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Abstract. From border controls to personal devices, from online
exam proctoring to human-robot interaction, biometric technologies are
empowering individuals and organizations with convenient and secure
authentication and identification services. However, most biometric sys-
tems leverage only a single modality, and may face challenges related to
acquisition distance, environmental conditions, data quality, and com-
putational resources. Combining evidence from multiple sources at a
certain level (e.g., sensor, feature, score, or decision) of the recognition
pipeline may mitigate some limitations of the common uni-biometric sys-
tems. Such a fusion has been rarely investigated at intermediate level,
i.e., when uni-biometric model parameters are jointly optimized during
training. In this chapter, we propose a multi-biometric model training
strategy that digests face and voice traits in parallel, and we explore
how it helps to improve recognition performance in re-identification and
verification scenarios. To this end, we design a neural architecture for
jointly embedding face and voice data, and we experiment with sev-
eral training losses and audio-visual datasets. The idea is to exploit
the relation between voice characteristics and facial morphology, so that
face and voice uni-biometric models help each other to recognize people
when trained jointly. Extensive experiments on four real-world datasets
show that the biometric feature representation of a uni-biometric model
jointly trained performs better than the one computed by the same uni-
biometric model trained alone. Moreover, the recognition results are fur-
ther improved by embedding face and voice data into a single shared
representation of the two modalities. The proposed fusion strategy gen-
eralizes well on unseen and unheard users, and should be considered as a
feasible solution that improves model performance. We expect that this
chapter will support the biometric community to shape the research on
deep audio-visual fusion in real-world contexts.
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1 Introduction

Over the years, from visitors identified in human-robot interactions [27,28,46]
to learners authenticated in online education platforms [13,14], biometrics has
been increasingly playing a primary role in various contexts, such as robotics,
medicine, science, engineering, education and several other business areas [25].
Evidence of this can be retrieved in recent reports that estimate a huge growth of
the biometric market size, moving from $10.74 billion in 2015 to $32.73 billion by
20221. Examples of biometric traits include the facial structure [49], the ridges
of a fingerprint [35], the iris pattern [4], the sound waves of a voice [16], and the
way a person interacts with a digital device [56]. From the system perspective,
recognition pipelines detect the modality of interest in the biometric sample.
This is followed by a set of pre-processing functions. Features are then extracted
from pre-processed data, and used by a classifier for recognition. From the user
perspective, an individual is asked to provide some samples whose feature vectors
are stored as a template by the system (i.e., enrollment). Then, the recognition
process may involve associating an identity with the probe (i.e., re-identification)
or determining if the probe comes from the declared person (i.e., verification).

Most biometric systems manipulate a single modality (e.g., face only), and
may encounter problems due to several factors surrounding the system and the
user, such as the acquisition distance and the environmental conditions [3,10,44].
Deploying such systems in real-world scenarios thus presents various challenges.
For instance, facial images exhibit large variations due to occlusions, pose,
indoor-illumination, expressions, and accessories [49]. Similarly, audio samples
vary due to the distance of the subject from the microphone, indoor reverbera-
tions, background noise, and so on [16]. Given the highly-variable conditions of
these scenarios, focusing exclusively on one modality might seriously decrease
the system reliability, especially when the acquisition conditions are not con-
trolled. Multi-biometric systems have been proven to overcome some limitations
of uni-biometric systems by combining evidence from different sources. This
often results in improved recognition performance and enhanced system robust-
ness, since the combined information is likely to be more distinctive compared
to the one obtained from a single source [2,12]. Multi-biometric systems might
be exploited in several scenarios, such as when people are speaking while being
assisted by robots or when learners are attending an online oral exam.

One of the main design choices while developing a multi-biometric system is
to select the level of the recognition pipeline where the fusion happens. To pro-
vide a unique global response, fusion policies generally refer to sensor level, fea-
ture level, score level, or decision level [41]. First, sensor-level fusion corresponds
to combining raw data immediately after acquisition. Second, feature-level fusion
refers to performing fusion of feature vectors extracted from different biometric
1 https://www.grandviewresearch.com/industry-analysis/biometrics-industry.
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samples. Third, score-level fusion corresponds to fuse matching scores produced
by different systems. Fourth, decision-level fusion implies the combination of
decisions taken by more than one system based on voting. Late fusion strategies
usually made the process simpler and flexible, but an excessive amount of infor-
mation entropy was lost. Early fusion policies were proven to work better, but
tended to introduce high complexity and less flexibility. The recent revolution
driven by deep-learned representations has contributed to reduce the latter defi-
ciencies, and facilitated the experimentation of cost-effective intermediate fusion
during model training and deployment [36]. It follows that, for instance, face
and voice models might be trained jointly to learn whether face or voice probes
come from a given user, but then deployed in a uni-biometric manner. On the
other side, they could be combined in a multi-biometric way by embedding face
and voice data into a single feature vector during deployment.

In this chapter, we introduce a multi-biometric training strategy that digests
face and voice traits, and we investigate how it makes it possible to improve
recognition performance in audio-visual re-identification and verification. With
this in mind, we design a neural architecture composed by a sub-network for
faces and a sub-network for voices fused at the top of the network and jointly
trained. By exploiting features correlation, both models help each other to pre-
dict whether facial or vocal probes come from a given user. This paper extends
the work presented in [30] that introduced an audio-visual dataset collected dur-
ing human-robot interactions, and evaluated it and other challenging datasets on
uni-biometric recognition tasks. The mission is to make a step forward towards
the creation of biometric models able to work well on challenging real-world sce-
narios, such as identification performed by robots or continuous device authen-
tication. More precisely, this paper provides the following contributions:

– We present a deeper contextualization of the state-of-the-art biometric solu-
tions explored by researchers in audio-visual real-world biometrics scenarios.

– We experiment with a fusion strategy that combines face and voice traits
instead of using them individually for re-identification and verification tasks.

– We extensively validate our strategy in public datasets, showing that it sig-
nificantly improves uni-biometric and multi-biometric recognition accuracy.

Experiments on four datasets from real-world contexts show that the jointly-
trained uni-biometric models reach significantly higher recognition accuracy
than individually-trained uni-biometric models, both when their embeddings are
deployed separately (i.e., 10%–20% of improvement) and when they are combined
into a single multi-biometric embedding (i.e., 30%–50% of improvement). As the
proposed strategy well generalizes on unseen and unheard users, it should be
considered as a feasible solution for creating effective biometric models.

The rest of this chapter guides readers along the topic as follows. Section 2
summarizes recent uni-biometric strategies for face and voice recognition tasks
together with biometric fusion strategies involving them. Then, Sect. 3 describes
the proposed fusion strategy, including its formalization, input data formats, net-
work architecture structures, and training process steps. Sections 4 depicts the
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experimental evaluation of the proposed strategy, and highlights how it outper-
forms state-of-the-art solutions. Finally, Sect. 5 depicts conclusions, open chal-
lenges and future directions in this research area.

2 Related Work

In this section, we briefly describe state-of-the-art contributions on audio-visual
biometrics applied in different scenarios. This is achieved by introducing face and
voice uni-biometric systems and, subsequently, existing multi-biometric models.

2.1 Deep Face Recognition

The recent widespread of deep learning in different areas has favoured the
usage of neural networks as feature extractors combined with common machine-
learning classifiers, as proposed in [50]. Backbone architectures that accomplish
this task rapidly evolved from AlexNet [24] to SENet [20] over last years.

In parallel, researchers have formulated both data sampling strategies and
loss functions to be applied when such backbone architectures are trained. Deep-
face [44] integrates a cross-entropy-based Softmax loss while training the net-
work. However, applying Softmax loss is usually not sufficient by itself to learn
features separated by a large margin when the samples come from diverse enti-
ties, and other loss functions have been explored to enhance the generaliza-
tion ability. For instance, euclidean-distance-based losses embed images into an
euclidean space and reduce intra-variance while enlarging inter-variance across
samples. Contrastive loss [43] and Triplet loss [38] are commonly used to this
end, but they often exhibit training instability and complex sampling strategies.
Center loss [51] and Ring loss [55] balance the trade-off between accuracy and
flexibility. Furthermore, cosine-margin-based losses, such as AM-Softmax, were
proposed to learn features separable through angular distance measures [48].

2.2 Deep Voice Recognition

Traditional speaker recognition systems based on hand-crafted solutions relied
on Gaussian Mixture Models (GMMs) [37] that are trained on low dimensional
feature vectors, Joint Factor Analysis (JFA) [11] methods that model speaker
and channel subspaces separately, or i-Vectors [23] that attempt to embed both
subspaces into a single compact, low-dimensional space.

Modern systems leveraged deep-learned acoustic representations, i.e., embed-
dings, extracted from one of the last layers of a neural network trained for
standard or one-shot speaker classification [19,29]. The most prominent exam-
ples include d-Vectors [47], c-Vectors [7], x-Vectors [42], VGGVox-Vectors [34]
and ResNet-Vectors [9]. Furthermore, deep learning frameworks with end-to-end
loss functions to train speaker discriminative embeddings have recently drawn
attention [18]. Their results proved that end-to-end systems with embeddings
achieve better performance on short utterances common in several contexts (e.g.,
robotics, proctoring, and border controls) compared with hand-crafted systems.
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2.3 Deep Audio-Visual Recognition

Combining signals from multiple sensors has been traditionally investigated from
a data fusion perspective. For instance, such a merge step can happen at sensor
level or feature level, and focuses on how to combine data from multiple sources,
either by removing correlations between modalities or representing the fused
data in a common subspace; the fused data is then fed into a machine-learning
algorithm [1]. The literature provides also evidence of fusion techniques at score
level and decision level [8,21,32,39]. There is no a general conclusion on which
fusion policy performs better between early and late fusion, and the performance
is problem-dependent [41]. However, late fusion was simpler to be implemented,
particularly when modalities varied in dimensionality and sampling rates.

Emerging machine-learning strategies are making it possible to fill this gap in
flexibility between early and late fusion. Through a new form of multi-biometric
fusion of features representations, namely intermediate fusion, neural networks
offer a flexible approach to multi-biometric fusion for numerous practical prob-
lems [36]. Given that neural architectures learn a hierarchical representation of
the underlying data across its hidden layers, learned representations of differ-
ent modalities can be fused at various levels of abstraction, introducing several
advantages with respect to previous solutions [39,40]. Modality-wise and shared
representations are learned from data, while features were originally manually
designed and required prior knowledge on the data. Such a new fusion level
requires little or no pre-processing of input data, differently from traditional
techniques that may be sensitive to data pre-processing. Furthermore, implicit
dimensionality reduction within the architecture and easily scalable capabilities
are guaranteed, improving flexibility and accuracy at the same time.

Good evidence of these advantages comes from the literature. For instance,
the authors in [15] aimed to learn features from audio and faces from convolu-
tional neural networks compatible at high-level. Their strategy has been proven
to produce better performance than single modality, showing the effectiveness of
the multi-biometric fusion during deployment. The works in [5,6] proposed time-
dependent audio-visual models adapted in an unsupervised fashion by exploiting
the complementary of multiple modalities. Their approach allowed to control the
model adaptation and to cope with situations when one of the two modalities
is under-performing. Furthermore, the approach described in [45] used a three-
dimensional convolutional neural network to map both modalities into a single
representation space, and evaluated the correspondence of audio–visual streams
using such learned multi-biometric features. Inspired by findings on high-level
correlation of voice and face across humans, the authors in [40] experimented
with an attention-based neural network that learns multi-sensory associations
for user verification. The attention mechanism conditionally selects a salient
modality representation between speech and facial ones, balancing between com-
plementary inputs. Differently, the method in [52] extracted static and dynamic
face and audio features; then, it concatenated the top discriminative visual-audio
features to represent the two modalities, and used a linear classifier for identifica-
tion. Recent experience in [26] depicted an efficient attention-guided audio-face
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fusion approach to detect speakers. Their factorized model deeply fused the
paired audio-face features, whereby the joint audio-face representation can be
reliably obtained. Finally, the authors in [33] investigated face-voice embeddings
enabling cross-modal retrieval from voice to face and vice versa.

The collection of large amounts of training data and the advent of powerful
graphics processing units (GPUs) is enabling deep intermediate fusion, and this
paper makes a step forward towards its application in the audio-visual domain.

3 The Proposed Intermediate Fusion Approach

In this section, we describe our intermediate fusion strategy that jointly learns
voice and face embeddings, including model formalization, input data formats,
underlying architectures, and training details (Fig. 1).

The core idea is to leverage the morphological relations existing between voice
and face biometrics in order to investigate a cross-modal training where each uni-
biometric model is supported by the biometric model of the other modality in
improving the effectiveness of its feature representations. Differently from other
intermediate fusion approaches, such a multi-biometric fusion might happen (i)
on training to develop better uni-biometric models and/or (ii) on deployment to
exploit joint evidence from the two modalities simultaneously.

Face Backbone Formalization. Let Af ⊂ R
m×n×3 denote the domain of

RGB images with m × n × 3 size. Each image af ∈ Af is pre-processed in
order to detect the bounding box and key points (two eyes, nose and two mouth
corners) of the face. The affine transformation is used to align the face. The
image is then resized and each pixel value is normalised in the range [0, 1]. The
resulting intermediate facial image, defined as Sf ⊂ R

m×n×3, is used as input
of the visual modality branch of our model. In this branch, an explicit feature
extraction which produces fixed-length representations in Df ⊂ R

e. We denote
such a stage as Dfθf

: Af → Df . Its output is referred to as face feature vector.

Voice Backbone Formalization. Let Av ⊂ R
∗ denote the domain of wave-

forms digitally represented by an intermediate visual acoustic representation
Sv ⊂ R

k×∗, such as a spectrogram or a filter-bank. Each audio av ∈ Av is con-
verted to single-channel. The spectrogram is then generated in a sliding window
fashion using a Hamming window, generating an acoustic representation sv that
corresponds to the audio av. Mean and variance normalisation is performed on
every frequency bin of the spectrum. The resulting representation is used as
input of the acoustic modality branch of our model. In this branch, an explicit
feature extraction which produces fixed-length representations in Dv ⊂ R

e. We
denote such a stage as Dvθv

: Sv → Dv. Its output is named voice feature vector.

Fusion Backbone Formalization. Let D2×e be the domain of audio-visual fea-
ture vectors generated by a plain concatenation of the sparse representation from
the face and voice backbones, i.e., df and dv. We denote as Cθ : (Df ,Dv) → D2×e

such a concatenation stage of both modalities applied after the representation
layer of each single modality branch. Then, an additional feature vector learning
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Fig. 1. The proposed neural architecture for intermediate multi-biometric fusion.

step is applied to the concatenated vector d ∈ D2×e to get a single feature vector
of size g jointly learned from df and dv. This extra layer aims to (i) keep indepen-
dent the multi-biometric embedding size from the uni-biometric embedding sizes
and (ii) learn more compacted and flexible representations. Moreover, by setting
g = e, reasonable comparisons between uni-biometric and multi-biometric sparse
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representations of the same size can be performed. We denote such an extra step
as Dfvθf,v

: D2×e → Dg. Its output is named as audio-visual feature vector.
Combining both modalities might generate a better sparse representation of

the individual, and enrich the feature representation of a single modality. This
is due to the relations of voice to genre and facial morphology of people, e.g.,
male people commonly have a tone lower than female people. Therefore, by
leveraging the fusion backbone, the uni-biometric backbones help each other to
better recognize people. Our hypothesis is that the embeddings of each backbone
should perform better when trained jointly than when trained separately.

Backbones Instantiation. The proposed approach makes use of existing
neural network architectures, slightly arranged to accommodate the modality
digested by each of the above-mentioned backbones and the subsequent fusion
purposes.

Two instances of the residual-network (ResNet-50 ) architecture are used as
feature vector extractors Dfθf

and Dvθv
within face and voice backbones, respec-

tively [17]. Such a network, well known for good classification performance on
visual and acoustic modalities [9,44], is similar to a multi-layer convolutional
neural network, but with added skip connections such that the layers add resid-
uals to an identity mapping on the channel outputs. The input layers of the
original ResNet-50 architecture are adapted to the modality associated to the
corresponding each backbone. Moreover, the fully-connected layer at the top
of the original network is replaced by two layers: a flatten layer and a fully-
connected layer whose output is the embedding of the modality, i.e., df or dv.

The fusion backbone Dfvθf,v
is instantiated by a concatenation layer stacked

into the model to combine face and voice feature vectors in D2×e domain, and
an additional fully-connected layer where the significant features of video and
audio modality are jointly embedded. The latter output represents the audio-
visual feature vector d ∈ Dg previously formalized. Moreover, for each fully-
connected layer, batch normalization has been set before the activation function
to regularize the outputs, and a dropout layer is inserted after activation to
prevent model over-fitting. Finally, an output layer depending on the applied
loss function is posed at the top of the network during training.

Training Process Description. The training data is composed by N tuples
{(xi, yi)}N

i=1 where each multi-biometric sample xi corresponds to a person asso-
ciated with the class yi ∈ 1, ..., I, being I the number of different identities
depicted in N samples. Each sample xi is defined as a pair xi = (avi

, afi
) such

that avi
is a utterance and afi

is a visual frame. The elements of each pair are
randomly chosen among face and voice samples from the same user; then, they
are sequentially fed into the multi-biometric model. Such a model can be inte-
grated with any existing loss function. Additionally, a hold-out validation set
consisting of all the speech and face segments from a single randomly-selected
video per user is used to monitor training performance.
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4 Experimental Evaluation

In this section, we assess the effectiveness of our fusion strategy. First, we detail
the datasets, the experimental protocols, the implementation details, and the loss
functions. Then, we present the results achieved by the fusion strategy on re-
identification and verification, varying the loss function and the testing dataset.

4.1 Training and Testing Datasets

We considered traditional audio-visual datasets for training the models, and we
tested them on datasets from diverse audio-visual contexts (see Fig. 2). This

a) VoxCeleb1

b) MOBIO

c) MSU-AVIS

d) AveRobot

Fig. 2. Facial samples coming from the testing datasets used to evaluate our approach.
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choice enables the computation of additional state-of-the-art benchmark scores
on AveRobot, and make it possible to observe how the strategy affects the per-
formance on different contexts. The audio-visual datasets are divided in one
training dataset and four testing datasets to replicate a cross-dataset setup:

– Training Dataset. VoxCeleb1-Dev is an audio-visual speaker identification
and verification dataset collected by [34] from Youtube, including 21,819
videos from 1,211 identities. It is the one of the most suited for training
a deep neural network due to the wide range of users and samples per user.

– Testing Dataset #1. VoxCeleb1-Test is an audio-visual speaker identifica-
tion and verification dataset collected by [34] from Youtube, embracing 677
videos from 40 identities.

– Testing Dataset #2. MOBIO is a face and speaker recognition dataset
collected by [31] from laptops and mobile phones under a controlled scenario,
including 28,800 videos from 150 identities.

– Testing Dataset #3. MSU-Avis is a face and voice recognition dataset
collected by [8] under semi-controlled indoor surveillance scenarios, including
2,260 videos from 50 identities.

– Testing Dataset #4. AveRobot is an audio-visual biometric recognition
dataset collected under robot assistance scenarios in [30], including 2,664
videos from 111 identities.

The reader notices that acquisition distance, environmental conditions, and
data quality greatly vary among the datasets, making them challenging.

4.2 Evaluation Setup and Protocols

Experiments aimed to assess both uni-biometric and multi-biometric feature rep-
resentations through evaluation protocols applied in re-identification and verifi-
cation tasks (Fig. 3).

Tested Data Format. For the face branch, each frame is analyzed in order to
detect the face area and landmarks through MTCNN [53]. The five facial points
(two eyes, nose and two mouth corners) are adopted by such an algorithm to
perform face alignment. The faces are then resized to 112 × 112 pixels in order
to fit in our branch and each pixel in [0, 255] in RGB images is normalized
by subtracting 127.5 then dividing by 128. The resulting images are then used
as input to the face branch. For the voice branch, each audio is converted to
single-channel, 16 -bit streams at a 16 kHz sampling rate for consistency. The
spectrograms are then generated in a sliding window fashion using a Hamming
window of width 25 ms and step 10 ms. This gives spectrograms of size 512 × 300
for three seconds of speech. Mean and variance normalisation is performed on
every frequency bin of the spectrum. No other speech-specific pre-processing is
used. The spectrograms are used as input to the voice branch.
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Fig. 3. Experimental evaluation overview. Training and testing protocols.

Tested Feature Representations. The evaluation involved uni-biometric
and multi-biometric feature representations obtained from backbone networks
trained on top of VoxCeleb1-Dev. In order to optimize model weights, several
instances of the network were independently trained through different loss func-
tions from various families: Softmax loss [44], Center loss [51], Ring loss [55],
and AM-Softmax loss [48]. More precisely, for each training loss, we trained
appropriate models to learn the following feature representations:

– Uni-Modal Voice representations extracted from dv when the voice branch is
trained alone (baseline).

– Uni-Modal Face representations extracted from df when the face branch is
trained alone (baseline).

– Multi-Modal Voice representations extracted from dv when the voice branch
is trained jointly with the face branch (introduced in this paper).

– Multi-Modal Face representations extracted from df when the face branch is
trained jointly with the voice branch (introduced in this paper).

– Multi-Modal Face+Voice representations extracted from dg when the face
branch and the voice branch are jointly trained (introduced in this paper).

Each model was initialised with weights pre-trained on ImageNet. Stochastic
gradient descent with a weight decay set to 0.0005 was used on mini-batches
of size 512 along 40 epochs. The initial learning rate was 0.1, and this was
decreased with a factor of 10 after 20, 30 and 35 epochs. The training procedure
was coded in Python, using Keras on top of Tensorflow.

Re-identification Protocol. For each testing dataset, the protocol aims to
evaluate how the learned representation are capable of predicting, for a given
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test frame/spectrogram, the identity of the person chosen from a gallery of iden-
tities. For each experiment conducted on a testing dataset, we randomly selected
40 users every time in order to (i) keep constant the number of considered users,
and (ii) maintain comparable the results across the different datasets. VoxCeleb1-
Test has the minimum number of participants among the considered datasets
(i.e., 40 ). For each user, we have chosen the first 80% of videos for the gallery,
while the other 20% of videos were probes. For each user, we randomly selected
20 frames/spectrograms from the gallery videos as gallery images, and 100
frames/spectrograms from the probe videos as probe images. Then, given each
frame/spectrogram, the corresponding feature representation was extracted. The
Euclidean distance was used to compare feature vectors obtained from mod-
els trained on Softmax, Center loss and Ring loss, while the Cosine distance
was used for features vectors obtained from models trained on AM-Softmax
loss due to its underlying design. Then, we measured the top one rank, a well-
accepted measure to evaluate the performance on people re-identification tasks
(e.g., [54]). The probe image is matched against a set of gallery images, obtaining
a ranked list according to their matching similarity/distance. The correct match
is assigned to one of the top ranks, the top one rank in this case (Rank-1 ).

The Rank-1 is formulated as the accuracy on predicting the right identity
(prediction) given the known spectrogram/face identity (ground truth):

Rank-1 =
TP + TN

TP + TN + FP + FN
(1)

where TP is the true positive, TN represents the true negative, FP is the false
positive and FN represents the false negatives. Thus, it was used to evaluate the
performance of the models on the test images/spectrograms. Starting from the
subject selection, the experiment was repeated and the results were averaged.

Verification Protocol. For each testing dataset, the protocol aims to evaluate
how the learned representations are capable of verifying, given a pair of test
frames/spectrograms, whether the faces/voices come from the same person. From
each testing dataset, we randomly selected 40 subjects due to the same reasons
stated in the above re-identification protocol. Then, we randomly created a list
of 20 videos (with repetitions) for each selected user and, from each one of
them, we randomly created 20 positive frame pairs and 20 negative frame pairs.
The above-mentioned feature representations were considered as feature vector
associated to each frame/spectrogram. We used the same distance measures
leveraged for re-identification and the Equal Error Rate (EER) was computed
to evaluate the performance of the models on the test pairs. EER is a well-known
biometric security metric measured on verification tasks [22]. EER indicates that
the proportion of false acceptances (FAR) is equal to the proportion of false
rejections (FRR). Both measures are formulated as:

FAR =
number of false accepts

number of impostors comparisons

FRR =
number of false rejects

number of genuine comparisons

(2)
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The lower the EER, the higher the performance. Lastly, starting from the subject
selection, the experiment was repeated and the results were averaged.

4.3 Re-Identification Results

The Rank-1 performance on the testing datasets is shown in Figs. 4, 5, 6 and 7.
It can be observed that the results vary with respect to the modality, training
loss, and the dataset. Results are presented from these three point of views.

Considering the face modality, the representations learned through the Soft-
max loss appear as the best performer for the uni-modal face setup (Rank-1 from
0.32 to 0.74 ), while the representations performance for the multi-modal face
setup greatly varies among the training losses and the testing datasets. This
means that the deep multi-biometric training strategy is strongly affected by
the training loss and the targeting dataset, while common uni-biometric train-
ing strategies take advantage of the Softmax loss and their results are affected
only by the dataset. Furthermore, it can be observed that multi-modal face rep-
resentations make it possible to improve the results in face re-identification on
challenging scenarios as in the AveRobot dataset. In more controlled scenarios,
while the deep fusion allows us to increase the accuracy, it reaches results com-
parable with the ones obtained by uni-modal features representations learned
through Softmax loss in uni-biometric face models.

Different observations can be made for the voice modality. The representa-
tions learned through the Center loss are superior to representations learned
by other losses in uni-modal and multi-modal voice models. Interestingly, the
multi-modal voice representations perform worse than the uni-modal voice rep-
resentations for any loss. It follows that voice biometrics does not take a large
advantage of the deep fusion strategy, differently from what happens for face
biometrics. The exception is represented by results obtained in MOBIO multi-
modal voice representations; they reach higher results than the uni-modal voice
representations. This means that there is not a general conclusion regarding
the effectiveness of multi-modal voice representations, but they are dataset-
dependent. Therefore, preliminary tests should be performed to select the right
voice training strategy based on the context.

In the case both face and voice biometrics are fused (multi-modal face+voice
setup), the representations learned through Ring and Center losses achieved
better results than uni-modal representations, while the representations learned
through Softmax and AM-Softmax losses reach worse results probably due to the
bad performance of the intermediate multi-modal voice representation. It follows
that a plain fusion of face and voice embeddings during training is not always
sufficient to improve the results with respect to uni-modal representations. It
appears necessary to design countermeasures for controlling the contribution of
each modality on the audio-visual embedding during training.

Among the datasets, VoxCeleb1-Test showed the highest Rank-1 values. This
is probably related to the fact that all the models are trained on data coming from
the same context of the testing dataset. On MOBIO, the representations tended
to achieve comparable results as the data includes front-face videos recorded
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Fig. 4. Re-identification results on VoxCeleb1-Test - Rank-1.
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Fig. 5. Re-identification results on MOBIO - Rank-1.
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Fig. 6. Re-identification results on MSU-Avis - Rank-1.
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Fig. 7. Re-identification results on Averobot - Rank-1.
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Fig. 8. Verification results on VoxCeleb1-Test - EER.
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Fig. 9. Verification results on MOBIO - EER.
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from the smartphone, i.e., a controlled conditions where the recognition should
be easier. Differently, MSU-Avis and AveRobot highlight several challenges for
the trained representations. The more uncontrolled scenarios conveyed by the
latter datasets are the main reasons of the significantly lower Rank-1 values.
In particular, the AveRobot dataset represents the most challenging scenario,
and more effective fusion strategies should be designed starting from the one
presented in this paper.

4.4 Verification Results

Figures 8, 9, 10 and 11 plot the results achieved by the learned representations on
verification. The ranking is slightly different with respect to the re-identification
task, and the impact of the context, the loss, and the modality varies across
settings.

It can be observed that multi-modal face representations achieve lower EER
than uni-modal face representations with all the dataset and training losses.
This means that deep fusion significantly helps to create better sparse represen-
tations for the face modality. More precisely, EER obtained by representations
learned through Ring and Center losses can be improved of around 50%, while
we observed an improvement of around 25% thanks to representations learned
through Softmax and Margin losses. It follows that multi-modal face sparse rep-
resentations better separate among genuine and impostor pairs.

Comparable results are obtained by multi-modal voice representations, even
though the improvement with respect to the uni-modal voice representations is
less evident, i.e. among 5% and 10%. Interestingly, multi-modal voice represen-
tations learned through Ring loss do not work well. It follows that, as shown on
the re-identification task, the Ring loss suffers from the deep fusion approach.
Our results suggest that such a loss has a minor impact in deep audio-visual
fusion settings.

By merging face and voice embeddings into a single representation, the ver-
ification performance improves on all the datasets, with all the training losses.
It can be observed an improvement of around 50% on all the settings. The
face-voice fused representations work well also when learned through Ring loss;
hence, the deficiencies experienced by multi-modal voice representations learned
through Ring loss are mitigated by fusing voices and faces.

The results across the testing datasets confirm the observations made for the
re-identification task. The context has a relevant impact on the absolute perfor-
mance of the models, moving from VoxCeleb1-Test to AveRobot by increasing
challenging level. In particular, the verification results on AveRobot pairs are 4
or 5 times worse than the ones achieved on VoxCeleb1-Test pairs. The reasons
behind this large difference could be related to the more uncontrolled conditions
characterized by very dark faces and highly-noisy surroundings.
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Fig. 10. Verification results on MSU-Avis - EER.
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Fig. 11. Verification results on Averobot - EER.

5 Conclusions, Open Challenges, and Future Directions

In this chapter, we proposed a deep intermediate fusion strategy of audio-
visual biometric data. By combining state-of-the-art deep learning methodolo-
gies, a two-branch neural network fed with face and voice pairs aimed to jointly
learn uni-biometric and multi-biometric fixed-length feature representations by
exploiting feature correlation. Branches influence each other in computing the
right classification label after their fusion during training, so that the represen-
tation layer of each uni-biometric model performs better than the one returned
by a uni-biometric model trained alone. The results were further improved by
jointly learning a single audio-visual embedding that includes information from
both face and voice evidence. Based on the obtained results, we can conclude
that:

– Face and voice models can benefit from deep intermediate fusion, and the
recognition improvement depends on the modality, the loss, and the context.

– Deep intermediate fusion during training can be used to significantly increase
recognition accuracy of uni-biometric face and voice models.
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– Uni-biometric face models exhibit higher accuracy improvements than uni-
biometric voice models after being jointly trained at intermediate level.

– Merging face and voice into a single embedding vector at intermediate level
positively impacts the accuracy of multi-biometric audio-visual models.

– Face and voice models jointly trained at intermediate level generalize well
across populations and are more robust when applied in challenging contexts.

– Deep intermediate fusion should be considered as a viable solution for creating
more robust and reliable biometric models.

Research on deep multi-biometric fusion has produced a variety of solid meth-
ods, but still poses some interesting challenges that require further investigation:

– Deep Fusion Capability. Techniques in deep multi-modal learning facilitate
a flexible intermediate-fusion approach, which not only makes it simpler to
fuse modality-wise representations and learn a joint representation but also
allows multi-modal fusion at various depths in the architecture. Moreover,
deep learning architectures still involve a great deal of manual design, and
experimenters may not have explored the full space of possible fusion archi-
tectures. It is natural that researchers should extend the notion of learning
to architectures adaptable to a specific task.

– Transferability across Contexts. Existing models tend to be sensitive to
the context targeted by the underlying training data. This has favored the
creation of biometric models that, after being trained with data from a given
context, do not generalize well in other contexts. With the new availability of
public datasets and pre-trained models, it will become easier to plug them into
a task different from the original one. Researchers could fine-tune pre-trained
models with small amounts of context-specific data.

– Robustness in Uncontrolled Environments. Devising audio-visual bio-
metric systems that can operate in unconstrained sensing environments is
another unsolved problem. Most biometric systems either implicitly or explic-
itly impose some constraints on the data acquisition. Such constraints have
to be reduced in order to seamlessly recognize individuals, i.e., the interaction
between an individual and a biometric system should be transparent. This
necessitates innovative interfaces and robust data processing algorithms.

– Robustness against Spoofing Attacks. Synthetically generated traits or
maliciously modified traits are used to circumvent biometric systems. The
challenge is to develop counter-measures that are applicable to hither to
unseen or unknown attacks. Evaluating and assessing how the deployment
of multi-biometric systems might help to face this challenge requires further
investigation.

– Explainablity and Interpretability. Most machine-learning algorithms
built into automation and artificial intelligence systems lack transparency,
and may contain an imprint of the unconscious biases of the data and algo-
rithms underlying them. Hence, it becomes important to understand how we
can predict what is going to be predicted, given a change in input or algorith-
mic parameters. Moreover, it requires attention how the internal mechanics
of the system can be explained in human terms.
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– Fairness, Transparency and Accountability. With the advent of
machine-learning, addressing bias within biometric systems will be a core
priority due to several reasons. For instance, some biases can be introduced
by using training data which is not an accurate sample of the target popu-
lation or is influenced by socio-cultural stereotypes. Moreover, the methods
used to collect or measure data and the algorithms leveraged for predicting
identities can propagate biases. Future research should control these biases in
the developed models, promoting fair, transparent, and accountable systems.

We expect that the case study on audio-visual fusion covered in this chapter
will help researchers and developers to shape future research in the field.
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