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ABSTRACT

Time series anomaly detection plays a critical role in many dynamic systems.
However, previous approaches have primarily relied on unimodal numerical data,
overlooking the importance of complementary information from other modalities.
In this paper, we propose a novel multimodal time series anomaly detection model
(MindTS) that focuses on addressing two key challenges: (1) how to achieve se-
mantically consistent alignment across heterogeneous multimodal data, and (2)
how to filter out redundant modality information to enhance cross-modal interac-
tion effectively. To address the first challenge, we propose Fine-grained Time-text
Semantic Alignment. It integrates exogenous and endogenous text information
through cross-view text fusion and a multimodal alignment mechanism, achiev-
ing semantically consistent alignment between time and text modalities. For the
second challenge, we introduce Content Condenser Reconstruction, which filters
redundant information within the aligned text modality and performs cross-modal
reconstruction to enable interaction. Extensive experiments on six real-world mul-
timodal datasets demonstrate that the proposed MindTS achieves competitive or
superior results compared to existing methods. We further conduct forecasting
extension experiments to assess the transferability of MindTS.

1 INTRODUCTION

Time series anomaly detection identifies anomalous events that significantly deviate from the ma-
jority within time series data. It has been widely applied in various high-risk domains, including
healthcare monitoring, financial fraud detection, and network intrusion detection (Wen et al., 2022;
Li et al., 2021; Yang et al., 2023a; Boniol et al., 2022; 2024; Sylligardos et al., 2023).

In various real-world scenarios, data often exists in a multimodal form, such as time series (Liu
& Paparrizos, 2024; Dai et al., 2024), text (Enevoldsen et al., 2024; Chen et al., 2024b), im-
ages (Costanzino et al., 2024; Zhou et al., 2024; Bhunia et al., 2024), and videos (Li et al., 2024;
Chen et al., 2024a; He et al., 2024), which collectively serve as complementary heterogeneous in-
formation sources. Among these, the text modality, which contains contextual descriptions and
provides rich background information for time series, is easy to obtain due to its wide availability.
For instance, financial experts combine transaction data on stocks with reports and policies to detect
market anomalies. Despite this, most existing anomaly detection models remain confined to uni-
modal numerical frameworks (Yang et al., 2023b; Wang et al., 2023; Song et al., 2023; Shentu et al.,
2025; Wu et al., 2025), overlooking the potential of utilizing multimodal data. Therefore, building
multimodal time series anomaly detection models naturally becomes a natural and necessary step
forward. In this work, we focus on the time series and text modalities, rather than aiming to build
a universal multimodal framework that also handles image or video modalities. This focus further
raises a key research question: how can we effectively integrate text information and time series?

Since different modalities reside in distinct semantic spaces, achieving precise alignment between
text and time series is crucial for leveraging textual information effectively. A straightforward ap-
proach (Jin et al., 2023; Zhou et al., 2023; Gruver et al., 2023; Cao et al., 2023; Kowsher et al.,
2024) is to generate endogenous text from the time series itself using large language models (LLMs),
which naturally ensures modality alignment (Figure 1a). However, such text typically offers limited
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The details of the input time 
series are provided below:

The air quality index in 
New York, NY showed 
poor levels of NO2. New 
York City has the 
nation's highest cancer 
risk due to air pollution, 
with residents being 
60% more likely to get 
cancer from air 
pollutants than people 
nationwide. ...... a State 
Assistance Contract 
(SAC) to encourage 
environmental protection.

Time:

Endogenous text:

Exogenous text:

[Statistic 1]:  The maximun of 
<max_val>.
[Statistic 2]: The minimun of 
<min_val>.
[Statistic 3]: The overall trend 
is <unpward or downward>.

......

LLM

time series 
representation

cross-view text 
representation

exogenous text
representation 

a is aligned with b 
under the unified 
representation space

ba

（a） （b） （c）

endogenous text
representation

fusion

×
×

Figure 1: (a) LLM-based methods generate endogenous text from time series without incorporating
exogenous information. (b) Exogenous-based methods incorporate text information by retrieving
background knowledge from the web. The absence of connecting lines indicates that the two modal-
ities are not aligned. (c) MindTS employs cross-view fusion to ensure semantic consistency between
the exogenous text and the time series, enabling more precise alignment across modalities.

semantic richness, as it can only capture intrinsic patterns within the time series. To address this
limitation, recent studies (Liu et al., 2024b; Li et al., 2025) have explored incorporating exogenous
text, such as news reports or documents, as external contextual information. However, the effective-
ness of such methods heavily depends on the quality of exogenous text. The external information
sources are often scattered, making semantic alignment with the time series inherently difficult (Fig-
ure 1b). Therefore, a key challenge is how to incorporate informative exogenous text while ensuring
semantic consistency and alignment with the time series.

Moreover, while text provides complementary information to time series, it may also introduce
redundant content that hinders anomaly detection. Existing multimodal time series methods perform
direct fusion strategies (Liu et al., 2024b; Jin et al., 2023), assuming that all text information is
equally useful. This overlooks the lengthy details or irrelevant descriptions within the text modality,
which may dilute the contribution of genuinely informative content. In natural language processing,
recent approaches (Cha et al., 2023; Liang et al., 2023) filter text representations using techniques
such as random masking or by applying random semantic parsing functions, such as paraphrasing,
summarization, or translation, to perturb the text for filtering (Ji et al., 2024). However, when applied
to multimodal time series, such strategies fail to consider the relevance of text content to the time
series, which may result in high-value text information being randomly masked while low-value
text information is retained. Therefore, another key challenge is how to mitigate the impact of
redundant content on cross-modal interaction through an effective filtering mechanism.

To address these challenges, we propose MindTS, a Multimodal Time Series Anomaly Detection
with Semantic Alignment and Condensed Interaction. Specifically, we propose a fine-grained time-
text semantic alignment module that divides the text into two complementary views: exogenous text
and endogenous text. The exogenous text contains background information from external sources,
suitable for sharing across different time steps. In contrast, the endogenous text is derived directly
from the time series, exhibiting time-specific characteristics correlated with temporal patterns. To
achieve semantic consistency alignment between time-text pairs, we apply cross-view fusion to in-
tegrate the complementary strengths of the two text views. The resulting fused text is further aligned
with the time series (Figure 1c). Furthermore, we propose a content condenser reconstruction mech-
anism to filter redundant text information and enhance the effectiveness of cross-modal interaction.
Specifically, given aligned text representations as input, the content condenser filters out redundant
information from the text by minimizing mutual information, resulting in condensed text representa-
tions. The condensed text representations are then used to reconstruct the masked time series, which
strengthens cross-modal interaction. The contributions are summarized as follows:

• We propose a novel fine-grained time–text semantic alignment method that jointly exploits
both exogenous and endogenous text representations of time patches. The exogenous text
introduces external background knowledge, while the endogenous text captures specific
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characteristics directly derived from time series. By integrating these two complementary
text views, our approach ensures more precise semantic alignment with text and time series.

• We propose a novel method, content condenser reconstruction, to filter redundant textual
information. By performing cross-modal reconstruction of time series from condensed text,
the content condenser reconstruction enhances interaction between modalities.

• Our proposed multimodal anomaly detection model, MindTS, has been extensively evalu-
ated on multimodal datasets. Compared with existing unimodal baselines and multimodal
time series frameworks, MindTS achieves competitive or superior performance.

2 RELATED WORK
2.1 TIME SERIES ANOMALY DETECTION

Time series anomaly detection has been extensively studied, and existing methods can be broadly
categorized into non-learning (Breunig et al., 2000; Goldstein & Dengel, 2012; Yeh et al., 2016),
classical machine learning (Liu et al., 2008; Ramaswamy et al., 2000; Shyu et al., 2003; Yairi et al.,
2001), and deep learning (Xu et al., 2021; Deng & Hooi, 2021; Yang et al., 2023b; Shentu et al.,
2025). Deep learning methods can be further divided into reconstruction-based, prediction-based,
and contrastive learning-based. DADA (Shentu et al., 2025) adopts a dual-adversarial decoder
framework to reconstruct both normal and abnormal series, where abnormal samples are expected
to yield high reconstruction errors. GDN (Deng & Hooi, 2021) couples structure learning with
graph neural networks by using attention over neighboring sensors to forecast values, and derives
anomaly scores from prediction errors. DCdetector (Yang et al., 2023b) is the first to introduce con-
trastive learning into time series anomaly detection. It maps samples into a shared embedding space,
where normal points exhibit strong correlation with others, while anomalous points show weak cor-
relations. Although these methods have achieved impressive performance in unimodal time series
anomaly detection, they often overlook the rich semantic information available in other modalities,
which limits their robustness in complex real-world scenarios.

2.2 MULTIMODAL TIME SERIES ANALYSIS

Multimodal approaches mainly exploit time series and textual information to enhance the robust-
ness and effectiveness of time series analysis. Unlike traditional unimodal time series methods,
multimodal time series analysis (MMTSA) presents greater challenges due to the complexity of
cross-modal interaction and heterogeneous data integration. With the recent advances in LLMs,
mainstream research in MMTSA (Liu et al., 2024b; Pan et al., 2024; Liu et al., 2024c; Kowsher
et al., 2024; Wang et al., 2025) has focused on transforming time series data into text or image
formats and feeding them into LLMs or vision models, respectively. These approaches typically
employ a multimodal fusion network to integrate information across modalities and boost overall
model performance. For instance, LLM-Mixer (Kowsher et al., 2024) decomposes time series into
seasonal and trend components, and feeds them along with textual prompts into a frozen pre-trained
LLM. The LLM then generates predictions by leveraging both semantic knowledge and temporal
structure. Time-MMD (Liu et al., 2024b) attempts to incorporate exogenous text to improve time
series analysis tasks. However, exogenous textual sources are often scattered and weakly correlated
with the semantics of specific time segments. Relying solely on hard alignment through temporal
step synchronization overlooks deeper semantic associations between time and text. Furthermore,
text data often contains much redundant content. Without appropriate selection mechanisms, cross-
modal interaction may introduce semantic redundancy, which hinders the identification of anoma-
lous patterns. To address these issues, our proposed method achieves precise alignment between se-
mantically consistent time-text representations by integrating exogenous and endogenous text infor-
mation. Moreover, we introduce a mutual information minimization mechanism and a cross-modal
reconstruction strategy to achieve text compression and modality-level time series reconstruction.
These strategies improve the model’s ability to identify anomalous patterns.

3 METHODOLOGY

Given input time series of length T as X = (x1, . . . , xT ) ∈ RT×D, where D is the number of
features. Traditional unimodal time series anomaly detection outputs Y = (y1, . . . , yT ) ∈ {0, 1}T ,
where yt = 1, t ∈ {1, 2, ..., T}, indicates that timestamp t is identified as an anomaly. In the task of
multimodal time series anomaly detection, we consider the time series data with other modalities.
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Figure 2: MindTS overview. Given an input time series X, we first apply instance normalization and
patching, then encode the patches using a time encoder. (a) Each patch generates its corresponding
endogenous text O. Along with the input exogenous text C, both views are encoded and (b) fused
via cross-view fusion to obtain fused text representations Ztext. Time and text representations are
then semantically aligned via a multimodal alignment layer. (c) To mitigate textual redundancy, the
aligned text is compressed using a content condenser. Finally, (d) the condensed text Zcon is used to
reconstruct the masked time series, enhancing cross-modal interaction.

Here we specifically focus on fusing a time series modality X with a text modality, where the exoge-
nous text modality is represented as a sequence of length S, given by C = (c1, . . . , cS) ∈ RS . Sim-
ilar to the unimodal time series anomaly detection, the problem of multimodal time series anomaly
detection also determines whether yt is an anomaly or not.

3.1 OVERALL FRAMEWORK

In order to resolve the problem of multimodal time series anomaly detection, we propose the model
MindTS, as illustrated in Figure 2. This model provides an anomaly identification mechanism from
a cross-modal perspective based on the input time series and text.

The time series is first input to instance norm layer to perform instance normalization and channel-
independent processing (Ulyanov et al., 2017; Kim et al., 2021), then the result is output to patching
& time encoder layer for the fine-grained modeling of patches. By the widely used time transformer
(Nie et al., 2022), the following results are derived through the time encoder:

P =
{
P1

time,P
2
time, . . . ,P

N
time

}
= Patching(X), Htime = TimeEncoder(P), (1)

where Pi
time ∈ Rp×D denotes the i-th patch of X, Htime ∈ RN×dmodel , N = [T −p]/l+1 is the total

patch number, p is the patch size and l is the horizontal sliding stride. Furthermore, endogenous text
O =

{
o1, o2, ..., oN

}
are generated for each patch, where oi is the text prompt generated by LLMs

based on the i-th patch. In addition, X is processed through patching & masking and a shared-weight
time encoder to obtain the masked time representation, denoted as H̃time.

Next, endogenous text O and exogenous text C are fed into text encoder to model their text repre-
sentations HO

text and HC
text, respectively. Based on them, the cross-view text fusion layer is employed

to capture semantic dependencies, resulting in the text representation as Ztext, which is semantically
correlated with the corresponding patch representation Htime. Subsequently, a multimodal alignment
layer is employed to align semantically consistent time-text pairs.

Finally, based on the aligned text representations Ztext, the content condenser filters out redundant
text, giving rise to condensed text Zcon. It is then utilized together with the masked time representa-
tion H̃time by cross-modal reconstruction, which produces the final output X̂ and facilitates modality
interaction. Reconstruction error is the anomaly score.
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3.2 FINE-GRAINED TIME-TEXT SEMANTIC ALIGNMENT

The fine-grained time-text semantic alignment consists of three components: 1) the endogenous text
generation, 2) the cross-view text fusion and 3) the multimodal alignment strategy. Specifically,
cross-view text fusion is designed to integrate text from different views (endogenous and exogenous
text), helping enhance semantic consistency between text and time series. The multimodal alignment
aims to guide the alignment between time representations Htime and text representations Ztext from
cross-view text fusion within a unified space.

Endogenous text generation. To mitigate semantic drift and output uncertainty in directly convert-
ing time series into natural language (Kowsher et al., 2024; Jin et al., 2023), we design endogenous
text prompt templates (e.g., mean, extrema, trend) and generate specific endogenous text for each
patch. In this case, the limitations caused by generating a single global prompt can be avoided, and
the dynamic property of the time series is matched.

The text encoder leverages open-source LLMs (Liu et al., 2024a; Radford et al., 2019) to encode the
endogenous text, resulting in the time-specific text representation HO

text ∈ RN×dmodel as follows:

HO
text = TextEncoder(

{
o1, o2, ..., oN

}
), (2)

where oi ∈ Re×dmodel , e is the LLM’s vocabulary size. This prompt leverages the semantic knowl-
edge of LLM to enhance semantic consistency with the time series. On the other hand, to fully ex-
ploit the exogenous text C information, we treat it as a shared text across all patches. This approach
ensures that the model does not lose background context due to the limited scope of individual
patches. Similarly, the exogenous text encoded by a text encoder, resulting in HC

text ∈ R1×dmodel .

Cross-view text fusion. To leverage the rich background knowledge in exogenous text and the
strong semantic relevance of endogenous text to time series, MindTS integrates text information
from endogenous and exogenous text views, introducing background knowledge while enabling
precise mapping to specific patches. Specifically, we adopt a cross-view attention mechanism that
can selectively extract complementary information from two text views. To enhance semantic con-
sistency with the time series and extract the most relevant background information, we use the
endogenous text HO

text as the query and the exogenous text HC
text as the key and value to obtain the

fused text representation Ztext. This process is expressed as:

Ztext = LayerNorm
(
Ẑtext + FeedForward

(
Ẑtext

))
, (3)

Ẑtext = LayerNorm
(
HO

text + CrossAttn(HO
text,H

C
text,H

C
text)

)
, (4)

where Ẑtext is intermediate variable. LayerNorm(·) denotes layer normalization as widely adopted
in (Vaswani et al., 2017; Qiu et al., 2025; Chen et al., 2024c), FeedForward(·) denotes a multi-layer
feedforward network, and CrossAttn(Q, K, V) represents the cross-attention layer.

Multimodal alignment strategy. Time series manifest as continuous signals with strong temporal
dependencies, while text is discrete, making semantic alignment between the two modalities dif-
ficult. Traditional methods (e.g., add or concatenation) fail to capture the semantic alignment. To
address this, we employ contrastive learning to explicitly align the two modalities, enhancing seman-
tically consistent alignment by pulling positive pairs (aligned time-text) closer and pushing negative
(unrelated ones) farther. Specifically, the similarity matrix between the two representations, Htime
and Ztext, is indicated as follows:

KTT =

k(h
1
time, z

1
text) · · · k(h1

time, z
N
text)

... k(hj
time, z

g
text)

...
k(hN

time, z
1
text) · · · k(hN

time, z
N
text)

 ∈ RN×N , (5)

where k(·, ·) denotes the similarity between time and text representations. If j = g, the k(hj
time, z

g
text)

is identified as a positive pair. Therefore, multimodal alignment loss LMA is defined as:

LMA = − 1

2N

 N∑
j=1

log
exp

(
k(hj

time, z
j
text)/τ

)
∑N

g=1 exp
(
k(hj

time, z
g
text)/τ

) +

N∑
g=1

log
exp (k(hg

time, z
g
text)/τ)∑N

j=1 exp
(
k(hj

time, z
g
text)/τ

)
 ,
(6)

where τ denotes the temperature.
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3.3 CONTENT CONDENSER RECONSTRUCTION

As shown in Figure 2, the content condenser reconstruction includes: 1) the content condenser, and
2) the cross-modal reconstruction. Specifically, after aligning fine-grained representations that are
semantically consistent across modalities, the content condenser filters redundant text information
via masking. It utilizes the condensed text representation to reconstruct the time series.

Content condenser. Inspired by the Information Bottleneck (IB) principle (Tishby et al., 2000;
Tishby & Zaslavsky, 2015), we propose the content condenser to filter redundant representations
based on the aligned text representation Ztext. This process produces a condensed text representation
Zcon while preserving essential information for time series. Formally, the objective of finding the
optimal condensed representation Zcon is defined as:

Z∗
con = arg min

P(Zcon|Ztext)
I(Ztext;Zcon) +R(X̂,Zcon), (7)

where I(·; ·) denotes the mutual information between aligned and condensed text representations.
Minimizing it encourages the model to learn more compact representations. R(·, ·) denotes the
reconstruction objective. Reconstruction methods detect anomalies by low errors on normal points
and high errors on anomalies. Based on this, we introduce cross-modal reconstruction to ensure the
condensed text retains sufficient information to recover the time series X̂.

Specifically, given the aligned text representations Ztext, we use an MLP to compute a probability
matrix Ψ = [ψi]

N
i=1. A binary mask F ∼ Bernoulli(Ψ) ∈ {0, 1}N is then sampled, where the higher

the value of ψi, the more likely it is to sample Fi = 1. The condensed representation is obtained
as Zcon = Ztext ⊙ F , where ⊙ is the element-wise multiplication. To enable gradient propagation
during sampling, we adopt the straight-through estimator trick (Jang et al., 2016).

In order to control the marginal distribution of condensed text, thus regulating the condensing level,
from the idea of latent distribution with variational auto-encoders, we introduce the distribution
G(Zcon) ∼

∏N
i=1 Bernoulli(r) subject to a hyperparameter µ ∈ (0, 1). By adjusting the value of µ,

we can restrain the condensing degree of the proposed model. To quantify the mutual information,
the following lemma is proposed to get the upper bound before building the loss function.
Lemma 1. For the mutual information I(Ztext;Zcon), there exists the following tight upper bound
that can approximate its value:

I(Ztext;Zcon) ≤ EZtext
[KL(P(Zcon|Ztext)||G(Zcon))], (8)

where KL(·) denotes the Kullback–Leibler (KL) divergence, defined as KL(P(x)||G(x)) =∑
x P(x) log

P(x)
G(x) , P(·) is the probability distribution and G(·) is a variational approximation. The

proof is given in Appendix B.

Utilizing the upper bound in Lemma 1, we can compute the KL divergence to obtain the loss function
LCC as follows:

LCC =

N∑
i=1

ψi log
ψi

µ
+ (1− ψi) log

1− ψi

1− µ
. (9)

Another issue is that the condensed text might possess a large difference between the i-th patch and
the (i+1)-th patch, which results in the discontinuity and instability of the condenser reconstruction.
To avoid this problem, we introduce ϕi =

√
(ψi+1 − ψi)2 to compute the mask score difference of

two Bernoulli samplings. Then, LSM = 1
N

∑N−1
i=1 ϕi is proposed to guarantee the smoothness of

condensed text representation, ensuring stability in the learned features. In summary, the loss of the
content condenser module is defined as LCL = LCC + LSM .

Cross-modal reconstruction. To enhance cross-modal interaction, a straightforward approach
would be to perform time series reconstruction directly from the entire time series and the con-
densed text. However, as the time series itself contains abundant information for reconstruction, this
process cannot fully encourage the model to capture deeper cross-modal dependencies. To address
this, we design a more challenging objective: time series reconstruction with the random masked
time series X̃ and condensed texts Zcon. This design strengthens cross-modal dependency and en-
courages the condensed representation to preserve richer time series–related information. As shown

6
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in Figure 2 (d), X is processed by patching & masking to obtain X̃, which is then encoded by a time
encoder to produce H̃time. The encoder shares weights with another time encoder. Given the inputs
H̃time and Zcon, the reconstructed output X̂ ∈ RT×D is obtained X̂ = Projection (UTT), and UTT is
denoted as:

UTT = FeedForward
(
H̃time + CrossAttn

(
H̃time,Z′

con,Z
′
con)

))
, (10)

where Z′
con = MSA(Zcon,Zcon,Zcon) denotes the self-attention layer. The cross-modal reconstruc-

tion function is formalized as:
LRec =

∥∥∥X− X̂
∥∥∥2
F
. (11)

3.4 JOINT OPTIMIZATION AND INFERENCE

Our total loss L primarily consists of three components: the multimodal alignment loss LMA, the
condenser loss based on condensed text LCL, and the cross-modal reconstruction loss LRec. There-
fore, the proposed total loss function is written as:

L = LMA + LCL + LRec, (12)
During the inference stage, the anomaly score at the current timestamp is computed based on the
mean squared error between the time input X and its reconstructed output.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. We conduct experiments using 6 real-world datasets (Weather, Energy, Environment, KR,
EWJ, and MDT) to assess the performance of MindTS. Each dataset contains both numerical time
series and corresponding exogenous text. More details of the datasets are included in Appendix A.1.

Baselines. We extensively compare MindTS against 17 baselines, including (1) LLM-based meth-
ods: LLMMixer (LMixer) (Kowsher et al., 2024), UniTime (UTime) (Liu et al., 2024c), GPT4TS
(G4TS) (Zhou et al., 2023); (2) Pre-trained methods: DADA (Shentu et al., 2025), Timer (Liu et al.,
2024d), UniTS (Gao et al., 2024); (3) Deep learning-based methods: ModernTCN (Modern) (Luo &
Wang, 2024), TimesNet (TsNet) (Wu et al., 2023), DCdetector (DC) (Yang et al., 2023b), Anomaly
Transformer (A.T.) (Xu et al., 2021), PatchTST (Patch) (Nie et al., 2022), TranAD (Tuli et al., 2022),
iTransformer (iTrans) (Liu et al., 2023); (4) Non-learning methods: PCA (Shyu et al., 2003), IForest
(IF) (Liu et al., 2008), LODA (Pevnỳ, 2016), HBOS (Goldstein & Dengel, 2012). Further details
concerning baselines are available in Appendix A.2.

Metrics. We adopt Label-based metric: Affiliated-F1-score (Aff-F) (Huet et al., 2022) and Score-
based metric: VUS-PR (V-PR) (Paparrizos et al., 2022), VUS-ROC (V-ROC) (Paparrizos et al.,
2022) as evaluation metrics. We report the algorithm performance under a total of 16 evaluation
metrics in the Appendix A.3. More implementation details are presented in the Appendix A.4.

4.2 MAIN RESULTS

We evaluate MindTS with 17 competitive baselines on 6 real-world datasets, as shown in Table 1.
MindTS achieves state-of-the-art (SOTA) performance across all datasets under the Aff-F, V-PR, and
V-ROC metrics, which demonstrates that MindTS effectively combines multimodal data to detect
anomalies. We further incorporate the 11 recent methods that perform well, as shown in Table 1,
into the multimodal time series framework MM-TSFLib (Liu et al., 2024b), as reported in Table 2.
MM-TSFLib integrates textual information by performing linear interpolation between the output
of time series models and bag-of-words-based text embeddings. Although this framework provides
a simple yet effective way to incorporate text, MindTS achieves the best or most competitive results
on all datasets, demonstrating the superior ability of MindTS to capture and integrate multimodal
semantics. More baselines and metrics evaluation results can be found in Appendix C. Additional
forecasting extension results are provided in Appendix H.

4.3 MODEL ANALYSIS

We analyze the effectiveness of fine-grained time-text semantic alignment and content condenser
reconstruction, and visualize the anomaly scores. We conducted additional analytical experiments,
which are presented in Appendix E, G, I, J, K.
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Table 1: Results of MindTS compared with unimodal and LLM-based methods on six real-world
datasets. These methods only use the time series in the dataset. The best results are highlighted in
bold, and the second-best results are underlined.

Datasets Metric MindTS DADA LMixer UTime Timer UniTS G4TS Modern TsNet DC A.T. Patch TranAD iTrans PCA IF LODA HBOS

Weather
Aff-F 82.66 69.01 73.68 76.46 75.46 76.17 72.56 81.06 80.58 42.80 49.22 77.17 77.81 75.37 64.91 54.06 52.55 47.70
V-PR 57.48 30.00 43.47 51.90 43.21 44.35 41.30 52.13 50.09 18.33 19.17 50.03 52.08 42.56 47.13 49.66 55.03 46.58

V-ROC 82.64 61.03 71.71 78.45 73.22 75.08 70.03 81.14 81.91 45.56 43.32 79.97 78.75 73.37 57.38 56.45 57.00 54.16

Energy
Aff-F 74.37 64.38 65.85 61.98 60.20 63.84 66.37 70.76 66.00 47.07 43.39 66.85 49.69 70.81 57.65 62.03 63.45 55.85
V-PR 50.36 34.18 30.35 32.88 29.46 31.04 31.68 36.60 38.61 22.57 19.69 34.41 33.80 35.82 44.30 46.03 48.63 42.57

V-ROC 74.44 54.37 53.04 49.97 46.03 51.15 53.10 65.05 59.47 45.93 31.56 58.31 56.37 63.06 53.07 53.61 55.90 51.50

Environment
Aff-F 85.29 84.11 84.36 81.71 84.19 83.06 72.26 81.07 80.41 62.24 59.75 81.17 61.41 74.43 55.63 46.50 46.45 22.25
V-PR 56.79 54.20 52.94 48.87 51.42 50.24 23.94 42.26 50.64 7.69 18.14 45.78 4.91 24.87 17.87 8.94 18.66 52.15

V-ROC 93.78 87.69 89.75 91.77 92.10 92.03 66.79 89.78 87.97 41.28 51.98 90.86 14.20 73.81 37.08 46.20 50.69 51.03

KR
Aff-F 90.28 84.22 71.80 88.58 89.55 82.24 79.56 84.42 85.47 61.94 70.99 79.52 73.26 79.49 58.11 69.38 60.96 64.78
V-PR 53.15 45.90 15.13 46.87 51.41 43.32 38.23 39.95 51.60 8.48 7.94 36.18 28.42 27.37 24.19 43.31 51.82 52.06

V-ROC 89.86 70.82 52.79 73.55 75.99 73.93 67.81 88.87 79.00 43.04 41.97 74.65 41.05 76.12 47.51 60.70 59.99 61.41

EWJ
Aff-F 83.89 81.26 66.86 78.22 78.06 77.61 76.65 81.57 81.82 48.10 59.03 75.82 69.22 78.27 51.06 67.55 72.06 71.03
V-PR 50.42 43.36 15.21 32.39 33.17 39.32 35.63 44.75 43.15 15.37 10.85 36.08 17.80 28.98 19.38 37.81 40.08 41.19

V-ROC 84.12 71.79 46.80 64.49 67.72 73.91 67.95 83.88 75.76 47.10 31.75 71.56 49.60 72.16 45.26 59.24 61.65 62.07

MDT
Aff-F 89.19 77.99 67.65 76.28 78.51 75.57 80.81 80.81 80.08 47.33 66.12 79.47 63.93 78.66 54.66 53.74 55.06 52.33
V-PR 65.44 46.81 19.10 38.94 38.38 37.61 44.81 52.18 50.53 15.72 15.93 41.67 14.34 36.36 22.93 35.32 44.63 44.77

V-ROC 83.02 66.76 47.06 61.00 60.28 58.67 62.30 82.30 79.56 45.02 44.53 77.69 28.55 71.87 44.09 54.02 55.98 55.30

Table 2: The notation with ∗ indicates the results of extending the baselines to their multimodal
versions using the recent time series multimodal framework MM-TSFLib, where both time series
and text data from datasets are utilized.

Datasets Metric MindTS DADA* LMixer* UTime* Timer* UniTS* G4TS* Modern* TsNet* Patch* TranAD* iTrans*

Weather
Aff-F 82.66 69.73 76.30 73.93 75.37 76.38 76.82 81.50 80.09 77.05 77.73 75.36
V-PR 57.48 30.42 45.94 43.19 43.36 44.58 45.83 53.42 50.53 50.17 52.09 40.30

V-ROC 82.64 61.51 75.29 73.71 73.26 75.21 74.61 81.67 82.06 80.08 78.72 70.11

Energy
Aff-F 74.37 64.80 61.46 65.38 60.36 65.42 67.38 72.13 66.71 66.28 50.53 72.49
V-PR 50.36 34.38 30.91 30.44 29.57 31.34 31.83 37.44 38.88 34.66 33.74 36.21

V-ROC 74.44 55.63 49.06 49.85 46.39 51.89 53.52 66.37 59.80 58.47 56.38 65.62

Environment
Aff-F 85.29 83.84 83.76 76.73 84.52 83.43 84.44 81.36 80.21 81.71 61.38 76.02
V-PR 56.79 54.20 51.22 35.64 51.20 50.06 56.65 41.36 50.39 45.52 4.93 25.85

V-ROC 93.78 88.02 91.74 84.20 92.02 91.98 90.22 89.14 88.14 90.87 14.29 73.66

KR
Aff-F 90.28 84.22 90.03 77.38 89.61 83.06 88.29 84.87 85.84 79.52 72.50 78.39
V-PR 53.15 45.68 52.98 37.12 51.56 44.27 57.93 40.86 51.73 36.37 28.47 28.12

V-ROC 89.86 72.08 75.21 66.96 75.92 74.25 80.43 89.22 78.94 74.80 41.24 77.17

EWJ
Aff-F 83.89 81.41 78.23 73.20 79.05 78.04 81.37 81.88 81.92 76.49 69.03 78.23
V-PR 50.42 43.18 34.06 25.71 33.36 39.99 43.93 45.41 43.28 36.22 17.87 29.79

V-ROC 84.12 71.06 69.37 67.57 68.19 74.39 76.93 83.98 75.91 72.21 49.85 74.11

MDT
Aff-F 89.19 77.89 78.31 72.33 77.93 76.70 81.86 81.68 80.62 78.87 63.60 77.47
V-PR 65.44 47.22 42.61 25.31 38.23 37.78 52.65 45.88 52.30 41.85 14.55 33.88

V-ROC 83.02 68.06 61.72 49.16 60.21 58.82 73.39 82.66 73.57 77.72 28.88 69.95

Ablation study. To ascertain the impact of different modules within MindTS, we conduct ablation
studies on: (a) remove the exogenous text representation; (b) remove the endogenous text represen-
tation; (c) delete the time-text semantic alignment; (d) remove the content condenser mechanism;
(e) remove the cross-modal reconstruction module; (f) reverse the order of the alignment and content
condenser mechanism. Figure 3 illustrates the distinct contribution of each component.
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Figure 3: Ablation studies for MindTS,
with the highest metrics highlighted in dark-
colored bars.

We make the following observations: Ours denotes
the complete model. (a) and (b) removing either of
the text representations from the two views leads to
a notable performance decline. This indicates that
integrating the complementary information from en-
dogenous and exogenous texts helps improve the
model performance; (c) removing the time-text se-
mantic alignment module leads to a drop, indicat-
ing that effective modality alignment is essential for
ensuring reliable anomaly detection; (d) removing
the content condenser leads to significant perfor-
mance degradation, likely due to redundant infor-
mation from text negatively impacting the model;
(e) removing cross-modal reconstruction also leads
to performance degradation, suggesting that it en-
hances cross-modal interaction and helps extract
time-relevant discriminative features from the text;
(f) when the alignment and content condenser order
is reversed, the model performance degrades. This may be because filtering is applied before align-
ment, causing potentially useful time-relevant information to be discarded prematurely.
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Figure 4: Results of the sensitivity analysis. The vertical coordinate shows the Aff-F score, with
higher scores representing better performance. The dark line represents the mean of 5 experiments,
and the light area represents the range.

Parameter sensitivity. We also study the parameter sensitivity of the MindTS. Figure 4 shows the
performance under different patch sizes p, time series mask ratiosm, and compression strengths µ in
the Energy and MDT. As the experimental results show, model performance initially improves and
then declines as the patch size increases. Note that a small patch size indicates a larger memory cost.
In our experiments, the patch size is usually set to 6. Furthermore, we find that maintaining a mask
ratio near 50% generally leads to better performance. As the mask ratio increases, reconstructing
the original time series becomes more challenging, leading to poorer model performance. Besides,
we further investigate the impact of the compression strength µ. As shown in the results, the model
maintains high performance across a broad range of µ values (0.1 to 0.9), suggesting that the content
condenser is robust to varying compression levels. This stability indicates that MindTS effectively
balances semantic preservation and redundancy reduction across different compression strengths.

Visual analysis. Figure 5 shows how MindTS works by visualizing different datasets. The first row
shows the original data distribution along with the ground-truth anomaly positions, and the MindTS
anomaly scores in the third row. It can be seen that MindTS can robustly detect anomalies. More
detailed visualization cases can be found in Appendixes D, F.

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0

In
pu

t 
 T

im
e 

Se
ri

es

KR

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0
EWJ

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0
MDT

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0
Environment

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0
Energy

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0
Weather

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0

An
om

al
y 

Sc
or

e 
 (

M
in

dT
S)

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0

Figure 5: Visualization comparisons of anomaly scores from MindTS for all datasets.

5 CONCLUSION

In this work, we propose a highly capable multimodal time series anomaly detection, named
MindTS. The model is designed to address the limitations of existing unimodal approaches by ef-
fectively leveraging both time series data and textual information. Overall, it integrates text repre-
sentations from both endogenous and exogenous views, enabling a fine-grained understanding of
text semantics for precise time-text alignment. In addition, the content condenser filters out re-
dundant information. The condensed text is further utilized for cross-modal reconstruction of the
time series, optimizing cross-modal interaction. These components collectively empower MindTS
with strong anomaly detection capabilities. Comprehensive experiments demonstrate that MindTS
achieves competitive or superior performance.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our work exclusively uses publicly available benchmark datasets that contain no personally identi-
fiable information. No human subjects are involved in this research.
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THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, we only adopt large language models in our methodology and endogenous text genera-
tion. Specifically, we employ large language models as the text encoder of MindTS to extract textual
features. To generate endogenous text for the multimodal time series corpus, we provide raw time
series to the models, encouraging them to produce descriptions of data characteristics. Note that we
do not use large language models in writing.

A EXPERIMENTAL DETAILS

A.1 DATASETS

The Table 3 provides a summary of the statistics for the publicly available real-world datasets (Liu
et al., 2024b; Dong et al., 2024). To ensure broad coverage and initial relevance of exogenous text to
time series, text sources are collected through web search and targeted crawling, combining widely
sourced online content with domain-related reports. To ensure semantic relevance between exoge-
nous text and time-series data, 2–3 domain-specific keywords are defined for each dataset and used
for web search. For each keyword, the top-ranked search results are collected, and structured infor-
mation such as timestamp, source, title, and content is extracted. For report-based sources (e.g., gov-
ernmental or institutional reports), all available documents are parsed, and only the sections whose
topics match the corresponding domain characteristics are retained. To prevent future ground-truth
leakage, two safeguards are applied. First, all collected texts contain explicit timestamps, ensuring
that no future documents are matched with past observations. Second, each text is further separated
into historical factual statements and predictive descriptions, and only factual content is retained.
This prevents any predicted future outcomes or implicitly revealed future values from leaking into
the model. To comprehensively evaluate the performance of MindTS, we evaluate 6 real-world
datasets that cover 4 domains. The anomaly ratio varies from 5.81% to 17.23%, the range of feature
dimensions varies from 1 to 9, and the sequence length varies from 1622 to 15981. Exogenous texts
are often collected from diverse sources such as official reports and news articles, which tend to
focus on background context or general conditions. We refer to such text as background text, and
the majority of the datasets we used also fall into this category. Therefore, our work focuses on this
type of text. Temporal alignment is achieved through binary timestamps that mark the start and end
dates of each text (Liu et al., 2024b). This provides a feasible and realistic alignment strategy. For
example, in the energy dataset, exogenous texts are energy reports from the U.S. Energy Informa-
tion Administration, which describe contextual factors such as market demand and economic cycles.
Similar background-oriented alignment is common in industrial monitoring and other domains. Im-
portantly, our model does not heavily rely on strict temporal alignment. MindTS can operate under
window-level matching, making it applicable to practical scenarios where text is loosely or sparsely
aligned with time series.

To investigate whether MindTS can be extended to broader multimodal time series tasks, we also
evaluate its forecasting performance on three widely used benchmark datasets covering agriculture,
climate, and social good Liu et al. (2024b). Detailed statistics are provided in Table 4.

Table 3: Statistics and descriptions of datasets used for multimodal time series anomaly detection.
AR (%) denotes anomaly ratio.

Dataset Dim AR (%) Avg Total
Length

Timespan
(start - end) Description

Weather 4 17.10 12339 2012.7.17 - 2023.10.20 Temperature and humidity statistics and reports collected from government websites.
Energy 9 17.23 1622 1993.4.5 - 2024.4.29 Gasoline price statistics and energy reports are collected from the U.S. Energy Information Administration.
Environment 1 5.81 15981 1980.1.1 - 2023.9.30 Air Quality Index data and related reports collected from the U.S. Environmental Protection Agency and NBC.
KR 1 6.21 2655 2009.9.15 - 2020.4.1 Financial datasets include numerical stock data from Yahoo

Finance and news information collected from various financial
news websites such as NASDAQ, Bloomberg, and others.

EWJ 1 9.96 2658 2009.11.16 - 2020.6.9
MDT 1 11.17 2732 2009.8.6 - 2020.6.12

A.2 BASELINES

We extensively compare MindTS against 19 baselines, including (1) LLM-based methods:
LLMMixer (LMixer) (Kowsher et al., 2024), UniTime (UTime) (Liu et al., 2024c), GPT4TS
(G4TS) (Zhou et al., 2023), CALF (Liu et al., 2025); (2) Pre-trained methods: DADA (Shentu
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Table 4: The statistics of evaluation datasets for the forecasting task.

Dataset Dim Prediction
Length

Avg Total
Length

Timespan
(start - end) Description

Agriculture 1 {6, 8, 10, 12} 496 1983-2024 Retail Broiler Composite.
Climate 5 {6, 8, 10, 12} 496 1983-2024 Drought Level.
SocialGood 1 {6, 8, 10, 12} 900 1950-2024 Unemployment Rate.

et al., 2025), Timer (Liu et al., 2024d), UniTS (Gao et al., 2024); (3) Deep learning-based meth-
ods: ModernTCN (Modern) (Luo & Wang, 2024), TimesNet (TsNet) (Wu et al., 2023), DCdetector
(DC) (Yang et al., 2023b), Anomaly Transformer (A.T.) (Xu et al., 2021), PatchTST (Patch) (Nie
et al., 2022), TranAD (Tuli et al., 2022), DualTF (Nam et al., 2024), iTransformer (iTrans) (Liu
et al., 2023); (4) Non-learning methods: PCA (Shyu et al., 2003), IForest (IF) (Liu et al., 2008),
LODA (Pevnỳ, 2016), HBOS (Goldstein & Dengel, 2012).

• LLMMixer (LMixer) (Kowsher et al., 2024): Incorporates multi-scale decomposition of
time series data and leverages pre-trained LLMs to process both multi-scale signals and
textual prompts, effectively utilizing the semantic knowledge of LLMs for comprehensive
temporal analysis.

• UniTime (UTime) (Liu et al., 2024c): Focuses on prompt engineering by introducing learn-
able prompts, prompt pools, and domain-specific instructions to elicit domain-relevant tem-
poral knowledge from large language models.

• GPT4TS (G4TS) (Zhou et al., 2023): Adopts selective fine-tuning of key LLM components
such as positional encodings and layer normalization, enabling efficient adaptation to time
series data while retaining most of the model’s pre-trained capabilities.

• CALF (Liu et al., 2025): Proposes a cross-modal fine-tuning framework that mitigates
distributional discrepancies between the temporal prediction and the aligned textual source
branches, enhancing alignment across modalities.

• DADA (Shentu et al., 2025): Develops a general-purpose anomaly detection model for time
series, pre-trained on a wide range of domains and readily adaptable to various downstream
tasks.

• Timer (Liu et al., 2024d): Unifies heterogeneous time series into a single sequence and
performs predictive anomaly detection using a sequence modeling approach.

• UniTS (Gao et al., 2024): Transforms multiple tasks into a unified token-based representa-
tion using a prompt-based framework. For anomaly detection, it generates masked tokens
and utilizes denoised outputs to identify anomalies.

• ModernTCN (Modern) (Luo & Wang, 2024): Adopts a purely convolutional architecture to
decouple and model temporal, channel-wise, and variable-wise relationships in multivariate
time series.

• TimesNet (TsNet) (Wu et al., 2023): Employs a modular structure to decompose complex
temporal patterns into different frequency components and maps one-dimensional time se-
ries into a two-dimensional space to jointly model intra- and inter-period dynamics.

• DCdetector (DC) (Yang et al., 2023b): Uses contrastive learning from both patch-wise and
point-wise perspectives to discriminate between normal and anomalous patterns.

• Anomaly Transformer (A.T.) (Xu et al., 2021): Based on the hypothesis that anomalies
exhibit stronger associations with nearby time points, it uses a minimax strategy to amplify
association differences and enhance anomaly discrimination.

• PatchTST (Patch) (Nie et al., 2022): Applies channel-independent patching to multivariate
time series, improving the model’s ability to capture localized temporal features.

• TranAD (Tuli et al., 2022): A Transformer-based Anomaly Detection Model that amplifies
reconstruction error through adversarial training.

• DualTF (Nam et al., 2024): Employs a dual-domain architecture with nested sliding win-
dows, where outer and inner windows handle time and frequency domains, respectively,
aligning their anomaly scores to enhance detection.
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• iTransformer (iTrans) (Liu et al., 2023): Embeds time information into variable tokens and
applies attention mechanisms to model multivariate correlations.

• PCA (Shyu et al., 2003): Detects anomalies by measuring the deviation of samples in the
principal component space, assuming anomalies lie far from the normal data distribution.

• IForest (IF) (Liu et al., 2008): Detects anomalies by explicitly isolating them through re-
cursive partitioning rather than modeling normal behavior.

• LODA (Pevnỳ, 2016): Approximates joint distributions using multiple one-dimensional
histograms to identify outliers.

• HBOS (Goldstein & Dengel, 2012): An unsupervised histogram-based anomaly detection
method.

A.3 METRICS

This subsection introduces the metrics used in this study, which are mainly categorized into two
types. The first is label-based metrics, including Affiliated Precision (Aff-P), Affiliated Recall (Aff-
R), and Affiliated F1-score (Aff-F) (Huet et al., 2022), Accuracy (Acc), Precision (P), Recall (R),
F1-score (F1), Range Precision (R-P), Range Recall (R-R), and Range F1-score (R-F) (Tatbul et al.,
2018). The second is score-based metrics, including the Area Under the Precision-Recall Curve
(A-P) (Davis & Goadrich, 2006), the Area Under the Receiver Operating Characteristic Curve (A-
R) (Fawcett, 2006), the Range Area Under the Precision-Recall Curve (R-A-P), the Range Area
Under the Receiver Operating Characteristic Curve (R-A-R) (Paparrizos et al., 2022), the Volume
Under the Precision-Recall Surface (V-PR), and the Volume Under the Receiver Operating Char-
acteristic Surface (V-ROC) (Paparrizos et al., 2022). MindTS evaluates all metrics to assess each
method’s performance.

A.4 IMPLEMENTATION DETAILS

We adhere to the evaluation protocol proposed in TFB (Qiu et al., 2024) during testing by disabling
the “drop last” operation, ensuring a fair comparison across all models. We conduct experiments
using Pytorch with NVIDIA Tesla-A800-80GB GPUs. We employ the Adam optimizer (Kingma &
Ba, 2015) during training. All baselines are based on our runs, using the identical hardware. We
employ official or open-source implementations published on GitHub and follow the configurations
recommended in their papers. The initial batch size is 64, which can be halved (down to a minimum
of 8) if an Out-Of-Memory (OOM) error occurs. We assign equal weights of 1 to optimization objec-
tives. Experiments show that this sample configuration delivers stable and competitive performance,
indicating that additional tuning is unnecessary.
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B LEMMA PROOFS

In this section, we explain the proof of Equation equation 8 in our paper.

Proof. The definition of mutual information is described as

I(Ztext;Zcon) =
∑
Ztext

∑
Zcon

P(Ztext,Zcon) log
P(Ztext,Zcon)

P(Ztext)P(Zcon)

= EZtext,Zcon

[
log

P(Ztext,Zcon)

P(Ztext)P(Zcon)

]
.

(13)

Then, by introducing a variational approximation G(Zcon), we can further derive that

EZtext,Zcon

[
log

P(Ztext,Zcon)

P(Ztext)P(Zcon)

]
= EZtext,Zcon

[
log

P(Zcon|Ztext)

P(Zcon)

]
= EZtext,Zcon

[
log

P(Zcon|Ztext)

G(Zcon)
+ log

G(Zcon)

P(Zcon)

]
.

(14)

Based on the KL-divergence, the second term of the above equation can be rewritten as

EZtext,Zcon

[
log

G(Zcon)

P(Zcon)

]
= EZtext|Zcon

[
P(Zcon) log

G(Zcon)

P(Zcon)

]
= −EZtext|Zcon

[
P(Zcon) log

P(Zcon)

G(Zcon)

]
= −EZtext|Zcon [KL(P(Zcon)||G(Zcon))] .

(15)

Such that

I(Ztext;Zcon) = EZtext [KL(P(Zcon|Ztext)||G(Zcon))]− EZtext|Zcon [KL(P(Zcon)||G(Zcon))]

≤ EZtext [KL(P(Zcon|Ztext)||G(Zcon))]
(16)

It should be noted that G(Zcon) is a variational approximation, such that the distribution G(Zcon)
can approximate P(Zcon) in the process of optimization, that is G(Zcon) = P(Zcon). In this case,
I(Ztext;Zcon) = EZtext [KL(P(Zcon|Ztext)||G(Zcon))], and the upper bound presented in Lemma 1 is
tight. The proof is completed.
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C ADDITIONAL EXPERIMENTAL RESULTS

In this section, we present the performance of MindTS and 19 numerical-only unimodal methods
on additional evaluation metrics. Specifically, Tables 5–10 present the comparative evaluation re-
sults across the following metrics: (AUC-ROC, R-AUC-ROC, VUS-ROC), (Accuracy), (AUC-PR,
R-AUC-PR, VUS-PR), (Precision, Recall, F1-score), (Range-Recall, Range-Precision, Range-F1-
score), and (Affiliated-Precision, Affiliated-Recall, Affiliated-F1-score), respectively.

Tables 11, 12, 13, 14, 15 and 16 present the extension of 19 numerical-only unimodal methods
into multimodal forms using the MM-TSFLib framework (Liu et al., 2024b), and compare them
with MindTS across a comprehensive set of 16 evaluation metrics.

Table 5: Average A-R (AUC-ROC), R-A-R (R-AUC-ROC) and V-ROC (VUS-ROC) accuracy for
MindTS and all numerical-only unimodal methods. The best results are highlighted in bold, and the
second-best results are underlined.

Datasets Weather Energy Environment KR EWJ MDT

Metric A-R R-A-R V-ROC A-R R-A-R V-ROC A-R R-A-R V-ROC A-R R-A-R V-ROC A-R R-A-R V-ROC A-R R-A-R V-ROC

HBOS 64.47 54.12 54.16 60.80 51.06 51.50 56.42 50.79 51.03 75.16 61.80 61.41 71.82 61.02 62.07 60.26 54.86 55.30
LODA 69.67 56.88 57.00 59.54 56.22 55.90 58.44 50.54 50.69 73.74 60.27 59.99 71.40 60.60 61.65 66.69 55.56 55.98

IF 67.81 56.69 56.45 60.32 52.64 53.61 52.37 45.96 46.20 74.45 61.10 60.70 69.20 57.94 59.24 63.92 53.52 54.02
PCA 67.17 57.80 57.38 61.14 52.64 53.07 48.60 35.71 37.08 63.58 51.01 .47.51 54.35 43.78 45.26 54.51 41.90 44.09

iTrans 41.22 74.45 73.37 65.60 64.25 63.06 82.35 70.98 73.81 83.22 74.41 76.12 76.37 68.29 72.16 79.32 67.65 71.87
DulTF 64.49 28.95 57.84 49.90 38.00 38.36 46.64 31.84 6.30 68.77 55.45 54.51 74.12 60.49 64.31 75.13 60.50 63.38

TranAD 85.51 79.38 78.75 67.01 56.65 56.37 26.32 9.85 14.20 60.64 37.02 41.05 60.35 44.11 49.60 44.10 24.47 28.55
Patch 82.02 80.47 79.97 66.70 61.39 58.31 94.17 91.12 90.86 82.15 72.72 74.65 78.53 69.26 71.56 84.55 75.61 77.69
A.T. 47.11 43.11 45.02 38.68 31.52 31.56 61.88 51.42 51.98 51.25 40.18 41.97 43.81 27.50 31.75 56.44 41.41 44.53
DC 47.90 45.41 45.56 48.75 45.39 45.93 54.98 39.34 41.28 52.97 41.75 43.04 53.40 45.69 47.10 53.82 43.65 45.02

TsNet 81.10 83.11 82.30 71.36 61.56 59.47 91.84 87.56 87.97 85.88 78.29 79.00 82.39 74.22 75.76 86.67 77.01 79.56
Modern 80.66 82.36 81.14 70.80 65.34 65.05 93.53 90.25 89.78 93.39 89.77 89.78 87.82 83.72 83.88 88.77 81.59 82.30
G4TS 74.47 71.43 70.03 66.54 53.54 53.10 75.79 63.10 66.79 78.30 65.15 67.81 75.58 64.86 67.95 74.79 59.00 62.30
CALF 70.48 64.67 63.63 61.56 59.26 57.35 59.54 44.91 57.35 65.09 48.82 53.22 67.70 55.57 59.03 53.13 35.41 39.81
UniTS 81.22 75.55 75.08 63.38 52.12 51.15 95.19 92.55 92.03 80.95 71.29 73.93 79.87 71.32 73.91 73.19 56.72 58.67
Timer 80.86 73.73 73.22 60.54 46.82 46.03 95.36 92.37 92.10 66.72 74.61 75.99 76.15 64.71 75.99 75.65 58.78 60.28
UTime 81.09 79.32 78.45 64.17 51.01 49.97 95.13 92.16 91.77 82.36 71.49 73.55 77.71 67.15 64.49 75.59 58.98 61.00
LMixer 79.60 72.54 71.71 61.31 55.25 53.04 92.99 87.83 89.75 65.77 49.01 52.79 57.69 41.75 46.80 60.30 42.44 47.06
DADA 66.37 61.95 61.03 62.33 55.78 54.37 70.33 87.27 54.37 79.53 69.91 70.82 79.11 68.44 71.79 79.04 63.94 66.76

MindTS 84.06 83.80 82.64 81.26 75.51 74.44 96.33 94.04 93.78 93.51 89.60 89.86 87.95 83.19 84.12 90.46 83.15 83.02

Table 6: Average ACC (Accuracy) measures for MindTS and all numerical-only unimodal methods.
The best results are highlighted in bold, and the second-best results are underlined.

Datasets Weather Energy Environment KR EWJ MDT

Metric ACC ACC ACC ACC ACC ACC

HBOS 84.60 59.69 94.87 95.86 87.03 90.48
LODA 87.60 52.92 92.03 95.85 86.28 90.48

IF 85.62 55.38 84.87 94.54 86.84 88.10
PCA 62.72 59.08 49.27 82.11 72.18 65.02

iTrans 67.02 53.85 81.46 77.97 68.70 77.84
DulTF 53.65 23.08 42.89 86.44 85.90 63.92

TranAD 64.67 67.08 29.20 90.21 64.66 41.58
Patch 77.76 49.85 90.06 84.37 85.53 83.88
A.T. 67.10 57.54 90.37 78.53 50.56 57.33
DC 72.85 71.08 54.45 72.32 82.71 74.36

TsNet 81.36 68.00 87.21 87.95 80.26 86.45
Modern 81.28 51.38 90.72 89.08 88.16 84.80
G4TS 65.19 39.38 82.37 74.01 79.51 83.70
CALF 63.01 68.31 66.18 87.19 76.70 71.25
UniTS 71.80 45.54 90.97 87.38 79.14 85.16
Timer 66.73 44.92 90.03 93.79 81.77 82.42
UTime 81.12 61.23 90.06 91.90 77.26 85.71
LMixer 65.76 45.23 89.97 76.27 71.43 65.57
DADA 58.39 59.38 94.19 92.47 85.71 87.18

MindTS 84.76 80.00 90.09 91.15 88.91 93.96
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Table 7: Average A-P (AUC-PR), R-A-P (R-AUC-PR) and V-PR (VUS-PR) accuracy measures for
MindTS and all numerical-only unimodal methods. The best results are highlighted in bold, and the
second-best results are underlined.

Datasets Weather Energy Environment KR EWJ MDT

Metric A-P R-A-P V-PR A-P R-A-P V-PR A-P R-A-P V-PR A-P R-A-P V-PR A-P R-A-P V-PR A-P R-A-P V-PR

HBOS 31.16 46.37 46.58 21.55 42.14 42.57 16.97 49.84 50.30 41.09 51.69 52.06 25.24 38.48 41.19 28.66 43.16 44.77
LODA 41.22 54.75 55.03 20.75 48.94 48.63 9.98 18.19 18.66 40.14 51.31 51.82 24.16 37.46 40.08 29.81 43.18 44.63

IF 35.44 49.65 49.66 21.17 45.19 46.03 6.18 8.28 8.94 32.21 43.07 43.31 22.86 34.74 37.81 22.41 33.63 35.33
PCA 25.02 47.47 47.13 21.69 43.89 44.30 5.67 16.05 17.87 10.18 18.99 22.13 10.99 16.49 19.37 12.29 19.53 22.93

iTrans 41.22 42.93 42.56 35.63 35.71 35.82 34.90 23.09 24.87 36.05 24.95 27.37 34.42 24.99 28.98 46.91 32.94 36.36
DulTF 25.22 28.95 29.27 22.58 22.94 23.52 5.35 5.47 6.53 21.96 17.73 17.92 42.45 31.17 33.75 39.84 31.52 33.83

TranAD 60.90 52.04 52.08 36.38 33.17 33.80 7.09 4.49 4.91 53.23 28.04 28.42 27.85 15.20 17.80 25.69 13.11 14.33
Patch 53.39 49.81 50.03 34.25 35.25 34.41 58.92 45.65 45.78 53.60 35.32 36.18 47.91 33.37 36.08 54.11 39.70 41.67
A.T. 16.71 18.85 19.17 14.02 19.24 19.69 14.06 16.22 18.14 7.01 6.44 7.94 8.97 9.01 10.85 15.02 13.20 15.93
DC 17.08 18.06 18.33 17.69 21.77 22.57 6.48 6.55 7.69 8.10 7.04 8.49 10.88 12.52 15.37 11.59 13.30 15.72

TsNet 47.65 50.58 50.09 42.05 38.17 38.61 64.14 50.62 50.64 67.47 52.83 51.60 54.99 41.84 43.15 65.57 48.60 50.54
Modern 51.98 52.67 52.13 33.16 35.64 36.60 55.34 42.50 42.26 56.93 40.69 39.95 53.36 43.86 44.75 65.48 51.72 52.18
G4TS 44.12 41.37 41.30 33.75 31.10 31.68 35.37 22.14 23.94 56.78 37.53 38.23 46.75 32.83 35.63 60.40 42.48 44.81
CALF 37.38 34.98 35.07 32.32 32.61 33.49 9.19 7.49 8.96 25.26 13.25 16.04 22.74 17.53 20.66 16.25 12.54 15.15
UniTS 49.19 44.31 44.35 27.51 30.70 31.04 64.13 50.55 50.24 55.39 40.75 43.32 50.33 36.79 39.32 53.44 36.14 37.61
Timer 48.87 43.20 43.21 38.05 28.81 29.46 64.52 51.17 51.42 66.72 51.59 51.41 44.01 30.67 33.17 55.86 37.54 38.38
UTime 54.67 52.18 51.90 37.96 32.25 32.88 62.59 48.80 48.87 63.22 46.36 46.87 43.43 30.31 32.39 56.00 37.32 38.94
LMixer 49.71 43.40 43.47 32.85 30.59 30.35 64.49 49.95 52.94 28.19 13.25 15.13 18.81 12.36 15.21 19.86 15.30 19.10
DADA 29.80 29.86 30.00 37.81 33.47 34.18 70.33 55.96 56.20 63.55 46.95 45.90 55.24 41.61 43.36 63.03 44.63 46.81

MindTS 58.38 57.85 57.48 50.99 50.19 50.36 69.46 56.81 56.79 67.52 52.64 53.15 61.75 49.31 50.42 76.51 66.2 65.44

Table 8: Average P (Precision), R (Recall) and F1 (F1-score) accuracy measures for MindTS and
all numerical-only unimodal methods. The best results are highlighted in bold, and the second-best
results are underlined.

Datasets Weather Energy Environment KR EWJ MDT

Metric P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

HBOS 58.61 33.89 42.94 24.14 62.50 34.83 92.31 12.90 22.64 73.91 51.52 60.71 38.89 52.83 44.80 64.52 32.79 43.48
LODA 73.97 42.42 53.92 22.29 69.64 33.77 26.21 20.43 22.96 76.19 48.48 59.26 36.84 65.73 43.41 62.86 36.07 45.83

IF 62.09 40.76 49.21 23.03 64.29 34.39 8.15 15.59 10.70 56.67 51.52 53.97 37.31 47.17 41.67 45.45 32.79 38.10
PCA 27.81 73.93 40.41 24.16 96.43 35.12 5.51 47.85 9.88 15.56 42.42 22.76 13.18 32.07 18.68 13.89 40.98 20.75

iTrans 30.48 72.51 42.92 22.67 67.86 34.21 19.67 70.96 30.81 18.84 78.79 30.41 22.44 66.04 33.49 30.00 73.33 42.65
DulTF 17.27 99.53 29.43 17.76 46.43 30.00 5.43 53.76 9.87 5.82 81.82 10.87 36.90 58.49 45.26 31.50 65.57 42.55

TranAD 31.65 91.94 47.08 25.24 69.64 32.70 2.29 26.88 4.28 17.48 54.55 26.47 13.02 47.17 20.41 8.65 44.26 14.48
Patch 37.50 73.22 49.60 21.96 83.93 34.81 34.36 77.96 47.70 24.49 72.73 36.64 36.36 60.38 45.39 39.05 67.21 49.40
A.T. 13.89 17.78 15.59 9.02 17.86 12.50 23.48 29.03 25.96 7.41 30.30 11.90 8.55 43.40 14.39 14.00 45.90 25.46
DC 12.65 9.95 11.14 15.38 10.71 12.63 7.07 54.84 12.53 7.46 30.30 11.98 15.63 18.87 17.09 15.04 27.87 19.54

TsNet 46.40 58.06 51.58 21.40 82.14 33.95 29.24 84.41 43.43 47.17 75.76 58.14 37.14 73.58 49.37 43.69 73.77 54.88
Modern 46.48 62.56 53.33 29.63 71.43 41.88 35.66 74.19 48.17 33.77 78.79 47.27 44.05 69.81 54.01 40.68 78.69 53.63
G4TS 27.80 72.27 40.16 20.70 83.93 33.22 14.46 69.89 23.96 16.98 81.82 74.01 43.28 54.72 48.33 37.72 70.49 49.14
CALF 25.70 69.19 37.48 26.67 50.00 34.78 7.97 45.70 13.58 23.08 45.45 30.61 22.22 56.60 31.94 18.68 27.87 22.39
UniTS 35.88 82.46 50.00 20.20 73.21 31.66 35.96 83.33 50.24 30.23 79.79 30.23 26.95 71.70 39.18 44.19 62.30 51.70
Timer 31.79 86.02 46.42 20.53 69.64 31.71 38.13 89.78 53.53 45.00 81.82 58.04 30.36 64.15 41.21 36.00 73.77 48.39
UTime 45.99 59.72 51.96 18.75 69.64 29.55 35.27 84.94 49.84 41.94 78.79 54.74 26.71 73.58 39.20 45.12 60.66 51.75
LMixer 29.14 82.94 43.13 20.95 78.57 33.08 32.59 86.55 47.35 12.80 48.49 20.25 11.64 50.94 18.95 18.82 52.46 27.71
DADA 24.03 66.35 35.29 20.10 73.21 31.54 50.00 77.96 60.92 37.50 72.72 49.48 38.14 69.81 49.33 44.83 63.93 53.70

MindTS 54.77 62.56 58.41 45.16 75.00 56.38 36.21 92.47 52.04 39.40 78.79 52.53 46.34 71.70 56.30 69.44 81.97 75.19

Table 9: Average R-R (Range-Recall), R-P (Range-Precision) and R-F (Range-F1-score) accuracy
measures for MindTS and all numerical-only unimodal methods. The best results are highlighted in
bold, and the second-best results are underlined.

Datasets Weather Energy Environment KR EWJ MDT

Metric R-R R-P R-F R-R R-P R-F R-R R-P R-F R-R R-P R-F R-R R-P R-F R-R R-P R-F

HBOS 22.51 36.88 27.96 57.14 1.51 2.94 10.50 92.11 18.85 48.15 72.55 57.88 58.18 53.72 55.86 34.62 89.91 49.99
LODA 27.78 70.30 39.82 67.86 20.64 31.65 19.39 31.55 24.02 44.44 77.38 56.46 58.18 47.86 52.52 35.77 86.74 50.65

IF 28.08 50.24 36.02 64.29 5.13 9.50 15.27 10.16 12.20 48.15 53.03 50.47 51.36 50.52 50.94 33.85 63.78 44.22
PCA 61.71 11.98 20.07 60.71 1.42 2.78 44.68 5.45 9.71 39.26 10.81 16.95 34.09 15.58 21.38 37.31 16.47 22.86

DulTF 93.99 12.08 21.41 95.00 6.34 11.89 54.37 4.43 8.19 74.81 9.35 16.62 64.09 42.20 50.89 68.85 37.61 48.65
iTrans 87.59 23.28 36.79 73.10 19.49 30.78 70.35 19.32 30.31 81.48 15.01 25.35 74.55 20.41 32.05 74.62 27.44 40.13

TranAD 84.84 24.02 37.44 42.86 6.25 10.90 24.63 4.45 7.54 50.37 32.66 39.62 51.36 14.64 22.78 46.54 18.94 26.92
Patch 62.83 34.29 44.37 76.67 11.28 19.67 78.77 37.10 50.44 76.30 23.26 35.65 65.00 40.67 50.03 66.73 41.78 51.39
A.T. 22.82 14.72 17.92 22.86 10.72 14.60 27.99 24.77 26.28 31.85 5.99 10.08 45.91 5.53 9.87 45.00 10.34 16.81
DC 13.57 14.97 14.24 16.71 16.96 16.84 53.05 5.53 10.09 24.44 6.56 10.34 16.18 10.87 13.00 26.54 14.58 18.82

TsNet 69.90 41.45 52.04 74.05 13.45 22.76 84.35 26.93 40.82 80.00 53.92 64.42 79.55 38.08 51.51 71.54 44.49 54.86
Modern 72.13 39.46 51.01 75.43 21.64 33.63 76.17 38.27 50.94 81.23 41.04 54.53 77.73 49.72 60.64 79.04 42.01 54.86
G4TS 76.08 21.70 33.77 78.57 17.43 16.08 63.97 23.81 34.71 85.19 22.85 36.04 68.64 38.78 49.56 72.31 39.02 50.69
CALF 61.43 21.01 31.31 53.00 19.44 28.45 46.48 6.88 11.99 51.85 14.05 22.10 61.73 21.85 32.28 36.54 16.70 22.93
UniTS 79.39 30.15 43.70 65.00 10.50 18.09 84.11 37.00 51.39 85.93 30.37 44.88 80.91 27.32 40.85 66.15 38.93 49.01
Timer 79.51 25.20 38.27 60.71 13.12 21.57 88.27 39.86 54.92 83.70 55.56 66.78 70.91 36.96 48.59 73.08 43.00 54.14
UTime 66.97 40.38 50.38 59.76 12.61 20.83 83.31 37.00 51.25 83.70 47.81 60.86 80.91 34.29 48.16 62.88 45.63 52.89
LMixer 70.37 22.38 33.95 77.14 12.82 21.99 85.77 30.81 45.34 48.89 11.35 18.43 51.27 10.52 17.46 52.69 15.20 23.59
DADA 65.03 20.32 30.97 75.00 21.13 32.47 79.15 48.18 59.90 74.81 49.54 59.61 75.45 41.99 53.95 64.81 50.50 56.77

MindTS 66.32 45.71 54.12 71.19 34.09 46.10 92.43 35.96 51.77 83.95 42.98 56.85 80.91 49.01 61.04 82.88 70.28 76.06
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Table 10: Average Aff-P (Affiliated-Precision), Aff-R (Affiliated-Recall) and Aff-F (Affiliated-
F1score) accuracy measures for MindTS and all numerical-only unimodal methods. The best results
are highlighted in bold, and the second-best results are underlined.

Datasets Weather Energy Environment KR EWJ MDT

Metric Aff-P Aff-R Aff-F Aff-P Aff-R Aff-F Aff-P Aff-R Aff-F Aff-P Aff-R Aff-F Aff-P Aff-R Aff-F Aff-P Aff-R Aff-F

HBOS 74.47 35.09 47.70 54.62 57.14 55.85 94.43 12.61 22.25 89.44 50.78 64.78 80.15 64.76 71.03 91.16 36.30 52.33
LODA 81.60 38.78 52.55 54.15 76.60 63.45 71.07 34.49 46.45 96.99 44.44 60.96 79.74 65.73 72.06 91.26 39.42 55.56

IF 76.25 41.88 76.25 54.50 71.96 62.03 51.31 42.52 46.51 86.20 58.05 69.38 79.18 58.89 67.55 87.66 38.75 53.74
PCA 59.14 71.93 64.91 54.88 60.71 57.65 46.75 68.64 55.62 61.94 44.44 51.75 53.93 48.48 51.06 56.98 52.51 54.66

DulTF 55.12 98.43 70.66 53.22 99.39 69.32 50.04 87.83 63.76 49.01 88.62 63.11 76.97 80.47 78.68 76.21 80.53 78.31
iTrans 64.98 96.95 77.81 57.03 93.37 70.81 62.84 91.26 74.43 69.84 92.23 79.49 66.91 94.27 78.27 69.46 90.65 78.66

TranAD 64.62 92.16 75.97 51.45 48.05 49.69 46.21 90.38 61.15 75.25 71.37 73.26 56.68 88.87 69.22 51.82 83.43 63.93
Patch 68.56 88.24 77.17 53.34 89.52 66.85 76.41 86.56 81.18 74.63 85.09 79.52 74.19 77.53 75.82 75.94 83.34 79.47
A.T. 51.98 46.73 49.22 50.88 37.89 43.44 72.95 50.59 59.75 64.90 78.34 70.99 48.69 73.89 58.70 61.41 71.50 66.07
DC 46.00 40.02 42.80 66.01 36.57 47.07 53.20 74.98 62.24 61.26 62.64 61.94 62.57 39.06 48.10 50.62 44.67 47.46

TsNet 72.72 90.35 80.58 53.07 87.26 66.00 70.05 94.35 80.41 86.06 85.51 85.79 75.06 89.92 81.82 76.93 83.50 80.08
Modern 72.80 91.45 81.06 60.89 84.47 70.76 77.12 85.44 81.07 79.60 89.87 84.42 78.25 85.33 81.64 75.60 86.79 80.81
G4TS 59.73 92.41 72.56 53.06 88.58 66.37 64.25 82.94 72.41 70.00 92.14 79.56 74.54 79.84 77.10 77.43 84.50 80.81
CALF 55.89 91.67 69.77 59.14 78.18 67.34 52.92 92.19 67.24 69.25 77.11 72.97 62.31 83.07 71.21 54.01 68.33 60.33
UniTS 64.75 92.48 76.17 53.58 78.53 63.70 76.77 90.47 83.06 76.67 88.68 82.24 69.18 88.38 77.61 75.82 75.08 75.45
Timer 63.70 92.57 75.46 52.94 69.75 60.20 78.78 92.41 85.05 91.52 87.67 89.55 72.85 84.08 78.06 78.02 79.00 78.51
UTime 69.40 85.12 76.46 52.76 75.12 61.98 76.30 87.94 81.71 88.61 88.54 88.58 68.09 91.89 78.22 78.90 73.84 76.28
LMixer 62.36 90.03 73.68 52.52 88.26 65.85 77.91 91.98 84.36 63.24 84.57 72.36 52.91 90.79 66.86 61.40 75.30 67.65
DADA 56.23 89.32 69.01 52.34 83.61 63.38 82.81 85.46 84.11 86.72 81.86 84.22 77.90 84.92 81.26 81.81 74.51 77.99

MindTS 76.88 89.37 82.66 71.50 77.47 74.37 77.38 95.01 85.29 85.91 95.24 90.28 77.99 90.74 83.89 90.80 87.64 89.19

Table 11: Average A-R (AUC-ROC), R-A-R (R-AUC-ROC) and V-ROC (VUS-ROC) accuracy for
MindTS and baselines within the MM-TSFLib. The best results are highlighted in bold, and the
second-best results are underlined.

Datasets Weather Energy Environment KR EWJ MDT

Metric A-R R-A-R V-ROC A-R R-A-R V-ROC A-R R-A-R V-ROC A-R R-A-R V-ROC A-R R-A-R V-ROC A-R R-A-R V-ROC

iTrans* 73.48 71.21 70.11 67.76 67.07 65.62 81.33 70.60 73.66 84.28 75.71 77.17 78.23 70.67 74.11 78.11 66.36 69.95
TranAD* 85.51 79.33 78.72 67.00 56.66 56.38 26.51 9.93 14.29 60.76 37.23 41.24 60.55 44.36 49.85 44.36 24.82 28.88

Patch* 82.18 80.59 80.08 66.89 61.57 58.47 94.17 91.14 90.87 82.28 72.94 74.80 78.68 69.48 72.21 84.55 75.65 77.72
TsNet* 81.28 83.22 82.06 71.53 61.97 59.80 91.91 87.70 88.14 85.92 78.32 78.94 82.52 74.40 75.91 82.05 68.57 73.57

Modern* 53.07 81.67 81.67 71.61 66.80 66.37 92.76 89.53 89.14 93.66 90.20 89.22 87.96 83.90 83.98 88.99 81.95 82.66
G4TS* 78.93 75.57 74.61 66.38 53.91 53.52 94.53 90.08 90.22 86.86 79.93 80.43 83.36 75.52 76.93 84.05 71.67 73.39
CALF 78.16 72.46 71.88 66.57 61.98 58.06 88.73 82.04 83.03 76.93 63.26 64.90 70.55 56.51 59.80 68.76 50.65 54.04

UniTS* 81.38 75.67 75.21 63.89 52.76 51.89 95.16 92.50 91.98 81.29 71.69 74.25 80.34 71.91 74.39 73.35 56.87 58.82
Timer 80.96 73.74 73.26 60.65 47.01 46.39 95.31 92.02 92.02 84.08 74.61 75.92 76.59 65.39 68.19 75.54 58.66 68.19

UTime* 79.71 74.28 73.71 60.32 51.81 49.85 90.12 83.40 84.20 78.45 65.34 66.96 76.07 65.99 67.57 64.95 45.55 49.16
LMixer* 82.77 75.73 75.29 62.94 49.93 49.06 95.25 92.04 91.74 84.02 74.58 75.21 77.63 67.12 69.37 76.83 60.21 61.72
DADA* 67.03 62.52 61.51 63.08 57.33 55.63 93.10 87.74 88.02 80.22 71.03 72.08 78.28 67.45 71.06 79.71 65.52 68.06

MindTS 84.06 83.80 82.64 81.26 75.51 74.44 96.33 94.04 93.78 93.51 89.60 89.86 87.95 83.19 .84.12 90.46 83.15 83.02

Table 12: Average ACC (Accuracy) measures for MindTS and baselines within the MM-TSFLib.
The best results are highlighted in bold, and the second-best results are underlined.

Datasets Weather Energy Environment KR EWJ MDT

Metric ACC ACC ACC ACC ACC ACC

iTrans* 76.09 63.69 87.31 70.62 74.44 73.44
TranAD* 64.67 70.15 44.73 87.95 64.47 65.38

Patch* 74.59 44.92 90.22 84.37 85.53 81.32
TsNet* 82.01 66.15 93.25 94.35 84.02 76.92

Modern* 80.23 62.46 90.50 89.45 87.22 84.62
G4TS* 69.89 41.85 93.00 95.10 85.34 91.21
CALF* 64.75 52.62 84.90 81.36 80.45 79.12
UniTS* 70.58 47.69 90.09 89.27 84.21 86.08
Timer* 67.50 45.54 91.43 93.60 81.02 85.16
UTime* 68.11 47.69 76.81 87.01 69.74 73.99
LMixer* 68.69 52.00 90.56 94.92 82.14 88.46
DADA* 61.02 45.54 94.22 92.47 86.84 87.18

MindTS 84.76 80.00 90.09 91.15 88.91 93.96
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Table 13: Average A-P (AUC-PR), R-A-P (R-AUC-PR) and V-PR (VUS-PR) accuracy measures
for MindTS and baselines within the MM-TSFLib. The best results are highlighted in bold, and the
second-best results are underlined.

Datasets Weather Energy Environment KR EWJ MDT

Metric A-P R-A-P V-PR A-P R-A-P V-PR A-P R-A-P V-PR A-P R-A-P V-PR A-P R-A-P V-PR A-P R-A-P V-PR

iTrans* 38.56 40.43 40.30 35.68 36.17 36.21 35.35 23.91 25.85 37.89 25.61 28.12 33.63 25.74 29.79 44.10 30.76 33.88
TranAD* 60.91 52.04 52.09 36.34 33.13 33.74 7.08 4.51 4.93 53.27 28.07 28.47 27.89 15.25 17.87 26.06 13.31 14.55

Patch* 53.69 49.95 50.17 34.66 35.51 34.66 58.65 45.40 45.52 53.60 35.57 36.37 47.92 33.45 36.22 54.52 39.92 41.85
TsNet* 48.29 51.00 50.53 42.47 38.47 38.88 63.82 50.39 50.39 67.58 53.03 51.73 55.04 41.95 43.28 60.61 41.55 52.30

Modern* 53.07 54.17 53.42 33.98 36.64 37.44 54.31 41.53 41.36 57.71 41.72 40.86 54.48 44.64 45.41 65.84 52.31 45.88
G4TS* 49.31 45.79 45.83 33.55 31.23 31.83 69.72 56.82 56.65 72.14 58.99 57.93 57.69 42.31 43.93 68.63 51.69 52.65
CALF* 42.86 41.39 41.43 38.48 35.10 34.11 43.76 30.42 31.72 51.19 31.22 31.52 32.08 21.30 23.62 42.75 26.64 28.70
UniTS* 49.56 44.54 44.58 27.56 31.03 31.34 64.10 50.30 50.06 56.86 41.93 44.27 50.62 37.54 39.99 53.74 36.28 37.78
Timer* 49.24 43.32 43.36 37.69 28.91 29.57 64.31 50.97 51.20 66.57 51.81 51.56 44.23 30.88 33.36 55.56 37.36 38.23
UTime* 46.37 43.05 43.19 32.68 30.32 30.44 48.17 34.55 35.64 57.39 37.70 37.12 33.10 23.82 25.71 39.63 22.72 25.31
LMixer* 52.74 45.90 45.94 36.74 30.38 30.91 64.84 51.14 51.22 68.67 54.04 52.98 44.75 31.84 34.06 60.18 41.95 42.61
DADA* 30.22 30.28 30.42 38.30 33.77 34.38 70.37 55.99 56.20 63.28 46.69 45.68 55.06 41.34 43.18 63.19 45.13 47.22

MindTS 58.38 57.85 57.48 50.99 50.19 50.36 69.46 56.81 56.79 67.52 52.64 53.15 61.75 49.31 50.42 76.51 66.20 65.44

Table 14: Average P (Precision), R (Recall) and F1 (F1-score) accuracy measures for MindTS and
baselines within the MM-TSFLib. The best results are highlighted in bold, and the second-best
results are underlined.

Datasets Weather Energy Environment KR EWJ MDT

Metric P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

iTrans* 36.62 54.50 43.81 25.78 58.93 35.87 26.19 65.05 37.35 15.64 84.84 26.42 22.15 62.26 32.67 26.40 77.05 39.33
TranAD* 31.65 91.94 47.08 27.47 44.64 34.01 2.52 22.58 4.54 26.87 54.55 36.00 13.44 47.17 20.92 12.35 34.43 18.18

Patch* 37.70 74.41 50.04 21.40 82.14 33.95 34.84 78.49 48.26 24.49 72.73 36.64 36.36 60.38 45.39 33.60 68.85 45.16
TsNet* 47.77 55.92 51.53 29.55 69.64 41.49 44.79 69.35 54.43 53.19 75.76 62.50 35.45 73.58 47.85 29.56 77.05 42.73

Modern* 44.68 65.64 53.17 28.57 78.57 41.90 34.87 73.12 47.22 34.67 78.79 48.15 41.76 71.70 52.78 40.50 80.33 53.85
G4TS* 33.67 78.44 45.12 20.44 82.14 32.74 44.60 84.41 58.36 57.78 78.79 66.67 37.62 71.70 49.35 59.15 68.85 63.64
CALF* 30.14 80.57 43.87 23.66 78.57 36.36 25.04 80.11 38.16 20.54 69.70 31.72 27.43 58.49 37.35 28.80 59.02 38.71
UniTS* 34.95 83.65 49.30 21.50 76.79 33.59 35.41 85.48 50.08 34.21 78.79 47.71 35.24 69.81 46.84 41.94 63.93 50.65
Timer* 32.66 84.83 47.17 19.60 69.64 30.59 39.37 87.63 54.33 49.06 78.79 60.47 29.31 64.15 40.24 40.20 67.21 50.31
UTime* 32.64 81.28 46.57 20.00 67.86 30.89 18.97 91.40 31.42 27.50 66.67 38.94 21.88 79.25 34.29 23.18 57.38 33.02
LMixer* 34.64 85.78 49.35 21.59 67.86 32.76 36.88 87.63 51.91 56.82 75.76 64.95 30.91 64.15 41.72 48.81 67.21 56.55
DADA* 25.09 64.45 36.12 19.90 71.43 31.13 50.17 77.42 60.89 43.40 69.70 53.49 40.45 67.92 50.70 44.94 65.57 53.33

MindTS 54.77 62.56 58.41 45.16 75.00 56.38 36.21 92.47 52.04 39.40 79.09 52.53 46.34 71.70 56.30 69.44 81.97 75.19

Table 15: Average R-R (Range-Recall), R-P (Range-Precision) and R-F (Range-F1-score) accuracy
measures for MindTS and baselines within the MM-TSFLib. The best results are highlighted in
bold, and the second-best results are underlined.

Datasets Weather Energy Environment KR EWJ MDT

Metric R-R R-P R-F R-R R-P R-F R-R R-P R-F R-R R-P R-F R-R R-P R-F R-R R-P R-F

iTrans* 57.06 28.34 37.87 60.48 21.28 31.48 63.78 24.31 35.20 84.20 10.59 18.81 70.00 20.27 31.43 78.46 25.60 38.60
TranAD* 87.59 22.86 36.26 39.29 11.04 17.24 21.13 3.54 6.06 50.37 28.75 36.61 51.36 15.69 24.04 36.53 19.41 25.35

Patch* 76.28 26.40 39.23 73.10 13.12 22.25 79.48 38.28 51.67 76.30 23.26 35.65 65.00 39.94 49.48 67.50 35.81 46.80
TsNet* 68.30 44.44 53.85 57.86 28.17 37.89 71.63 44.48 54.88 80.00 58.85 67.82 79.55 38.61 51.99 75.38 26.87 39.62

Modern* 77.18 37.38 50.37 77.57 24.80 37.58 75.37 37.65 50.22 81.23 42.62 55.91 80.00 47.45 59.57 80.96 41.71 55.05
G4TS* 78.89 24.93 37.89 72.62 13.82 23.22 83.97 46.96 60.23 83.70 64.52 72.87 78.64 44.41 56.76 68.65 61.01 64.61
CALF* 73.30 19.52 30.83 72.14 13.79 23.16 79.95 24.08 37.02 72.59 19.19 30.35 64.09 29.55 40.45 59.81 29.60 39.60
UniTS* 80.79 27.05 40.53 70.00 18.24 28.94 85.96 36.04 50.78 85.93 34.94 49.58 78.64 37.93 51.18 66.15 41.09 50.69
Timer* 76.94 24.87 37.59 60.71 10.29 17.60 86.19 41.23 55.78 83.70 57.29 68.02 70.91 37.62 49.16 67.50 49.55 57.15
UTime* 74.30 19.17 30.48 63.10 16.05 25.59 90.21 17.39 29.16 71.11 28.95 41.15 86.36 26.74 40.84 57.88 22.11 31.99
LMixer* 78.67 26.09 39.18 57.14 14.18 22.73 85.77 37.99 52.66 82.22 62.37 70.93 70.91 36.33 48.05 66.54 53.16 59.10
DADA* 62.45 20.51 30.88 71.43 17.66 27.29 78.44 48.40 59.86 74.81 49.54 59.61 74.09 45.23 56.17 65.58 49.58 56.47

MindTS 66.32 45.71 54.12 71.19 34.09 46.10 92.43 35.96 51.77 83.95 42.98 56.85 80.91 49.01 61.04 82.88 70.28 76.06

Table 16: Average Aff-P (Affiliated-Precision), Aff-R (Affiliated-Recall) and Aff-F (Affiliated-
F1score) accuracy measures for MindTS and baselines within the MM-TSFLib. The best results
are highlighted in bold, and the second-best results are underlined.

Datasets Weather Energy Environment KR EWJ MDT

Metric Aff-P Aff-R Aff-F Aff-P Aff-R Aff-F Aff-P Aff-R Aff-F Aff-P Aff-R Aff-F Aff-P Aff-R Aff-F Aff-P Aff-R Aff-F

iTrans* 65.34 89.01 75.36 61.39 88.49 72.49 68.74 85.01 76.02 66.33 95.80 78.39 67.35 93.65 78.23 65.66 94.48 77.47
TranAD* 65.06 96.53 77.73 55.68 46.25 50.53 46.37 85.21 61.38 72.94 72.07 72.50 56.74 88.12 69.03 58.33 67.33 63.60

Patch* 65.00 95.59 77.05 52.79 89.04 66.28 76.82 87.27 81.71 74.63 85.09 79.52 74.07 77.53 76.49 73.28 85.38 78.87
TsNet* 72.96 88.77 80.09 59.98 70.49 66.71 78.96 81.50 80.21 86.98 84.73 85.84 75.23 89.92 81.92 70.26 94.56 80.62

Modern* 71.93 94.02 81.50 61.88 87.67 72.13 77.34 85.83 81.36 80.39 89.87 84.87 77.77 86.27 81.88 75.68 88.72 81.68
G4TS* 65.88 92.12 76.82 52.88 88.23 67.38 80.78 88.46 84.44 91.78 85.05 88.29 76.80 86.52 81.37 86.29 77.87 81.86
CALF* 60.87 94.23 73.96 56.97 85.13 68.26 70.34 92.85 80.04 67.34 83.77 75.02 67.43 83.71 74.69 69.62 70.81 70.80
UniTS* 64.53 92.92 76.38 55.64 79.36 65.42 76.52 91.71 83.43 78.10 88.68 83.06 73.47 83.22 78.04 78.40 75.08 76.70
Timer* 64.15 91.36 75.37 53.24 69.68 60.36 79.02 90.84 84.52 91.52 87.67 89.61 73.11 86.05 79.05 79.84 75.68 77.93
UTime* 61.34 93.03 73.93 54.42 81.87 65.38 63.38 97.22 76.73 71.38 84.49 77.38 60.36 92.98 73.20 68.40 76.74 72.33
LMixer* 65.68 82.77 76.30 54.97 69.68 61.46 78.10 90.01 83.76 92.60 87.59 90.03 71.76 85.98 78.23 84.87 72.70 78.31
DADA* 57.53 88.49 69.73 52.95 83.46 64.80 82.94 84.75 83.84 86.72 81.86 84.22 80.16 82.70 81.41 81.44 74.62 77.89

MindTS 76.88 89.37 82.66 71.50 77.47 74.37 77.38 95.01 85.29 85.91 95.24 90.28 77.99 90.74 83.89 90.80 87.64 89.19
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D VISUALIZATION CASE STUDIES

To enable intuitive performance comparison, we conduct a comparative visualization of anomaly
scores between MindTS and GPT4TS (the original model and within the MM-TSFLib), as shown in
Figure 6. MindTS exhibits the most distinguishable anomaly scores compared to existing methods.
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Figure 6: Visualization comparisons of anomaly scores between MindTS and GPT4TS for all
datasets.

E ADDITIONAL MODEL ANALYSIS

E.1 COMPARISON OF DIFFERENT LLMS

To more convincingly demonstrate that the performance improvements of our work stem primarily
from architectural design rather than reliance on specific LLMs, we conducted experiments with
different LLMs. As shown in Table 17, our findings indicate that MindTS maintains stable perfor-
mance across different LLMs and even achieves competitive results when using BERT. This suggests
that the choice of LLMs does not exhibit a significant correlation with MindTS performance, and
different LLMs can be flexibly adopted within MindTS.

Table 17: Comparison of different LLMs. Metrics include Aff-F, V-PR, and V-ROC for each dataset.

Method Weather Energy Environment KR EWJ MDT

Metric Aff-F V-PR V-ROC Aff-F V-PR V-ROC Aff-F V-PR V-ROC Aff-F V-PR V-ROC Aff-F V-PR V-ROC Aff-F V-PR V-ROC

GPT2 82.71 57.81 82.97 73.38 43.78 68.40 84.95 52.83 93.96 91.21 55.88 90.15 81.39 48.97 80.96 85.56 60.24 80.81
BERT 80.48 57.84 82.67 72.99 43.07 66.65 84.75 54.25 92.14 87.05 53.75 91.61 84.63 43.95 78.85 82.30 53.68 76.37

LLAMA 81.34 56.93 82.39 75.64 49.21 74.58 84.83 52.99 92.86 90.81 53.24 85.17 80.17 45.76 82.33 85.48 59.24 81.90
DeepSeek 82.66 57.48 82.64 74.37 50.36 74.44 85.29 56.79 93.78 90.28 53.15 89.86 83.89 50.42 84.12 89.19 65.44 83.02

E.2 CROSS-VIEW TEXT FUSION ANALYSES

In this paper, we use the endogenous text HO
text as the query and the exogenous text HC

text as the key
and value to obtain the fused text representation Ztext to enhance semantic consistency with the time
series and extract the most relevant background information. We further conduct additional exper-
iments comparing different attention strategies to demonstrate the effectiveness of this design: (a)
MindTS (q/kv reverse), setting HC

text as query and HO
text as key/value; (b) MindTS (self-attention), us-

ing self-attention only; (c) MindTS (two-way), replace the one-way cross-attention with a two-way
block where exogenous text also queries endogenous features; and (d) MindTS, setting HO

text as
query and HC

text as key/value.
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As shown in Table 18, the configuration where HO
text is used as the query and HC

text as the key/value
yields the best performance. In cross-view attention, using HO

text as query and HC
text as key/value

allows the model to better extract supplementary information from exogenous text that is most rel-
evant to each time patch. By contrast, relying solely on self-attention limits the model’s ability to
directly learn interactions between different text modalities. Although two-way cross-attention de-
sign possesses a certain level of representational capacity, it does not bring significant performance
improvements on most datasets.

Table 18: Evaluation of cross-view text fusion variants.

Datasets Weather Energy Environment KR EWJ MDT

Metric Aff-F V-PR V-ROC Aff-F V-PR V-ROC Aff-F V-PR V-ROC Aff-F V-PR V-ROC Aff-F V-PR V-ROC Aff-F V-PR V-ROC

MindTS (q/kv reverse) 82.29 57.33 82.27 73.73 48.22 73.06 83.94 55.49 92.64 87.14 50.72 88.72 82.71 49.99 84.34 87.95 65.07 82.30
MindTS (self-attention) 81.69 56.69 82.46 72.47 48.17 71.18 85.79 56.54 93.41 87.27 52.48 90.31 82.96 46.28 83.59 83.82 57.67 77.80

MindTS (two-way) 79.43 57.17 82.70 72.57 44.64 70.42 84.47 53.17 93.17 87.39 54.54 91.77 77.76 46.92 78.28 81.12 57.62 75.23
MindTS 82.66 57.48 82.64 74.37 50.36 74.44 85.29 56.79 93.78 90.28 53.15 89.86 83.89 50.42 84.12 89.19 65.44 83.02

E.3 COMPARISON WITH LLM CONCISER

To further illustrate the effectiveness of the content condenser, We add comparative experiments
among the following four model variants: (a) w/o text, input includes only time series (no text);
(b) w/o filtering, input includes time series and text, where the text is used without any redundancy
filtering; (c) LLM-based compression, input includes time series and text, where the text is processed
by LLM-based compression for redundancy filtering (the content condenser is removed); (d)content
condenser, input includes time series and text, where the text is processed by our proposed content
condenser for redundancy filtering.

As shown in Table 19, variant (d) achieves the best performance across all evaluation metrics. Vari-
ant (b) performs the worst, even lower than (a), indicating that unfiltered text introduces redun-
dancy that degrades performance. This confirms the existence of text redundancy. Variant (c) with
LLM-based compression to filter the text achieves better results than (a) and (b), demonstrating that
compression helps alleviate redundancy to some extent. Most importantly, variant (d) significantly
outperforms the LLM-based compression approach, highlighting the effectiveness of our proposed
content condenser. Unlike LLMs, our module is explicitly optimized under the multimodal objec-
tive to preserve time-aligned semantics and suppress irrelevant textual content, thereby enhancing
outlier detection performance. In contrast, LLM-based compression considers text-only semantics,
which fails to capture time-aligned semantics.

Table 19: Ablation on text redundancy filtering strategies. The best results are highlighted in bold.

Datasets (a) w/o text (b) w/o filtering (c) LLM-based compression (d) content condenser

Metric Aff-F V-PR V-ROC Aff-F V-PR V-ROC Aff-F V-PR V-ROC Aff-F V-PR V-ROC

KR 84.11 45.11 79.43 80.52 37.82 74.38 87.32 47.95 88.52 90.28 53.15 89.86
EWJ 81.87 45.22 79.32 78.79 38.47 80.03 80.26 42.90 78.84 83.89 50.42 84.12
MDT 84.00 58.32 81.68 81.79 51.40 75.43 84.31 58.74 81.13 89.19 65.44 83.02

E.4 MULTIMODAL ANALYSIS

In Table 20, we observe that compared to time series unimodal settings, incorporating time-text
multimodal settings consistently yields better results. Notably, on some datasets (e.g., Energy and
MDT), MindTS outperforms the baselines. As reported in Table 3 of the paper, these datasets are
relatively small in size but have high anomaly ratios, making anomalies more densely distributed
and easier to detect. For models with strong reconstruction capacity, this setting increases the risk
of overfitting, as anomalies may also be reconstructed too well, thereby degrading detection perfor-
mance. In contrast, simpler methods are less prone to reconstructing anomalies, which sometimes
results in competitive outcomes. Nevertheless, across all datasets, MindTS consistently demon-
strates superior performance over unimodal settings, effectively integrating multimodal information
to enhance anomaly detection.
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Table 20: The results of MindTS and MindTS(unimodel) across all datasets (all results in %, best
results are highlighted in bold).

Method Weather Energy Environment KR EWJ MDT

Metric Aff-F V-PR V-ROC Aff-F V-PR V-ROC Aff-F V-PR V-ROC Aff-F V-PR V-ROC Aff-F V-PR V-ROC Aff-F V-PR V-ROC

MindTS(unimodel) 75.96 45.69 74.19 73.14 46.66 71.36 80.16 44.28 86.43 84.11 45.11 79.43 81.87 45.22 79.32 84.00 58.32 81.68
DADA 69.01 30.00 61.03 64.38 34.18 54.37 84.11 54.20 87.69 84.22 45.90 70.82 81.26 43.36 71.79 77.99 46.81 66.76

ModernTCN 81.06 52.13 81.14 70.76 36.60 65.05 81.07 42.26 89.78 84.42 39.95 88.87 81.57 44.75 83.88 80.81 52.18 82.30
Timer 75.46 43.21 73.22 60.20 29.46 46.03 84.19 51.42 92.10 89.55 51.41 75.99 78.06 33.17 67.72 78.51 38.38 60.28

MindTS 82.66 57.48 82.64 74.37 50.36 74.44 85.29 56.79 93.78 90.28 53.15 89.86 83.89 50.42 84.12 89.19 65.44 83.02

E.5 VARIANT OF CONTENT CONDENSER

To provide a more comprehensive analysis, we examine a content condenser variant that explicitly
conditions its token retention probabilities on both text and unmasked time patches.

As shown in Table 21, our original design still outperforms the variant in most cases. This is because
allowing the content condenser to access unmasked time patches introduces a potential shortcut.
While the intention is to provide additional guidance, it makes the model focus on the time series
modality. This variant tends to identify text that appears superficially aligned with known temporal
patterns, rather than selecting text based on its actual semantic contribution to the reconstruction
task, which is achieve by the cross-modal semantic complementarities. As a result, the ability of the
condenser to filter redundant content may be reduced.

To assess the contribution of the smoothness term LSM , we conduct an ablation study. As shown
in Table 22, removing LSM leads to a performance drop. This suggests that the absence of the
smoothness constraint enforced by LSM may lead the model to generate incoherent and unstable
compressed outputs.

Table 21: Performance comparison of content condenser variants conditioned with and without
unmasked time patches. The best results are highlighted in bold.

Method Weather Energy Environment KR EWJ MDT

Metric Aff-F V-PR V-ROC Aff-F V-PR V-ROC Aff-F V-PR V-ROC Aff-F V-PR V-ROC Aff-F V-PR V-ROC Aff-F V-PR V-ROC

Condenser Variant 82.02 56.74 82.36 73.29 49.01 73.20 82.46 56.77 93.89 89.93 51.16 90.55 81.89 47.05 83.77 85.59 62.72 80.67
MindTS 82.66 57.48 82.64 74.37 50.36 74.44 85.29 56.79 93.78 90.28 53.15 89.86 83.89 50.42 84.12 89.19 65.44 83.02

Table 22: Ablation study on LSM (all results in %, best results are highlighted in bold).

Method Weather Energy Environment KR EWJ MDT

Metric Aff-F V-PR V-ROC Aff-F V-PR V-ROC Aff-F V-PR V-ROC Aff-F V-PR V-ROC Aff-F V-PR V-ROC Aff-F V-PR V-ROC

MindTS (w/o LSM ) 81.59 55.88 81.48 73.26 48.53 73.18 83.40 54.19 91.58 88.49 49.20 88.31 82.57 49.25 83.64 86.29 63.23 81.11
MindTS 82.66 57.48 82.64 74.37 50.36 74.44 85.29 56.79 93.78 90.28 53.15 89.86 83.89 50.42 84.12 89.19 65.44 83.02

E.6 INFERENCE TIME

In Table 23, we compare MindTS with other models across different datasets in terms of inference
time and memory cost. Overall, MindTS achieves competitive inference time while maintaining su-
perior detection performance. Regarding memory usage, the additional cost is moderate and remains
well within the capacity of modern hardware, making MindTS practical for real-world deployment.

Table 23: Run times and memory costs on different datasets. Lower values represent better perfor-
mance. The notation with ∗ denotes results obtained by extending the baselines using the recent
time-series multimodal framework MM-TSFLib.

Method Inference Time (s) Memory Cost (GB)

MDT KR EWJ MDT KR EWJ

MindTS 0.2302 0.1977 0.4130 14.69 14.62 14.41
ModernTCN∗ 0.1582 0.1383 0.3965 13.61 13.66 13.57

GPT4TS∗ 0.2676 0.2425 0.4716 13.85 13.89 13.80
LLMMixer∗ 0.2585 0.2104 0.4619 14.13 14.08 13.97
UniTime∗ 0.2537 0.2462 0.4760 14.20 14.15 14.06
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E.7 EXOGENOUS TEXT QUALITY ANALYSIS

From Table 24 to Table 26, we compare different types of exogenous text quality variations to eval-
uate the robustness of our model: (a) noisy, by introducing random spelling errors within sentences;
(b) irrelevant, by replacing the original sentences with unrelated text from different domains; and
(c) incomplete, by removing portions of the text descriptions.

As shown in Table 24, under single-type settings, the performance of MindTS only slightly de-
creases compared to the clean setting. As shown in Table 25, when the noise strength is within
a reasonable range (e.g., 0.2 and 0.4), the content condenser effectively filters out redundant text
information, thereby mitigating its impact. As a result, MindTS still maintains robust performance.
Under more challenging conditions, such as multiple text types combinations (Table 26) or high
noise intensity (e.g., 0.8), the performance degradation becomes more noticeable. Nevertheless, the
overall results remain within acceptable bounds. Additionally, we clarify that the exogenous texts
in our datasets are collected from real-world sources (e.g., news, public reports), which inevitably
contain redundant or partially irrelevant content. Nevertheless, MindTS consistently achieves strong
results across multiple realistic datasets, demonstrating its robustness and adaptability to real-world
text quality variation.

Table 24: Results under different types of exogenous text quality variations (all results in %, best
results are highlighted in bold).

Method MindTS MindTS (noisy) MindTS (irrelevant) MindTS (incomplete)

Metric Aff-F V-PR V-ROC Aff-F V-PR V-ROC Aff-F V-PR V-ROC Aff-F V-PR V-ROC

MDT 89.19 65.44 83.02 87.45 62.12 81.02 86.54 60.10 80.17 87.85 61.95 80.59
Energy 74.37 50.36 74.44 72.53 47.42 72.16 72.21 46.52 71.29 73.13 47.62 73.50

Table 25: Results of the noisy method under different noise strengths (s).

Dataset MindTS s = 0.2 s = 0.4 s = 0.6 s = 0.8

Metric Aff-F V-PR V-ROC Aff-F V-PR V-ROC Aff-F V-PR V-ROC Aff-F V-PR V-ROC Aff-F V-PR V-ROC

MDT 89.19 65.44 83.02 87.45 62.12 81.02 86.38 60.03 79.46 83.71 58.71 78.69 79.84 55.21 76.46
Energy 74.37 50.36 74.44 72.53 49.42 73.16 71.17 48.26 70.03 69.35 47.22 69.97 66.69 45.02 66.13

Table 26: Results under combined types of exogenous text quality variations.

Method MindTS
MindTS

(noisy + irrelevant)
MindTS

(noisy + incomplete)
MindTS

(irrelevant + incomplete)
MindTS

(three types)

Metric Aff-F V-PR V-ROC Aff-F V-PR V-ROC Aff-F V-PR V-ROC Aff-F V-PR V-ROC Aff-F V-PR V-ROC

MDT 89.19 65.44 83.02 84.91 57.29 78.23 85.28 55.60 78.34 84.81 58.34 77.68 81.64 52.17 75.28
Energy 74.37 50.36 74.44 70.33 44.71 70.18 71.89 45.86 69.96 69.74 45.26 70.51 66.05 42.08 66.88
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F ALIGNMENT VISUALIZATION ANALYSIS

In this section, we visualize the learned similarity matrix between time series and text representa-
tions before and after alignment (see Figure 7). Before alignment, the similarity distribution appears
scattered, indicating weak semantic correspondence between modalities. After alignment, the simi-
larity becomes more concentrated along the diagonal, revealing clear associations between relevant
time series and text representations. This demonstrates that the proposed alignment module success-
fully establishes cross-modal consistency, thereby enhancing the model’s ability to utilize textual
information.
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Figure 7: Visualization comparisons between before and after alignment. The x-axis denotes time
representations of each patch, while the y-axis represents text representations of each patch.

In addition, we present qualitative visualizations that illustrate how alignment improves anomaly
detection decisions. Specifically, we compare the anomaly score with and without alignment, as
shown in Figure 8. The first row shows the original data with ground-truth anomaly positions, the
second row displays the anomaly scores of the model with multimodal alignment, and the third
row presents the anomaly scores of the model without multimodal alignment. When alignment is
applied, the model exhibits more distinguishable anomaly scores around true abnormal regions. In
contrast, the model without alignment fails to effectively increase the gap between the anomaly
scores of normal points and anomalies, leading to many false positives.
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Figure 8: Visualization comparisons of the anomaly score between with and without alignment.

G PROMPT DESIGN ANALYSIS

The endogenous prompt in MindTS is constructed using the template shown in Figure 9. Inspired by
the analyses in TimeLLM Jin et al. (2023) and HiTime Tao et al. (2024), we explore how different
prompt designs affect model performance as follows:
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[Start prompt]
***
[Dataset description]: The weather data includes 
temperature and humidity statistics as well as reports 
collected from government websites.
***
[Task description]: Reconstruct the <seq_len> steps 
given the previous <seq_len> steps.
***
[Input statistics]:
- Minimum value: <min_value>
- Maximum value: <max_value>
- Median value: <median_value>
- Trend of input: <trend_description>
- Top k lags: <lags>
[End prompt]

Figure 9: Prompt example.

(1) Template variant (MindTS-T): prompts gen-
erated using a different template formulation, as
shown in Figure 10;

(2) Statistical variant (MindTS-S): removing parts of
the statistical descriptors: (a) keeping only dataset
description, (b) removing min, max, median values,
(c) removing trend information, (d) removing lag in-
formation;

(3) Temporal granularity variant (MindTS-TG):
changing endogenous text generation from the per-
patch level to the per-sample level.

As shown in Table 27, altering only the template for-
mulation while keeping the content unchanged has
almost no impact on performance. When a few statistical descriptors are removed, the performance
decline is minor. However, when most of the statistics are omitted (MindTS-S(a)), performance
drops more noticeably, as the generated endogenous text becomes too sparse to convey meaning-
ful information. Changing the temporal granularity of endogenous prompt generation also leads
to noticeable performance differences, primarily because coarse-grained endogenous text weakens
MindTS’s ability to achieve fine-grained alignment. These results together confirm MindTS’s ro-
bustness to reasonable variations in prompt design. We clarify that the selected statistical descriptors
represent fundamental characteristics of time series. Therefore, the performance improvement does
not depend on carefully tuning the prompts but rather arises from the intrinsic capabilities of the
proposed model.

Table 27: Ablation on endogenous prompt design across different variants.

Dataset Metric MindTS MindTS-S(a) MindTS-S(b) MindTS-S(c) MindTS-S(d) MindTS-T MindTS-TG

MDT
Aff-F 89.19 83.22 87.59 87.62 87.14 88.38 84.78
V-PR 65.44 57.27 64.05 64.49 64.33 64.65 58.49

V-ROC 83.02 78.72 82.75 82.13 82.90 83.19 80.75

Energy
Aff-F 74.37 66.65 73.74 74.03 73.85 74.21 69.31
V-PR 50.36 44.29 48.77 49.25 49.81 49.34 45.32

V-ROC 74.44 68.59 72.33 71.78 72.66 72.14 67.97

H TIME SERIES FORECASTING EXPERIMENTAL RESULTS

[Dataset]: The weather data includes temperature 
and humidity statistics as well as reports collected 
from government websites. [Task]: Reconstruct the 
<seq_len> steps given the previous <seq_len> steps. 
[Input statistics]: Input value ranges from <min> to 
‹max>, with a median of <median> and an overall 
<downward> trend, and top k lags are <lags>.

Figure 10: Different template formulation.

Although MindTS is primarily designed for anomaly
detection, its architectural components are inher-
ently extensible. MindTS proposes a fine-grained
time-text semantic alignment mechanism consisting
of endogenous text generation, cross-view text fu-
sion, and a multimodal alignment strategy to ensure
that time series and text semantics are consistently
matched. Since accurate alignment is crucial for
multimodal tasks involving heterogeneous semantic
spaces, the alignment mechanism in MindTS pos-
sesses extensibility. Moreover, MindTS incorporates
a content condenser to filter redundant textual information before cross-modal interaction. Redun-
dant text is a common challenge in many multimodal applications. Together, these components
make MindTS applicable to other multimodal time series applications.

To further evaluate extensibility, MindTS is adapted to time series forecasting and compared with
forecasting-oriented baselines Li et al. (2025); Liu et al. (2024b). As shown in Table 28, MindTS
achieves competitive performance across multiple forecasting datasets, demonstrating that the core
components generalize effectively beyond anomaly detection. These results confirm the extensibility
of MindTS to other multimodal time series applications.
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Table 28: Multimodel time series forecasting results with forecasting horizons F ∈ {6, 8, 10, 12}.

Models MindTS Time-MMD TaTS
Metrics mse mae mse mae mse mae

Agriculture

6 0.167 0.269 0.146 0.263 0.140 0.251
8 0.195 0.283 0.189 0.310 0.187 0.282
10 0.228 0.316 0.254 0.320 0.244 0.320
12 0.258 0.343 0.338 0.369 0.290 0.350

AVG 0.212 0.303 0.232 0.316 0.215 0.301

Traffic

6 0.157 0.225 0.162 0.242 0.174 0.239
8 0.176 0.251 0.168 0.228 0.178 0.242
10 0.167 0.213 0.178 0.237 0.185 0.243
12 0.181 0.237 0.188 0.246 0.189 0.242

AVG 0.170 0.232 0.174 0.239 0.179 0.238

Economy

6 0.172 0.331 0.199 0.350 0.196 0.350
8 0.215 0.370 0.216 0.367 0.214 0.376
10 0.215 0.363 0.224 0.373 0.223 0.367
12 0.242 0.379 0.239 0.388 0.239 0.388

AVG 0.211 0.361 0.219 0.370 0.215 0.368

I ANALYSIS OF ENDOGENOUS TEXT GENERATION

To assess the actual benefit of the endogenous text generation step, we conducted an ablation study
in which the model directly uses Htime as the query to fuse exogenous text, without endogenous text
generation. As shown in Table 29, the model incorporating endogenous text achieves clearly better
performance. The endogenous text is derived directly from the time series, capturing temporal char-
acteristics that align closely with local patterns. Consequently, fusing endogenous and exogenous
texts enables the model to extract supplementary information from exogenous sources that is most
relevant to each time patch.

In contrast, directly using Htime as the query to fuse exogenous text does not yield performance
gains. This is likely because the time-series and text modalities inherently reside in different se-
mantic spaces; interacting them directly without prior alignment results in insufficient information
extraction due to modality discrepancies.

Table 29: Ablation study on Htime as the query to fuse exogenous text, without endogenous text
generation (all results in %, best results are highlighted in bold).

Method Weather Energy Environment KR EWJ MDT

Metric Aff-F V-PR V-ROC Aff-F V-PR V-ROC Aff-F V-PR V-ROC Aff-F V-PR V-ROC Aff-F V-PR V-ROC Aff-F V-PR V-ROC

MindTS (Htime as query) 79.35 56.21 80.13 72.69 47.52 71.47 82.67 52.45 92.87 87.93 48.27 89.02 82.33 48.98 81.48 87.85 64.33 81.26
MindTS 82.66 57.48 82.64 74.37 50.36 74.44 85.29 56.79 93.78 90.28 53.15 89.86 83.89 50.42 84.12 89.19 65.44 83.02

J ANALYSIS OF MULTIMODAL ALIGNMENT AS A STANDALONE OBJECTIVE
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Figure 11: Scalability comparison
under different data sizes.

In this section, we compare multimodal alignment trained as a
standalone objective with the auxiliary alignment setting used
in MindTS. As shown in Table 30, training alignment as a
standalone objective does not lead to performance improve-
ment. We clarify that although optimizing multimodal align-
ment alone may strengthen the alignment depth, it neglects
the specific role of the learned representations in anomaly de-
tection. In contrast, jointly optimizing alignment with other
objectives allows multiple losses to guide and regularize each
other, enabling the model to emphasize features that are both
semantically aligned and task-relevant.
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Table 30: Multimodal alignment as a standalone objective (all results in %, best in Bold).

Datasets MindTS (auxiliary) MindTS (standalone)

Metric Aff-F V-PR V-ROC Aff-F V-PR V-ROC

MDT 89.19 65.44 83.02 80.33 57.18 76.35
Energy 74.37 50.36 74.44 70.28 44.89 69.61

K SCALABILITY STUDIES

We would like to clarify that due to the current difficulty in obtaining larger-scale multimodal
datasets, we evaluate the scalability of MindTS by varying the proportion of training data (20%,
40%, 60%, 80%, 100%) on the available datasets. As shown in Figure 11, the running time in-
creases approximately sub-linearly with the data size. As the data volume grows, total training time
increases because more iterations are required to process larger datasets. Compared with baselines,
MindTS has a certain advantage in training time (see Table 31). These observations collectively
demonstrate that MindTS maintains reasonable computational scalability and remains practical for
real-world multimodal time series applications.

Table 31: Training time (s) comparison with baselines.

Datasets MindTS GPT4TS* LLMMixer* ModernTCN* UniTime*

KR 80.83 81.17 84.35 19.72 77.98
EWJ 75.56 73.66 70.09 18.65 70.23
MDT 73.76 74.49 70.01 18.61 68.53
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