTS
achieves competitive performance across multiple forecasting datasets, demonstrating that the core
components generalize effectively beyond anomaly detection. These results confirm the extensibility
of MindTS to other multimodal time series applications.
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Table 28: Multimodel time series forecasting results with forecasting horizons F' € {6, 8,10, 12}.

Models MindTS Time-MMD TaTS
Metrics mse mae | mse mae | mse mae

6 0.167 0.269 | 0.146 0.263 | 0.140 0.251

8 0.195 0.283 | 0.189 0.310 | 0.187 0.282

Agriculture 10 | 0.228 0.316 | 0.254 0.320 | 0.244 0.320
12 | 0.258 0.343 | 0.338 0.369 | 0.290 0.350

AVG | 0.212 0.303 | 0.232 0.316 | 0.215 0.301

6 0.157 0.225 | 0.162 0.242 | 0.174 0.239

8 0.176  0.251 | 0.168 0.228 | 0.178 0.242

Traffic 10 | 0.167 0.213 | 0.178 0.237 | 0.185 0.243
12| 0.181 0.237 | 0.188 0.246 | 0.189 0.242

AVG | 0170 0.232 | 0.174 0.239 | 0.179 0.238

6 0.172  0.331 | 0.199 0.350 | 0.196 0.350

8 0.215 0.370 | 0.216 0.367 | 0.214 0.376

Economy 10 | 0.215 0.363 | 0.224 0.373 | 0.223 0.367
12 10242 0.379 | 0.239 0.388 | 0.239 0.388

AVG | 0.211 0.361 | 0.219 0.370 | 0.215 0.368

I ANALYSIS OF ENDOGENOUS TEXT GENERATION

To assess the actual benefit of the endogenous text generation step, we conducted an ablation study
in which the model directly uses Hy;y,e as the query to fuse exogenous text, without endogenous text
generation. As shown in Table 29] the model incorporating endogenous text achieves clearly better
performance. The endogenous text is derived directly from the time series, capturing temporal char-
acteristics that align closely with local patterns. Consequently, fusing endogenous and exogenous
texts enables the model to extract supplementary information from exogenous sources that is most
relevant to each time patch.

In contrast, directly using Hy,. as the query to fuse exogenous text does not yield performance
gains. This is likely because the time-series and text modalities inherently reside in different se-
mantic spaces; interacting them directly without prior alignment results in insufficient information
extraction due to modality discrepancies.

Table 29: Ablation study on Hyye as the query to fuse exogenous text, without endogenous text
generation (all results in %, best results are highlighted in bold).

Method | Weather | Energy | Environment | KR | EWJ | MDT

Metric | Aff-F V-PR V-ROC | Aff-F V-PR V-ROC | Aff-F V-PR - V-ROC | Aff-F - V-PR - V-ROC | Aff-F V-PR  V-ROC | Aff-F V-PR  V-ROC
MindTS (Hine as query) | 79.35  56.21 80.13 ‘ 7269 4752 7147 82.67 5245  92.87 ‘ 87.93 4827  89.02 8233 4898 8148 87.85 6433  81.26

Mind

82,66 5748 82.64 | 7437 5036 74.44 | 8529 5679 93.78 | 90.28 53.15 89.86 | 83.89 5042 8412 | 89.19 6544  83.02

J  ANALYSIS OF MULTIMODAL ALIGNMENT AS A STANDALONE OBJECTIVE

In this section, we compare multimodal alignment trained as a

standalone objective with the auxiliary alignment setting used 100

in MindTS. As shown in Table 30] training alignment as a %

standalone objective does not lead to performance improve- /-,A

ment. We clarify that although optimizing multimodal align- é o . i

ment alone may strengthen the alignment depth, it neglects = * c/

the specific role of the learned representations in anomaly de- 20

tection. In contrast, jointly optimizing alignment with other 0 kil il k. )
20% 40% 60% 80% 100%

objectives allows multiple losses to guide and regularize each
other, enabling the model to emphasize features that are both

semantically aligned and task-relevant. Figure 11: Scalability comparison
under different data sizes.

Data Size
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Table 30: Multimodal alignment as a standalone objective (all results in %, best in Bold).

Datasets |  MindTS (auxiliary) | MindTS (standalone)
Metric ‘ Aff-F  V-PR  V-ROC ‘ Aff-F V-PR  V-ROC

MDT 89.19 6544  83.02 | 8033 57.18 76.35
Energy | 7437 5036 7444 | 70.28 44.89  69.61

K SCALABILITY STUDIES

We would like to clarify that due to the current difficulty in obtaining larger-scale multimodal
datasets, we evaluate the scalability of MindTS by varying the proportion of training data (20%,
40%, 60%, 80%, 100%) on the available datasets. As shown in Figure @ the running time in-
creases approximately sub-linearly with the data size. As the data volume grows, total training time
increases because more iterations are required to process larger datasets. Compared with baselines,
MindTS has a certain advantage in training time (see Table [3I). These observations collectively
demonstrate that MindTS maintains reasonable computational scalability and remains practical for
real-world multimodal time series applications.

Table 31: Training time (s) comparison with baselines.

Datasets | MindTS | GPT4TS* | LLMMixer* | ModernTCN* | UniTime*

KR 80.83 81.17 84.35 19.72 77.98
EWJ 75.56 73.66 70.09 18.65 70.23
MDT 73.76 74.49 70.01 18.61 68.53
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