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Abstract

Motivated by real-world settings where data collection and policy deployment—
whether for a single agent or across multiple agents—are costly, we study the
problem of on-policy single-agent reinforcement learning (RL) and federated RL
(FRL) with a focus on minimizing burn-in costs (the sample sizes needed to reach
near-optimal regret) and policy switching or communication costs. In parallel
finite-horizon episodic Markov Decision Processes (MDPs) with S states and A
actions, existing methods either require superlinear burn-in costs in S and A or
fail to achieve logarithmic switching or communication costs. We propose two
novel model-free RL algorithms—Q-EarlySettled-LowCost and FedQ-EarlySettled-
LowCost—that are the first in the literature to simultaneously achieve: (i) the best
near-optimal regret among all known model-free RL or FRL algorithms, (ii) low
burn-in cost that scales linearly with S and A, and (iii) logarithmic policy switching
cost for single-agent RL or communication cost for FRL. Additionally, we establish
gap-dependent theoretical guarantees for both regret and switching/communication
costs, improving or matching the best-known gap-dependent bounds.

1 Introduction

Reinforcement Learning (RL) [78] is a subfield of machine learning focused on sequential decision-
making. Often modeled as a Markov Decision Process (MDP), RL tries to obtain an optimal policy
through sequential interactions with the environment. It finds applications in various fields, such as
games [73, 74, 75, 82], robotics [32, 45], and autonomous driving [101]. Wwe assume the presence
of a central server and M local agents in the system. Each agent interacts independently with an
episodic MDP consisting of S states, A actions, and H steps per episode.

In this paper, we focus on model-free online RL and federated RL for tabular episodic Markov
Decision Processes (MDPs) with inhomogeneous transition kernels, consisting of S states, A actions,
and H steps per episode. It is known that the regret information-theoretic lower bound for any
tabular MDP and any learning algorithm is Ω(

√
H2SAT ), where T denotes the total number of

steps [37]. The model-based algorithm UCBVI [9] first reaches this lower bound up to a logarithmic
factor. Model-free algorithms—commonly called Q-learning—are widely used in practice due to
their simplicity of implementation and lower memory requirements [37]. Specifically, model-based
methods typically require memory that scales quadratically with the number of states S for storing
the estimated transition kernel. Model-free methods require memory that only scales linearly with S
but generally face greater challenges in achieving comparable regret.

[37] proposed the first two model-free algorithms with theoretical guarantees: both attaining subopti-
mal regrets compared with the information-theoretic lower bound. [10] modified their algorithms
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and further reduced the number of policy updates, also known as the switching cost, to a logarithmic
dependency on T . Later, [110] proposed UCB-Advantage that reaches the near-optimal regret of
Õ(
√
H2SAT ) and a logarithmic switching cost, but it comes with a large burn-in cost: the regret

upper bound is valid only when T ≥ Õ(S6A4H28). Here, Õ hides logarithmic factors. To mitigate
this, [50] introduced the near-optimal Q-EarlySettled-Advantage algorithm, which significantly re-
duces the burn-in cost to Õ(SAH10), scaling linearly with S and A. However, this improvement
comes at the expense of a high switching cost that scales linearly with T . Thus, UCB-Advantage and
Q-EarlySettled-Advantage suffer notable limitations: the former requires a large burn-in cost, and the
latter fails to achieve logarithmic switching cost. This raises the following open question:

Is it possible that a model-free RL algorithm achieves the near-optimal regret Õ(
√
H2SAT ) with a

burn-in cost that scales linearly with S,A and a logarithmic switching cost simultaneously?

In many real-world scenarios, an individual agent faces significant limitations in data collection,
and agents can jointly learn an optimal policy, thereby improving the sample efficiency. This
naturally motivates the framework of Federated Reinforcement Learning (FRL) that leverages parallel
explorations across multiple agents coordinated by a central server. FRL enables faster learning
while preserving data privacy and maintaining low communication costs, defined as the total number
of scalars shared among the central server and the local agents. The regret information-theoretic
lower bound for any tabular MDP and any FRL algorithm with M agents naturally extends to
Ω(
√
MH2SAT ), where T denotes the average number of steps per agent. Among existing methods,

the only model-based FRL algorithm that matches this lower bound (up to logarithmic factors) is
Fed-UCBVI [46]. In the following, we review model-free algorithms for which the communication
cost scales logarithmically with T . [112] proposed the first two model-free FRL algorithms with
suboptimal regrets. [113] introduced FedQ-Advantage that attains the near-optimal regret bound of
Õ(
√
MH2SAT ) with a high burn-in cost of Õ(MS3A2H12). Thus, it is natural to ask the following

question for the federated setting:

Is it possible that a model-free FRL algorithm attains the near-optimal regret Õ(
√
MH2SAT ) with

a burn-in cost that scales linearly with S,A and a logarithmic communication cost simultaneously?

These two questions are challenging due to several non-trivial difficulties. First, the Q-EarlySettled-
Advantage algorithm [50] updates its policy after each episode, incurring a switching cost that scales
linearly with T . While this algorithm demonstrates low burn-in cost in single-agent scenarios, its
effectiveness in federated learning settings remains unknown in the literature. Second, while UCB-
Advantage [110] and its federated extension FedQ-Advantage [113] leverage reference-advantage
decomposition to reach near-optimal regrets, neither incorporates Lower Confidence Bounds (LCB)
to settle the reference function like Q-EarlySettled-Advantage. Thus, their burn-in costs exhibit a
superlinear dependence on S and A.

To simultaneously achieve logarithmic switching/communication costs while maintaining low burn-in
costs, an algorithm must satisfy two requirements: (1) infrequent policy updates rather than per-
episode updates, and (2) proper incorporation of LCB methods. This creates a fundamental trade-off:
while delayed updates reduce switching and communication costs, their combination with LCB
methods inevitably introduces additional regret and reference function settling errors. Bounding
them with the reference functions introduced in [50, 110] involves controlling a weighted sum of a
sequence of random variables, where neither the weights nor the random variables adapt to the data
generation process. As a result, standard concentration inequalities cannot be directly applied to this
type of non-martingale sum, presenting a key challenge in extending the framework to simultaneously
achieve low burn-in costs and logarithmic switching/communication costs. Prior techniques, such
as the empirical process [50] that accommodates non-adaptive random variables and round-wise
approximation methods [105, 112, 113] that handle non-adaptive weights, are insufficient when both
forms of non-adaptiveness coexist.

Summary of Our Contributions. We answer the two open questions affirmatively by proposing
the FRL algorithm FedQ-EarlySettled-LowCost and its single-agent counterpart Q-EarlySettled-
LowCost for the case when M = 1. Our main contributions are summarized as follows:

(i) Algorithm Design: We propose the first round-based algorithm for single-agent RL that achieves
logarithmic switching cost, advancing beyond traditional per-episode updates. For FRL, we in-
troduce the LCB technique for the first time to attain a low burn-in cost. While the logarithmic
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switching/communication cost entails a trade-off that slightly increases regret, our use of a refined
bonus term—while maintaining optimism—yields improved regret performance over Q-EarlySettled-
Advantage [50] and FedQ-Advantage [113], the current state-of-the-art algorithms for provable
model-free single-agent RL and FRL, respectively.

(ii) Best Regret Performance: In both single-agent RL and FRL scenarios, our algorithms achieve
the best-known regret bounds among existing model-free approaches. In the single-agent RL set-
ting, Q-EarlySettled-LowCost improves upon Q-EarlySettled-Advantage—the best method in the
literature—by a factor of log(SAT ). This is a significant advancement, as logarithmic factors in
T are known to be crucial for practical performance [68, 108]. For the FRL setting, compared
with the existing state-of-the-art algorithm FedQ-Advantage, FedQ-EarlySettled-LowCost eliminates
superlinear dependence on S and A. It is significant for large-scale applications such as text-based
games [13] and recommender systems [19]. Numerical results in Appendix B demonstrate that our
algorithms consistently achieve the lowest regret.

(iii) Simultaneous Low Burn-in Costs and Logarithmic Switching/Communication Costs: Our
algorithms achieve low burn-in costs that scale linearly with S and A, while maintaining logarithmic
switching/communication costs. In single-agent RL, Q-EarlySettled-LowCost simultaneously (1)
reduces the burn-in cost to Õ(SAH10), which linearly depends on S and A, representing a significant
improvement over the burn-in cost Õ(S6A3H28) of UCB-Advantage; and (2) maintains a logarithmic
switching cost that outperforms the linearly scaling cost of Q-EarlySettled-Advantage. Similarly, in
the FRL setting, FedQ-EarlySettled-LowCost (1) reduces the burn-in cost to O(MSAH10) compared
with O(MS3A2H12) for FedQ-Advantage; and (2) maintains a logarithmic communication cost.

In Table 1 and Table 2, we compare Q-EarlySettled-LowCost with existing model-free single-agent
RL algorithms, and FedQ-EarlySettled-LowCost with other model-free FRL approaches. The results
further demonstrate that our algorithms are the first to simultaneously achieve the near-optimal regret,
low burn-in costs, and logarithmic switching/communication costs in both single-agent RL and FRL.

Table 1: Comparison of model-free single-agent RL algorithms.

Algorithm (Reference) Near-optimal
regret

Logarithmic
switching cost Low burn-in cost

UCB-Hoeffding [37] % % %

UCB-Bernstein [37] % % %

UCB2-Hoeffding [10] % ! %

UCB2-Bernstein [10] % ! %

UCB-Advantage [110] ! ! %

Q-EarlySettled-Advantage [50] ! % !

Q-EarlySettled-LowCost (this work) ! ! !

Table 2: Comparison of model-free FRL algorithms.

Algorithm (Reference) Near-optimal
regret

Logarithmic
communication cost

Low burn-in
cost

FedQ-Hoeffding [112] % ! %

FedQ-Bernstein [112] % ! %

FedQ-Advantage [113] ! ! %

FedQ-EarlySettled-LowCost (this work) ! ! !

(iv) Gap-Dependent Results: We present gap-dependent analyses in both single-agent RL and FRL
settings for MDPs with positive suboptimality gaps [84, 102]. For the single-agent RL setting, we
establish the first gap-dependent switching cost bound for algorithms employing LCB techniques,
while simultaneously achieving the best gap-dependent regret matching that of Q-EarlySettled-
Advantage [114]. In the FRL setting, our algorithm not only matches the best known communication
cost bound of FedQ-Hoeffding [105], but also provides improved gap-dependent regret guarantees,
advancing beyond the only existing results in [105].
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(v) Technical Novelty: To integrate the LCB technique with the round-based design for achieving
simultaneous low burn-in costs and logarithmic switching/communication costs, we address the
challenge of non-adaptiveness in controlling the weighted sum through the surrogate reference
function used in Lemma I.3 when approximating the non-adaptive random variables. It simplifies the
problem to the case that only the weights show non-adaptiveness, allowing us to apply round-wise
approximations to bound the weighted sum. It facilitates the proof of the regret theoretical guarantees
while yielding strictly improved regret bounds. Details can be found in Appendix C.

2 Background and Problem Formulation

2.1 Preliminaries

Tabular Episodic Markov Decision Process (MDP). A tabular episodic MDP is denoted asM :=
(S,A, H,P, r), where S is the set of states with |S| = S,A is the set of actions with |A| = A, H is
the number of steps in each episode, P := {Ph}Hh=1 is the heterogeneous transition kernel so that
Ph(· | s, a) characterizes the distribution over the next state given the state action pair (s, a) at step h
and r := {rh}Hh=1 collects deterministic reward functions on S ×A with each bounded by [0, 1].

In each episode, an initial state s1 is selected arbitrarily by an adversary. At each step h ∈ [H] =
{1, 2, ...,H}, an agent observes a state sh ∈ S, picks an action ah ∈ A, receives the reward
rh = rh(sh, ah) and then transits to the next state sh+1. The episode ends when an absorbing state
sH+1 is reached. For convenience, we denote Ps,a,hf = Esh+1∼Ph(·|s,a)(f(sh+1)|sh = s, ah = a),
1sf = f(s) and Vs,a,h(f) = Ps,a,hf

2 − (Ps,a,hf)
2 for any function f : S → R and triple (s, a, h).

Policies and Value Functions. A policy π is a collection of H functions
{
πh : S → ∆A}

h∈[H]
,

where ∆A is the set of probability distributions over A. A policy is deterministic if for any s ∈ S,
πh(s) concentrates all the probability mass on an action a ∈ A. In this case, we denote πh(s) = a.

Denote state value functions V π
h : S → R by

V π
h (s) :=

H∑
h′=h

E(sh′ ,ah′ )∼(P,π) [rh′(sh′ , ah′) | sh = s]

and state-action value functions Qπ
h : S ×A → R by

Qπ
h(s, a) := rh(s, a) +

H∑
h′=h+1

E(sh′ ,ah′ )∼(P,π) [rh′(sh′ , ah′) | sh = s, ah = a] .

For tabular episodic MDP, there exists an optimal policy π⋆ such that V ⋆
h (s) := supπ V

π
h (s) =

V π∗

h (s) for all (s, h) ∈ S × [H] [9]. Then for any (s, a, h) ∈ S × A× [H], the Bellman Equation
and the Bellman Optimality Equation can be expressed as: V π

h (s) = Ea′∼πh(s)[Q
π
h(s, a

′)]
Qπ

h(s, a) := rh(s, a) + Ps,a,hV
π
h+1

V π
H+1(s) = 0,∀(s, a, h)

and

 V ⋆
h (s) = maxa′∈A Q⋆

h(s, a
′)

Q⋆
h(s, a) := rh(s, a) + Ps,a,hV

⋆
h+1

V ⋆
H+1(s) = 0,∀(s, a, h).

(1)

Suboptimality Gap. For any given MDP, we can formally define the suboptimality gap as follows.
Definition 2.1. For any (s, a, h), the suboptimality gap is defined as ∆h(s, a) := V ⋆

h (s)−Q⋆
h(s, a).

(1) implies that for any (s, a, h), ∆h(s, a) ≥ 0. We then define the following minimum gap:
Definition 2.2. We define the minimum gap as ∆min := inf{∆h(s, a) | ∆h(s, a) > 0,∀(s, a, h)}.

We remark that if {∆h(s, a) | ∆h(s, a) > 0,∀(s, a, h)} = ∅, then all actions are optimal, leading
to a degenerate MDP. Therefore, we assume that the set is nonempty and ∆min > 0. Definitions 2.1
and 2.2 and the non-degeneration are standard in the literature on gap-dependent analysis [76, 96, 98].

Switching Cost. Similar to [68], the switching cost3 is defined as follows:

Definition 2.3. The switching cost for an algorithm with U episodes is Nswitch :=
∑U−1

k=1 I[πu+1 ̸=
πu]. Here, πu is the implemented policy for generating the u−th episode.

3Some works names it global switching cost and also analyzes the local switching cost defined as Ñswitch :=∑U−1
u=1

∑
s,h I[πu+1

h (s) ̸= πu
h(s)]. [10, 110] proved the same cost upper bound under both definitions.
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2.2 The Federated Reinforcement Learning (FRL) Framework

We consider an FRL setting similar to [112, 113], where a central server coordinates M agents, each
interacting with an independent MDP. For agent m, let Um be the number of episodes, πm,u the
policy used in episode u, and sm,u

1 the initial state. The regret over T̂ = H
∑M

m=1 Um total steps is

Regret(T ) =
M∑

m=1

Um∑
u=1

(
V ⋆
1 (s

m,u
1 )− V πm,u

1 (sm,u
1 )

)
. (2)

Here, T := T̂ /M is the average total steps for M agents. When M = 1, Equation (2) also defines
the regret for single-agent RL, where T represents the total number of steps in the learning process.

The communication cost of an FRL algorithm as the number of scalars (integers or real numbers)
communicated between the server and agents.

3 Algorithm Design

3.1 Algorithm Details

Now we present FedQ-EarlySettled-LowCost, our model-free FRL algorithm with M agents, along
with its single-agent variant (when M = 1), Q-EarlySettled-LowCost. FedQ-EarlySettled-LowCost
runs in rounds indexed by k ∈ {1, 2, ...,K}, where each agent m performs nm,k episodes in
round k (to be defined later). This formulation naturally accommodates a common form of system
heterogeneity [52], referred to as heterogeneous exploration speed. It allows agents to explore the
environment at different rates and generate varying numbers of episodes in each round. This type of
heterogeneity is commonly considered in model-free FRL studies [112, 113], which is distinct from
the environment heterogeneity considered in [46].

For episode j in round k, define the trajectory collected by agent m as {(sm,k,j
h , am,k,j

h , rm,k,j
h )}Hh=1.

Let nm,k
h (s, a) denote the number of times that agent m visits (s, a) at step h in round k, nk

h(s, a) =∑M
m=1 n

m,k
h (s, a) and Nk

h (s, a) =
∑k−1

k′=1 n
k′

h (s, a). We omit (s, a) when there is no ambiguity.

Define V k
h , Qk

h, V L.k
h and V R,k

h as the estimated V−function, the estimated Q−function, the lower
bound function and the reference function at step h at the beginning of round k. Specifically,
Qk

H+1, V
k
H+1, V

L,k
H+1, V

R,k
H+1 = 0. We also define the advantage function as V A,k

h = V k
h − V R,k

h . At
the beginning of round k, the central server maintains Nk

h , policy πk = {πk
h}Hh=1, and four other

quantities for any (s, a, h): µR,k
h (s, a), σR,k

h (s, a), µA,k
h (s, a) and σA,k

h (s, a) (all zero-initialized when
k = 1), which will be explained later. We then specify each component of the algorithms as follows.

Coordinated Exploration. At the beginning of round k, the server broadcasts πk, along with
{Nk

h (s, π
k
h(s)), V

k
h (s), V L,k

h (s), V R,k
h (s)}s,h to all agents. Here, Q1

h = V 1
h = V R,1

h = H,V L,1
h =

N1
h = 0 for any (s, a, h) and π1 is an arbitrary deterministic policy. Each agent m will then collect

nm,k trajectories under the policy πk.

Event-Triggered Termination of Exploration. Similar to [112], in round k, for any agent m, at the
end of each episode, if any (s, a, h) has been visited by ckh(s, a) times, then the exploration for all
agents will be terminated. This trigger condition guarantees

nm,k
h (s, a) ≤ ckh(s, a) := max

{
1,

⌊
Nk

h (s, a)

MH(H + 1)

⌋}
,∀(s, a, h,m) (3)

and there exists at least one tuple (s, a, h,m) such that the equality holds.

Local Aggregation. For any visited (s, a, h) with a = πk
h(s), agent m computes the follow-

ing six local sums over all next states of visits to (s, a, h) and send these local sums along with
{rh(s, πk

h(s)), n
m,k
h (s, πk

h(s))}s,h to the central server at the end of round k.[
vm,k
h , vm,k

h,l , µm,k
h,r , σm,k

h,r , µm,k
h,a , σm,k

h,a

]
(s, a)

=

nm,k∑
j=1

[
V k
h+1, V

L,k
h+1, V

R,k
h+1, (V

R,k
h+1)

2, V A,k
h+1, (V

A,k
h+1)

2
]
(sm,k,j

h+1 ) · I
[
(sm,k,j

h , am,k,j
h ) = (s, a)

]
. (4)
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Central Aggregation. After receiving the information, for any visited (s, a, h) with a = πk
h(s), the

central server computes nk
h =

∑M
m=1 n

m,k
h , Nk+1

h = Nk
h + nk

h and six round-wise means:[
vkh, v

l,k
h , µr,k

h , σr,k
h , µa,k

h , σa,k
h

]
(s, a) =

M∑
m=1

[
vm,k
h , vm,k

h,l , µm,k
h,r , σm,k

h,r , µm,k
h,a , σm,k

h,a

]
/nk

h(s, a). (5)

It also updates two global means, µR,k+1
h (s, a) and σR,k+1

h (s, a), as(
µR,k+1
h , σR,k+1

h

)
(s, a) =

[
Nk

h ·
(
µR,k
h , σR,k

h

)
(s, a) + nk

h ·
(
µr,k
h , σr,k

h

)
(s, a)

]
/Nk+1

h (s, a), (6)

which is the historical mean of the reference function and the squared reference function over all next
states of visits to (s, a, h) in the first k rounds.

Define ηt = H+1
H+t and ηti = ηi

∏t
j=i+1(1 − ηj) for any 1 ≤ i ≤ t ∈ N+, with η00 = 1 and

ηt0 = 0. We also define ηc(n1, n2) =
∏n2

t=n1
(1− ηt) for any n1 ≤ n2 ∈ N+ and the learning rate

ηα = 1− ηc(Nk
h + 1, Nk+1

h ). Here, ηα is a simplified notation depending on (s, a, h, k). Then, for
any visited (s, a, h) with a = πk

h(s), the central server updates the estimated Q−function as follows:

Qk+1
h (s, a) = min

{
QU,k+1

h (s, a), QR,k+1
h (s, a), Qk

h(s, a)
}
. (7)

Here, for each (s, a, h), the Hoeffding-type Q−estimate QU,k+1
h [37, 112] and the Reference-

Advantage-type Q−estimate QR,k+1
h [50, 110] are updated according to the following two cases:

Case 1: Nk
h (s, a) < 2MH(H + 1) =: i0. In this case, Equation (3) implies that each agent can visit

(s, a, h) at most once. Denote 1 ≤ m1 < . . . < mnk
h
≤M as the agent indices with nm,k

h (s, a) = 1.

The central server first updates the two global weighted means of the advantage function V A,k
h+1 and

the squared advantage function (V A,k
h+1)

2 over all next states of visits to (s, a, h) as:

(
µA,k+1
h , σA,k+1

h

)
(s, a) = (1− ηα)

(
µA,k
h , σA,k

h

)
(s, a) +

nk
h∑

t=1

η
Nk+1

h

Nk
h+t

(
µmt,k
h,a , σmt,k

h,a

)
(s, a). (8)

The UCB-type, LCB-type [50] and the reference-advantage-type Q−estimates are updated as follows:

QU,k+1
h (s, a) = (1− ηα)Q

U,k
h (s, a) + ηαrh(s, a) +

nk
h∑

t=1

η
Nk+1

h

Nk
h+t

vmt,k
h (s, a) +Bk+1

h (s, a). (9)

QL,k+1
h (s, a) = (1− ηα)Q

L,k
h (s, a) + ηαrh(s, a) +

nk
h∑

t=1

η
Nk+1

h

Nk
h+t

vmt,k
h,l (s, a)−Bk+1

h (s, a). (10)

QR,k+1
h (s, a) = (1−ηα)QR,k

h +ηα
(
rh+µR,k+1

h

)
+

nk
h∑

t=1

η
Nk+1

h

Nk
h+t

(
vmt,k
h −µmt,k

h,r

)
+BR,k+1

h (s, a). (11)

Case 2: Nk
h (s, a) ≥ i0. In this case, the server updates the two global weighted means as(
µA,k+1
h , σA,k+1

h

)
(s, a) = (1− ηα)

(
µA,k
h , σA,k

h

)
(s, a) + ηα

(
µa,k
h , σa,k

h

)
(s, a). (12)

Now the three Q−estimates are updated as follows:

QU,k+1
h (s, a) = (1− ηα)Q

U,k
h (s, a) + ηα

(
rh(s, a) + vkh(s, a)

)
+Bk+1

h (s, a). (13)

QL,k+1
h (s, a) = (1− ηα)Q

L,k
h (s, a) + ηα

(
rh(s, a) + vl,kh (s, a)

)
−Bk+1

h (s, a). (14)

QR,k+1
h (s, a) = (1− ηα)Q

R,k
h (s, a) + ηα

(
rh + µR,k+1

h + vkh − µr,k
h

)
(s, a) +BR,k+1

h (s, a). (15)

In both cases, the cumulative bonuses are given as:

Bk+1
h (s, a) =

Nk+1
h∑

t=Nk
h+1

η
Nk+1

h
t bt, B

R,k+1
h (s, a) =

Nk+1
h∑

t=Nk
h+1

η
Nk+1

h
t bR

h,t(s, a), (16)
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where bt = cb
√
H3ι/t for a sufficiently large constant cb and a positive constant ι determined later,

and bR
h,t(s, a) is computed as follows. For a sufficiently large constant cR

b , the central server calculates

βR,k+1
h (s, a) = cR

b

√
ι

Nk+1
h

(√
σR,k+1
h −

(
µR,k+1
h

)2
+

√
H
(
σA,k+1
h −

(
µA,k+1
h

)2))
.

Then for a sufficiently large constant cR,2
b > 0 and t ∈ (Nk

h , N
k+1
h ), let bR

h,t = βR,k
h + cR,2

b H2ι/t and

bR
h,Nk+1

h

=
(
1− 1/ηNk+1

h

)
βR,k
h + βR,k+1

h /ηNk+1
h

+ cR,2
b H2ι/Nk+1

h .

After updating the estimated Q−function, the central server proceeds to update V k+1
h (s), V L,k+1

h (s),
and πk+1

h (s) for each (s, h) ∈ S × [H] as follows:

V k+1
h (s) = max

a′∈A
Qk+1

h (s, a′) , V L,k+1
h (s) = max

{
max
a′∈A

QL,k+1
h (s, a′) , V L,k

h (s)
}
, (17)

πk+1
h (s) = argmax

a′∈A
Qk+1

h (s, a′) . (18)

Finally, for any state-step pair (s, h), the central server updates the reference function as V R,k+1
h (s) =

V k+1
h (s) if either: (1) V k+1

h (s) − V L,k+1
h (s) > β, or (2) it is the first round where V k+1

h (s) −
V L,k+1
h (s) ≤ β for predefined β ∈ (0, H]. Otherwise, the server settles the reference function

by V R,k+1
h (s) = V R,k

h (s). In this case, the settlement is triggered after the condition V k+1
h (s) −

V L,k+1
h (s) ≤ β first holds for some round k, as guaranteed by the monotonically non-increasing

property of V k+1
h (s)− V L,k+1

h (s) established in Equation (7) and Equation (17). The algorithm then
proceeds to round k + 1. Algorithm 1 and Algorithm 2 formally present the algorithms. For reader’s
convenience, we provide graphical illustrations and two notation tables in Appendix D.

Algorithm 1 FedQ-EarlySettled-LowCost (Central Server)

1: Input: T0 ∈ N+.
2: Initialize k = 1, QU,1

h (s, a) = QR,1
h (s, a) = Q1

h(s, a) = V 1
h (s) = V R,1

h (s) = H,QL,1
h (s, a) =

V L,1
h (s) = N1

h(s, a) = 0, uR,1
h (s) = True, ∀(s, a, h) ∈ S ×A× [H] and an abitrary policy π1.

3: while
∑H

h=1

∑
s,a N

k
h (s, a) < T0 do

4: Broadcast πk, {Nk
h (s, π

k
h(s))}s,h, {V k

h (s)}s,h, {V L,k
h (s)}s,h and {V R,k

h (s)}s,h to all agents.
5: Wait until receiving an abortion signal and send the signal to all agents.
6: Receive the information from clients and compute round-wise means in Equation (5).
7: for any (s, a, h) ∈ S ×A× [H] do
8: if nk

h(s, a) = 0, then Qk+1
h (s, a)← Qk

h(s, a)

else Update Qk+1
h (s, a) via Equation (7)

9: end for
10: for any (s, h) ∈ S × [H] do
11: Update V k+1

h (s), V L,k+1
h (s) and πk+1

h (s) via Equation (17) and Equation (18).
12: if V k+1

h (s)− V L,k+1
h (s) > β, then V R,k+1

h (s) = V k+1
h (s).

else if uR,k
h (s) = True, then V R,k+1

h (s) = V k+1
h (s), uR,k+1

h (s) = False.
end if

13: end for
14: k ← k + 1.
15: end while

3.2 Intuition behind the Algorithm Design

UCB and Reference-Advantage Decomposition with Refined Bonus. Similar to [50, 113], we
adopt two techniques—upper confidence bound (UCB) exploration with the bonuses in the esti-
mated Q−function and reference-advantage decomposition—to attain the near-optimal regret bound.
To further improve regret performance, we refine the bonus term BR,k

h used to update the esti-
mated Q−function by removing its dependence on (Nk

h )
3/4 [50, 113]. This refinement enables
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Algorithm 2 FedQ-EarlySettled-LowCost (Agent m in Round k)

1: Initialize nm
h = vmh = vmh,l = µm

h,r = σm
h,r = µm

h,a = σm
h,a = 0,∀(s, a, h) ∈ S ×A× [H].

2: Receive πk, {Nk
h (s, π

k
h(s))}s,h, {V k

h (s)}s,h, {V L,k
h (s)}s,h and {V R,k

h (s)}s,h.
3: while no abortion signal from the central server do
4: while nm

h (s, a) < max
{
1,
⌊

Nk
h (s,a)

MH(H+1)

⌋}
, ∀(s, a, h) ∈ S ×A× [H] do

5: Collect a new trajectory {(sh, ah, rh)}Hh=1 with ah = πk
h(sh).

6: For any h ∈ [H], nm
h (sh, ah)

+
= 1 and (vmh , vmh,l, µ

m
h,r, σ

m
h,r, µ

m
h,a, σ

m
h,a)(sh, ah)

+
=

(V k
h+1, V

L,k
h+1, V

R,k
h+1, (V

R,k
h+1)

2, V A,k
h+1, (V

A,k
h+1)

2)(sh+1)
7: end while
8: Send an abortion signal to the central server.
9: end while

10: For any (s, h) ∈ S × [H] with a = πk
h(s),

(nm,k
h , vm,k

h , vm,k
h,l , µm,k

h,r , σm,k
h,r , µm,k

h,a , σm,k
h,a )(s, a)← (nm

h , vmh , vmh,l, µ
m
h,r, σ

m
h,r, µ

m
h,a, σ

m
h,a)(s, a).

11: For any (s, h) ∈ S × [H], send
{
(rh, n

m,k
h , vm,k

h , vm,k
h,l , µm,k

h,r , σm,k
h,r , µm,k

h,a , σm,k
h,a )(s, πk

h(s))
}

.

our algorithms to outperform both Q-EarlySettled-Advantage in the single-agent RL setting and
FedQ-Advantage in the FRL setting.

LCB for Early Settlement of the Reference Function. Compared with UCB-Advantage and
FedQ-Advantage, our algorithms incorporate a Lower Confidence Bound (LCB)-type estimate QL,k

h .
V L,k
h derived accordingly serves as a lower bound of V ∗

h , while V k
h is an upper bound for V ∗

h since
Qk

h ≥ Q∗
h by the UCB-design. To obtain an accurate reference function V R

h , we aim to settle the
reference function V R,k

h by V k
h when V k

h − V ∗
h ≤ β for the first time. Both UCB-Advantage and

FedQ-Advantage settle the reference function at a given (s, h) after it has been visited sufficiently
often—when the number of visits reaches a threshold N0(β). This is a rather conservative condition,
resulting in a large burn-in cost. In contrast, the LCB technique guarantees that V ∗

h ∈ [V L,k
h , V k

h ],
enabling a early settlement when V k

h − V L,k
h ≤ β, which consequently achieves a low burn-in cost.

Event-Triggered Termination and Infrequent Policy Updates. Our algorithms switches policies
infrequently, as estimated Q−function and policies are updated only after each round ends due to
condition (3). This design ensures that visits to each (s, a, h) grow at a controlled exponential rate
across rounds, enabling logarithmic bounds on switching/communication costs.

4 Theoretical Guarantees

When M = 1, the FedQ-EarlySettled-LowCost algorithm reduces to its single-agent variant, Q-
EarlySettled-LowCost, by eliminating the central server and the agent-server communication process.
In this section, we present the theoretical performance of our algorithms in both single-agent RL and
FRL settings. We first set the constant ι = log(28SAT1/p), where p ∈ (0, 1) is the failure rate and
T1 is an known upper bound of the total steps T̂ as defined in (b) of Lemma F.1.

4.1 Worst-Case Guarantees of Q-EarlySettled-LowCost

We now present the worst-case results for Q-EarlySettled-LowCost. It achieves the best regret among
all model-free single-agent RL algorithms with a low burn-in cost and a logarithmic switching cost.
Theorem 4.1. For any p ∈ (0, 1), let ι0 = log(SAT/p). Then for Q-EarlySettled-LowCost
(Algorithms 1 and 2 with M = 1 and β ∈ (0, H]), with probability at least 1− p, we have

Regret(T ) ≤ O
(
(1 + β)

√
H2SATι20 +H6SAι20/β

)
.

Setting β = Θ(1), when T > Õ(SAH10), the regret bound matches the lower bound O(
√
H2SAT )

up to logarithmic factors. Next, we compare our algorithm’s performance with two near-optimal
algorithms: UCB-Advantage [110] and Q-EarlySettled-Advantage [50]. UCB-Advantage has a
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regret of Õ(
√
H2SAT +H8S2A3/2T 1/4) and a burn-in cost of Õ(S6A3H28), while our algorithm

achieves a lower regret with only linear dependence on S,A and a better dependence on H , and a
much smaller burn-in cost with only linear dependence on S,A. Compared with Q-EarlySettled-
Advantage, our algorithm further improves the regret bound by a factor of log(SAT/p) and shows
better regret in the numerical experiments in Appendix B.1 due to the refinement of the cumulative
bonus BR,k+1

h in Equation (16), and the use of the surrogate reference function in the proof.

Theorem 4.2. Let C̃ = H2(H + 1)SA. For Q-EarlySettled-LowCost (Algorithms 1 and 2 with
M = 1 and β ∈ (0, H]), the switching cost is bounded by max{2C̃ + 4C̃ log(T/C̃), 3C̃}.

When T > e
1
4 C̃, our algorithm achieves a logarithmic switching cost of O(H3SA log(T/(HSA)).

4.2 Worst-Case Guarantees of FedQ-EarlySettled-LowCost

We now discuss the worst-case results for FedQ-EarlySettled-LowCost. It achieves the best regret
among all model-free FRL algorithms with a low burn-in cost and a logarithmic communication cost.
Theorem 4.3. For any p ∈ (0, 1), let ι1 = log(MSAT/p). Then for FedQ-EarlySettled-LowCost
(Algorithms 1 and 2 with β ∈ (0, H]), with probability at least 1− p, we have

Regret(T ) ≤ O

(
(1 + β)

√
MH2SATι21 +

H6SAι21
β

+MH5SAι21

)
.

Appendix I provides a uniform proof for Theorem 4.1 and Theorem 4.3. Setting β = Θ(1),
when T > Õ(MSAH10), the result becomes Õ(

√
MH2SAT ), matching the lower bound with

a total of MT steps. Compared with FedQ-Advantage [113] with a near-optimal regret bound
Õ(
√
MH2SAT +M

1
4H

11
4 SAT

1
4 +MH7S2A

3
2 ), our method achieves lower regret with milder

dependence on H,S,A. Furthermore, FedQ-Advantage requires Õ(MS3A2H12) samples to reach
near-optimality, while our method only needs Õ(MSAH10), with a burn-in cost scaling linearly in
S,A. Numerical experiments in Appendix B.2 also demonstrate that FedQ-EarlySettled-LowCost
achieves the best regret performance among all model-free FRL algorithms.

Proving the worst-case regret bounds in Theorems 4.1 and 4.3 is challenging due to the technical
difficulty of double non-adaptiveness, and we overcome it by the novel use of a technical tool, the
surrogate reference function. Please refer to Appendix C for more details. Next, we discuss the
worst-case communication cost results of FedQ-EarlySettled-Advantage.
Theorem 4.4. For FedQ-EarlySettled-LowCost (Algorithm 1 and Algorithm 2 with β ∈ (0, H]), the
number of rounds K is bounded by max{2MC̃ + 4MC̃ log(T/C̃), 3MC̃}.

Appendix J presents a uniform proof for Theorem 4.2 and Theorem 4.4. When T > e
1
4 C̃, we have

K ≤ O(MH3SA log(T )). As each round incurs O(MHS) communication cost, the total cost is
O(M2H4S2A log(T )), growing logarithmically with T . If agent waiting is permitted, synchroniza-
tion in each round can be delayed until all agents satisfy the trigger condition in Equation (3), similar
to the setting in [113] when the optimal forced synchronization is disabled. In this case, the number
of rounds K can be bounded by max{2C̃ + 4C̃ log(T/C̃), 3MC̃}. which is independent of M .

4.3 Gap-Dependent Guarantees

This section provides gap-dependent results under both single-agent and federated settings. We define
the maximal conditional variance Q∗ := maxs,a,h

{
Vs,a,h(V

∗
h+1)

}
∈ [0, H2] [102]. Theorem 4.5

establishes the best-known gap-dependent regret for model-free RL, matching that of Q-EarlySettled-
Advantage in [114], while maintaining a logarithmic switching cost.
Theorem 4.5. For Q-EarlySettled-LowCost (Algorithms 1 and 2 with M = 1 and β ∈ (0, H]),

E (Regret(T )) ≤ O

(
(Q⋆ + β2H)H3SA log(SAT )

∆min
+

H7SA log2(SAT )

β

)
.

Next, we present the gap-dependent switching cost results under the same assumptions as [105]: full
synchronization, random initialization, and G-MDPs. We first review the initial two assumptions:
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(I) Full synchronization. Similar to [112], we assume that there is no latency during communications,
and the agents and server are fully synchronized [60]. This means nm,k = nk for each agent m.

(II) Random initializations. We assume that the initial states {sk,j,m1 }k,j,m are randomly generated
with some distribution on S, and the generation is not affected by any result in the learning process.

Assumption (I) implies that all agents have the same exploration speed. We now introduce G-MDPs.
Definition 4.6. A G-MDP satisfies the following two conditions:

(a) The stationary visiting probabilities under optimal policies are unique: if both π∗,1 and π∗,2 are
optimal policies, then we have P

(
sh = s|π∗,1) = P

(
sh = s|π∗,2) =: P∗

s,h.

(b) Let A∗
h(s) = {a | a = argmaxa′ Q∗

h(s, a
′)}. For any (s, h) ∈ S × [H], if P∗

s,h > 0, then
|A∗

h(s)| = 1, which means that the optimal action is unique.

G-MDPs represent MDPs with generally unique optimal policies. Compared to requiring a unique
optimal policy, G-MDPs allow the optimal actions to vary outside the support under optimal policies,
i.e., the state-step pairs with P∗

s,h = 0.

For any G-MDP, we define Cst = min{P∗
s,h | s ∈ S, h ∈ [H],P∗

s,h > 0}, which reflects the
minimum visiting probability over the support of the optimal policy.

With these assumptions, we now present a gap-dependent switching cost bound for the Q-EarlySettled-
LowCost algorithm. This result fills a notable gap by providing the first such bound for LCB-based
algorithms, and it matches the best-known gap-dependent switching cost guarantee of the single-agent
FedQ-Hoeffding algorithm [105], which, however, suffers from a higher and suboptimal regret.
Theorem 4.7. For any p ∈ (0, 1), let ι0 = log(SAT

p ). Then for Q-EarlySettled-LowCost (Algo-
rithms 1 and 2 with M = 1 and β ∈ (0, H]), under the random initialization assumption and a
G-MDP, with probability at least 1− p, the switching cost is bounded by

O

(
H3SA log

(
H4SAι0
β∆2

min

)
+H3S log

(
1

Cst

)
+H2 log

(
T

HSA

))
.

Theorem 4.8 and Theorem 4.9 present gap-dependent results for FedQ-EarlySettled-LowCost.
Theorem 4.8. For FedQ-EarlySettled-LowCost (Algorithms 1 and 2 with β ∈ (0, H]), let ι2 =
log(MSAT ), then we have

E (Regret(T )) ≤ O

(
(Q⋆ + β2H)H3SAι2

∆min
+

H7SAι22
β

+MH6SAι22

)
.

Appendix K gives a uniform proof for Theorem 4.5 and Theorem 4.8. Compared with the only
federated gap-dependent regret bound O(H6SAι1/∆min + MH5SA

√
ι) established for FedQ-

Hoeffding in [105], Theorem 4.8 improves the dependence on ∆min by a factor of H for the worst
scenario, where Q⋆ = Θ(H2). Furthermore, in the best scenario when the MDP is deterministic and

Q⋆ = 0, our bound scales as Õ(∆
− 1

3

min ) for specific β, improving upon the linear dependency.
Theorem 4.9. For any p ∈ (0, 1), let ι1 = log(MSAT

p ). Then for FedQ-EarlySettled-LowCost
(Algorithms 1 and 2 with β ∈ (0, H]), under a G-MDP and the assumptions of full synchronization
and random initialization, with probability at least 1− p, the number of rounds K is bounded by:

O

(
MH3SA log (MHι1) +H3SA log

(
H4SA

β∆2
min

)
+H3S log

(
1

Cst

)
+H2 log

(
T

HSA

))
.

Appendix L gives a uniform proof for Theorem 4.7 and Theorem 4.9. This result matches the only
gap-dependent upper bound on the number of communication rounds, established for FedQ-Hoeffding
[105], while our algorithm simultaneously achieves a better and near-optimal regret.

5 Conclusion

We propose two novel model-free algorithms, Q-EarlySettled-LowCost and FedQ-EarlySettled-
LowCost, that simultaneously achieves the near-optimal regret, a low burn-in cost that scales linearly
with S and A, and a logarithmic switching/communication cost. Technically, we combine LCB and
UCB with reference-advantage decomposition for more efficient reference function learning.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
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Justification: The abstract and introduction clearly and accurately summarize the paper’s
contribution and scope.
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer to the details in Section 3.1, we discuss the different types of
heterogeneity in federated learning.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: Please refer to the details in our paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have discussed the hyper-parameter choice to replicate the result and
provided the code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

19



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code that can exactly replicate the numerical results is uploaded in
supplementary materials.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The choice of hyper-parameters has been provided in the numerical section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report medians and two other quantiles based on multiple replications in
the numerical section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have included a description of related computational resources in the
footnotes of numerical section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We review and follow the code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This is a theoretical work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This is a theoretical work and there is no such risk.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited the source of the publicly available code we referred to.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Organization of the appendix. Appendix A reviews related works. Appendix B presents the
results of our numerical experiments, demonstrating the best regret performance and showing the
log T−type switching/communication cost. Appendix C analyzes our technical novelty that leads to
the regret improvement. Appendix D provides graphical illustrations and two notation tables for our
algorithms. Appendix E and Appendix F include some useful theorems and lemmas. Appendix G
proves some probability events and Appendix H explores the properties of estimated value functions.
Appendix I contains the proof of the worst-case regret bounds (Theorem 4.1 and Theorem 4.3).
Appendix J contains the proof of the worst-case switching/communication cost bounds (Theorem 4.2
and Theorem 4.4). Appendix K provides the proof of the gap-dependent regret bounds (Theorem 4.5
and Theorem 4.8). Appendix L presents the proof of the gap-dependent switching/communication
cost bounds (Theorem 4.7 and Theorem 4.9).

A Related Work

On-Policy RL for Finite-Horizon Tabular MDPs with Worst-Case Regret. There are mainly two
types of algorithms for reinforcement learning: model-based and model-free learning. Model-based
algorithms learn a model from past experience and make decisions based on this model, while
model-free algorithms only maintain a group of value functions and take the induced optimal actions.
Due to these differences, model-free algorithms are usually more space-efficient and time-efficient
compared with model-based algorithms. However, model-based algorithms may achieve better
learning performance by leveraging the learned model.

Next, we discuss the literature on model-based and model-free algorithms for finite-horizon tabular
MDPs with worst-case regret. [1, 3, 7, 9, 20, 42, 102, 106, 107, 115] worked on model-based
algorithms. Notably, [106] provided an algorithm that achieves a regret of Õ(min{

√
SAH2T , T}),

which matches the information-theoretic lower bound. [37, 50, 61, 98, 110] work on model-free
algorithms. Three of them [50, 61, 110] achieved the near-optimal regret of Õ(

√
SAH2T ).

Suboptimality Gap. When there is a strictly positive suboptimality gap, it is possible to achieve
logarithmic regret bounds. In RL, earlier work obtained asymptotic logarithmic regret bounds [8, 79].
Recently, non-asymptotic logarithmic regret bounds were obtained [34, 36, 66, 76]. Specifically,
[36] developed a model-based algorithm, and their bound depends on the policy gap instead of the
action gap studied in this paper. [66] derived problem-specific logarithmic type lower bounds for
both structured and unstructured MDPs. [76] extended the model-based algorithm proposed by
[102] and obtained logarithmic regret bounds. More recently, [14] further improved model-based
gap-dependent results. Logarithmic regret bounds have also been established in the linear function
approximation setting [34], and [65] provided gap-dependent guarantees for offline RL with linear
function approximation.

Specifically, for model free algorithms, [98] showed that the optimistic Q−learning algorithm in
[37] enjoyed a logarithmic regret O(H

6SAT
∆min

), which was subsequently refined by [95]. In their work,
[95] introduced the Adaptive Multi-step Bootstrap (AMB) algorithm. [114] further improved the
logarithmic regret bound by leveraging the analysis of the UCB-Advantage algorithm [110] and
Q-EarlySettled-Advantage algorithm [50]. XXX provides the first fine-grained, gap-dependent regret
upper bound for a UCB-based algorithm, specifically UCB-Hoeffding. In the federated setting, [105]
further establishes the first gap-dependent bounds for both regret and communication cost.

Several other studies have also investigated gap-dependent sample complexity bounds [4, 41, 59, 80,
81, 83, 85, 91].

Variance Reduction in RL. The reference-advantage decomposition used in [50] and [110] is a
technique of variance reduction that was originally proposed for finite-sum stochastic optimization
[31, 40, 64]. Later on, model-free RL algorithms also used variance reduction to improve the sample
efficiency. For example, it was used in learning with generative models [71, 72, 88], policy evaluation
[23, 43, 87, 96], offline RL [70, 100], and Q−learning [50, 51, 97, 110].

RL with Low Switching Costs and Batched RL. Research in RL with low switching costs aims
to minimize the number of policy switches while maintaining comparable regret bounds to fully
adaptive counterparts, and it can be applied to federated RL. In batched RL [29, 67], the agent sets
the number of batches and the length of each batch upfront, implementing an unchanged policy in a
batch and aiming for fewer batches and lower regret. [10] first introduced the problem of RL with low
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switching cost and proposed a Q−learning algorithm with lazy updates, achieving Õ(H3SA log T )
switching cost. This work was advanced by [110], which improved the regret upper bound and
the switching cost simultaneously. Additionally, [90] studied RL under the adaptivity constraint.
Recently, [68] proposed a model-based algorithm with Õ(log log T ) switching cost. [109] proposed
a batched RL algorithm that is well-suited for the federated setting.

Multi-Agent RL (MARL) with Event-Triggered Communications. We review a few recent
works on on-policy MARL with linear function approximations. [24] introduced Coop-LSVI for
cooperative MARL. [62] proposed an asynchronous version of LSVI-UCB that originates from
[38], matching the same regret bound with improved communication complexity compared with
[24]. [35] developed two algorithms that incorporate randomized exploration, achieving the same
regret and communication complexity as [62]. [24, 35, 62] employed event-triggered communication
conditions based on determinants of certain quantities. Different from our federated algorithm, during
the synchronization in [24] and [62], local agents share original rewards or trajectories with the
server. On the other hand, [35] reduces communication cost by sharing compressed statistics in the
non-tabular setting with linear function approximation.

Federated and Distributed RL. Existing literature on federated and distributed RL algorithms
highlights various aspects. For value-based algorithms, [33], [92], and [112] focused on linear
speedup. [2] proposed a parallel RL algorithm with low communication cost. [92] and [93] discussed
the improved covering power of heterogeneity. [16] and [94] worked on robustness. Particularly, [16]
proposed algorithms in both offline and online settings, obtaining near-optimal sample complexities
and achieving superior robustness guarantees. In addition, several works have investigated value-
based algorithms such as Q−learning in different settings, including [5, 12, 27, 39, 44, 92, 93, 99,
104, 111]. The convergence of decentralized temporal difference algorithms has been analyzed by
[18, 21, 22, 53, 77, 86, 89, 103].

Some other works focus on policy gradient-based algorithms. Communication-efficient policy
gradient algorithms have been studied by [15] and [26]. [48] further reduces the communication
complexity and also demonstrates a linear speedup in the synchronous setting. Optimal sample
complexity for global convergence in federated RL, even in the presence of adversaries, is studied in
[28]. [47] proposes an algorithm to address the challenge of lagged policies in asynchronous settings.

The convergence of distributed actor-critic algorithms has been analyzed by [17, 69]. Federated
actor-learner architectures have been explored by [6, 25, 63]. Distributed inverse reinforcement
learning has been examined by [11, 30, 54, 55, 56, 57, 58].

B Numerical Experiments

In this section, we present experiments conducted in a synthetic environment to demonstrate the
following two conclusions:

• When M = 1, Q-EarlySettled-LowCost achieves better regret compared with all other
single-agent model-free algorithms: UCB-Hoeffding and UCB-Bernstein [37], UCB2-
Hoeffding and UCB2B [10], UCB-Advantage [110] and Q-EarlySettled-Advantage [50],
while remaining logarithmic switching cost.

• FedQ-EarlySettled-LowCost achieves the best regret performance compared with other
federated model-free algorithms, including FedQ-Hoeffding and FedQ-Bernstein[112] and
FedQ-Advantage [113], while also maintaining logarithmic communication cost.

To evaluate the proposed algorithms, we simulate a synthetic tabular episodic Markov Decision
Process. Specifically, we consider two cases with (H,S,A) = (5, 3, 2) and (7, 10, 5). The reward
rh(s, a) for each (s, a, h) is generated independently and uniformly at random from [0, 1]. Ph(· | s, a)
is generated on the S−dimensional simplex independently and uniformly at random for (s, a, h).
Then we will discuss the experiment results for each conclusion separately.

B.1 Comparison of Single-Agent RL Algorithms

Under the given MDP, we set M = 1 and generate 3 ∗ 105 episodes for (H,S,A) = (5, 3, 2) and
2 ∗ 106 episodes for (H,S,A) = (7, 10, 5). For each episode, we randomly choose the initial state
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uniformly from the S states4. For the other six single-agent algorithms, we use their hyperparameter
settings based on the publicly available code5 in [114]. For FedQ-EarlySettled-LowCost algorithm,
we similarly set ι = 1, the hyper-parameter cb =

√
2 in the bonus bt, cR

b = 2 in the cumulative bonus
βR,k
h , cR,2

b = 1 in the bonus bR
h,t and β = 0.05.

To show error bars, we collect 10 sample paths for all algorithms under the same MDP environment
and show the relationship between Regret(T )/ log(T/H + 1) and the total number of episodes for
each agent T/H in Figure 1. For both panels, the solid line represents the median of the 10 sample
paths, while the shaded area shows the 10th and 90th percentiles.

(a) Regret results for (H,S,A) = (5, 3, 2) (b) Regret results for (H,S,A) = (7, 10, 5)

Figure 1: Numerical comparison of regrets for single-agent model-free algorithms

From the two figures, we observe that when M = 1, our Q-EarlySettled-LowCost algorithm enjoy
the best regret compared with the other six single-agent model-free algorithms. We also note that the
red curves for the Q-EarlySettled-LowCost algorithm approach horizontal lines as the total number
of episodes T/H becomes sufficiently large. Since the y-axis is Regret(T )/ log(T/H + 1), this
suggests that the regret grows logarithmically with T , which matches our gap-dependent regret bound
result in Theorem 4.5. We also show the logarithmic switching cost results in the following Figure 2.

(a) Switching cost for (H,S,A) = (5, 3, 2) (b) Switching cost for (H,S,A) = (7, 10, 5)

Figure 2: Switching cost results for Q-EarlySettled-LowCost when M = 1

From Figure 2, We note that the red curves for Q-EarlySettled-LowCost algorithm also approach
horizontal lines as the total number of episodes T/H becomes sufficiently large. This suggests that
the switching cost grows logarithmically with T , which matches our logarithmic switching cost
bound result in Theorem 4.2 and Theorem 4.7.

4All the experiments in this subsection are run on a server with Intel Xeon E5-2650v4 (2.2GHz) and 100
cores. Each replication is limited to a single core and 8GB of RAM. The total execution time is about 5 hours.
The code for the numerical experiments is included in the supplementary materials along with the submission.

5https://openreview.net/attachment?id=6tyPSkshtF&name=supplementary_material
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B.2 Comparison of FRL Algorithms

Under the given MDP, we set M = 10 and generate 3 ∗ 105 episodes for (H,S,A) = (5, 3, 2)
and 2 ∗ 106 episodes for (H,S,A) = (7, 10, 5)6. For each episode, we randomly choose the initial
state uniformly from the S states. For the other three federated model-free algorithms, FedQ-
Hoeffding, FedQ-Bernstein, and FedQ-Advantage, we use their hyperparameter settings based on the
publicly available code7 in [113]. For the FedQ-EarlySettled-LowCost algorithm, we use the same
hyperparameter setting as specified in Appendix B.1.

To show error bars, we also collect 10 sample paths for all algorithms under the same MDP environ-
ment and show the relationship between Regret(T )/ log(T/H + 1) and the total number of episodes
for each agent T/H in Figure 3. For both panels, the solid line represents the median of the 10
sample paths, while the shaded area shows the 10th and 90th percentiles.

(a) Regret results for (H,S,A) = (5, 3, 2) (b) Regret results for (H,S,A) = (7, 10, 5)

Figure 3: Numerical comparison of regrets for federated model-free algorithms

From the two figures, we observe that our proposed FedQ-EarlySettled-LowCost algorithm enjoy the
best regret compared with the other three federated model-free algorithms. We also note that the red
curves for the FedQ-EarlySettled-LowCost algorithm approach horizontal lines as the total number
of episodes T/H becomes sufficiently large. This suggests that the regret grows logarithmically with
T , which matches our gap-dependent regret bound result in Theorem 4.8.

(a) Communication cost for (H,S,A) = (5, 3, 2) (b) Communication cost for (H,S,A) = (7, 10, 5)

Figure 4: Number of communication rounds for FedQ-EarlySettled-LowCost

6All the experiments in this subsection are run on a server with Intel Xeon E5-2650v4 (2.2GHz) and 100
cores. Each replication is limited to five cores and 15GB of RAM. The total execution time is about 15 hours.
The code for the numerical experiments is included in the supplementary materials along with the submission.

7https://openreview.net/attachment?id=FoUpv84hMw&name=supplementary_material
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From Figure 4, we find that the number of communication rounds curves for the FedQ-EarlySettled-
LowCost algorithm approach horizontal lines as the total number of episodes T/H becomes suffi-
ciently large. This suggests that the number of communication rounds grows logarithmically with T ,
which matches our logarithmic gap-dependent communication cost bound result in Theorem 4.4 and
Theorem 4.9.

C Technical Novelty in Depth

In this section, we highlight our technical novelty for proving the worst-case regrets for both
Q-EarlySettled-LowCost and FedQ-EarlySettled-LowCost, where we overcome the challenge of
simultaneous non-adaptiveness by using the surrogate reference function.

We prove the worst-case regret bounds in Theorem 4.1 and Theorem 4.3 by relating the regret to the
estimation error of the optimal Q−functions that takes the form∑

k,j,m

(Qk
h −Q⋆

h)(s
k,j,m
h , ak,j,mh ).

It is common in the literature to bound the summation by recursions on h in model-free algorithms
[50, 98, 110, 112]. In more detail, for each individual error (Qk

h−Q⋆
h)(s

k,j,m
h , ak,j,mh ), by the update

rule in Equation (7), it can be upper bounded by (QR
h − Q⋆

h)(s
k,j,m
h , ak,j,mh ). Furthermore, based

on the reference-advantage-type update given in Equation (11) and Equation (15), Equation (77) in
Appendix I shows that with high probability, (QR,k

h −Q⋆
h)(s

k,j,m
h , ak,j,mh ) ≤ G0, where

G0 =

Nk
h∑

n=1

η̃
Nk

h
n

((
V kn

h+1 − V R,kn

h+1

)
(sk

n,jn,mn

h+1 ) + µR,kn+1
h − Psk,j,m

h ,ak,j,m
h ,hV

∗
h+1

)
+ CB .

Here, kn represents the round index that the n−th visit to (sk,j,mh , ak,j,mh , h) happens. η̃N
k
h

n denotes
the cumulative weight for the n−th visit to this state-action-step triple under our delayed-policy-

switching scheme (see Equation (19) in Appendix F for the definition), which approximates ηN
k
h

n (the
exact weight in high burn-in cost algorithms requiring frequent policy updates [37, 50]). CB collects
some constants and the cumulative bonuses. All three notations hide their dependency on (k, j,m, h).
We start from the decomposition of G0, following the design in [50] for Q-EarlySettled-Advantage
with frequent policy switching, and then explain the challenges of non-adaptiveness therein and our
solution of surrogate reference function.

Decomposition. We use V R,K+1
h to denote the settled reference function. By applying the inequality

V kn

h+1 − V R,kn

h+1 ≤ V kn

h+1 − V R,K+1
h+1 , which follows directly from the monotonically non-increasing

property of V R,k
h+1 as guaranteed by the reference function settling rule in line 12 of Algorithm 1, G0

can be further upper bounded by the summation of CB and the following terms:

G1 :=

Nk
h∑

n=1

η̃
Nk

h
n

(
V kn

h+1 − V ∗
h+1

)
(sk

n,jn,mn

h+1 ),

G2 :=

Nk
h∑

n=1

η̃
Nk

h
n

(
1
sk

n,jn,mn

h+1
− Psk,j,m

h ,ak,j,m
h ,h

)(
V ∗
h+1 − V R,K+1

h+1

)
,

G3 :=

Nk
h∑

n=1

η̃
Nk

h
n

1

Nkn+1
h

Nkn+1
h∑
i=1

(
V R,ki

h+1 (s
ki,ji,mi

h+1 )− V R,K+1
h+1 (sk

i,ji,mi

h+1 )
)
,

G4 :=

Nk
h∑

n=1

η̃
Nk

h
n

1

Nkn+1
h

Nkn+1
h∑
i=1

(
V R,K+1
h+1 (sk

i,ji,mi

h+1 )− Psk,j,m
h ,ak,j,m

h ,hV
R,K+1
h+1

)
.

This decomposition follows the structure of the reference-advantage decomposition, where G1 reflects
the V -value function estimation error, G2 and G4 reflect the empirical estimation error for the settled
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advantage function and reference function respectively, and G3 reflects the reference settling error.
Thus, the estimation error

∑
k,j,m(Qk

h −Q⋆
h)(s

k,j,m
h , ak,j,mh ) can be upper bounded by the sum of

five corresponding summations with regard to CB ,G1,G2,G3,G4.

Challenges: Simultaneous Non-Adaptiveness. However, the summations involving G2 and G4
cannot be directly bounded using standard concentration inequalities. This limitation arises from the

non-adaptive nature of both the weights {η̃N
k
h

n } and the settled reference function V R,K+1
h+1 at the

next steps of historical visits to (sk,j,mh , ak,j,mh , h).

The weights {η̃N
k
h

n } exhibit non-adaptiveness due to our special aggregation scheme used in Case
2 of the estimated Q−function updates (Equation (7)), which assigns identical weights to all visits
within a given round. Each weight depends on the total number of visits to the corresponding state-
action-step triple in that round, a quantity that is unknown during visitation due to our event-triggered
termination condition specified in Equation (3). This uncertainty results in the non-adaptiveness of
the weights. The non-adaptiveness of V R,K+1

h+1 is because the reference settling depends on all the
historical information in the learning process (see line 12 in Algorithm 1 for the reference function’s
update rule).

[112] addresses the non-adaptiveness of the weights through round-wise approximations, and [50]
tackles the non-adaptiveness related to the settled reference function via the empirical process.
However, neither approach simultaneously resolves both forms of non-adaptiveness, and their
direct combination presents significant technical challenges. The empirical process employed in [50]
introduces an additional logarithmic factor of T in the error bound when constructing ϵ−nets to
cover the function space induced by V R,K+1

h+1 .

Our Solution: Surrogate Reference Functions. To combine the round-based design (with equal
weight assignments in each round) and the LCB technique (used in the reference-advantage decompo-
sition) for simultaneous low burn-in costs and logarithmic switching/communication costs, we adapt
the surrogate reference function technique from [114]—originally developed for gap-dependent
analysis—and successfully incorporate it into our worst-case regret framework. There are two
benefits of this adaptation: (i) It resolves the fundamental challenge of simultaneous non-adaptiveness
in the learning process. (ii) By replacing the empirical process technique from [50], it eliminates the
additional logarithmic factor in the error bound, yielding tighter regret guarantees.

The surrogate reference function V̂ R,k
h in our framework is defined as:

V̂ R,k
h (s) := max

{
V ⋆
h (s),min

{
V ⋆
h (s) + β, V R,k

h (s)
}}

,∀(s, h, k).

It naturally adapts to the learning process. In addition, building on the optimistic property demon-
strated in Lemma H.1, we can show that

V̂ R,k
h (s) = min

{
V ⋆
h (s) + β, V R,k

h (s)
}

with high probability. Thus, it maintains the same monotonically non-increasing property as the
reference function V R,k

h (s) and coincides with the settled reference function V R,K+1
h once the

reference function is settled (see line 12 in Algorithm 1 for the update rule of reference functions). By
applying the inequality V kn

h+1 − V R,kn

h+1 ≤ V kn

h+1 − V̂ R,kn

h+1 , G0 can be upper bounded by the summation
of CB ,G1,G2,G3,G4, where all the V R,K+1

h+1 s are replaced by the surrogate reference function V̂ R,kn

h+1 .

In the new decomposition, the summation over CB is well-controlled in Lemma I.1, following a
similar approach to [50, Appendix E.2]. The summation over G1 can be bounded by

exp

(
3

H

) ∑
k,j,m

(
Qk

h+1 −Q⋆
h+1

)
(sk,j,mh+1 , ak,j,mh+1 )

and an additional constant term as shown in Equation (82) of Appendix I, establishing the error
recursion for step h. This step relies on a double-sum rearrangement, a standard technique in model-
free RL analysis [37, 50, 112]. The summation for G3 can be bounded in the term R3,3 of Lemma I.3,
using the technique from [50, Lemma 3] for controlling the reference settling error. Furthermore,
the revised G2 and G4 introduce non-adaptiveness only through their weights, allowing us to apply
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round-wise approximation methods [112] to bound them. For the revised G2, we approximate it with
Nk

h∑
n=1

η
Nk

h
n

(
1
sk

n,jn,mn

h+1
− Psk,j,m

h ,ak,j,m
h ,h

)(
V ∗
h+1 − V̂ R,kn

h+1

)
,

where all elements adapt to the data generation process. The approximation error can be controlled
via round-wise concentration inequalities (see Lemma F.5). The summation with regard to the revised
G4 can be bounded through decomposition into four terms R3,1, R3,2, R3,4 and R3,5 in Lemma I.3
following the same idea. For more technical details, we refer readers to Lemma I.2 for the analysis of
the summation of G2 and to Lemma I.3 for the detailed treatment of the summation of G4.

Using the surrogate reference functions not only solves the challenge of simultaneous non-
adaptiveness but also yields a log(SAT/p) improvement over the current state-of-the-art Q-
EarlySettled-Advantage [50] in single-agent RL by avoiding using the empirical process.

To our knowledge, this work represents the first successful integration of the surrogate reference
functions and round-wise approximation to handle both forms of non-adaptiveness of the weights and
the settled reference function. This methodological advancement significantly expands the analytical
tools available for federated reinforcement learning and overcomes limitations present in previous
approaches.

D Graphical Illustrations and Notation Tables

In this section, we provide graphical illustrations and notational reference tables to enhance compre-
hension of our algorithms.

D.1 Graphical Illustrations

In this subsection, we present some graphical illustrations of our FRL framework and round-based
design. Figure 5 presents the central server’s initialization phase, where the central server broadcast
key parameters to all agents at the start of each training round.

Figure 5: Central server broadcast protocol. At the beginning of round k, for any state-step pair
(s, h) ∈ S × [H], the central server broadcasts the current policy πk, the total number of visits before
round k Nk

h (s, π
k
h(s)), the V−estimates V k

h (s, πk
h(s)), the lower bound function V L,k

h (s, πk
h(s)) and

the reference function V R,k
h (s, πk

h(s)) to each agent.

The following Figure 6 illustrates the agent-to-server data transmission phase. After exploration
terminates in round k (when condition (3) is met), each agent transmits the rewards and some local
summary statistics to the central server.
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Figure 6: Agent-to-server data transmission. At the end of each round k, for any state-step pair
(s, h) ∈ S × [H], the agent m sends the reward rh(s, π

k
h(s)), the number of visits in round k

nm,k
h (s, πk

h(s)) and six local sums in Equation (4) to the central server.

The following Figure 7 explains our round-based design for infrequent policy and value function
estimate updates. Unlike conventional per-episode updates, our algorithms accumulate trajectory data
across multiple episodes within each round, updating both the value function estimates and policy
only at the end of each round.

Figure 7: Round-based design. At the beginning of the learning process, the central server initializes
Q1

h = V 1
h = V R,1

h = H and V L,1
h = 0 and chooses an arbitrary policy π1. At the end of round

k, the central server updates the policy πk+1 and (Qk+1
h , V k+1

h , V L,k+1
h , V R,k+1

h ) for any visited
state-action-step triple (s, a, h) ∈ S ×A× [H].
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D.2 Notation Tables

In this subsection, we provide two notation tables of FedQ-EarlySettled-LowCost to enhance the
readability of the paper. One of the table consists of global variables utilized for central server
aggregation, while the other table presents local variables employed for agent local training.

Table 3: Global Variables

Variable Definition
Qk

h the estimated Q−value function of step h at the beginning of round k

QU,k
h the UCB-type Q−estimates of step h at the beginning of round k

QL,k
h the LCB-type Q−estimates of step h at the beginning of round k

QR,k
h the reference-advantage-type Q−estimates of step h at the beginning of round k

V k
h the estimated V−value function of step h at the beginning of round k

V L,k
h the lower bound function of step h at the beginning of round k

V R,k
h the reference function of step h at the beginning of round k

V A,k
h the advantage function V k

h − V R,k
h of step h at the beginning of round k

Bk
h the Hoeffding-type cumulative bonus in round k

BR,k
h the reference-advantage-type cumulative bonus in round k

Nk
h (s, a) the total number of visits to (s, a, h) before round k

nk
h(s, a) the total number of visits to (s, a, h) in round k

µR,k
h (s, a)

the mean of the reference function at all next states of the visits to (s, a, h) before
round k

σR,k
h (s, a)

the mean of the squared reference function at all next states of the visits to (s, a, h)
before round k

µA,k
h (s, a)

the weighted sum of the advantage function at all next states of the visits to (s, a, h)
before round k

σA,k
h (s, a)

the weighted sum of the squared advantage function at all next states of the visits to
(s, a, h) before round k

vkh(s, a) the mean of V k
h at all next states of the visits to (s, a, h) in round k

vl,kh (s, a) the mean of V L,k
h at all next states of the visits to (s, a, h) in round k

µr,k
h (s, a) the mean of V R,k

h at all next states of the visits to (s, a, h) in round k

σr,k
h (s, a) the mean of (V R,k

h )2 at all next states of the visits to (s, a, h) in round k

µa,k
h (s, a) the mean of V A,k

h at all next states of the visits to (s, a, h) in round k

σa,k
h (s, a) the mean of (V A,k

h )2 at all next states of the visits to (s, a, h) in round k

uR
h the indicator used to terminate the reference function update.

Table 4: Local Variables

Variable Definition
nm,k
h (s, a) the total number of visits to (s, a, h) of agent m in round k

vm,k
h (s, a) the mean of V k

h at all next states of the visits to (s, a, h) of agent m in round k

vm,k
h,l (s, a) the mean of V L,k

h at all next states of the visits to (s, a, h) of agent m in round k

µm,k
h,r (s, a) the mean of V R,k

h at all next states of the visits to (s, a, h) of agent m in round k

σm,k
h,r (s, a) the mean of (V R,k

h )2 at all next states of the visits to (s, a, h) of agent m in round k

µm,k
h,a (s, a) the mean of V A,k

h at all next states of the visits to (s, a, h) of agent m in round k

σm,k
h,a (s, a) the mean of (V A,k

h )2 at all next states of the visits to (s, a, h) of agent m in round k
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E General Theorems

Theorem E.1. (Azuma-Hoeffding Inequality). Suppose {Xk}∞k=0 is a martingale and |Xk−Xk−1| ≤
ck, ∀k ∈ N+, almost surely. Then for any N ∈ N+ and ϵ > 0, it holds that:

P (|XN −X0| ≥ ϵ) ≤ 2 exp

(
− ϵ2

2
∑N

k=1 c
2
k

)
.

Theorem E.2. (Freedman’s inequality, [49, Theorem EC.1]). Consider a filtration F0 ⊂ F1 ⊂ F2 ⊂
· · ·, and let Ek stand for the expectation conditioned on Fk. Suppose that Yn =

∑n
k=1 Xk ∈ R,

where {Xk} is a real-valued scalar sequence obeying

|Xk| ≤ R and Ek−1[Xk] = 0 for all k ≥ 1

for some quantity R < ∞. We also define Wn :=
∑n

k=1 Ek−1[X
2
k ]. In addition, suppose that

Wn ≤ σ2 holds deterministically for some given quantity σ2 < ∞. Then for any positive integer
m ≥ 1, with probability at least 1− δ, one has

|Yn| ≤

√
8max

{
Wn,

σ2

2m

}
log

2m

δ
+

4

3
R log

2m

δ
.

Theorem E.3. ([108, Lemma 10]). Let X1, X2, . . . be a sequence of random variables taking value
in [0, l]. Define Fk = σ(X1, X2, . . . , Xk) and Yk = E[Xk|Fk−1] for k ≥ 1. For any δ > 0, we
have that

P

[
∃n,

n∑
k=1

Xk ≥ 3

n∑
k=1

Yk + l log(1/δ)

]
≤ δ

and

P

[
∃n,

n∑
k=1

Yk ≥ 3

n∑
k=1

Xk + l log(1/δ)

]
≤ δ.

F Key Lemmas

In this section, we introduce some useful lemmas. Before starting, we rank the visits to any given
triple (s, a, h) based on the “round first, episode second, step third, agent fourth” rule (time order)
and use ki(s, a, h), ji(s, a, h), mi(s, a, h) to denote the the round, episode and agent index for the
i−th visit, respectively. When there is no ambiguity, we use ki, mi, and ji for short.

Let X = (S,A, H, T, ι). The notation f(X ) ≲ g(X ) means that there exists a universal constant
C1 > 0 such that f(X ) ≤ C1g(X ). In the following sections, we assume that 0/0 = 0. For any
C ∈ N+, we use [C] to denote the set {1, 2, ..., C}. We also use I[x] to denote the indicator function,
which equals 1 when the event x is true and 0 otherwise.

We now begin to introduce lemmas. Lemma F.1 establishes key relationships between certain
quantities used in Algorithm 1 and Algorithm 2.
Lemma F.1. The following relationships hold for Algorithm 1 and Algorithm 2.

(a) For any (s, a, h, k) ∈ S ×A× [H]× [K], we have

nm,k
h (s, a) ≤ max

{
1,

Nk
h (s, a)

MH(H + 1)

}
,∀m ∈ [M ].

and

nk
h(s, a) ≤ max

{
M,

Nk
h (s, a)

H(H + 1)

}
.

If Nk
h (s, a) ≥ i0,

nk
h(s, a) ≤

Nk
h (s, a)

H(H + 1)
.

(b) Let T1 =
(
1 + 1

H(H+1)

)
T0 +MSAH , then T̂ ≤ T1 ≤ 2T̂ +MSAH .
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(c) K ≤ T1

H .

(d) For any (s, a, h) ∈ S ×A× [H], NK+1
h (s, a) ≤ T1

H .

Proof. (a) is obvious given Equation (3).

(b) According to (a) and the definition of T0 in Algorithm 2, we have:

T̂ =
∑
s,a,h

NK+1
h (s, a) ≤

∑
s,a,h

NK
h (s, a) +

∑
s,a,h

nK
h (s, a)

≤ T0 +
∑
s,a,h

(
1

H(H + 1)
NK

h (s, a) +M

)
= T1.

The right side is obvious by noting that T0 < T̂ given the Algorithm 1.

(c) It is proved by K ≤ T̂
H ≤

T1

H .

(d) It is because NK+1
h (s, a) ≤

∑
s,a N

K+1
h (s, a) = T̂

H ≤
T1

H .

In the following Lemma F.2, we will present some properties of the weight ηti .

Lemma F.2. The following properties hold for all t ∈ N+:

(a) For 1
2 ≤ α ≤ 1, 1/tα ≤

∑t
i=1 η

t
i/i

α ≤ 2/tα.

(b) maxi∈[t] η
t
i ≤ 2H/t.

(c)
∑∞

t=i η
t
i = 1 + 1/H.

(d) For any t ∈ N+ and i ∈ [t− 1], ηti+1/η
t
i = 1 +H/i > 1.

(e) For any t ∈ N+ and any (s, a, h) ∈ S×A×[H], if t < i, ki(s, a, h) = k and Nk
h (s, a) ≥ i0,

we have that ηN
k
h

t /ηit ≤ exp(1/H).

Proof. Here (a) is proved in [50, Lemma 1]. (b), (c) and (d) are directly from [112, Lemma B.2], so
here we need to prove property (d). Note that

η
Nk

h
t

ηit
=

i∏
q=Nk

h+1

(1− ηq)
−1

(I)

≤
(
1− ηNk

h+1

)−(i−Nk
h ) (II)

≤
(
1− ηNk

h+1

)− Nk
h

H(H+1) ≤ exp(1/H).

Here (I) is because ηq is monotonically decreasing. (II) is because i − Nk
h (s, a) ≤ nk

h(s, a) ≤
Nk

h (s,a)
H(H+1) for Nk

h (s, a) ≥ i0 by (a) of Lemma F.1. The last inequality uses the definition of ηNk
h+1.

Next, we define the new weights η̃ti(s, a, h) for any n1 < i ≤ n2 ≤ t ∈ N+ and any (s, a, h) ∈
S ×A× [H], where n1 = Nki

h (s, a) and n2 = Nki+1
h (s, a):

η̃ti(s, a, h) = ηtiI[n1 < i0] +
1− ηc(n1 + 1, n2)

n2 − n1
ηc(n2 + 1, t)I[n1 ≥ i0]. (19)

We will use the simplified notation η̃ti when there is no ambiguity. In Lemma F.3, we present some
key properties of the new weights η̃ti and their relationship with the original weights ηti .

Lemma F.3. The following relationships hold for any (s, a, h, k) ∈ S × A × [H] × [K] with
t = Nk

h (s, a).

(a) For any i1, i2 ∈ [t], if ki1(s, a, h) = ki2(s, a, h) and N
ki1 (s,a,h)
h (s, a) ≥ i0, we have that

η̃ti1(s, a, h) = η̃ti2(s, a, h).
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(b) For any k′ < k and k′ ∈ [k], we have that

Nk′+1
h∑

i′=Nk′
h +1

η̃ti′(s, a, h) =

Nk′+1
h∑

i′=Nk′
h +1

ηti′ ,

which indicates that
∑t

i=1 η̃
t
i = I[t > 0].

(c) For any i ∈ [t], we have that
η̃ti/η

t
i ≤ exp(1/H).

(d) For t1 = Nk+1
h (s, a), √√√√ t1∑

i=t+1

(η̃t1i − ηt1i )2 ≲
t1∑

i=t+1

ηt1i /
√
i.

Proof. Here, (a) and (b) are directly from [112, Lemma B.3] and (d) is from [112, Equation
(19)], so we only prove (c) here. (d) of [112, Lemma B.3] proves that η̃ti ≤ exp(1/H)ηti when

N
ki(s,a,h)
h (s, a) ≥ i0. Additionally, by the definition of η̃ti (see Equation (19)), we have η̃ti = ηti

when N
ki(s,a,h)
h (s, a) < i0. Combining both cases, the proof is complete.

Next, we develop an immediate corollary of Freedman’s inequality.
Lemma F.4. Let ι = log( 2SAT1

δ ) for any δ ∈ (0, 1). For any (s, a, h, k) ∈ S × A × [H] × [K],
let {W ki

h+1 ∈ RS | 1 ≤ i ≤ Nk
h (s, a)} and {ui

h(s, a,N
k
h (s, a)) ∈ R | 1 ≤ i ≤ Nk

h (s, a)} be
collections of vectors and scalars, which obey the following properties:

• W ki

h+1 is fully determined by the samples collected up to h−th step of ji−th episode of agent
mi in round ki, where the samples is ordered based on the “round first, episode second,
step third, agent fourth” rule (time order).

• ∥W ki

h+1∥∞ ≤ Cw;

• ui
h(s, a,N

k
h ) is fully determined by the episodes collected up to the h−th step of ji−th

episode of agent mi in round ki, and a positive integer Nk
h ∈ [T1/H]. The samples is

ordered based on the “round first, episode second, step third, agent fourth” rule.

• 0 ≤ ui
h(s, a,N

k
h ) ≤ Cu(N

k
h ).

• 0 ≤
∑Nk

h (s,a)
i=1 ui

h(s, a,N
k
h ) ≤ 2.

With probability at least 1 − δ, the following inequality hold simultaneously for all (s, a, h, k) ∈
S ×A× [H]× [K].∣∣∣∣∣∣

Nk
h∑

i=1

ui
h(s, a,N

k
h )

(
1
sk

i,ji,mi

h+1

− Ps,a,h

)
W ki

h+1

∣∣∣∣∣∣
≤ 5

√√√√Cu(Nk
h )ι

Nk
h∑

i=1

ui
h(s, a,N

k
h )Vs,a,h(W ki

h+1) + 8

(√
Cu(Nk

h )C
2
w

Nk
h

+ Cu(N
k
h )Cw

)
ι.

Proof. For any Nk
h = N ∈ [T1/H], it holds that

Nk
h∑

i=1

ui
h(s, a,N

k
h )

(
1
sk

i,ji,mi

h+1

− Ps,a,h

)
W ki

h+1 =

N∑
i=1

ui
h(s, a,N)

(
1
sk

i,ji,mi

h+1

− Ps,a,h

)
W ki

h+1

=
∑

(k′,j′,h,m′)≤(kN ,jN ,h,mN )

Xk′,j′,m′

h ,
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where

Xk′,j′,m′

h = uik
′,j′,m′

h (s, a,N)
(
1
sk

′,j′,m′
h+1

− Ps,a,h

)
W k′

h+1(s, a)I
[
(sk

′,j′,m′

h , ak
′,j′,m′

h ) = (s, a)
]
.

Here, (k′, j′, h,m′) ≤ (kN , jN , h,mN ) means the sample at (k′, j′, h,m′) is collected before the
sample collected at (kN , jN , h,mN ) with the order “round first, episode second, step third, agent
fourth”. ik

′,j′,m′
is the number of visits to (s, a) at step h before the sample (k′, j′, h,m′). We order

Xk′,j′,m′

h to be {Y1, Y2, ..., Yn}. Then given (s, a, h, k,N) ∈ S ×A× [H]× [T1/H]× [T1/H], we
have Er−1[Yr] = 0. It also holds that:

|Yr| ≤ ∥ui
h+1∥∞ · 2∥W ki

h+1∥∞ ≤ 2CwCu(N),

and
N∑
r=1

Er−1Y
2
r =

N∑
i=1

(ui
h(s, a,N))2Vs,a,h(W

ki

h+1) ≤ 2Cu(N)C2
w.

Using Theorem E.2, with R = 2Cu(N)Cw, m = log2(N), σ2 = 2Cu(N)C2
w, we have, with

probability at least 1− δ/SAT 2
1 :∣∣∣∣∣

N∑
i=1

ui
h(s, a,N)

(
1
sk

i,ji,mi

h+1

− Ps,a,h

)
W ki

h+1

∣∣∣∣∣
≤

√
24max

{
(ui

h(s, a,N))2Vs,a,h(W ki

h+1),
2Cu(N)C2

w

N

}
ι+ 8Cu(N)Cwι

≤ 5

√√√√Cu(N)ι

N∑
i=1

ui
h(s, a,N)Vs,a,h(W ki

h+1) + 8

(√
Cu(N)C2

w

N
+ Cu(N)Cw

)
ι.

Consider all combinations of (s, a, h, k,N) ∈ S ×A× [H]× [T1

H ]× [T1

H ], we finish the proof.

Using Lemma F.4, we derive an upper bound for the summation of non-martingale differences
weighted by η̃ti . The results are presented in the following Lemma F.5.

Lemma F.5. For any (s, a, h, k) ∈ S × A× [H]× [K], let {W ki

h+1 ∈ RS | 1 ≤ i ≤ Nk
h (s, a)} be

collections of vectors, which obey the following properties:

• W ki

h+1 is fully determined by the samples collected up to h−th step of ji−th episode of agent
mi in round ki, where the samples is ordered based on the “round first, episode second,
step third, agent fourth” rule.

• ∥W ki

h+1∥∞ ≤ Cw.

Then with probability at least 1− δ, the following inequality holds:∣∣∣∣∣∣
Nk

h∑
i=1

η̃
Nk

h
i

(
1
sk

i,ji,mi

h+1

− Ps,a,h

)
W ki

h+1

∣∣∣∣∣∣ ≲
√√√√Hι

Nk
h

Nk
h∑

i=1

η
Nk

h
i Vs,a,h(W ki

h+1) +
HCwι

Nk
h

=

√√√√Hι

Nk
h

Nk
h∑

i=1

η̃
Nk

h
i Vs,a,h(W ki

h+1) +
HCwι

Nk
h

.

Proof.

Nk
h∑

i=1

η̃
Nk

h
i

(
1
sk

i,ji,mi

h+1

− Ps,a,h

)
W ki

h+1 =

Nk
h∑

i=1

[
η
Nk

h
i +

(
η̃
Nk

h
i − η

Nk
h

i

)](
1
sk

i,ji,mi

h+1

− Ps,a,h

)
W ki

h+1.
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We know maxi∈[Nk
h ] η

Nk
h

i ≤ 2H/Nk
h and

∑Nk
h

i=1 η
Nk

h
i ≤ 1 from (b) in Lemma F.2. Using Lemma F.4

with Cu(N
k
h ) = 2H/Nk

h , with probability at least 1− δ/2, it holds that:∣∣∣∣∣∣
Nk

h∑
i=1

η
Nk

h
i

(
1
sk

i,ji,mi

h+1

− Ps,a,h

)
W ki

h+1

∣∣∣∣∣∣ ≲
√√√√Hι

Nk
h

Nk
h∑

i=1

η
Nk

h
i Vs,a,h(W ki

h+1) +
HCwι

Nk
h

. (20)

For the second term, let {k1 < k2 < ... < kt ≤ K} be the collection of round indices that
nki

h (s, a) > 0 for any i ∈ [t]. Then we have:

Nk
h∑

i=1

(
η̃
Nk

h
i − η

Nk
h

i

)(
1
sk

i,ji,mi

h+1

− Ps,a,h

)
W ki

h+1

=

t∑
n=1

ηc(Nkn+1
h + 1, Nk

h )

Nkn+1
h∑

i=Nkn
h +1

(
η̃
Nkn+1

h
i − η

Nkn+1
h

i

)(
1
skn,ji,mi

h+1

− Ps,a,h

)
W kn

h+1. (21)

For Nkn+1
h < i0, since η̃

Nkn+1
h

i = η
Nkn+1

h
i ,

Nkn+1
h∑

i=Nkn
h +1

(
η̃
Nkn+1

h
i − η

Nkn+1
h

i

)(
1
skn,ji,mi

h+1

− Ps,a,h

)
W kn

h+1 = 0.

For Nkn+1
h ≥ i0 and i ∈ [Nkn

h + 1, Nkn+1
h ], by (d) of Lemma F.2 and (a) and (b) in Lemma F.3, we

know

η̃
Nkn+1

h
i , η

Nkn+1
h

i ∈
[
η
Nkn+1

h

Nkn
h +1

, η
Nkn+1

h

Nkn+1
h

]
and thus

∣∣∣∣η̃Nkn+1
h

i − η
Nkn+1

h
i

∣∣∣∣ ≤ η
Nkn+1

h

Nkn+1
h

− η
Nkn+1

h

Nkn
h +1

.

Then for given Nkn+1
h = N2 ∈ [i0, T1/H], Nkn

h = N1 ∈ [0, N2], and (s, a, h, kn, n) ∈ S × A ×
[H]× [T1/H]× [T1/H], using Theorem E.2 with R = 2Cw(η

N2

N2
−ηN2

N1+1) ≤
2HCw

N2
, m = log2(N2),

σ2 =
4HC2

w

N2
, with probability at least 1− δ/2SAT 4

1 , it holds that:∣∣∣∣∣∣
Nkn+1

h∑
i=Nkn

h +1

(
η̃
Nkn+1

h
i − η

Nkn+1
h

i

)(
1
skn,ji,mi

h+1

− Ps,a,h

)
W kn

h+1

∣∣∣∣∣∣
≲

√√√√ N2∑
i=N1+1

(
η̃N2
i − ηN2

i

)2
Vs,a,h(W

kn

h+1)ι+
(
ηN2

N2
− ηN2

N1+1

)
Cwι

Consider all the possible combinations of Nkn

h = N1 ∈ [T1/H], Nkn+1
h = N2 ∈ [T1/H] and

(s, a, h, kn) ∈ S ×A× [H]× [T1/H], with probability at least 1− δ/2, it simultaneously hold for
all (s, a, h, kn, n) ∈ S ×A× [H]× [T1/H]× [T1/H] that∣∣∣∣∣∣

Nkn+1
h∑

i=Nkn
h +1

(
η̃
Nkn+1

h
i − η

Nkn+1
h

i

)(
1
skn,ji,mi

h+1

− Ps,a,h

)
W kn

h+1

∣∣∣∣∣∣
≲

√√√√√ Nkn+1
h∑

i=Nkn
h +1

(
η̃
Nkn+1

h
i − η

Nkn+1
h

i

)2

Vs,a,h(W
kn

h+1)ι+

(
η
Nkn+1

h

Nkn+1
h

− η
Nkn+1

h

Nkn
h +1

)
Cwι

≲

Nkn+1
h∑

i=Nkn
h +1

η
Nkn+1

h
i√

i

√
Vs,a,h(W

kn

h+1)ι+
(
η
Nkn+1

h

Nkn+1
h

− η
Nkn+1

h

Nkn
h +1

)
Cwι.
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Here, the last inequality is by (d) of Lemma F.3. Applying this inequality to Equation (21), then∣∣∣∣∣∣
Nk

h∑
i=1

(
η̃
Nk

h
i − η

Nk
h

i

)(
1
sk

i,ji,mi

h+1

− Ps,a,h

)
W ki

h+1

∣∣∣∣∣∣
≲

t∑
n=1

ηc(Nkn+1
h + 1, Nk

h )

 Nkn+1
h∑

i=Nkn
h +1

η
Nkn+1

h
i√

i
·
√
Vs,a,h(W

kn

h+1)ι+
(
η
Nkn+1

h

Nkn+1
h

− η
Nkn+1

h

Nkn
h +1

)
Cwι


=

t∑
n=1

Nkn+1
h∑

i=Nkn
h +1

η
Nk

h
i√
i
·
√
Vs,a,h(W

kn

h+1)ι+

t∑
n=2

(
η
Nk

h

N
kn−1+1

h

− η
Nk

h

Nkn
h +1

)
Cwι

+

(
η
Nk

h

N
kt+1
h

− η
Nk

h

N1
h+1

)
Cwι

≤

√√√√√
Nk

h∑
i=1

η
Nk

h
i

i

Nk
h∑

i=1

η
Nk

h
i Vs,a,h(W ki

h+1)

 ι+ η
Nk

h

Nk
h

Cwι

≲

√√√√√ ι

Nk
h

Nk
h∑

i=1

η
Nk

h
i Vs,a,h(W ki

h+1)

+
HCwι

Nk
h

. (22)

In the second last inequality, we use the Cauchy-Schwarz inequality and the monotonicity of ηN
k
h

i .
We also use Nkt+1

h = Nk
h because there is no visit to (s, a, h) from round kt +1 to round k− 1. The

last inequality is by (a) and (b) in Lemma F.2. Combining Equation (20) and Equation (22), we prove
the first conclusion. Moreover, note that:

Nk
h∑

i=1

η
Nk

h
i Vs,a,h(W

ki

h+1) =

t∑
n=1

 Nkn+1
h∑

i=Nkn
h +1

η
Nk

h
i

Vs,a,h(W
kn

h+1)

=

t∑
n=1

 Nkn+1
h∑

i=Nkn
h +1

η̃
Nk

h
i

Vs,a,h(W
kn

h+1) =

Nk
h∑

i=1

η̃
Nk

h
i Vs,a,h(W

ki

h+1).

The second equality is because of (b) in Lemma F.3. Then we finish the proof.

Lemma F.6. For any non-negative weight sequence {ωk,j,m
h |k ∈ [K],m ∈ [M ], j ∈ [nm,k]} and

α ∈ [0, 1), it holds for any h ∈ [H] that:

∑
k,j,m,Nk

h>0

ωk,j,m
h

Nk
h (s

k,j,m
h , ak,j,mh )α

≤
∑

k,j,m,Nk
h>0

ωk,j,m
h

I
[
0 < Nk

h (s
k,j,m
h , ak,j,mh ) < M

]
Nk

h (s
k,j,m
h , ak,j,mh )α

+
2α

1− α
(SA∥ω∥∞,h)

α∥ω∥1−α
1,h

≤ 2MSA∥ω∥∞,h +
2α

1− α
(SA∥ω∥∞,h)

α∥ω∥1−α
1,h .

Here, ∥ω∥∞,h = max
k,j,m
{ωk,j,m

h } and ∥ω∥1,h =
∑

k,j,m ωk,j,m
h .

For α = 1, for any h ∈ [H], we have the following conclusion:∑
k,j,m,Nk

h>0

1

Nk
h (s

k,j,m
h , ak,j,mh )

≤ 2MSA+ 2SAι.
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Proof. ∑
k,j,m,Nk

h>0

ωk,j,m
h

Nk
h (s

k,j,m
h , ak,j,mh )α

=
∑
s,a

∑
k,j,m,Nk

h>0

ωk,j,m
h

(Nk
h (s, a))

α
I[(sk,j,mh , ak,j,mh ) = (s, a)].

We decompose the summation into two terms

∑
s,a

∑
k,j,m

ωk,j,m
h

(Nk
h (s, a))

α
I[(sk,j,mh , ak,j,mh ) = (s, a)]

(
I
[
0 < Nk

h < M
]
+ I
[
Nk

h ≥M
])

.

Let k0(s, a) = max{k | 1 ≤ k ≤ K,Nk
h (s, a) < M}. Then for the first term, it holds that

∑
k,j,m

ωk,j,m
h

(Nk
h (s, a))

α
I[(sk,j,mh , ak,j,mh ) = (s, a)]I

[
0 < Nk

h (s, a) < M
]

≤ ∥ω∥∞,h

∑
k,j,m

I[(sk,j,mh , ak,j,mh ) = (s, a)]I
[
0 < Nk

h (s, a) < M
]

= ∥ω∥∞,h

k0∑
k=1

∑
j,m

I[(sk,j,mh , ak,j,mh ) = (s, a)]

= ∥ω∥∞,hN
k0+1
h (s, a) ≤ 2M∥ω∥∞,h, (23)

and thus∑
s,a

∑
k,j,m

ωk,j,m
h

(Nk
h (s, a))

α
I[(sk,j,mh , ak,j,mh ) = (s, a)]I

[
0 < Nk

h < M
]
≤ 2MSA∥ω∥∞,h. (24)

For the second term, let

ch(s, a) =
∑
k,j,m

ωk,j,m
h I[(sk,j,mh , ak,j,mh ) = (s, a)]I

[
Nk

h (s, a) ≥M
]

=

K∑
k=k0+1

∑
j,m

ωk,j,m
h I[(sk,j,mh , ak,j,mh ) = (s, a)].

Then we have
∑

s,a ch(s, a) ≤
∑

k,j,m ωk,j,m
h = ∥ω∥1,h. Given the term

∑
k,j,m

ωk,j,m
h

(Nk
h (s, a))

α
I[(sk,j,mh , ak,j,mh ) = (s, a)],

when the weights ωk,j,m
h concentrates on smallest round indices with largest values of 1

(Nk
h (s,a))α

, we
can obtain the largest value. Let k0(s, a) < k1 < k2 < ... < kt ≤ K be all round indices that satisfy
nki

h (s, a) > 0. Then we have:

ch(s, a) ≤ ∥ω∥∞,h

K∑
k=k0+1

∑
j,m

I[(sk,j,mh , ak,j,mh ) = (s, a)] = ∥ω∥∞,h

t∑
i=1

nki

h (s, a).

Let

q = max

{
q | 0 ≤ q ≤ t, ∥ω∥∞,h

q∑
i=1

nki

h (s, a) ≤ ch(s, a)

}
,

and

d = ch(s, a)− ∥ω∥∞,h

q∑
i=1

nki

h (s, a).
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Then for q < t, we have the following inequality:∑
k,j,m

ωk,j,m
h

(Nk
h (s, a))

α
I[(sk,j,mh , ak,j,mh ) = (s, a)]I

[
Nk

h (s, a) ≥M
]

≤
q∑

i=1

∥ω∥∞,h
nki

h (s, a)

(Nki

h (s, a))α
+

d

(N
kq+1

h (s, a))α
. (25)

Note that for any 0 < y < x and α ∈ [0, 1), we have:

x− y

xα
≤ 1

1− α
(x1−α − y1−α). (26)

Then, for any i ∈ [t], let x = Nki

h (s, a) and y = Nki+1
h (s, a), it holds that:

nki

h (s, a)

(Nki

h (s, a))α
≤ 2α

nki

h (s, a)

(Nki+1
h (s, a))α

≤ 2α

(
(Nki+1

h (s, a))1−α − (Nki

h (s, a))1−α

1− α

)
. (27)

Here the first inequality is because Nki+1
h (s, a) = Nki

h (s, a) + nki

h (s, a) ≤ 2Nki

h (s, a) by (a) of
Lemma F.1. Summing up Equation (27) from 1 to q, we know

q∑
i=1

nki

h (s, a)

(Nki

h (s, a))α
≤ 2α

q∑
i=1

(Nki+1
h (s, a))1−α − (Nki

h (s, a))1−α

1− α

≤ 2α
q∑

i=1

(N
ki+1

h (s, a))1−α − (Nki

h (s, a))1−α

1− α

= 2α

(
(N

kq+1

h (s, a))1−α

1− α
−

(Nk1

h (s, a))1−α

1− α

)

≤ 2α

(∑q
i=1 n

ki

h (s, a)
)1−α

1− α
. (28)

The second inequality is because ki + 1 ≤ ki+1 and thus Nki+1
h (s, a) ≤ N

ki+1

h (s, a). The last
inequality is because for any x > 1 and 0 ≤ α < 1, we have the following inequality

x1−α ≤ (x− 1)1−α + 1,

and we can let x = N
kq+1

h (s, a)/Nk1

h (s, a). Applying Equation (28) to Equation (25), for q < t, we
have ∑

k,j,m

ωk,j,m
h

(Nk
h (s, a))

α
I[(sk,j,mh , ak,j,mh ) = (s, a)]I

[
Nk

h (s, a) ≥M
]

≤ 2α∥ω∥∞,h

(∑q
i=1 n

ki

h (s, a)
)1−α

1− α
+

d

(N
kq+1

h (s, a))α

≤ (2∥ω∥∞,h)
α


(
∥ω∥∞,h

∑q
i=1 n

ki

h (s, a)
)1−α

1− α
+

d

(N
kq+1+1
h (s, a)∥ω∥∞,h)α


≤ (2∥ω∥∞,h)

α


(
∥ω∥∞,h

∑q
i=1 n

ki

h (s, a)
)1−α

1− α
+

d

(ch(s, a))α


≤ (2∥ω∥∞,h)

α (ch(s, a))
1−α

1− α
. (29)
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Here the second inequality is because N
kq+1+1
h (s, a) ≤ 2N

kq+1

h (s, a) for q < t and N
kq+1

h (s, a) ≥
M . the second last inequality is because ch(s, a) ≤ N

kq+1+1
h (s, a)∥ω∥∞,h by the definition of q.

The last inequality is by Equation (26) with x = ch(s, a) and y = ∥ω∥∞,h

∑q
i=1 n

ki

h (s, a).

We can also prove the Equation (29) directly by Equation (28) for q = t with d = 0. Therefore, with
Equation (29), we can conclude that∑

s,a

∑
k,j,m

ωk,j,m
h

(Nk
h (s, a))

α
I[(sk,j,mh , ak,j,mh ) = (s, a)]I

[
Nk

h (s, a) ≥M
]

≤
2α∥ω∥α∞,h

1− α

∑
s,a

(ch(s, a))
1−α ≤ 2α

1− α
(SA)α∥ω∥α∞,h∥ω∥1−α

1,h . (30)

The last inequality is by Hölder’s inequality, as
∑

s,a ch(s, a)
1−α ≤ (SA)α∥ω∥1−α

1,h . Combining the
results of Equation (23) and Equation (30), we prove the following conclusion:∑

k,j,m,Nk
h>0

ωk,j,m
h

Nk
h (s

k,j,m
h , ak,j,mh )α

≤ 2MSA∥ω∥∞,h +
2α

1− α
(SA)α∥ω∥α∞,h∥ω∥1−α

1,h .

For α = 1, it holds that:∑
k,j,m

1

Nk
h (s

k,j,m
h , ak,j,mh )

=
∑
s,a

K∑
k=1

nk
h(s, a)

Nk
h (s, a)

=
∑
s,a

k0∑
k=1

nk
h(s, a)

Nk
h (s, a)

+
∑
s,a

K∑
k=k0+1

nk
h(s, a)

Nk
h (s, a)

.

Let ωk,j,m
h = 1. By Equation (23), we know

k0∑
k=1

nk
h(s, a)

Nk
h (s, a)

≤ 2M,
∑
s,a

k0∑
k=1

nk
h(s, a)

Nk
h (s, a)

≤ 2MSA. (31)

We also have
K∑

k=k0+1

nk
h(s, a)

Nk
h (s, a)

≤ 2

K∑
k=k0+1

nk
h(s, a)

Nk+1
h (s, a)

≤ 2

K∑
k=k0+1

(
log(Nk+1

h (s, a))− log(Nk
h (s, a))

)
≤ 2 log(T1). (32)

Here the first inequality is because for k > k0(s, a), Nk
h (s, a) ≥ M , we have Nk+1

h (s, a) ≤
2Nk

h (s, a). The second inequality is because for 0 < y < x,

x− y

x
≤ log(x)− log(y).

The last inequality is because NK+1
h (s, a) ≤ T1. To summarize, combining the results of Equa-

tion (31) and Equation (32), we then prove that∑
k,j,m

1

Nk
h (s

k,j,m
h , ak,j,mh )

≤MSA+ 2SA log(T1) ≤MSA+ 2SAι.

G Probability Events

In this section, we provide some probability events for FedQ-EarlySettled-LowCost.

Lemma G.1. Define V̂ R,k
h (s) := max

{
V ⋆
h (s),min{V ⋆

h (s) + β, V R,k
h (s)}

}
for any (s, h, k) ∈

S × [H]× [K]. Using ∀(s, a, h, k) as the simplified notation for ∀(s, a, h, k) ∈ S ×A× [H]× [K].
Then we have the following conclusions.
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(a) ([112, Lemma C.1]) With probability at least 1− δ, the following event holds:

E1 =
{
QU,k

h (s, a) ≥ Q⋆
h(s, a),∀(s, a, h, k)

}
.

(b) With probability at least 1− δ, the following event holds:

E2 =

{∣∣∣∣∣∣
Nk

h∑
n=1

η̃
Nk

h
n

(
1
sk

n,jn,mn

h+1
− Ps,a,h

)(
V kn

h+1 − V R,kn

h+1

)∣∣∣∣∣∣
≲

√
Hι

Nk
h

(
σA,k
h −

(
µA,k
h

)2)
+

H2ι

Nk
h

, ∀(s, a, h, k)

}
.

(c) With probability at least 1− δ, the following event holds:

E3 =

{∣∣∣∣∣∣
Nk

h∑
n=1

η̃
Nk

h
n

Nkn+1
h

Nkn+1
h∑
i=1

(
1
sk

i,ji,mi

h+1

− Ps,a,h

)
V R,ki

h+1

∣∣∣∣∣∣
≲

√
ι

Nk
h

(
σR,k
h −

(
µR,k
h

)2)
+

H2ι

Nk
h

, ∀(s, a, h, k)

}
.

(d) ([112, Lemma C.3]) With probability at least 1− δ, the following event holds:

E4 =


Nk

h∑
n=1

η̃
Nk

h
n

(
1
sk

n,jn,mn

h+1
− Ps,a,h

)
V ∗
h+1 ≲

√
H3ι

Nk
h

, ∀(s, a, h, k)

 .

(e) With probability at least 1− δ, the following event holds:

E5 =


H∑

h=1

(e
3
H )h−1

∑
k,j,m

(
Psk,j,m

h ,ak,j,m
h ,h − 1sk,j,m

h+1

)
(V ∗

h+1 − V πk

h+1) ≤ 27
√
2H2T1ι

 .

(f) With probability at least 1− δ, the following event holds:

E6 =


∑Nk

h
n=1

(
1
sk

n,jn,mn

h+1
− Ps,a,h

)
V ∗
h+1

Nk
h (s, a)

≤ H

√
2ι

Nk
h (s, a)

, ∀(s, a, h, k)

 .

(g) With probability at least 1− δ, the following event holds:

E7 =


∑Nk

h
n=1

(
1
sk

n,jn,mn

h+1
− Ps,a,h

) (
V ∗
h+1

)2
Nk

h (s, a)
≤ H2

√
2ι

Nk
h (s, a)

, ∀(s, a, h, k)

 .

(h) ([112, Lemma E.6])With probability at least 1− δ, the following event holds:

E8 =


H∑

h=1

∑
k,j,m

Vsk,j,m
h ,ak,j,m

h ,h(V
πk

h+1) ≲ HT1 +H3ι

 .

(i) With probability at least 1− δ, the following event holds:

E9 =


H∑

h=1

∑
k,j,m

(
Psk,j,m

h ,ak,j,m
h ,h − 1sk,j,m

h+1

)(
V ∗
h+1 − V πk

h+1

)
≤
√
2H2T1ι

 .
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(j) With probability at least 1− δ, the following event holds:

E10 =


H∑

h=1

∑
k,j,m

(
V U,k
h+1 − V πk

h+1

)
(sk,j,mh+1 ) ≤ H3

√
SAT1ι+MH5SA

√
ι

 .

(k) With probability at least 1− δ, the following event holds:

E11 =

{ ∑
h,k,j,m

Psk,j,m
h ,ak,j,m

h ,h

{
(V k

h+1 − V L,k
h+1)(s

k,j,m
h+1 )I[(V k

h+1 − V L,k
h+1)(s

k,j,m
h+1 ) > β]

}

≤ 3

H∑
h=1

∑
k,j,m

(
V k
h+1 − V L,k

h+1

)
(sk,j,mh+1 )I

[(
V k
h+1 − V L,k

h+1

)
(sk,j,mh+1 ) > β

]
+Hι

}
.

(l) With probability at least 1− δ, the following event holds:

E12 =

{∣∣∣∣∣∣ 1

Nkn+1
h

Nkn+1
h∑
i=1

(
1
sk

i,ji,mi

h+1

− Ps,a,h

)(
V̂ R,ki

h+1 − V ∗
h+1

)∣∣∣∣∣∣
≤ β

√
2ι

Nkn+1
h

, ∀(s, a, h, k, n)

}
.

(m) With probability at least 1− δ, the following event holds:

E13 =

{∣∣∣∣∣∣ 1

Nkn+1
h

Nkn+1
h∑
i=1

(
1
sk

i,ji,mi

h+1

− Ps,a,h

)
V ∗
h+1

∣∣∣∣∣∣
≤ 4

√
Vs,a,h(V ∗

h+1)ι

Nkn+1
h

+
7Hι

Nkn+1
h

, ∀(s, a, h, k, n)

}
.

(n) With probability at least 1− δ, the following event holds:

E14 =

{∣∣∣∣∣∣
Nk

h∑
n=1

η̃
Nk

h
n

(
1
sk

n,jn,mn

h+1
− Psk,j,m

h ,ak,j,m
h ,h

)(
V ∗
h+1 − V̂ R,kn

h+1

)∣∣∣∣∣∣
≲ β

√
Hι

Nk
h

+
βHι

Nk
h

, ∀(s, a, h, k)

}
.

Proof. (b) Using the Lemma F.5, with probability at least 1− δ/2, we know that for ∀(s, a, h, k):∣∣∣∣∣∣
Nk

h∑
n=1

η̃
Nk

h
n

(
1
sk

n,jn,mn

h+1
− Ps,a,h

)(
V kn

h+1 − V R,kn

h+1

)∣∣∣∣∣∣
≲

√√√√Hι

Nk
h

Nk
h∑

n=1

η̃
Nk

h
n Vs,a,h

(
V kn

h+1 − V R,kn

h+1

)
+

H2ι

Nk
h

. (33)

Next we will bound the difference

I1 =

Nk
h∑

n=1

η̃
Nk

h
n Vs,a,h

(
V kn

h+1 − V R,kn

h+1

)
−
(
σA,k
h − (µA,k

h )2
)

△
= XA −

(
σA,k
h − (µA,k

h )2
)
,

where

XA =

Nk
h∑

n=1

η̃
Nk

h
n Vs,a,h

(
V kn

h+1 − V R,kn

h+1

)
.
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Based on the update rule of Equation (8) and Equation (12), by recursion, we have:

µA,k
h =

Nk
h∑

n=1

η̃
Nk

h
n

(
V kn

h+1 − V R,kn

h+1

)(
sk

n,jn,mn

h+1

)
, σA,k

h =

Nk
h∑

n=1

η̃
Nk

h
n

(
V kn

h+1 − V R,kn

h+1

)2 (
sk

n,jn,mn

h+1

)
.

(34)
According to the definition of Vs,a,h, we also have

Vs,a,h

(
V kn

h+1 − V R,kn

h+1

)
= Ps,a,h

(
V kn

h+1 − V R,kn

h+1

)2
−
(
Ps,a,h

(
V kn

h+1 − V R,kn

h+1

))2
. (35)

Combining the results of Equation (34) and Equation (35), we can decompose the difference I1:

I1 =

Nk
h∑

n=1

η̃
Nk

h
n

(
Ps,a,h − 1sk

n,jn,mn

h+1

)(
V kn

h+1 − V R,kn

h+1

)2

+


Nk

h∑
n=1

η̃
Nk

h
n

(
V kn

h+1 − V R,kn

h+1

) (
sk

n,jn,mn

h+1

)2

−
Nk

h∑
n=1

η̃
Nk

h
n

(
Ps,a,h(V

kn

h+1 − V R,kn

h+1 )
)2 . (36)

For the first term of Equation (36), with Lemma F.5, with probability at least 1− δ/4, it holds for
∀(s, a, h, k) that: ∣∣∣∣∣∣

Nk
h∑

n=1

η̃
Nk

h
n

(
Ps,a,h − 1sk

n,jn,mn

h+1

)(
V kn

h+1 − V R,kn

h+1

)2∣∣∣∣∣∣
≲

√√√√Hι

Nk
h

Nk
h∑

n=1

η̃
Nk

h
n Vs,a,h

(
V kn

h+1 − V R,kn

h+1

)2
+

H3ι

Nk
h

≲

√√√√H3ι

Nk
h

Nk
h∑

n=1

η̃
Nk

h
n Vs,a,h

(
V kn

h+1 − V R,kn

h+1

)
+

H3ι

Nk
h

=

√
H3ι

Nk
h

XA +
H3ι

Nk
h

. (37)

The last inequality is by Vs,a,h(X
2) ≤ 4C2Vs,a,h(X) for |X| ≤ C. For the second term of

Equation (36), since V kn

h+1 ≤ V R,kn

h+1 , by Cauchy-Schwarz inequality, we reachNk
h∑

n=1

η̃
Nk

h
n

(
V kn

h+1 − V R,kn

h+1

)(
sk

n,jn,mn

h+1

)2

−
Nk

h∑
n=1

η̃
Nk

h
n

(
Ps,a,h(V

kn

h+1 − V R,kn

h+1 )
)2

≤

Nk
h∑

n=1

η̃
Nk

h
n

(
V kn

h+1 − V R,kn

h+1

)(
sk

n,jn,mn

h+1

)2

−

Nk
h∑

n=1

η̃
Nk

h
n Ps,a,h

(
V kn

h+1 − V R,kn

h+1

)2

≤ 2H

∣∣∣∣∣∣
Nk

h∑
n=1

η̃
Nk

h
n

(
1
sk

n,jn,mn

h+1
− Ps,a,h

)(
V kn

h+1 − V R,kn

h+1

)∣∣∣∣∣∣
≲

√
H3ι

Nk
h

XA +
H3ι

Nk
h

. (38)

The last inequality holds for ∀(s, a, h, k) with probability at least 1− δ/4 by Lemma F.5. Combining
Equation (37) and Equation (38), back to Equation (36), with probability at least 1− δ/2, we know

I1 = XA −
(
σA,k
h − (µA,k

h )2
)
≲

√
H3ι

Nk
h

XA +
H3ι

Nk
h

.
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Solving the inequality, with probability at least 1− δ/2, we have

XA ≲
(
σA,k
h − (µA,k

h )2
)
+

H3ι

Nk
h

.

Applying this inequality to Equation (33), with probability at least 1− δ, the following relationship
holds for ∀(s, a, h, k):

Nk
h∑

n=1

η̃
Nk

h
n

(
1
sk

n,jn,mn

h+1
− Ps,a,h

)(
V kn

h+1 − V R,kn

h+1

)
≲

√
Hι

Nk
h

(
σA,k
h −

(
µA,k
h

)2)
+

H2ι

Nk
h

.

(c) To begin, note that

Nk
h∑

n=1

η̃
Nk

h
n

Nkn+1
h

Nkn+1
h∑
i=1

(
1
sk

i,ji,mi

h+1

− Ps,a,h

)
V R,ki

h+1

=

k−1∑
k′=1

 Nk′+1
h∑

n=Nk′
h +1

η̃
Nk

h
i

 1

Nk′+1
h

Nk′+1
h∑
i=1

(
1
sk

i,ji,mi

h+1

− Ps,a,h

)
V R,ki

h+1

=

k−1∑
k′=1

 Nk′+1
h∑

n=Nk′
h +1

η
Nk

h
i

 1

Nk′+1
h

Nk′+1
h∑
i=1

(
1
sk

i,ji,mi

h+1

− Ps,a,h

)
V R,ki

h+1

=

Nk
h∑

n=1

η
Nk

h
n

Nkn+1
h

Nkn+1
h∑
i=1

(
1
sk

i,ji,mi

h+1

− Ps,a,h

)
V R,ki

h+1 . (39)

For any given (s, a, h) and Nkn+1
h = N ∈ [T1/H], using Lemma F.4 with Cu(N

kn

h ) = 1/Nkn+1
h

and Cw = 2H , with probability at least 1− δ/2SAT1, it holds that:∣∣∣∣∣∣ 1

Nkn+1
h

Nkn+1
h∑
i=1

(
1
sk

i,ji,mi

h+1

− Ps,a,h

)
V R,ki

h+1

∣∣∣∣∣∣ ≲
√√√√√ ι

Nkn+1
h

Nkn+1
h∑
i=1

Vs,a,h(V
R,ki

h+1 )

Nkn+1
h

+
Hι

Nkn+1
h

. (40)

Consider all the possible combinations (s, a, h,N) ∈ S×A×[H]×[T1

H ], we know with probability at
least 1−δ/2, Equation (40) holds simultaneously for any (n, s, a, h, kn) and Nkn+1

h = N ∈ [T1/H].
Therefore, applying this inequality to Equation (39), with probability at least 1− δ/2, we then have:∣∣∣∣∣∣

Nk
h∑

n=1

η̃
Nk

h
n

Nkn+1
h

Nkn+1
h∑
i=1

(
1
sk

i,ji,mi

h+1

− Ps,a,h

)
V R,ki

h+1

∣∣∣∣∣∣
≲

Nk
h∑

n=1

η
Nk

h
n


√√√√√ ι

Nkn+1
h

Nkn+1
h∑
i=1

Vs,a,h(V
R,ki

h+1 )

Nkn+1
h

+
Hι

Nkn+1
h

 . (41)

For the first term of Equation (41), by Cauchy-Schwarz inequality,it holds that:

Nk
h∑

n=1

η
Nk

h
n

√√√√√ ι

Nkn+1
h

Nkn+1
h∑
i=1

Vs,a,h(V
R,ki

h+1 )

Nkn+1
h

≤

√√√√√
Nk

h∑
n=1

η
Nk

h
n ι

Nkn+1
h

Nk
h∑

n=1

η
Nk

h
n

Nkn+1
h∑
i=1

Vs,a,h(V
R,ki

h+1 )

Nkn+1
h

.

(42)

By the definition of kn, we know Nkn+1
h ≥ n and then by (a) of Lemma F.2 with α = 1, we have

Nk
h∑

n=1

η
Nk

h
n ι

Nkn+1
h

≤
Nk

h∑
n=1

η
Nk

h
n ι

n
≲

ι

Nk
h

, (43)
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and
Nk

h∑
n=1

η
Nk

h
n

Nkn+1
h∑
i=1

Vs,a,h(V
R,ki

h+1 )

Nkn+1
h

=

Nk
h∑

i=1

∑
Cn

η
Nk

h
n

Nkn+1
h

Vs,a,h(V
R,ki

h+1 ) ≲
Nk

h∑
i=1

1

Nk
h

Vs,a,h(V
R,ki

h+1 ). (44)

Here, Cn = {n : Nkn+1
h ≥ i, n ≤ Nk

h}. Applying Equation (43) and Equation (44) to Equation (42),
then we can bound the first term of Equation (41):

Nk
h∑

n=1

η
Nk

h
n

√√√√√ ι

Nkn+1
h

Nkn+1
h∑
i=1

Vs,a,h(V
R,ki

h+1 )

Nkn+1
h

≲

√√√√ ι

Nk
h

Nk
h∑

i=1

1

Nk
h

Vs,a,h(V
R,ki

h+1 ).

For the second term of Equation (41), same to Equation (43), we have:
Nk

h∑
n=1

η
Nk

h
n

Hι

Nkn+1
h

≲
Hι

Nk
h

.

Applying these two upper bounds to Equation (41), with probability at least 1− δ/2, we know that∣∣∣∣∣∣
Nk

h∑
n=1

η̃
Nk

h
n

Nkn+1
h

Nkn+1
h∑
i=1

(
1
sk

i,ji,mi

h+1

− Ps,a,h

)
V R,ki

h+1

∣∣∣∣∣∣ ≲
√√√√ ι

Nk
h

Nk
h∑

n=1

1

Nk
h

Vs,a,h(V
R,kn

h+1 ) +
Hι

Nk
h

. (45)

Next we will bound the difference

I2 =

Nk
h∑

n=1

1

Nk
h

Vs,a,h(V
R,kn

h+1 )−
(
σR,k
h − (µR,k

h )2
)

△
= XR −

(
σR,k
h − (µR,k

h )2
)
,

where

XR =

Nk
h∑

n=1

1

Nk
h

Vs,a,h(V
R,kn

h+1 ).

Based on the update rule of Equation (6), by recursion, we have:

µR,k
h =

Nk
h∑

n=1

1

Nk
h

V kn

h+1

(
sk

n,jn,mn

h+1

)
, σR,k

h =

Nk
h∑

n=1

1

Nk
h

(
V kn

h+1

)2 (
sk

n,jn,mn

h+1

)
. (46)

According to the definition of Vs,a,h, we also have

Vs,a,h

(
V kn

h+1

)
= Ps,a,h

(
V kn

h+1

)2
−
(
Ps,a,hV

kn

h+1

)2
. (47)

Combining the results of Equation (46) and Equation (47), we can decompose the difference I2:

I2 =

Nk
h∑

n=1

1

Nk
h

(
Ps,a,h − 1sk

n,jn,mn

h+1

)(
V kn

h+1

)2

+


Nk

h∑
n=1

1

Nk
h

V kn

h+1

(
sk

n,jn,mn

h+1

)2

−
Nk

h∑
n=1

1

Nk
h

(
Ps,a,hV

kn

h+1

)2 . (48)

For the first term of Equation (48), with Lemma F.4, with probability at least 1− δ/4, it holds for
∀(s, a, h, k) that:∣∣∣∣∣∣

Nk
h∑

n=1

1

Nk
h

(
Ps,a,h − 1sk

n,jn,mn

h+1

)(
V kn

h+1

)2∣∣∣∣∣∣ ≲
√√√√ ι

Nk
h

Nk
h∑

n=1

1

Nk
h

Vs,a,h

(
V kn

h+1

)2
+

H2ι

Nk
h

≲

√√√√H2ι

Nk
h

Nk
h∑

n=1

1

Nk
h

Vs,a,h

(
V kn

h+1

)
+

H2ι

Nk
h

=

√
H2ι

Nk
h

XR +
H2ι

Nk
h

. (49)
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The last inequality is by Vs,a,h(X
2) ≤ 4C2Vs,a,h(X) for |X| ≤ C. For the second term of

Equation (48), by Cauchy-Schwarz inquality, we reachNk
h∑

n=1

1

Nk
h

V kn

h+1

(
sk

n,jn,mn

h+1

)2

−
Nk

h∑
n=1

1

Nk
h

(
Ps,a,hV

kn

h+1

)2

≤

Nk
h∑

n=1

1

Nk
h

V kn

h+1

(
sk

n,jn,mn

h+1

)2

−

Nk
h∑

n=1

1

Nk
h

Ps,a,hV
kn

h+1

2

≤ 2H

∣∣∣∣∣∣
Nk

h∑
n=1

1

Nk
h

(
1
sk

n,jn,mn

h+1
− Ps,a,h

)
V kn

h+1

∣∣∣∣∣∣
≲

√
H2ι

Nk
h

XA +
H2ι

Nk
h

. (50)

The last inequality holds for ∀(s, a, h, k) with probability at least 1− δ/4 by Lemma F.4. Combining
Equation (49) and Equation (50), back to Equation (48), with probability at least 1− δ/2, we know

I1 = XR −
(
σR,k
h − (µR,k

h )2
)
≲

√
H2ι

Nk
h

XA +
H2ι

Nk
h

.

Solving the inequality, with probability at least 1− δ/2, we have

XR ≲
(
σR,k
h − (µR,k

h )2
)
+

H2ι

Nk
h

.

Applying this inequality to Equation (45), with probability at least 1− δ, the following relationship
holds for ∀(s, a, h, k):∣∣∣∣∣∣

Nk
h∑

n=1

η̃
Nk

h
n

Nkn+1
h

Nkn+1
h∑
i=1

(
1
sk

i,ji,mi

h+1

− Ps,a,h

)
V R,ki

h+1

∣∣∣∣∣∣ ≲
√

Hι

Nk
h

(
σR,k
h −

(
µR,k
h

)2)
+

H2ι

Nk
h

.

(e) For E5, the sequence{
(e

3
H )h−1

(
Psk,j,m

h ,ak,j,m
h ,h − 1sk,j,m

h+1

)(
V ⋆
h+1 − V πk

h+1

)}
k,j,h,m

can be reordered to a martingale sequence based on the “round first, episode second, step third, agent
fourth” rule. The absolute values of the sequence are bounded by 27H . After appending multiple
0s to the summation such that there are T1 terms, the sequence is still a martingale. According to
Azuma-Hoeffding inequality, for any δ ∈ (0, 1), with probability at least 1− δ, it holds that:

H∑
h=1

(e
3
H )h−1

∑
k,j,m

(
Psk,j,m

h ,ak,j,m
h ,h − 1sk,j,m

h+1

)(
V ∗
h+1 − V πk

h+1

)
≤ 27

√
2H2T1ι.

(f) {(
1
sk

n,jn,mn

h+1
− Ps,a,h

)
V ∗
h+1

}
n∈N+

is a martingale sequence bounded by H . Then according to Azuma-Hoeffding inequality, for any
δ ∈ (0, 1), with probability at least 1− δ/SAT1, it holds for a given Nk

h (s, a) = N ∈ N+ that:

1

N

∣∣∣∣∣
N∑
i=1

(
1
sk

n,jn,mn

h+1
− Ps,a,h

)
V ∗
h+1

∣∣∣∣∣ ≤ H

√
2ι

N
.

For any k ∈ [K], we have Nk
h (s, a) ∈ [T1

H ]. Considering all the possible combinations (s, a, h,N) ∈
S × A × [H] × [T1

H ], with probability at least 1 − δ, it holds simultaneously for all (s, a, h, k) ∈
S ×A× [H]× [K] that:

1

Nk
h

∣∣∣∣∣∣
Nk

h∑
i=1

(
1
sk

n,jn,mn

h+1
− Ps,a,h

)
V ∗
h+1

∣∣∣∣∣∣ ≤ H

√
2ι

Nk
h (s, a)

.
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(g) The proof is similar to (f) with{(
1
sk

n,jn,mn

h+1
− Ps,a,h

)
(V ∗

h+1)
2
}
n∈N+

being a martingale sequence bounded by H2.

(i): The proof is similar to (e).

(j): The proof is provided in section C.3 of [112] when bounding the term
∑K

k=1 δ
k
1 .

(k) It follows by Theorem E.3 with l = H .

(l) {(
1
sk

i,ji,mi

h+1

− Ps,a,h

)(
V̂ R,ki

h+1 − V ∗
h+1

)}
n∈N+

is a martingale sequence bounded by β . Then according to Azuma-Hoeffding inequality, for any
δ ∈ (0, 1), with probability at least 1− δ/SAT1, it holds for a given Nkn+1

h (s, a) = N ∈ N+ that:

1

N

∣∣∣∣∣
N∑
i=1

(
1
sk

i,ji,mi

h+1

− Ps,a,h

)(
V̂ R,ki

h+1 − V ∗
h+1

)∣∣∣∣∣ ≤ β

√
2ι

N
.

For any kn ∈ [K], we have Nkn+1
h (s, a) ∈ [T1

H ]. Considering all the possible combinations
(s, a, h,N) ∈ S × A × [H] × [T1

H ], with probability at least 1 − δ, it holds simultaneously for all
(s, a, h, kn) ∈ S ×A× [H]× [K] that:∣∣∣∣∣∣ 1

Nkn+1
h

Nkn+1
h∑
i=1

(
1
sk

i,ji,mi

h+1

− Ps,a,h

)(
V̂ R,ki

h+1 − V ∗
h+1

)∣∣∣∣∣∣ ≤ β

√
2ι

Nkn+1
h

.

(m) {(
1
sk

i,ji,mi

h+1

− Ps,a,h

)
V ∗
h+1

}
n∈N+

is a martingale sequence bounded by 2H . Then according to Freedman’s inequality Theorem E.2, for
any δ ∈ (0, 1), with probability at least 1− δ/SAT1, it holds for a given Nkn+1

h (s, a) = N ∈ N+

that: ∣∣∣∣∣ 1N
N∑
i=1

(
1
sk

i,ji,mi

h+1

− Ps,a,h

)
V ∗
h+1

∣∣∣∣∣ ≤ 4

√
Vs,a,h(V ∗

h+1)ι

N
+

7Hι

N
.

Here we set WN = NVs,a,h(V
∗
h+1), R = H , m = log2(T1) and σ2 = T1H .

For any kn ∈ [K], we have Nkn+1
h (s, a) ∈ [T1

H ]. Considering all the possible combinations
(s, a, h,N) ∈ S × A × [H] × [T1

H ], with probability at least 1 − δ, it holds simultaneously for all
(s, a, h, k, n) ∈ S ×A× [H]× [K]× [T1] that:∣∣∣∣∣∣ 1

Nkn+1
h

Nkn+1
h∑
i=1

(
1
sk

i,ji,mi

h+1

− Ps,a,h

)
V ∗
h+1

∣∣∣∣∣∣ ≤ 4

√
Vs,a,h(V ∗

h+1)ι

Nkn+1
h

+
7Hι

Nkn+1
h

.

(n) By Lemma F.5, since 0 ≤ V̂ R,kn

h+1 (s)− V ∗
h+1(s) ≤ β, then with probability at least 1− δ/SAT1,

it holds for a given Nk
h (s, a) = N ∈ [T1/H] that

N∑
n=1

η̃Nn

(
1
sk

n,jn,mn

h+1
− Ps,a,h

)(
V ∗
h+1 − V̂ R,kn

h+1

)

≲

√√√√Hι

N

N∑
n=1

ηNn Vs,a,h(V ∗
h+1 − V̂ R,kn

h+1 ) +
βHι

N

(i)

≤ β

√
Hι

N
+

βHι

N
.

Here, (i) is because Vsk,j,m
h ,ak,j,m

h ,h(V
∗
h+1 − V̂ R,kn

h+1 ) ≤ β2 and
∑Nk

h
n=1 η

Nk
h

n ≤ 1. Considering all the

possible combinations (s, a, h,N) ∈ S ×A× [H]× [T1

H ], we finish the proof.
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H Key Properties of estimated Q−functions and V−functions

We first prove the optimism property of the estimated Q−function Qk
h(s, a).

Lemma H.1. Under the event
⋂3

i=1 Ei in Lemma G.1, it holds that for any (s, a, h, k) ∈ S ×A×
[H]× [K]:

Qk
h(s, a) ≥ Q⋆

h(s, a) and V k
h (s) ≥ V ⋆

h (s).

Proof. We use mathematical induction on k to prove Qk
h(s, a) ≥ Q⋆

h(s, a) and V k
h (s) ≥ V ⋆

h (s) for
any (s, a, h, k) ∈ S ×A× [H]× [K].

For k = 1, Q1
h(s, a) = H ≥ Q⋆

h(s, a) and V 1
h (s) = H ≥ V ⋆

h (s) for any (s, a, h) ∈ S ×A× [H].

For k ≥ 2, assume we already have Qk′

h (s, a) ≥ Q⋆
h(s, a) for any (s, a, h, k′) ∈ S×A×[H]×[k−1],

then we will prove for any (s, a, h) ∈ S ×A× [H], Qk
h(s, a) ≥ Q⋆

h(s, a).

It is sufficient to show that

min
{
QU,k

h (s, a), QR,k
h (s, a)

}
≥ Q⋆

h(s, a).

The event E1 in Lemma G.1 shows that QU,k
h (s, a) ≥ Q⋆

h(s, a). Then it is sufficient to prove that

QR,k
h (s, a) ≥ Q⋆

h(s, a). (51)

To begin with, according to the update rule Equation (11) and Equation (15), we obtain

QR,k
h (s, a) = η̃

Nk
h

0 H +

Nk
h∑

n=1

η̃
Nk

h
n

(
rh(s, a) +

(
V kn

h+1 − V R,kn

h+1

)(
sk

n,jn,mn

h+1

)
+ µR,kn+1

h

)
+BR,k+1

h

+

Nk
h∑

n=1

η
Nk

h
n bR

h,n.

Since
∑Nk

h
n=0 η̃

Nk
h

n = 1 by (b) of Lemma F.3, it leads to

QR,k
h (s, a)−Q∗

h(s, a) = η
Nk

h
0

(
H −Q∗

h(s, a)
)
+

Nk
h∑

n=1

η
Nk

h
n bR

h,n

+

Nk
h∑

n=1

η̃
Nk

h
n

(
rh(s, a) +

(
V kn

h+1 − V R,kn

h+1

)(
sk

n,jn,mn

h+1

)
+ µR,kn+1

h −Q∗
h(s, a)

)
. (52)

To continue, invoking the Bellman optimality equation (1),

Q∗
h(s, a) = rh(s, a) + Ps,a,hV

∗
h+1,

and using the update rule of µR,k+1
h in Equation (6), we reach

rh(s, a) +
(
V kn

h+1 − V R,kn

h+1

)(
sk

n,jn,mn

h+1

)
+ µR,kn+1

h −Q∗
h(s, a)

= (V kn

h+1 − V R,kn

h+1 )
(
sk

n,jn,mn

h+1

)
+

∑Nkn+1
h

i=1 V R,ki

h+1

(
sk

i,ji,mi

h+1

)
Nkn+1

h

− Ps,a,hV
∗
h+1

= Ps,a,h

V kn

h+1 − V ∗
h+1 +

∑Nkn+1
h

i=1 (V R,ki

h+1 − V R,kn

h+1 )

Nkn+1
h

+ ξkh.

where we have introduced the following quantity

ξkh :=
(
1
sk

n,jn,mn

h+1
− Ps,a,h

) (
V kn

h+1 − V R,kn

h+1

)
+

1

Nkn+1
h

Nkn+1
h∑
i=1

(
1
sk

i,ji,mi

h+1

− Ps,a,h

)
V R,ki

h+1 .
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Since kn ≤ k − 1, we know V kn

h+1 − V ∗
h+1 ≥ 0. We also have V R,ki

h+1 − V R,kn

h+1 ≥ 0 for ki ≤ kn

because the reference function V R,k
h (s) is monotonically non-increasing in view of the monotonicity

of V k
h (s). Back to Equation (52), we know that

QR,k
h (s, a)−Q∗

h(s, a) ≤
Nk

h∑
n=1

η̃
Nk

h
n ξkh +

Nk
h∑

n=1

η
Nk

h
n bR

h,n.

Therefore, we only need to prove that∣∣∣∣∣∣
Nk

h∑
n=1

η̃
Nk

h
n ξkh

∣∣∣∣∣∣ ≤
Nk

h∑
n=1

η
Nk

h
n bR

h,n.

Let {k1, k2, ..., kt} be the collection of round indices that nki

h (s, a) > 0 for any i ∈ [t] and k1 <

k2 < ... < kt < k. Let k0 = 0 and kt+1 = k, then for any i ∈ [t + 1], we have βR,ki

h (s, a) =

β
R,ki−1+1
h (s, a) (k0 = 0) and Nki

h (s, a) = N
ki−1+1
h (s, a) with k0 since there is no visit to (s, a, h)

from round ki−1 + 1 to round ki − 1. Then it holds that (Here, ηc(n+ 1, n) = 1 for any n ∈ N+):

Nk
h∑

n=1

η
Nk

h
n bR

h,n =

t∑
i=1

N
ki+1

h∑
n=N

ki
h +1

η
Nk

h
n bR

h,n

=

t∑
i=1


N

ki+1

h −1∑
n=N

ki
h +1

η
Nk

h
n +

1− η
N

ki+1

h

η
N

ki+1

h

η
Nk

h

N
ki+1

h

βR,ki

h +
η
Nk

h

N
ki+1

h

η
N

ki+1

h

βR,ki+1
h

+

Nk
h∑

n=1

cR,2
b η

Nk
h

n H2ι

n

=

t∑
i=1

(
−ηc(Nki

h + 1, Nk
h )β

R,ki

h + ηc(Nki+1
h + 1, Nk

h )β
R,ki+1
h

)
+

Nk
h∑

n=1

cR,2
b η

Nk
h

n H2ι

n

=

t∑
i=1

(
−ηc(Nki−1+1

h + 1, Nk
h )β

R,ki−1+1
h + ηc(Nki+1

h + 1, Nk
h )β

R,ki+1
h

)
+

Nk
h∑

n=1

cR,2
b η

Nk
h

n H2ι

n

= βR,k
h +

Nk
h∑

n=1

cR,2
b η

Nk
h

n H2ι

n
≥ βR,k

h +
cR,2
b H2ι

Nk
h

. (53)

The last inequality is because of the property (a) of Lemma F.2 with α = 1. Under the event
⋂3

i=2 Ei,∣∣∣∣∣∣
Nk

h∑
n=1

η̃
Nk

h
n ξkh

∣∣∣∣∣∣ ≲
√

Hι

Nk
h

(
σA,k
h −

(
µA,k
h

)2)
+

√
ι

Nk
h

(
σR,k
h −

(
µR,k
h

)2)
+

H2ι

Nk
h

.

Then for some sufficiently large constant cR
b , c

R,2
b > 0, by Equation (53):∣∣∣∣∣∣

Nk
h∑

n=1

η̃
Nk

h
n ξkh

∣∣∣∣∣∣ ≤ βR,k
h +

cR,2
b H2ι

Nk
h

≤
Nk

h∑
n=1

η
Nk

h
n bR

h,n.

Now we finish the proof of Equation (51) and thus Qk
h(s, a) ≥ Q∗

h(s, a). Then we can conclude that

V k
h (s) = max

a
{Qk

h(s, a)} ≥ max
a
{Q∗

h(s, a)} = V ∗
h (s).

We have thus concluded the proof of Lemma H.1.

Next, we will present the pessimism property of the Q−estimates QL,k
h (s, a).

Lemma H.2. Under the event E4 in Lemma G.1, it holds that for any (s, a, h, k) ∈ S×A×[H]×[K]:

QL,k
h (s, a) ≤ Q⋆

h(s, a) and V L,k
h (s) ≤ V ⋆

h (s).
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Proof. We use mathematical induction on k to prove QL,k
h (s, a) ≤ Q⋆

h(s, a) and V L,k
h (s) ≤ V ⋆

h (s)
for any (s, a, h, k) ∈ S ×A× [H]× [K].

For k = 1, QL,1
h (s, a) = 0 ≤ Q⋆

h(s, a) and V L,1
h (s) = 0 ≥ V ⋆

h (s) for any (s, a, h) ∈ S ×A× [H].

For k ≥ 2, assume we already have QL,k′

h (s, a) ≤ Q⋆
h(s, a) and V L,k′

h (s) ≤ V ⋆
h (s) for any

(s, a, h, k′) ∈ S × A × [H] × [k − 1], then we will prove for any (s, a, h) ∈ S × A × [H],
QL,k

h (s, a) ≤ Q⋆
h(s, a) and V L,k

h (s) ≤ V ⋆
h (s). Based on the updating rules Equation (10) and

Equation (14), by recursion, since QL,1
h (s, a) = 0, we have:

QL,k
h (s, a) =

Nk
h∑

n=1

η̃
Nk

h
n

(
rh(s, a) + V L,kn

h+1

)
−

Nk
h∑

n=1

η
Nk

h
n bn.

To continue, by invoking the Bellman optimality equation Equation (1),

Q∗
h(s, a) = rh(s, a) + Ps,a,hV

∗
h+1,

we have

QL,k
h (s, a)−Q∗

h(s, a)

≤
Nk

h∑
n=1

η̃
Nk

h
n

(
V L,kn

h+1 (sk
n,jn,mn

h+1 )− Ps,a,hV
∗
h+1

)
−

Nk
h∑

n=1

η
Nk

h
n bn

=

Nk
h∑

n=1

η̃
Nk

h
n

(
V L,kn

h+1 − V ∗
h+1

)
(sk

n,jn,mn

h+1 ) +

Nk
h∑

n=1

η̃
Nk

h
n

(
1
sk

n,jn,mn

h+1
− Ps,a,h

)
V ∗
h+1 −

Nk
h∑

n=1

η
Nk

h
n bn

≤
Nk

h∑
n=1

η̃
Nk

h
n

(
1
sk

n,jn,mn

h+1
− Ps,a,h

)
V ∗
h+1 −

Nk
h∑

n=1

η
Nk

h
n bn ≤ 0.

The last inequality is by event E4 and

Nk
h∑

n=1

η
Nk

h
n bn = cb

√
H3ι

Nk
h∑

n=1

η
Nk

h
n√
n
≥ cb

√
H3ι

Nk
h

by (a) of Lemma F.2 with α = 1
2 . Now we have proved that QL,k

h (s, a) ≤ Q∗
h(s, a) ≤ V ∗

h (s). Then
by definition Equation (17) of V L,k

h (s), we know

V L,k
h (s) = max

{
max
a′∈A

QL,k
h (s, a′) , V L,k−1

h (s)

}
≤ V ∗

h (s).

In the following lemma, we will bound the error between two Q−estimates Qk
h(s, a) and QL,k

h (s, a).

Lemma H.3. Under the event
⋂4

i=1 Ei in Lemma G.1, for FedQ-EarlySettled-LowCost algorithm
and any non-negative weight sequence {ωk,j,m

h }h,k,j,m, it holds for any h ∈ [H] that:∑
k,j,m

ωk,j,m
h

(
Qk

h −QL,k
h

)
(sk,j,mh , ak,j,mh )

≲
√
H5SA∥ω∥∞,h∥ω∥1,hι+

H∑
h′=h

∑
k,j,m

ωk,j,m
h′ (h)Y k,j,m

h′ ,

where for any h ≤ h′ ≤ H − 1

ωk,j,m
h (h) := ωk,j,m

h ,

ωk,j,m
h′+1 (h) =

∑
k′,j′,m′

ωk′,j′,m′

h′ (h)I
[
Nk′

h′ (s, a)
k′,j′,m′

h′ ≥ i0

]Nk′
h′∑

i=1

η̃
Nk′

h′
i I

[
(ki, ji,mi) = (k, j,m)

]
,
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and

Y k,j,m
h′ = η

Nk
h′

0 H +HI[0 < Nk
h′(s

k,j,m
h′ , ak,j,mh′ ) < i0] +

√
H3ι

Nk
h′
I[0 < Nk

h′(s
k,j,m
h′ , ak,j,mh′ ) < M ].

Proof. To begin with, according to the update rule Equation (9) and Equation (13), we obtain

QU,k
h (s, a) = η

Nk
h

0 H +

Nk
h∑

i=1

η̃
Nk

h
i

(
rh(s, a) + V ki

h+1(s
ki,ji,mi

h+1 )
)
+

Nk
h∑

i=1

η
Nk

h
i bi.

Similarly, according to the update rule Equation (10) and Equation (14), we obtain

QL,k
h (s, a) =

Nk
h∑

i=1

η̃
Nk

h
i

(
rh(s, a) + V L,ki

h+1 (s
ki,ji,mi

h+1 )
)
−

Nk
h∑

i=1

η
Nk

h
i bi.

and ∑
k,j,m

ωk,j,m
h

(
Qk

h −QL,k
h

)
(sk,j,mh , ak,j,mh )

≤
∑
k,j,m

ωk,j,m
h

(
QU,k

h −QL,k
h

)
(sk,j,mh , ak,j,mh )

≤
∑
k,j,m

ωk,j,m
h η

Nk
h

0 H +
∑

k,j,m,Nk
h>0

ωk,j,m
h

Nk
h∑

i=1

η̃
Nk

h
i (V ki

h+1 − V L,ki

h+1 )(s
ki,ji,mi

h+1 )

+ 2
∑

k,j,m,Nk
h>0

ωk,j,m
h

Nk
h∑

i=1

η
Nk

h
i bi. (54)

For the last term of Equation (54), by (a) of Lemma F.2, we have
Nk

h∑
i=1

η
Nk

h
i bi =

Nk
h∑

i=1

η
Nk

h
i cb

√
H3ι

i
≲

√
H3ι

Nk
h

.

Then by Lemma F.6, it holds that∑
k,j,m,Nk

h>0

ωk,j,m
h

Nk
h∑

i=1

η
Nk

h
i bi ≲

√
H3ι

∑
k,j,m,Nk

h>0

ωk,j,m
h

√
1

Nk
h (s

k,j,m
h , ak,j,mh )

≲
∑
k,j,m

ωk,j,m
h

√
H3ι

Nk
h (s

k,j,m
h , ak,j,mh )

I
[
0 < Nk

h < M
]
+
√
H3SA∥ω∥∞,h∥ω∥1,hι. (55)

Next, we will bound the second term of Equation (54). We can decompose the term into two parts as∑
k,j,m,Nk

h>0

ωk,j,m
h

Nk
h∑

i=1

η̃
Nk

h
i (V ki

h+1 − V L,ki

h+1 )(s
ki,ji,mi

h+1 )

=
∑
k,j,m

ωk,j,m
h

Nk
h∑

i=1

η̃
Nk

h
i (V ki

h+1 − V L,ki

h+1 )(s
ki,ji,mi

h+1 )
(
I
[
0 < Nk

h < i0
]
+ I
[
Nk

h ≥ i0
])

.

For the first part of the second term in Equation (54), because
∑Nk

h
i=1 η̃

Nk
h

i ≤ 1 by (b) of Lemma F.3,
we have ∑

k,j,m

ωk,j,m
h

Nk
h∑

i=1

η̃
Nk

h
i (V ki

h+1 − V L,ki

h+1 )(s
ki,ji,mi

h+1 )I
[
0 < Nk

h (s
k,j,m
h , ak,j,mh ) < i0

]
≤ H

∑
k,j,m

ωk,j,m
h I

[
0 < Nk

h (s
k,j,m
h , ak,j,mh ) < i0

]
(56)
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For the second part of the second term in Equation (54), we regroup the summations as follows:

∑
k,j,m

ωk,j,m
h

Nk
h∑

i=1

η̃
Nk

h
i (V ki

h+1 − V L,ki

h+1 )(s
ki,ji,mi

h+1 )I
[
Nk

h (s
k,j,m
h , ak,j,mh ) ≥ i0

]
=

∑
k′,j′,m′

ω̃k′,j′,m′

h

(
V k′

h+1 − V L,k′

h+1

)
(sk

′,j′,m′

h+1 ), (57)

where

ω̃k′,j′,m′

h =
∑
k,j,m

I
[
Nk

h (s
k,j,m
h , ak,j,mh ) ≥ i0

]
ωk,j,m
h

Nk
h∑

i=1

η̃
Nk

h
i I

[
(ki, ji,mi) = (k′, j′,m′)

]
.

Let ∥ω̃∥∞,h = max
k,j,m
{ω̃k,j,m

h } and ∥ω̃∥1,h =
∑

k,j,m ω̃k,j,m
h . Since

∑Nk
h

i=1 η̃
Nk

h
i ≤ 1 by (b) of

Lemma F.3, we have the following property:

∥ω̃∥1,h =
∑

k′,m′,j′

ω̃k′,j′,m′

h ≤
∑
k,j,m

I
[
Nk

h (s
k,j,m
h , ak,j,mh ) ≥ i0

]
ωk,j,m
h ≤ ∥ω∥1,h.

If we have proved that:
∥ω̃∥∞,h ≤ exp(3/H)∥ω∥∞,h, (58)

then combining the results of Equation (55), Equation (56) and Equation (57) together with
Equation (54), we reach∑

k,j,m

ωk,j,m
h

(
Qk

h −QL,k
h

)
(sk,j,mh , ak,j,mh )

≲
∑

k′,j′,m′

ω̃k′,j′,m′

h

(
V k′

h+1 − V L,k′

h+1

)
(sk

′,j′,m′

h+1 ) +
√
H3SA∥ω∥∞,h∥ω∥1,hι+

∑
k,j,m

ωk,j,m
h η

Nk
h

0 H

+
∑
k,j,m

ωk,j,m
h HI

[
0 < Nk

h < i0
]
+
∑
k,j,m

ωk,j,m
h

√
H3ι

Nk
h

I
[
0 < Nk

h < M
]

≲
∑

k′,j′,m′

ω̃k′,j′,m′

h

(
Qk′

h+1 −QL,k′

h+1

)
(sk

′,j′,m′

h+1 , ak
′,j′,m′

h+1 ) +
√
H3SA∥ω∥∞,h∥ω∥1,hι

+
∑
k,j,m

ωk,j,m
h Y k,j,m

h . (59)

with ∥ω̃∥1,h ≤ ∥ω∥1,h and ∥ω̃∥∞,h ≤ exp(3/H)∥ω∥∞,h. Here, the last inequality is because

V k′

h+1(s
k′,j′,m′

h+1 ) = Qk′

h+1(s
k′,j′,m′

h+1 , ak
′,j′,m′

h+1 ) and V L,K′

h+1 (sk
′,j′,m′

h+1 ) ≥ QL,k′

h+1(s
k′,j′,m′

h+1 , ak
′,j′,m′

h+1 ).

With Equation (59), we develop a recursive relationship for the weighted sum of Qk
h −Q∗

h between
step h and step h+ 1. By recursions with regard to h, h+ 1, ...,H , we finish the proof.

Proof of Equation (58): Now we have

ω̃k′,j′,m′

h =
∑
k,j,m

I
[
Nk

h (s
k,j,m
h , ak,j,mh ) ≥ i0

]
ωk,j,m
h

Nk
h∑

i=1

η̃
Nk

h
i I

[
(ki, ji,mi) = (k′, j′,m′)

]

≤ ∥ω∥∞,h

∑
k,j,m

I
[
Nk

h (s
k,j,m
h , ak,j,mh ) ≥ i0

] Nk
h∑

i=1

η̃
Nk

h
i I

[
(ki, ji,mi) = (k′, j′,m′)

]
We only need to prove for any triple (k′, j′,m′) and any h ∈ [H],

∑
k,j,m

I
[
Nk

h (s
k,j,m
h , ak,j,mh ) ≥ i0

] Nk
h∑

i=1

η̃
Nk

h
i I

[
(ki, ji,mi) = (k′, j′,m′)

]
≤ exp(3/H). (60)
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By definition of ki, ji and mi, for any given triple (k′, j′,m′),
Nk

h∑
i=1

η̃
Nk

h
i I

[
(ki, ji,mi) = (k′, j′,m′)

]
> 0

if and only if

(sk,j,mh , ak,j,mh ) = (sk
′,j′,m′

h , ak
′,j′,m′

h ), k′ < k and i′(k′, j′,m′) ≤ Nk
h ,

where i′(k′, j′,m′) is the global visiting number for (sk
′,j′,m′

h , ak
′,j′,m′

h ) at (k′,m′, j′). When there
is no ambiguity, we will use i′ for short. Therefore∑

k,j,m

I
[
Nk

h (s
k,j,m
h , ak,j,mh ) ≥ i0

] Nk
h∑

i=1

η̃
Nk

h
i I

[
(ki, ji,mi) = (k′, j′,m′)

]
=

K∑
k=k′+1

∑
j,m

I
[
Nk

h (s
k′,j′,m′

h , ak
′,j′,m′

h ) ≥ i0, (s
k,j,m
h , ak,j,mh ) = (sk

′,j′,m′

h , ak
′,j′,m′

h )
]
η̃
Nk

h

i′ . (61)

Let k′ < k1 < k2 < ... < kt ≤ K be all the round index such that nkq

h (sk
′,j′,m′

h , ak
′,j′,m′

h ) > 0 and
N

kq

h (sk
′,j′,m′

h , ak
′,j′,m′

h ) ≥ i0 for any q ∈ [t], then we can simplify Equation (61):∑
k,j,m

I
[
Nk

h (s
k,j,m
h , ak,j,mh ) ≥ i0

] Nk
h∑

i=1

η̃
Nk

h
i I

[
(ki, ji,mi) = (k′, j′,m′)

]

=

t∑
q=1

∑
j,m

I
[
(s

kq,j,m
h , a

kq,j,m
h ) = (sk

′,j′,m′

h , ak
′,j′,m′

h )
] η̃

N
kq
h

i′

≤
t∑

q=1

n
kq

h (sk
′,j′,m′

h , ak
′,j′,m′

h )η̃
N

kq
h

i′ (62)

For any q ∈ [t] and p ∈ [n
kq

h ], by (e) of Lemma F.2, the following relationship holds

η
N

kq
h

i′

η
N

kq
h +p

i′

≤ exp(1/H). (63)

Combining Equation (63) with the property (c) of Lemma F.3, for any p ∈ [n
kq

h ], we have

η̃
N

kq
h

i′ ≤ exp(1/H)η
N

kq
h

i′ ≤ exp(2/H)η
N

kq
h +p

i′ ,

and thus
t∑

q=1

n
kq

h (sk
′,j′,m′

h , ak
′,j′,m′

h )η̃
N

kq
h

i′ ≤ e
2
H

t∑
q=1

n
kq
h∑

p=1

η
N

kq
h +p

i′

(i)

≤ e
2
H

∞∑
r=i′

ηri′ ≤ exp(3/H). (64)

Here (i) is because k1 < k2 < ... < kt ≤ K and Nk1

h ≥ Nk′+1
h ≥ i′. The last inequality is by (c) of

Lemma F.2. Applying this inequality to Equation (62), we complete the proof of Equation (60), and
consequently, Equation (58).

Lemma H.4. Under the event
⋂4

i=1 Ei in Lemma G.1, for all ϵ ∈ (0, H), we have the following two
conclusions:

H∑
h=1

∑
k,j,m

I
[
Qk

h(s
k,j,m
h , ak,j,mh )−QL,k

h (sk,j,mh , ak,j,mh ) > ϵ
]
≲

H6SAι

ϵ2
+

MSAH5
√
ι

ϵ
,

and
H∑

h=1

∑
k,j,m

(
Qk

h −QL,k
h

)
(sk,j,mh , ak,j,mh )I

[(
Qk

h −QL,k
h

)
(sk,j,mh , ak,j,mh ) > ϵ

]
≲

H6SAι

ϵ
+MSAH5

√
ι.
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Proof. Let N = ⌈log2(H/ϵ)⌉. For any i ∈ [N − 1], k ∈ [K] and given h ∈ [H], let:

ωk,j,m
h,i = I

[
Qk

h(s
k,j,m
h , ak,j,mh )−QL,k

h (sk,j,mh , ak,j,mh ) ∈
[
2i−1ϵ, 2iϵ

)]
,

and
ωk,j,m
h,N = I

[
Qk

h(s
k,j,m
h , ak,j,mh )−QL,k

h (sk,j,mh , ak,j,mh ) ∈
[
2N−1ϵ,H

]]
.

Then
∥ω∥(i)∞,h = max

k,j,m
ωk,j,m
h,i ≤ 1, ∥ω∥(i)1,h =

∑
k,j,m

ωk,j,m
h,i .

Now for any i ∈ [N ], we have the following relationship:∑
k,j,m

ωk,j,m
h,i

(
Qk

h −QL,k
h

)
(sk,j,mh , ak,j,mh ) ≥ 2i−1ϵ∥ω∥(i)1,h. (65)

Combining the results of Lemma H.3 and Equation (65), we have:

2i−1ϵ∥ω∥(i)1,h ≲
√

H5SA∥ω∥(i)1,hι+

H∑
h′=h

∑
k,j,m

ωk,j,m
h′,i (h)Y k,j,m

h′ , (66)

where for any h ≤ h′ ≤ H − 1,

ωk,j,m
h,i (h) := ωk,j,m

h,i ,

ωk,j,m
h′+1,i(h) =

∑
k′,j′,m′

ωk′,j′,m′

h′,i (h)I
[
Nk′

h′ (s, a)
k′,j′,m′

h′ ≥ i0
]Nk′

h′∑
i=1

η̃
Nk′

h′
i I

[
(ki, ji,mi) = (k, j,m)

]
,

Therefore, for any triple (k, j,m) and h ≤ h′ ≤ H − 1, we have

N∑
i=1

ωk,j,m
h′+1,i(h) =

∑
k′,j′,m′

(
N∑
i=1

ωk′,j′,m′

h′,i (h)

)
I
[
Nk′

h′ ≥ i0

]Nk′
h′∑

i=1

η̃
Nk′

h′
i I

[
(ki, ji,mi) = (k, j,m)

]
Then by mathematical induction on h′ ∈ [h,H], it is straightforward to prove that for any j ∈ [K],

N∑
i=1

ωk,j,m
h′,i (h) ≤ (exp(3/H))

h′−h
< 27, (67)

given Equation (60) and the base case
∑N

i=1 ω
k,j,m
h,i (h) =

∑N
i=1 ω

k,j,m
h,i ≤ 1. Solving Equation (66),

we can derive the following relationship:

∥ω∥(i)1,h ≲
H5SAι

4iϵ2
+

∑H
h′=h

∑
k,j,m ωk,j,m

h′,i (h)Y k,j,m
h′

2iϵ
. (68)

We claim that
H∑

h′=1

∑
k,j,m

Y k,j,m
h′ ≲ MH4SA

√
ι, (69)

which will be proved later. Therefore, by

I
[(

Qk
h −QL,k

h

)
(sk,j,mh , ak,j,mh ) ≥ ϵ

]
=

N∑
i=1

ωk,j,m
h,i ,

we have
H∑

h=1

∑
k,j,m

I
[
Qk

h(s
k,j,m
h , ak,j,mh )−QL,k

h (sk,j,mh , ak,j,mh ) ≥ ϵ
]
=

H∑
h=1

N∑
i=1

∥ω∥(i)1,h. (70)
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By Equation (68), it holds that
N∑
i=1

∥ω∥(i)1,h ≲
N∑
i=1

H5SAι

4iϵ2
+

N∑
i=1

∑H
h′=h

∑
k,j,m ωk,j,m

h′,i (h)Y k,j,m
h′

2iϵ

≲
H5SAι

ϵ2
+

N∑
i=1

∑H
h′=1

∑
k,j,m Y k,j,m

h′

2iϵ

≲
H5SAι

ϵ2
+

MH4SA
√
ι

ϵ
. (71)

Here, the second inequality is because 0 ≤ ωk,j,m
h′,i (h) < 27 by Equation (67). The last inequality is

because of Equation (69). Combing the results of Equation (70) and Equation (71), we reach
H∑

h=1

∑
k,j,m

I
[
Qk

h(s
k,j,m
h , ak,j,mh )−QL,k

h (sk,j,mh , ak,j,mh ) ≥ ϵ
]
≲

H6SAι

ϵ2
+

MH5SA
√
ι

ϵ
.

Now we finish the proof of the first conclusion. Further, noting that
H∑

h=1

∑
k,j,m

(
Qk

h −QL,k
h

)
(sk,j,mh , ak,j,mh )I

[(
Qk

h −QL,k
h

)
(sk,j,mh , ak,j,mh ) ≥ ϵ

]

≤
H∑

h=1

N∑
i=1

2iϵ∥ω∥(i)1,h

≲
H∑

h=1

N∑
i=1

H5SAι

2iϵ
+

H∑
h=1

H∑
h′=h

∑
k,j,m

(
N∑
i=1

ωk,j,m
h′,i (h)

)
Y k,j,m
h′

≲
H6SAι

ϵ
+

H∑
h=1

H∑
h′=h

∑
k,j,m

Y k,j,m
h′

≲
H6SAι

ϵ
+MH5SA

√
ι.

Here, the second inequality is by Equation (68). The second last inequality is by Equation (67), and
the last inequality is because of Equation (69). Next, we only need to prove Equation (69).

Proof of Equation (69): By definition of Y k,m,j
h′ , we have the following equation∑

k,j,m

Y k,j,m
h′ =

∑
k,j,m

η
Nk

h′
0 H +H

∑
k,j,m

I
[
0 < Nk

h′ < i0
]
+
∑
k,j,m

√
H3ι

Nk
h′
I
[
0 < Nk

h′ < M
]
. (72)

For the first term of Equation (72), we have∑
k,j,m

η
Nk

h′
0 H ≤ H

∑
s,a

∑
k,j,m

I[Nk
h′(s, a) = 0, (sk,j,mh′ , ak,j,mh′ ) = (s, a)] ≤MHSA. (73)

The last inequality is because if we let k0(s, a) be the round index such that Nk0

h′ (s, a) = 0 and
Nk0+1

h′ (s, a) > 0, then by (a) of Lemma F.1, it holds that∑
k,j,m

I[Nk
h′(s, a) = 0, (sk,j,mh′ , ak,j,mh′ ) = (s, a)] = nk0

h′ (s, a) ≤M.

Let k1(s, a) = max{k | 1 ≤ k ≤ K,Nk
h′(s, a) < i0}. Then for the second term of Equation (72)∑

k,j,m

HI
[
0 < Nk

h′(s
k,j,m
h′ , ak,j,mh′ ) < i0

]
= H

∑
s,a

∑
k,j,m

I
[
0 < Nk

h′(s, a) < i0, (s
k,j,m
h′ , ak,j,mh′ ) = (s, a)

]

≤ H
∑
s,a

k1∑
k=1

∑
j,m

I
[
(sk,j,mh′ , ak,j,mh′ ) = (s, a)

]
= H

∑
s,a

Nk1+1
h′ (s, a) ≲ MH3SA. (74)
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Here, the last inequality is because Nk1

h′ (s, a) < i0 and thus nk1

h′ (s, a) ≤ 2M by (a) of Lemma F.1.
Finally, for the last term of Equation (72), by Equation (24) with α = 1/2 and ωk,j,m

h = 1, we have∑
k,j,m

√
H3ι

Nk
h′
I
[
0 < Nk

h′(s
k,j,m
h′ , ak,j,mh′ ) < M

]
≤ 2M

√
H3SA

√
ι. (75)

By applying Equation (73), Equation (74) and Equation (75) to Equation (72), we finish the proof.

In the next lemma, we will bound the difference between V R,k
h (s) and V k

h (s).

Lemma H.5. Under
⋂4

i=1 Ei in Lemma G.1, it holds for any (s, h, k) ∈ S × [H]× [K] that:

0 ≤ V R,k
h (s)− V k

h (s) ≤ β.

Proof. If for any k ∈ [K + 1], V k
h (s) − V L,k

h (s) > β, then according to the update rule of the
reference function in Algorithm 1, we know V R,k

h − V k
h (s) = 0.

Otherwise we can assume that there exists k ∈ [K + 1] such that V k
h (s)− V L,k

h (s) ≤ β. Define

k1 = min{k | V k
h (s)− V L,k

h (s) ≤ β}.
Then for any k < k1, it holds that V k

h (s)− V L,k
h (s) > β and thus V R,k

h − V k
h (s) = 0.

We claim that uR,k1−1
h (s) = True. If uR,k1−1

h (s) = False, then there exists k0 ≤ k1 − 1 such that
uR,k0−1
h (s) = True and uR,k0

h (s) = False. Based on the update rule of the reference function, in this
case, we have V k0

h (s)− V L,k0

h (s) ≤ β, which is contradictory to the minimality of k1.

Since V k1

h (s)− V L,k1

h (s) ≤ β and uR,k1−1
h (s) = True, we know for any k ≥ k1,

V R,k
h (s) = V R,k1

h (s) = V k1

h (s) ≤ V L,k1

h (s) + β ≤ V ∗
h (s) + β ≤ V k

h (s) + β.

The last two inequalities are because V L,k1

h (s) ≤ V ∗
h (s) ≤ V k

h (s) by Lemma H.2 and Lemma H.1.
For any k ≥ k1, we also have V R,k

h (s) = V R,k1

h (s) = V k1

h (s) ≥ V k
h (s) and thus finish the proof.

Lemma H.6. Under the event
⋂4

i=1 Ei in Lemma G.1, for any (s, h, k) ∈ S × [H]× [K], we have
the following two conclusions:

• If V k
h+1(s)− V L,k

h+1(s) ≤ β, then V R,K+1
h+1 (s) = V R,k

h+1(s) = V̂ R,k
h+1(s).

• If V k
h+1(s)− V L,k

h+1(s) > β, then we have:

0 ≤ V R,k
h+1(s)− V̂ R,k

h+1(s), |V̂
R,k
h+1(s)− V R,K+1

h+1 (s)| ≤ V k
h+1(s)− V L,k

h+1(s).

Proof. • If for given k ∈ [K], V k
h+1(s)− V L,k

h+1(s) ≤ β, then there exists k1 ∈ [K] such that:

k1 = min
{
k : V k

h+1(s)− V L,k
h+1(s) ≤ β

}
.

Then according the analysis in Lemma H.5, we have uR,k1−1
h+1 (s) = True, or it is contradictory

to the minimality of k1. Therefore, in this case, we have:
V R,K+1
h+1 (s) = V R,k

h+1(s) = V R,k1

h+1 (s) = V k1

h+1(s) ≤ V L,k1

h+1 (s) + β ≤ V ⋆
h+1(s) + β,

and
V R,k
h+1(s) = V R,k1

h+1 (s) = V k1

h+1(s) ≥ V ⋆
h+1(s).

According to the definition of V̂ R,k
h+1(s), we have V̂ R,k

h+1(s) = V R,k
h+1(s) = V R,K+1

h+1 (s).

• Moreover, if V k
h+1(s) − V L,k

h+1(s) > β, according to the algorithm, we have V R,k
h+1(s) =

V k
h+1(s) and then 0 ≤ V R,k

h+1(s)− V̂ R,k
h+1(s) ≤ V k

h+1(s)− V L,k
h+1(s).

In this case, we also have V L,k
h+1(s) ≤ V ∗

h+1(s) ≤ V R,K+1
h+1 (s) ≤ V R,k

h+1(s) = V k
h+1(s) and

then V L,k
h+1(s) ≤ V ∗

h+1(s) ≤ V̂ R,k
h+1(s) ≤ V R,k

h+1(s) = V k
h+1(s). These two inequalities imply

that |V̂ R,k
h+1(s)− V R,K+1

h+1 (s)| ≤ V k
h+1(s)− V L,k

h+1(s).
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I Proof of the Worst-Case Regret (Theorem 4.1 and Theorem 4.3)

I.1 Proof Sketch

In this section, we bound the worst-case regret under the event
⋂14

i=1 Ei in Lemma G.1.

For h ∈ [H + 1], denote:

δkh =

nm,k∑
j=1

M∑
m=1

(
V k
h − V ⋆

h

)
(sk,j,mh ), ζkh =

nm,k∑
j=1

M∑
m=1

(
V k
h − V πk

h

)
(sk,j,mh ).

Here, δkH+1 = ζkH+1 = 0. Because V ⋆
h (s) = supπ V

π
h (s), we have δkh ≤ ζkh for any h ∈ [H + 1]. In

addition, as V k
h (s) ≥ V ⋆

h (s) for all (s, h, k) ∈ S × [H]× [K], according to Lemma H.1, we have:

Regret(T ) =
∑
k,j,m

(
V ⋆
1 (s

k,j,m
1 )− V πk

1 (sk,j,m1 )
)
≤
∑
k,j,m

(
V k
1 (sk,j,m1 )− V πk

1 (sk,j,m1 )
)
=

K∑
k=1

ζk1 .

Thus, we only need to bound
∑K

k=1 ζ
k
1 .

K∑
k=1

ζkh =
∑
k,j,m

(Qk
h −Qπk

h )(sk,j,mh , ak,j,mh )

=
∑
k,j,m

(Qk
h −Q⋆

h)(s
k,j,m
h , ak,j,mh ) +

∑
k,j,m

(Q∗
h −Qπk

h )(sk,j,mh , ak,j,mh )

≤
∑
k,j,m

(QR,k
h −Q⋆

h)(s
k,j,m
h , ak,j,mh ) +

∑
k,j,m

Psk,j,m
h ,ak,j,m

h ,h(V
∗
h+1 − V πk

h+1). (76)

In the last inequality, we use Qk
h(s, a) ≤ QR,k

h (s, a) and Equation (1):

Q∗
h(s, a) = rh(s, a) + Ps,a,hV

∗
h+1, Q

πk

h (s, a) = rh(s, a) + Ps,a,hV
πk

h+1.

Next, we will bound the first term of Equation (76). Back to Equation (52), since V̂ R,kn

h+1 ≤ V R,kn

h+1 ,
we have the following relationship (Here we use the shorthand P = Psk,j,m

h ,ak,j,m
h ,h):

(QR,k
h −Q⋆

h)(s
k,j,m
h , ak,j,mh )

≤ η
Nk

h
0 H +

Nk
h∑

n=1

η̃
Nk

h
n

((
V kn

h+1 − V R,kn

h+1

)
(sk

n,jn,mn

h+1 ) + µR,kn+1
h − PV ∗

h+1

)
+

Nk
h∑

n=1

η
Nk

h
n bR

h,n

≤ η
Nk

h
0 H +

Nk
h∑

n=1

η̃
Nk

h
n

((
V kn

h+1 − V̂ R,kn

h+1

)
(sk

n,jn,mn

h+1 ) + µR,kn+1
h − PV ∗

h+1

)
+

Nk
h∑

n=1

η
Nk

h
n bR

h,n, (77)

and thus∑
k,j,m

(QR,k
h −Q⋆

h)(s
k,j,m
h , ak,j,mh )

≤
∑
k,j,m

{
η
Nk

h
0 H +

Nk
h∑

n=1

η̃
Nk

h
n

((
V kn

h+1 − V̂ R,kn

h+1

)
(sk

n,jn,mn

h+1 ) + µR,kn+1
h − PV ∗

h+1

)
+

Nk
h∑

n=1

η
Nk

h
n bR

h,n

}
≤
∑
k,j,m

η
Nk

h
0 H +

∑
k,j,m,Nk

h>0

(
βR,k
h (sk,j,mh , ak,j,mh ) + 2cR,2

b

H2ι

Nk
h

)

+
∑

k,j,m,Nk
h>0

Nk
h∑

n=1

η̃
Nk

h
n

(
V kn

h+1 − V ⋆
h+1

)
(sk

n,jn,mn

h+1 )

+
∑

k,j,m,Nk
h>0

Nk
h∑

n=1

η̃
Nk

h
n

((
V ∗
h+1 − V̂ R,kn

h+1

)
(sk

n,jn,mn

h+1 ) + µR,kn+1
h − Psk,j,m

h ,ak,j,m
h ,hV

∗
h+1

)
. (78)
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The last inequality is because

Nk
h∑

n=1

η
Nk

h
n bR

h,n = βR,k
h +

Nk
h∑

n=1

cR,2
b η

Nk
h

n H2ι

n
≤ βR,k

h + 2cR,2
b

H2ι

Nk
h

. (79)

by Equation (53) and (a) of Lemma F.2. For the first term of Equation (78), similar to Equation (73),
we have ∑

k,j,m

η
Nk

h
0 H = H

∑
s,a

∑
k,j,m

I[Nk
h = 0, (sk,j,mh , ak,j,mh ) = (s, a)] ≤MHSA. (80)

For the second term of Equation (78), by Lemma F.6, it holds that∑
k,j,m,Nk

h>0

2cR,2
b

H2ι

Nk
h

≤ 2cR,2
b MH2SAι+ 2cR,2

b H2SAι2. (81)

For the third term of Equation (78), similar to the proof of [112, Equation (25)], it holds that

∑
k,j,m,Nk

h>0

Nk
h∑

n=1

η̃
Nk

h
n

(
V kn

h+1 − V ⋆
h+1

)
(sk

n,jn,mn

h+1 ) ≤ exp

(
3

H

) K∑
k=1

δkh+1 + 2MH3SA. (82)

Taking the above results Equation (80), Equation (81) and Equation (82) together with Equation (78),
we can rearrange terms of Equation (76) to reach

K∑
k=1

ζkh ≤ exp

(
3

H

) K∑
k=1

δkh+1 + (2cR,2
b + 3)MH3SAι+ 2cR,2

b H2SAι2

+
∑

k,j,m,Nk
h>0

Nk
h∑

n=1

η̃
Nk

h
n

((
V ∗
h+1 − V̂ R,kn

h+1

)
(sk

n,jn,mn

h+1 ) + µR,kn+1
h − Psk,j,m

h ,ak,j,m
h ,hV

∗
h+1

)
+
∑
k,j,m

Psk,j,m
h ,ak,j,m

h ,h

(
V ∗
h+1 − V πk

h+1

)
+

∑
k,j,m,Nk

h>0

βR,k
h (sk,j,mh , ak,j,mh )

≤ exp

(
3

H

) K∑
k=1

ζkh+1 + (2cR,2
b + 3)MH3SAι+ 2cR,2

b H2SAι2

+
∑

k,j,m,Nk
h>0

Nk
h∑

n=1

η̃
Nk

h
n

(
1
sk

n,jn,mn

h+1
− Psk,j,m

h ,ak,j,m
h ,h

)(
V ∗
h+1 − V̂ R,kn

h+1

)

+
∑

k,j,m,Nk
h>0

Nk
h∑

n=1

η̃
Nk

h
n

1

Nkn+1
h

Nkn+1
h∑
i=1

(
V R,ki

h (sk
i,ji,mi

h+1 )− Psk,j,m
h ,ak,j,m

h ,hV̂
R,kn

h+1

)
+
∑
k,j,m

(
Psk,j,m

h ,ak,j,m
h ,h − 1sk,j,m

h+1

)(
V ∗
h+1 − V πk

h+1

)
+

∑
k,j,m,Nk

h>0

βR,k
h (sk,j,mh , ak,j,mh ).

By recursion on h, since ζkH+1 = 0, we can get the following conclusion:

Regret(T ) ≤
K∑

k=1

ζk1 ≲ MH4SAι2 +R1 +R2 +R3 +R4,

where

R1 =

H∑
h=1

ch−1
H

∑
k,j,m,Nk

h>0

βR,k
h (sk,j,mh , ak,j,mh ).

R2 =

H∑
h=1

ch−1
H

∑
k,j,m,Nk

h>0

Nk
h∑

n=1

η̃
Nk

h
n

(
1
sk

n,jn,mn

h+1
− Psk,j,m

h ,ak,j,m
h ,h

)(
V ∗
h+1 − V̂ R,kn

h+1

)
.
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R3 =

H∑
h=1

ch−1
H

∑
k,j,m,Nk

h>0

Nk
h∑

n=1

η̃
Nk

h
n

1

Nkn+1
h

Nkn+1
h∑
i=1

(
V R,ki

h (sk
i,ji,mi

h+1 )− Psk,j,m
h ,ak,j,m

h ,hV̂
R,kn

h+1

)
.

R4 =

H∑
h=1

ch−1
H

∑
k,j,m,Nk

h>0

(
Psk,j,m

h ,ak,j,m
h ,h − 1sk,j,m

h+1

)(
V ∗
h+1 − V πk

h+1

)
.

and cH = exp(3/H). Under the event E5 in Lemma G.1, we can bound R4 by 27
√
2H2T1ι. Then,

we reach
Regret(T ) ≲

√
H2T1ι+MH4SAι2 +R1 +R2 +R3.

By Lemma I.1, Lemma I.2 and Lemma I.3, we have:

Regret(T ) ≲ (1 + β)
√
H2SAT1ι2 +

1

β
H6SAι2 +MH5SAι2.

By (b) of Lemma F.1, we have

ι = log

(
2SAT1

δ

)
≤ O

(
log

(
2SAT̂

δ

)
+ log

(
2MHSA

δ

))
= O

(
log

(
MSAT

δ

))
.

Let p = δ/14 and ι1 = log
(

MSAT
p

)
, then with probability at least 1− p, we have

Regret(T ) ≤ O

(
(1 + β)

√
MH2SATι21 +

1

β
H6SAι21 +MH5SAι21

)
.

The proof also holds for M = 1.

I.2 Upper bounds of R1, R2, R3

Lemma I.1. Under the event
⋂14

i=1 Ei in Lemma G.1, we have

R1 ≲ (1 + β)
√

H2SAT1ι+

√
1

β
H4SAι2 +MH4SAι2.

Proof. Since βR,k
h (sk,j,mh , ak,j,mh ) ≥ 0, we have

R1 ≲
H∑

h=1

∑
k,j,m,Nk

h>0

βR,k
h (sk,j,mh , ak,j,mh )

≲
H∑

h=1

∑
k,j,m,Nk

h>0

√
ι

Nk
h

(√
(σR,k

h − (µR,k
h )2) +

√
H
(
σA,k
h − (µA,k

h )2
))

(83)

For the second term, we make the observation that√√√√ σA,k
h − (µA,k

h )2

Nk
h (s

k,j,m
h , ak,j,mh )

≤

√
σA,k
h

Nk
h

=

√√√√∑Nk
h

n=1 η̃
Nk

h
n (V kn

h+1 − V R,kn

h+1 )2(sk
n,jn,mn

h+1 )

Nk
h

≤ β

√
1

Nk
h

. (84)

The last inequality is because 0 ≤ V R,kn

h+1 − V kn

h+1 ≤ β by Lemma H.5 and
∑Nk

h
n=1 η̃

Nk
h

n ≤ 1 by (b) of
Lemma F.3. Therefore, we can bound the second term by Lemma F.6 with ωk,m,j

h = 1 and α = 1
2 :

H∑
h=1

∑
k,j,m,Nk

h>0

√
ι

Nk
h

√
H
(
σA,k
h − (µA,k

h )2
)

≤
H∑

h=1

∑
k,j,m,Nk

h>0

β

√
Hι

Nk
h

≲ βMH
3
2SA
√
ι+ β

√
H2SAT1ι. (85)
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Next, we will bound the first term of Equation (83). Since V R,k
h+1(s) ≥ V̂ R,k

h+1(s), we have√√√√√ σR,k
h −

(
µR,k
h

)2
Nk

h (s
k,j,m
h , ak,j,mh )

≤

√√√√ Jk,j,m
1,h + Jk,j,m

2,h

Nk
h (s

k,j,m
h , ak,j,mh )

, (86)

where:

Jk,j,m
1,h =

∑Nk
h

n=1

(
V R,kn

h+1 (sk
n,jn,mn

h+1 )
)2

Nk
h (s

k,j,m
h , ak,j,mh )

−

∑Nk
h

n=1

(
V̂ R,kn

h+1 (sk
n,jn,mn

h+1 )
)2

Nk
h (s

k,j,m
h , ak,j,mh )

and

Jk,j,m
2,h =

∑Nk
h

n=1

(
V̂ R,kn

h+1 (sk
n,jn,mn

h+1 )
)2

Nk
h (s

k,j,m
h , ak,j,mh )

−

∑Nk
h

n=1 V̂
R,kn

h+1 (sk
n,jn,mn

h+1 )

Nk
h (s

k,j,m
h , ak,j,mh )

2

.

Now we want to bound both Jk,j,m
1,h and Jk,j,m

2,h . Note that

Jk,j,m
1,h =

∑Nk
h

n=1

(
V R,kn

h+1 + V̂ R,kn

h+1

)(
V R,kn

h+1 − V̂ R,kn

h+1

)
(sk

n,jn,mn

h+1 )

Nk
h (s

k,j,m
h , ak,j,mh )

≤
2HΨk

h(s
k,j,m
h , ak,j,mh )

Nk
h (s

k,j,m
h , ak,j,mh )

. (87)

where

Ψk
h(s

k,j,m
h , ak,j,mh ) =

Nk
h∑

n=1

(
V R,kn

h+1 (sk
n,jn,mn

h+1 )− V̂ R,kn

h+1 (sk
n,jn,mn

h+1 )
)
. (88)

For the second term Jk,j,m
2,h , because of Cauchy’s Inequality, we have:

Jk,j,m
2,h =

∑Nk
h

n=1

(
V̂ R,kn

h+1 (sk
n,jn,mn

h+1 )−
∑Nk

h
i=1 V̂ R,ki

h+1 (sk
i,ji,mi

h+1 )

Nk
h (sk,j,m

h ,ak,j,m
h )

)2

Nk
h (s

k,j,m
h , ak,j,mh )

≤ 2
(
Jk,j,m
2,h,1 + Jk,j,m

2,h,2

)
,

where:

Jk,j,m
2,h,1 =

∑Nk
h

n=1

((
V̂ R,kn

h+1 − V ⋆
h+1

)
(sk

n,jn,mn

h+1 ) +

∑Nk
h

i=1

(
V ⋆
h+1−V̂ R,ki

h+1

)
(sk

i,ji,mi

h+1 )

Nk
h (sk,j,m

h ,ak,j,m
h )

)2

Nk
h (s

k,j,m
h , ak,j,mh )

,

and

Jk,j,m
2,h,2 =

∑Nk
h

n=1

(
V ⋆
h+1(s

kn,jn,mn

h+1 )−
∑Nk

h
i=1 V ⋆

h+1(s
ki,ji,mi

h+1 )

Nk
h (sk,j,m

h ,ak,j,m
h )

)2

Nk
h (s

k,j,m
h , ak,j,mh )

=

∑Nk
h

n=1

(
V ⋆
h+1(s

kn,jn,mn

h+1 )
)2

Nk
h (s

k,j,m
h , ak,j,mh )

−

∑Nk
h

n=1 V
⋆
h+1(s

kn,jn,mn

h+1 )

Nk
h (s

k,j,m
h , ak,j,mh )

2

.

Since V ⋆
h+1(s) ≤ V̂ R,kn

h+1 (s) ≤ V ⋆
h+1(s) + β, it holds that:∣∣∣∣∣∣

(
V̂ R,kn

h+1 − V ⋆
h+1

)
(sk

n,jn,mn

h+1 ) +

∑Nk
h

i=1

(
V ⋆
h+1 − V̂ R,ki

h+1

)
(sk

i,ji,mi

h+1 )

Nk
h (s

k,j,m
h , ak,j,mh )

∣∣∣∣∣∣
≤
∣∣∣(V̂ R,kn

h+1 − V ⋆
h+1

)
(sk

n,jn,mn

h+1 )
∣∣∣+
∣∣∣∣∣∣
∑Nk

h
i=1

(
V ⋆
h+1 − V̂ R,ki

h+1

)
(sk

i,ji,mi

h+1 )

Nk
h (s

k,j,m
h , ak,j,mh )

∣∣∣∣∣∣
≤ 2β.
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Therefore, applying this inequality to Jk,j,m
2,h,1 , we have Jk,j,m

2,h,1 ≤ 4β2.

Moreover, we claim that:

Jk,j,m
2,h,2 ≲ Vsk,j,m

h ,ak,j,m
h ,h(V

∗
h+1) +H2

√
ι

Nk
h (s

k,j,m
h , ak,j,mh )

. (89)

This is because (Here we use the shorthand P = Psk,j,m
h ,ak,j,m

h ,h)

Jk,j,m
2,h,2 − Vsk,j,m

h ,ak,j,m
h ,h(V

∗
h+1)

=

∑Nk
h

n=1

(
1
sk

n,jn,mn

h+1
− P

) (
V ∗
h+1

)2
Nk

h (s
k,j,m
h , ak,j,mh )

+
(
PV ∗

h+1

)2 −
∑Nk

h
n=1 V

∗
h+1(s

kn,jn,mn

h+1 )

Nk
h (s

k,j,m
h , ak,j,mh )

2

≤

∑Nk
h

n=1

(
1
sk

n,jn,mn

h+1
− P

) (
V ∗
h+1

)2
Nk

h (s
k,j,m
h , ak,j,mh )

+ 2H

∣∣∣∣∣∣∣
∑Nk

h
n=1

(
1
sk

n,jn,mn

h+1
− P

)
V ∗
h+1

Nk
h (s

k,j,m
h , ak,j,mh )

∣∣∣∣∣∣∣
≲ H2

√
ι

Nk
h (s

k,j,m
h , ak,j,mh )

.

The last inequality is because of the events E6 and E7 in Lemma G.1. Applying results of Equation (87)
and Equation (89) with Jk,j,m

2,h,1 ≤ 4β2 to Equation (86), we reach√√√√√ σR,k
h −

(
µR,k
h

)2
Nk

h (s
k,j,m
h , ak,j,mh )

≲

√
HΨk

h(s
k,j,m
h , ak,j,mh )

Nk
h (s

k,j,m
h , ak,j,mh )

+

√√√√Vsk,j,m
h ,ak,j,m

h ,h(V
∗
h+1)

Nk
h (s

k,j,m
h , ak,j,mh )

+

√
β2

Nk
h (s

k,j,m
h , ak,j,mh )

+
Hι

1
4

(Nk
h (s

k,j,m
h , ak,j,mh ))

3
4

. (90)

Note that by Lemma F.6 with α = 1
2 and 3

4 , we have

H∑
h=1

∑
k,j,m,Nk

h>0

√
β2

Nk
h (s

k,j,m
h , ak,j,mh )

≲ βMHSA+ β
√
HSAT1,

and
H∑

h=1

∑
k,j,m,Nk

h>0

Hι
1
4

(Nk
h (s

k,j,m
h , ak,j,mh ))

3
4

≲ MH2SAι
1
4 +H2(SA)

3
4 (T1ι)

1
4 .

Applying these two inequalities to Equation (90), it holds that

H∑
h=1

∑
k,j,m,Nk

h>0

√√√√√ σR,k
h −

(
µR,k
h

)2
Nk

h (s
k,j,m
h , ak,j,mh )

≲
H∑

h=1

∑
k,j,m,Nk

h>0

√
HΨk

h(s
k,j,m
h , ak,j,mh )

Nk
h (s

k,j,m
h , ak,j,mh )

+

H∑
h=1

∑
k,j,m,Nk

h>0

√√√√Vsk,j,m
h ,ak,j,m

h ,h(V
∗
h+1)

Nk
h (s

k,j,m
h , ak,j,mh )

+MH2SAι
1
4 +H2(SA)

3
4 (T1ι)

1
4 + β

√
HSAT1. (91)

Now we claim the following two conclusions

H∑
h=1

∑
k,j,m,Nk

h>0

√√√√Vsk,j,m
h ,ak,j,m

h ,h(V
∗
h+1)

Nk
h (s

k,j,m
h , ak,j,mh )

≤
√
H2SAT1 +MH4SA

√
ι, (92)
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and

H∑
h=1

∑
k,j,m,Nk

h>0

√
HΨk

h(s
k,j,m
h , ak,j,mh )

Nk
h (s

k,j,m
h , ak,j,mh )

≤
√

1

β
H4SAι

3
2 +MH

7
2SAι

5
4 , (93)

which will be proved later. Combining the results of Equation (85), Equation (91), Equation (92) and
Equation (93), we have

R1 ≲ (1 + β)
√

H2SAT1ι+H2(SAι)
3
4 (T1)

1
4 +

√
1

β
H4SAι2 +MH4SAι

7
4

≲ (1 + β)
√
H2SAT1ι+

√
1

β
H4SAι2 +MH4SAι2.

The last inequality is because H2(SAι)
3
4 (T1)

1
4 ≤
√
H2SAT1ι+H3SAι by AM-GM inequality.

Next, we will prove Equation (92) and Equation (93).

Proof of Equation (92):

Because of Equation (23) and Equation (29) with ωk,j,m
h = 1, α = 1

2 , we know

∑
k,j,m,Nk

h>0

I
[
(sk,j,mh , ak,j,mh ) = (s, a)

]
√
Nk

h (s, a)
≲ M +

√
NK+1

h (s, a). (94)

Then we can derive the following relationship

H∑
h=1

∑
k,j,m,Nk

h>0

√√√√Vsk,j,m
h ,ak,j,m

h ,h(V
∗
h+1)

Nk
h (s

k,j,m
h , ak,j,mh )

=

H∑
h=1

∑
s,a

∑
k,j,m,Nk

h>0

√
Vs,a,h(V ∗

h+1)

Nk
h (s, a)

I
[
(sk,j,mh , ak,j,mh ) = (s, a)

]

≲
H∑

h=1

∑
s,a

√
Vs,a,h(V ∗

h+1)

(
M +

√
NK+1

h (s, a)

)

≲ MH2SA+

H∑
h=1

∑
s,a

√
NK+1

h (s, a)Vs,a,h(V ∗
h+1)

≤MH2SA+
√
HSA

√√√√ H∑
h=1

∑
k,j,m

Vsk,j,m
h ,ak,j,m

h ,h(V
∗
h+1). (95)

The first inequality is because of Equation (94). The second inequality is by Vs,a,h(V
∗
h+1) ≤ H2. The

last inequality is by the Cauchy-Schwarz inequality. Next, we will bound the term in Equation (95).

H∑
h=1

∑
k,j,m

Vsk,j,m
h ,ak,j,m

h ,h(V
∗
h+1)

≤
H∑

h=1

∑
k,j,m

Vsk,j,m
h ,ak,j,m

h ,h(V
πk

h+1) +

H∑
h=1

∑
k,j,m

∣∣∣Vsk,j,m
h ,ak,j,m

h ,h(V
∗
h+1)− Vsk,j,m

h ,ak,j,m
h ,h(V

πk

h+1)
∣∣∣

≲ HT1 +H3ι+

H∑
h=1

∑
k,j,m

∣∣∣Vsk,j,m
h ,ak,j,m

h ,h(V
∗
h+1)− Vsk,j,m

h ,ak,j,m
h ,h(V

πk

h+1)
∣∣∣ . (96)
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The last inequality follows directly from E8 in Lemma G.1. The second term on the right-hand side
of Equation (96) can be bounded as follows (Here we use the shorthand P = Psk,j,m

h ,ak,j,m
h ,h)

H∑
h=1

∑
k,j,m

∣∣∣Vsk,j,m
h ,ak,j,m

h ,h(V
∗
h+1)− Vsk,j,m

h ,ak,j,m
h ,h(V

πk

h+1)
∣∣∣

=

H∑
h=1

∑
k,j,m

∣∣∣P(V ⋆
h+1)

2 − P(V πk

h+1)
2 − (PV ⋆

h+1)
2 + (PV πk

h+1)
2
∣∣∣

≤
H∑

h=1

∑
k,j,m

{
P
(
(V ⋆

h+1 − V πk

h+1)(V
⋆
h+1 + V πk

h+1)
)
+
∣∣∣(PV ⋆

h+1)
2 − (PV πk

h+1)
2
∣∣∣ }

≤ 4H

H∑
h=1

∑
k,j,m

P
(
V ⋆
h+1 − V πk

h+1

)

= 4H

H∑
h=1

∑
k,j,m

{
V ⋆
h+1(s

k,j,m
h+1 )− V πk

h+1(s
k,j,m
h+1 ) +

(
P− 1sk,j,m

h+1

)
(V ⋆

h+1 − V πk

h+1)
}

(i)

≲ H

H∑
h=1

∑
k,j,m

(
V U,k
h+1 − V πk

h+1

)
(sk,j,mh+1 ) +H2

√
T1ι

(ii)

≲ H4
√

SAT1ι+MH6SA
√
ι, (97)

Here, (i) is because V U,k
h+1 ≥ V k

h+1 ≥ V ∗
h+1 by Lemma H.1 and the event E9 in Lemma G.1. (ii)

follows the event E10 in Lemma G.1. Therefore, applying Equation (97) to Equation (96), we reach
H∑

h=1

∑
k,j,m

Vsk,j,m
h ,ak,j,m

h ,h(V
∗
h+1) ≲ HT1 +MH7SAι. (98)

Here we use H4
√
SAT1ι ≤ HT1 +MH7SAι by AM-GM inequality. Applying Equation (98) to

Equation (95), we finish the proof of Equation (92):

H∑
h=1

∑
k,j,m,Nk

h>0

√√√√Vsk,j,m
h ,ak,j,m

h ,h(V
∗
h+1)

Nk
h (s

k,j,m
h , ak,j,mh )

≲ MH2SA+
√
HSA

√
HT1 +MH7SAι

≤
√
H2SAT1 +MH4SA

√
ι.

Proof of Equation (93):

First, by Equation (24) with ωk,j,m
h = 1 and α = 1

2 and Equation (32), we know

∑
s,a

K∑
k=1

nk
h(s, a)√
Nk

h (s, a)
I
[
0 < Nk

h (s, a) < M
]
≲ MSA. (99)

K∑
k=1

nk
h(s, a)

Nk
h (s, a)

I
[
Nk

h (s, a) ≥M
]
≲ log(T1). (100)

Because Ψk
h(s, a) ≤ HNk

h (s, a), it holds that

H∑
h=1

∑
k,j,m,Nk

h>0

√
HΨk

h(s
k,j,m
h , ak,j,mh )

Nk
h (s

k,j,m
h , ak,j,mh )

I
[
0 < Nk

h (s
k,j,m
h , ak,j,mh ) < M

]

≤ H

H∑
h=1

∑
s,a

K∑
k=1

nk
h(s, a)√
Nk

h (s, a)
I
[
0 < Nk

h (s, a) < M
]
≲ MH2SA. (101)
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The last inequality is because of Equation (99). By Equation (100), We also have

H∑
h=1

∑
k,j,m,Nk

h>0

√
HΨk

h(s
k,j,m
h , ak,j,mh )

Nk
h (s

k,j,m
h , ak,j,mh )

I
[
Nk

h (s
k,j,m
h , ak,j,mh ) ≥M

]

=

H∑
h=1

∑
s,a

∑
k,j,m,Nk

h>0

√
HΨk

h(s, a)

Nk
h (s, a)

I
[
Nk

h (s, a) ≥M, (sk,j,mh , ak,j,mh ) = (s, a)
]

≤
H∑

h=1

∑
s,a

√
HΨK

h (s, a)

K∑
k=1

nk
h(s, a)

Nk
h (s, a)

I
[
Nk

h (s, a) ≥M
]

≲ log(T1)

H∑
h=1

∑
s,a

√
HΨK

h (s, a)

≤ ι

√√√√SAH2

H∑
h=1

∑
s,a

ΨK
h (s, a). (102)

Here, the first inequality is because of the monotonically increasing property of Ψk
h(s, a) with respect

to k (see its definition in Equation (88)) as guaranteed by V R,k
h+1(s) ≥ V̂ R,k

h+1(s). The last inequality is
by the Cauchy-Schwarz inequality. To continue, by Lemma H.6, we reach

H∑
h=1

∑
s,a

ΨK
h (s, a)

=

H∑
h=1

∑
k,j,m

(
V R,k
h+1 − V̂ R,k

h+1

)
(sk,j,mh+1 )

≤
H∑

h=1

∑
k,j,m

(
V k
h+1 − V L,k

h+1

)
(sk,j,mh+1 ) · I

[(
V k
h+1 − V L,k

h+1

)
(sk,j,mh+1 ) > β

]
(i)

≲
H∑

h=1

∑
k,j,m

(
Qk

h+1 −QL,k
h+1

)
(sk,j,mh+1 , ak,j,mh+1 ) · I

[(
Qk

h+1 −QL,k
h+1

)
(sk,j,mh+1 , ak,j,mh+1 ) > β

]
≲

H6SAι

β
+MH5SA

√
ι. (103)

Here, (i) is because

Qk
h+1(s

k,j,m
h+1 , ak,j,mh+1 ) = V k

h+1(s
k,j,m
h+1 ), QL,k

h+1(s
k,j,m
h+1 , ak,j,mh+1 ) ≤ V L,k

h+1(s
k,j,m
h+1 ).

The last inequality is by Lemma H.4.

By applying Equation (103) to Equation (102), and combining the result of Equation (101), we
complete the proof of Equation (93).

Lemma I.2. Under the event
⋂14

i=1 Ei in Lemma G.1, we have

R2 ≲ β
√

H2SAT1ι+MH3SAι2.

Proof. By event E14 in Lemma G.1, we have

R2 ≲ β

H∑
h=1

∑
k,j,m,Nk

h>0

√
Hι

Nk
h

+

H∑
h=1

∑
k,j,m,Nk

h>0

βHι

Nk
h

≲ β
√
Hι(MHSA+

√
HSAT1) + βHι(MHSA+HSAι)

≲ β
√

H2SAT1ι+MH3SAι2.

The second inequality is by Lemma F.6 with α = 1
2 and α = 1,
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Lemma I.3. Under the event
⋂14

i=1 Ei in Lemma G.1, we have

R3 ≲ (1 + β)
√
H2SAT1ι2 +

H6SAι2

β
+MH5SAι2.

Proof. We can decompose R3 into five terms:

R3 =

H∑
h=1

ch−1
H

∑
k,j,m,Nk

h>0

Nk
h∑

n=1

η̃
Nk

h
n

1

Nkn+1
h

Nkn+1
h∑
i=1

(
V R,ki

h (sk
i,ji,mi

h+1 )− Psk,j,m
h ,ak,j,m

h ,hV̂
R,kn

h+1

)
= R3,1 +R3,2 +R3,3 +R3,4 +R3,5,

where

R3,1 =

H∑
h=1

ch−1
H

∑
k,j,m,Nk

h>0

Nk
h∑

n=1

η̃
Nk

h
n

1

Nkn+1
h

Nkn+1
h∑
i=1

(
1
sk

i,ji,mi

h+1

− Psk,j,m
h ,ak,j,m

h ,h

)
(V̂ R,ki

h+1 − V ∗
h+1),

R3,2 =
H∑

h=1

ch−1
H

∑
k,j,m,Nk

h>0

Nk
h∑

n=1

η̃
Nk

h
n

1

Nkn+1
h

Nkn+1
h∑
i=1

(
1
sk

i,ji,mi

h+1

− Psk,j,m
h ,ak,j,m

h ,h

)
V ∗
h+1,

R3,3 =

H∑
h=1

ch−1
H

∑
k,j,m,Nk

h>0

Nk
h∑

n=1

η̃
Nk

h
n

1

Nkn+1
h

Nkn+1
h∑
i=1

(
V R,ki

h+1 (s
ki,ji,mi

h+1 )− V̂ R,ki

h+1 (s
ki,ji,mi

h+1 )
)
,

R3,4 =

H∑
h=1

ch−1
H

∑
k,j,m,Nk

h>0

Nk
h∑

n=1

η̃
Nk

h
n

1

Nkn+1
h

Nkn+1
h∑
i=1

Psk,j,m
h ,ak,j,m

h ,h

(
V̂ R,ki

h+1 − V R,K+1
h+1

)
,

and

R3,5 =

H∑
h=1

ch−1
H

∑
k,j,m,Nk

h>0

Nk
h∑

n=1

η̃
Nk

h
n Psk,j,m

h ,ak,j,m
h ,h

(
V R,K+1
h+1 − V̂ R,kn

h+1

)
.

Next, we will bound these five terms respectively:

Upper bound of R3,1:

According to the event E12 in Lemma G.1, we know

Nk
h∑

n=1

η̃
Nk

h
n

1

Nkn+1
h

Nkn+1
h∑
i=1

(
1
sk

i,ji,mi

h+1

− Psk,j,m
h ,ak,j,m

h ,h

)(
V̂ R,ki

h+1 − V ∗
h+1

)

≤
Nk

h∑
n=1

βη̃
Nk

h
n

√
2ι√

Nkn+1
h

(i)

≲ β
√
ι

Nk
h∑

n=1

η
Nk

h
n√
n

(ii)

≲
β
√
ι√

Nk
h

. (104)

Here, (i) is because η̃
Nk

h
n ≤ exp(1/H)η

Nk
h

n by (c) of Lemma F.3 and Nkn+1
h ≥ n by the definition of

kn. (ii) directly follows (a) in Lemma F.2 with α = 1
2 . Therefore, by Lemma F.6 with α = 1

2 ,

R3,1 ≲ β
√
ι

H∑
h=1

∑
k,j,m,Nk

h>0

1√
Nk

h

≤ βMHSA
√
ι+ β

√
HSAT1ι. (105)
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Upper bound of R3,2:

According to the event E13 in Lemma G.1, we know

Nk
h∑

n=1

η̃
Nk

h
n

1

Nkn+1
h

Nkn+1
h∑
i=1

(
1
sk

i,ji,mi

h+1

− Psk,j,m
h ,ak,j,m

h ,h

)
V ∗
h+1

≤
Nk

h∑
n=1

η̃
Nk

h
n

4

√√√√Vsk,j,m
h ,ak,j,m

h ,h(V
∗
h+1)ι

Nkn+1
h

+
7Hι

Nkn+1
h


(i)

≲

Nk
h∑

n=1

η
Nk

h
n√
n

√Vsk,j,m
h ,ak,j,m

h ,h(V
∗
h+1)ι+Hι

Nk
h∑

n=1

η
Nk

h
n

n

(ii)

≲

√
Vsk,j,m

h ,ak,j,m
h ,h(V

∗
h+1)ι

Nk
h

+
Hι

Nk
h

. (106)

Here, (i) is because η̃N
k
h

n ≤ exp(1/H)η
Nk

h
n by (c) of Lemma F.3, Nkn+1

h ≥ n by the definition of kn.
(ii) directly follows (a) in Lemma F.2 with α = 1

2 and α = 1. Then according to the definition of
R3,2, we have

R3,2 ≲
H∑

h=1

∑
k,j,m,Nk

h>0

√
Vsk,j,m

h ,ak,j,m
h ,h(V

∗
h+1)ι

Nk
h

+Hι

H∑
h=1

∑
k,j,m,Nk

h>0

1

Nk
h

. (107)

For the first term in Equation (112), by Cauchy-Schwarz inequality, we have

H∑
h=1

∑
k,j,m,Nk

h>0

√
Vsk,j,m

h ,ak,j,m
h ,h(V

∗
h+1)ι

Nk
h

=

H∑
h=1

∑
k,j,m

√
Vsk,j,m

h ,ak,j,m
h ,h(V

∗
h+1)ι

Nk
h

(
I
[
0 < Nk

h < M
]
+ I
[
Nk

h ≥M
])

≤

√√√√ H∑
h=1

∑
k,j,m

I
[
0 < Nk

h < M
]

Nk
h

·

√√√√ H∑
h=1

∑
k,j,m

Vsk,j,m
h ,ak,j,m

h ,h(V
∗
h+1)ιI

[
0 < Nk

h < M
]

+

√√√√ H∑
h=1

∑
k,j,m

I
[
Nk

h ≥M
]

Nk
h

·

√√√√ H∑
h=1

∑
k,j,m

Vsk,j,m
h ,ak,j,m

h ,h(V
∗
h+1)ιI

[
Nk

h ≥M
]

≲
√
MHSA ·

√√√√H2ι

H∑
h=1

∑
k,j,m

I
[
0 < Nk

h < M
]
+
√
HSAι ·

√
HT1ι+MH7SAι2. (108)

Here, the last inequality is because Vsk,j,m
h ,ak,j,m

h ,h(V
∗
h+1) ≤ H2,

H∑
h=1

∑
k,j,m

I
[
0 < Nk

h < M
]

Nk
h

≲ MHSA,

H∑
h=1

∑
k,j,m

I
[
Nk

h ≥M
]

Nk
h

≲ HSAι

by Equation (24) and Equation (32), and

H∑
h=1

∑
k,j,m

Vsk,j,m
h ,ak,j,m

h ,h(V
∗
h+1) ≲ HT1 +MH7SAι.
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by Equation (98). Next, we will bound the term
∑H

h=1

∑
k,j,m I

[
0 < Nk

h < M
]
. Let k0(s, a) =

max{k | 1 ≤ k ≤ K,Nk
h (s, a) < M}. Then it holds that

H∑
h=1

∑
k,j,m

I
[
0 < Nk

h < M
]

=

H∑
h=1

∑
s,a

∑
k,j,m

I
[
0 < Nk

h (s, a) < M, (sk,j,mh , ak,j,mh ) = (s, a)
]

=

H∑
h=1

∑
s,a

k0(s,a)∑
k=1

∑
j,m

I
[
(sk,j,mh , ak,j,mh ) = (s, a)

]

=

H∑
h=1

∑
s,a

Nk0+1
h (s, a) ≲ MHSA (109)

The last inequality is because Nk0

h (s, a) ≤M and nk0

h (s, a) ≤M by (a) of Lemma F.1. Applying
this inequality to Equation (108), we can bound the first term in Equation (107):

H∑
h=1

∑
k,j,m,Nk

h>0

√
Vsk,j,m

h ,ak,j,m
h ,h(V

∗
h+1)ι

Nk
h

≲
√

H2SAT1ι2 +MH4SAι2. (110)

For the second term in Equation (107), according to Lemma F.6 with α = 1, we reach

Hι

H∑
h=1

∑
k,j,m,Nk

h>0

1

Nk
h

≲ MH2SAι+H2SAι2 ≲ MH4SAι2. (111)

Applying the results of Equation (110) and Equation (111) to Equation (107), we can bound R3,2:

R3,2 ≲
√
H2SAT1ι2 +MH4SAι2. (112)

Upper bound of R3,3 and R3,4:

We first substitute the terms (V R,ki

h+1 − V̂ R,ki

h+1 )(s
ki,ji,mi

h+1 ) in R3,3 or Psk,j,m
h ,ak,j,m

h ,h

∣∣∣V̂ R,ki

h+1 − V R,K+1
h+1

∣∣∣
in R3,4 by W ki

h+1(s
k,j,m
h , ak,j,mh ) and deal with the following general structure:

H∑
h=1

ch−1
H

∑
k,j,m,Nk

h>0

Nk
h∑

n=1

η̃
Nk

h
n

1

Nkn+1
h

Nkn+1
h∑
i=1

W ki

h+1(s
k,j,m
h , ak,j,mh ).

Here, 0 ≤ W ki

h+1(s
k,j,m
h , ak,j,mh ) ≤ H because H ≥ V R,ki

h+1 (s
ki,ji,mi

h+1 ) ≥ V̂ R,ki

h+1 (s
ki,ji,mi

h+1 ). Since

W ki

h+1(s
k,j,m
h , ak,j,mh ) ≤ H and

∑Nk
h

n=1 η̃
Nk

h
n ≤ 1 by (b) of Lemma F.3, we first note that when

0 < Nk
h (s

k,j,m
h , ak,j,mh ) < M ,

H∑
h=1

ch−1
H

∑
k,j,m

Nk
h∑

n=1

η̃
Nk

h
n

1

Nkn+1
h

Nkn+1
h∑
i=1

W ki

h+1(s
k,j,m
h , ak,j,mh )I

[
0 < Nk

h < M
]

≤
H∑

h=1

ch−1
H

∑
k,j,m

Nk
h∑

n=1

η̃
Nk

h
n

1

Nkn+1
h

Nkn+1
h∑
i=1

HI
[
0 < Nk

h < M
]

≲
H∑

h=1

∑
k,j,m

HI
[
0 < Nk

h < M
]
≲ MH2SA. (113)
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The last inequality is by Equation (109). Next, we consider the case when Nk
h (s

k,j,m
h , ak,j,mh ) ≥M :

H∑
h=1

ch−1
H

∑
k,j,m

Nk
h∑

n=1

η̃
Nk

h
n

1

Nkn+1
h

Nkn+1
h∑
i=1

W ki

h+1(s
k,j,m
h , ak,j,mh )I

[
Nk

h ≥M
]

=

H∑
h=1

∑
k′,j′,m′

W k′

h+1(s
k,j,m
h , ak,j,mh )×

ch−1
H

∑
k,j,m

Nk
h∑

n=1

η̃
Nk

h
n

I
[
Nk

h ≥M
]

Nkn+1
h

Nkn+1
h∑
i=1

I
[
(ki, ji,mi) = (k′, j′,m′)

] . (114)

By the definitions of ki, ji and mi, for any given triple (k′, j′,m′),

Nkn+1
h∑
i=1

I
[
(ki, ji,mi) = (k′, j′,m′)

]
= 1

if and only if

(sk,j,mh , ak,j,mh ) = (sk
′,j′,m′

h , ak
′,j′,m′

h ) and Nkn+1
h ≥ i′(k′, j′,m′),

where i′(k′, j′,m′) is the global visiting number for (sk
′,j′,m′

h , ak
′,j′,m′

h , h) at (k′, j′,m′) with the
order “round first, episode second, agent third”. When there is no ambiguity, we will use i′ for short.
Therefore, for the coefficient of W k′

h+1(s
k,j,m
h , ak,j,mh ) in Equation (114), we can derive the following

upper bound:

ch−1
H

∑
k,j,m

Nk
h∑

n=1

η̃
Nk

h
n

I
[
Nk

h ≥M
]

Nkn+1
h

Nkn+1
h∑
i=1

I
[
(ki, ji,mi) = (k′, j′,m′)

]

≤ ch−1
H

∑
k,j,m

I
[
(sk,j,mh , ak,j,mh ) = (sk

′,j′,m′

h , ak
′,j′,m′

h ), Nk
h ≥M

] Nk
h∑

n=1

η̃
Nk

h
n

1

Nkn+1
h

(i)

≲
∑
k,j,m

I
[
(sk,j,mh , ak,j,mh ) = (sk

′,j′,m′

h , ak
′,j′,m′

h ), Nk
h ≥M

] 1

Nk
h

=

K∑
k=1

nk
h(s

k′,j′,m′

h , ak
′,j′,m′

h )

Nk
h (s

k′,j′,m′

h , ak
′,j′,m′

h )
I
[
Nk

h (s
k′,j′,m′

h , ak
′,j′,m′

h ) ≥M
]

(ii)

≲ ι. (115)

Here, (i) is because
Nk

h∑
n=1

η̃
Nk

h
n

1

Nkn+1
h

≲
Nk

h∑
n=1

η
Nk

h
n

n
≲

1

Nk
h

,

where the first inequality is because η̃
Nk

h
n ≲ η

Nk
h

n by (c) of Lemma F.3 and the last inequal-
ity is by (a) of Lemma F.2. (ii) is because of Equation (32). When the coefficient of
W k′

h+1(s
k,j,m
h , ak,j,mh ) in Equation (114) is non-zero, we have (sk,j,mh , ak,j,mh ) = (sk

′,j′,m′

h , ak
′,j′,m′

h )

and thus W k′

h+1(s
k,j,m
h , ak,j,mh ) = W k′

h+1(s
k′,j′,m′

h , ak
′,j′,m′

h ). Therefore, by applying Equation (115)
to Equation (114), we know that

H∑
h=1

ch−1
H

∑
k,j,m

Nk
h∑

n=1

η̃
Nk

h
n

1

Nkn+1
h

Nkn+1
h∑
i=1

W ki

h+1(s
k,j,m
h , ak,j,mh )I

[
Nk

h ≥M
]

≲ ι

H∑
h=1

∑
k′,j′,m′

W k′

h+1(s
k′,j′,m′

h , ak
′,j′,m′

h ) (116)
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Next, we will bound the term
∑H

h=1

∑
k,j,m W k

h+1(s
k,j,m
h , ak,j,mh ). By Lemma H.6, we have

H∑
h=1

∑
k,j,m

(
V R,k
h+1(s

k,j,m
h+1 )− V̂ R,k

h+1(s
k,j,m
h+1 )

)

≤
H∑

h=1

∑
k,j,m

(
V k
h+1(s

k,j,m
h+1 )− V L,k

h+1(s
k,j,m
h+1 )

)
I
[
V k
h+1(s

k,j,m
h+1 )− V L,k

h+1(s
k,j,m
h+1 ) > β

]
(i)

≤
H∑

h=1

∑
k,j,m

(
Qk

h+1 −QL,k
h+1

)
(sk,j,mh+1 , ak,j,mh+1 )I

[
(Qk

h+1 −QL,k
h+1)(s

k,j,m
h+1 , ak,j,mh+1 ) > β

]
≲

H6SAι

β
+MH5SA

√
ι. (117)

Here, (i) is because

Qk
h+1(s

k,j,m
h+1 , ak,j,mh+1 ) = V k

h+1(s
k,j,m
h+1 ), QL,k

h+1(s
k,j,m
h+1 , ak,j,mh+1 ) ≤ V L,k

h+1(s
k,j,m
h+1 ).

The last inequality is by Lemma H.4. Similarly, by Lemma H.6, we also have

H∑
h=1

∑
k,j,m

Psk,j,m
h ,ak,j,m

h ,h

∣∣∣V̂ R,k
h+1 − V R,K+1

h+1

∣∣∣
≤

H∑
h=1

∑
k,j,m

Psk,j,m
h ,ak,j,m

h ,h

{(
V k
h+1 − V L,k

h+1

)
(sk,j,mh+1 )I

[
V k
h+1(s

k,j,m
h+1 )− V L,k

h+1(s
k,j,m
h+1 ) > β

]}
(i)

≤
H∑

h=1

∑
k,j,m

(
V k
h+1(s

k,j,m
h+1 )− V L,k

h+1(s
k,j,m
h+1 )

)
I
[
V k
h+1(s

k,j,m
h+1 )− V L,k

h+1(s
k,j,m
h+1 ) > β

]
+Hι

≤
H∑

h=1

∑
k,j,m

(
Qk

h+1 −QL,k
h+1

)
(sk,j,mh+1 , ak,j,mh+1 )I

[
(Qk

h+1 −QL,k
h+1)(s

k,j,m
h+1 , ak,j,mh+1 ) > β

]
+Hι

≲
H6SAι

β
+MH5SA

√
ι. (118)

Here, (i) is because of the event E11 of Lemma G.1. Combining the results of Equation (117) and
Equation (118), we conclude that

H∑
h=1

∑
k,j,m

W k
h+1(s

k,j,m
h , ak,j,mh ) ≲

H6SAι

β
+MH5SA

√
ι.

Back to Equation (116), we have the following conclusion:

H∑
h=1

ch−1
H

∑
k,j,m

Nk
h∑

n=1

η̃
Nk

h
n

1

Nkn+1
h

Nkn+1
h∑
i=1

W ki

h+1(s
k,j,m
h , ak,j,mh )I

[
Nk

h ≥M
]

≲
H6SAι2

β
+MH5SAι2.

Together with Equation (113), we reach that:

H∑
h=1

ch−1
H

∑
k,j,m,Nk

h>0

Nk
h∑

n=1

η̃
Nk

h
n

Nkn+1
h

Nkn+1
h∑
i=1

W ki

h+1(s
k,j,m
h , ak,j,mh ) ≲

H6SAι2

β
+MH5SAι2 (119)

Therefore, we can bound R3,3, R3,4:

R3,3, R3,4 ≲
H6SAι2

β
+MH5SAι2. (120)
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Upper bound of R3,5:

R3,5 =

H∑
h=1

ch−1
H

∑
k,j,m,Nk

h>0

Nk
h∑

n=1

η̃
Nk

h
n Psk,j,m

h ,ak,j,m
h ,h

(
V R,K+1
h+1 − V̂ R,kn

h+1

)

≤
H∑

h=1

ch−1
H

∑
k,j,m,Nk

h>0

Nk
h∑

n=1

η̃
Nk

h
n Psk,j,m

h ,ak,j,m
h ,h

∣∣∣V R,K+1
h+1 − V̂ R,kn

h+1

∣∣∣ .
Since

∣∣∣V R,K+1
h+1 (s)− V̂ R,kn

h+1 (s)
∣∣∣ ≤ H and

∑Nk
h

n=1 η̃
Nk

h
n ≤ 1 by (b) of Lemma F.3, we first note that

when 0 < Nk
h (s

k,j,m
h , ak,j,mh ) < i0,

H∑
h=1

ch−1
H

∑
k,j,m

Nk
h∑

n=1

η̃
Nk

h
n Psk,j,m

h ,ak,j,m
h ,h

∣∣∣V R,K+1
h+1 − V̂ R,kn

h+1

∣∣∣ I [0 < Nk
h < i0

]
≲

H∑
h=1

∑
k,j,m

HI
[
0 < Nk

h < i0
]

≲ MH4SA. (121)

The last inequality is because∑
k,j,m

I
[
0 < Nk

h (s
k,j,m
h , ak,j,mh ) < i0

]
≲ MH2SA, (122)

by Equation (74). When Nk
h (s

k,j,m
h , ak,j,mh ) ≥ i0, we have:

H∑
h=1

ch−1
H

∑
k,j,m

Nk
h∑

n=1

η̃
Nk

h
n Psk,j,m

h ,ak,j,m
h ,h

∣∣∣V R,K+1
h+1 − V̂ R,kn

h+1

∣∣∣ I [Nk
h ≥ i0

]
=

H∑
h=1

∑
k′,j′,m′

Psk,j,m
h ,ak,j,m

h ,h

∣∣∣V R,K+1
h+1 − V̂ R,k′

h+1

∣∣∣×
ch−1

H

∑
k,j,m

Nk
h∑

n=1

η̃
Nk

h
n I

[
Nk

h ≥ i0
]
I [(kn, jn,mn) = (k′, j′,m′)]


≲

H∑
h=1

∑
k′,j′,m′

P
sk

′,j′,m′
h ,ak′,j′,m′

h ,h

∣∣∣V R,K+1
h+1 − V̂ R,k′

h+1

∣∣∣
≲

H6SAι

β
+MH5SA

√
ι. (123)

The first inequality is by Equation (60) and the last inequality is because of Equation (118). Together
with Equation (121), we can bound R3,5:

R3,5 ≤
H∑

h=1

ch−1
H

∑
k,j,m,Nk

h>0

Nk
h∑

n=1

η̃
Nk

h
n Psk,j,m

h ,ak,j,m
h ,h

∣∣∣V R,K+1
h+1 − V̂ R,kn

h+1

∣∣∣
≲

H6SAι

β
+MH5SA

√
ι. (124)

Combining Equations (105), (112), (120) and (124), since β ≤ H , we can bound R3:

R3 ≲ (1 + β)
√
H2SAT1ι2 +

H6SAι2

β
+MH5SAι2.
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J Proof of Worst-Case Switching/Communication Cost (Theorem 4.2 and
Theorem 4.4)

Proof. We first prove the Theorem 4.4. When T = T̂ /M ≤ 3H2(H + 1)SA, the number of rounds
k is no more than T̂ ≤ 3MH2(H + 1)SA. Next, we consider the case when T ≥ 3H2(H + 1)SA.

Since each round terminates when some triple (s, a, h) satisfies the trigger condition (see Equa-
tion (3)), the total number of communication rounds is upper bounded by the total number of times
the trigger condition is satisfied across all triples (s, a, h). In the following proof, we provide an
upper bound on the total number of such trigger events.

Let th(s, a) denote the number of times the trigger condition is satisfied by the triple (s, a, h).
According to Equation (3), each time the trigger condition is satisfied during any round k, the number

of visits to (s, a, h) increases by at least 1 when Nk
h < MH(H + 1)

△
= i′0, and increases by at least

a factor of 1 + 1
2MH(H+1) when Nk

h ≥ i′0. Define the set C = {(s, a, h) | th(s, a) ≥ i′0} . Then for
every (s, a, h) ∈ C, after the trigger condition has been satisfied i′0 times, the number of visits to
(s, a, h) is at least i′0. Therefore, for (s, a, h) ∈ C, we have:

(
1 +

1

2MH(H + 1)

)th(s,a)−i′0
≤

NK+1
h (s, a)

i′0
.

and thus

th(s, a) ≤
log(NK+1

h (s, a)/i′0)

log
(
1 + 1

2MH(H+1)

) + i′0.

If C = ∅, then
H∑

h=1

∑
s,a

th(s, a) =
∑

(s,a,h)/∈C

th(s, a) ≤ HSAi′0 ≤MH2(H + 1)SA.

Otherwise, the total number of trigger times is no more than
H∑

h=1

∑
s,a

th(s, a) =
∑

(s,a,h)/∈C

th(s, a) +
∑

(s,a,h)∈C

th(s, a)

≤ 2MH2(H + 1)SA+
∑

(s,a,h)∈C

log(NK+1
h (s, a)/i0)

log
(
1 + 1

2MH(H+1)

)
≤ 2MH2(H + 1)SA+ |C|

log( T
H(H+1)|C| )

log
(
1 + 1

2MH(H+1)

)
≤ 2MH2(H + 1)SA+HSA

log
(

T
H2(H+1)SA

)
log
(
1 + 1

2MH(H+1)

)
≤ 2MH2(H + 1)SA+ 4MH2(H + 1)SA log

( T

H2(H + 1)SA

)
.

The first inequality is because for (s, a, h) /∈ C, th(s, a) ≤ i′0. The second inequality follows from
Jensen’s inequality. The second last inequality is because the term in the previous line increases with
|C|when T ≥ 3H2(H+1)SA and 1 ≤ |C| ≤ HSA. The last inequality is because log(1+x) ≥ x/2
for x ∈ (0, 1), which applies to x = 1

2MH(H+1) .

For M = 1, the switching cost is no more than the number of communication rounds. Then we also
finish the proof of Theorem 4.2.

K Proof of Gap-Dependent Regret (Theorem 4.5 and Theorem 4.8)

K.1 Proof Sketch

We now prove the gap-dependent regret upper bound under the event
⋂14

i=1 Ei in Lemma G.1.
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To begin, we point out that(
V ∗
1 − V πk

1

)
(sk,j,m1 ) = V ∗

1 (s
k,j,m
1 )−Q∗

1(s
k,j,m
1 , ak,j,m1 ) +

(
Q∗

1 −Qπk

1

)
(sk,j,m1 , ak,j,m1 )

(i)
= ∆1(s

k,j,m
1 , ak,j,m1 ) + E

[(
V ∗
2 − V πk

2

)
(sk,j,m2 ) | sk,j,m2 ∼ P1(· | sk,j,m1 , ak,j,m1 )

]
= E

[
∆1(s

k,j,m
1 , ak,j,m1 ) + ∆2(s

k,j,m
2 , ak,j,m2 ) | sk,j,m2 ∼ P1(· | sk,j,m1 , ak,j,m1 )

]
+ E

[(
Q∗

2 −Qπk

2

)
(sk,j,m2 , ak,j,m2 ) | sk,j,m2 ∼ P1(· | sk,j,m1 , ak,j,m1 )

]
= · · · = E

[
H∑

h=1

∆h

(
sk,j,mh , ak,j,mh

) ∣∣∣∣∣sk,j,mh+1 ∼ Ph(· | sk,j,mh , ak,j,mh ), h ∈ [H − 1]

]
.

Here (i) is by the Bellman Equation and Bellman Optimality Equation (1). Therefore, we can derive
the following expression of the expected regret

E (Regret(T )) = E
[ ∑
k,j,m

(
V ∗
1 − V πk

1

)
(sk,j,m1 )

]
= E

[ ∑
k,j,m

H∑
h=1

∆h(s
k,j,m
h , ak,j,mh )

]
.

Note that we have
Qk

h(s
k,j,m
h , ak,j,mh ) = max

a
{Qk

h(s
k,j,m
h , a)} ≥ max

a
{Q∗

h(s
k,j,m
h , a)} = V ∗

h (s
k,j,m
h ).

Thus, if we define clip[x | y] := x · I[x ≥ y], then for any round-step pair (k, h),

∆h(s
k,j,m
h , ak,j,mh ) = clip

[
V ∗
h (s

k,j,m
h )−Q∗

h(s
k,j,m
h , ak,j,mh ) | ∆min

]
≤ clip

[(
Qk

h −Q∗
h

)
(sk,j,mh , ak,j,mh ) | ∆min

]
.

which further implies

E (Regret(T )) ≤ E
[ H∑
h=1

∑
k,j,m

clip
[(
Qk

h −Q∗
h

)
(sk,j,mh , ak,j,mh ) | ∆min

] ]
.

Let E =
⋂14

i=1 Ei and δ = 1/14T1, we have:

E (Regret(T )) ≤ E
[ H∑
h=1

∑
k,j,m

clip

[(
Qk

h −Q∗
h

)
(sk,j,mh , ak,j,mh ) | ∆min

]∣∣∣∣E]P(E)
+ E

[ H∑
h=1

∑
k,j,m

clip

[(
Qk

h −Q∗
h

)
(sk,j,mh , ak,j,mh ) | ∆min

]∣∣∣∣Ec]P(Ec)
≤ O

((
Q⋆ + β2H

)
H3SAι

∆min
+

H7SAι2

β
+MH6SAι2

)
.

The last inequality is because under the event E , by Lemma K.2, we have
H∑

h=1

∑
k,j,m

clip
[(
Qk

h −Q∗
h

)
(sk,j,mh , ak,j,mh ) | ∆min

]
≤ O

(
(Q⋆ + β2H)H3SAι

∆min
+

H7SAι2

β
+MH6SAι2

)
.

and under the event Ec, we have
H∑

h=1

∑
k,j,m

clip
[
(Qk

h −Q∗
h)(s

k,j,m
h , ak,j,mh ) | ∆min

]
≤ HT1.

Since ι = log(2SAT1/δ) = log(2SAT 2
1 ), by (b) of Lemma F.1, we have ι ≤ O (log(MSAT )).

Therefore, let ι2 = log(MSAT ), we have

E (Regret(T )) ≤ O

((
Q⋆ + β2H

)
H3SAι2

∆min
+

H7SAι22
β

+MH6SAι22

)
.
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K.2 Auxiliary Lemmas

Lemma K.1. Under the event
⋂14

i=1 Ei in Lemma G.1, for FedQ-EarlySettled-LowCost algorithm
and any non-negative weight sequence {ωk,j,m

h }h,k,j,m, it holds for any h ∈ [H] that:∑
k,j,m

ωk,j,m
h

(
Qk

h −Q∗
h

)
(sk,j,mh , ak,j,mh ) ≲ H

√
(Q∗ + β2H)SA∥ω∥∞,h∥ω∥1,hι
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3
4 (∥ω∥1,h)

1
4 +
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∑
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h′ (h)Zk,j,m
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h ,

ωk,j,m
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∑
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h′ (h)I
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i I

[
(ki, ji,mi) = (k, j,m)

]
,

and
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h′ = η

Nk
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0 H +
H2ι+

√
HΨk

h′ι

Nk
h′

+HI
[
0 < Nk

h′ < i0
]

+
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Nk
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4

(Nk
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3
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. (125)

Here Nk′

h′ , Nk
h′ is the abbreviation for Nk′

h′ (s
k′,j′,m′

h′ , ak
′,j′,m′

h′ ), Nk
h′(s

k,j,m
h′ , ak,j,mh′ ), respectively.

Proof. To begin with, since Qk
h(s

k,j,m
h , ak,j,mh ) ≤ QR,k

h (sk,j,mh , ak,j,mh ), by Equation (77), we have
(Here we use the shorthand P = Psk,j,m

h ,ak,j,m
h ,h)
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h
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h
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≤ η
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h
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The last inequality is by Equation (79). In the last inequality, we decompose the second term in
Equation (126) into the last five terms in Equation (127). We then claim the following five conclusions:
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Nk

h
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(
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)
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,
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+
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Here, the first conclusion is because 0 ≤ V kn
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n ≤ 1 by (b)

of Lemma F.3. The second conclusion is proved by combining Equation (84) and Equation (90)
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∗
h+1) ≤ Q∗. The third and fourth conclusions follow directly from E14

in Lemma G.1 and Equation (104), respectively. The last one is proved in Equation (106) with
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∗
h+1) ≤ Q∗. Applying these five conclusions to Equation (127), we then reach:
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Similar to Equation (57), we can prove:
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where

ω̃k′,j′,m′

h =
∑
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By Equation (30) in Lemma F.6, it holds that:∑
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Applying Equation (129) and Equation (130) to Equation (128), we reach:∑
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V k′

h+1(s
k′,j′,m′

h+1 ) = Qk′

h+1(s
k′,j′,m′

h+1 , ak
′,j′,m′

h+1 ) and V ∗
h+1(s

k′,j′,m′

h+1 ) ≥ Q∗
h+1(s

k′,j′,m′

h+1 , ak
′,j′,m′

h+1 ).

Now we have developed a recursive relationship for the weighted sum of Qk
h −Q∗

h between step h
and step h+ 1. By recursions with regard to h, h+ 1, ...,H , we finish the proof.

Lemma K.2. Under the event
⋂14

i=1 Ei in Lemma G.1, for all ϵ ∈ (0, H), we have the following
conclusion:

H∑
h=1

∑
k,j,m

I
[
Qk

h(s
k,j,m
h , ak,j,mh )−Q∗

h(s
k,j,m
h , ak,j,mh ) > ϵ

]
≲

(
Q⋆ + β2H

)
H3SAι

ϵ2
+

H7SAι2

βϵ
+

MH6SAι2

ϵ
,

and
H∑

h=1

∑
k,j,m

(
Qk

h −Q∗
h

)
(sk,j,mh , ak,j,mh )I

[(
Qk

h −Q∗
h

)
(sk,j,mh , ak,j,mh ) > ϵ

]
≲

(
Q⋆ + β2H

)
H3SAι

ϵ
+

H7SAι2

β
+MH6SAι2.

Proof. Let N = ⌈log2(H/ϵ)⌉. For any i < N , k ∈ [K] and given h ∈ [H], let:

ωk,j,m
h,i = I

[
Qk

h(s
k,j,m
h , ak,j,mh )−Q∗

h(s
k,j,m
h , ak,j,mh ) ∈

[
2i−1ϵ, 2iϵ

)]
,

and
ωk,j,m
h,N = I

[
Qk

h(s
k,j,m
h , ak,j,mh )−Q∗

h(s
k,j,m
h , ak,j,mh ) ∈

[
2N−1ϵ,H

]]
.

Then
∥ω∥(i)∞,h = max

k,j,m
ωk,j,m
h,i ≤ 1, ∥ω∥(i)1,h =

∑
k,j,m

ωk,j,m
h,i .

Now for any i ∈ [N ], we have the following relationship:∑
k,j,m

ωk,j,m
h,i

(
Qk

h −Q∗
h

)
(sk,j,mh , ak,j,mh ) ≥ 2i−1ϵ∥ω∥(i)1,h. (131)

Combining the results of Lemma K.1 and Equation (131), we have:

2i−1ϵ∥ω∥(i)1,h ≲ H

√
(Q∗ + β2H)SA∥ω∥(i)∞,h∥ω∥

(i)
1,hι+H2(SA∥ω∥(i)∞,hι)

3
4 (∥ω∥1,h)

1
4

+

H∑
h′=h

∑
k,j,m

ωk,j,m
h′,i (h)Zk,j,m

h′

≤ H

√
(Q∗ + β2H)SA∥ω∥(i)1,hι+H2(SAι)

3
4 (∥ω∥(i)1,h)

1
4 +

H∑
h′=h

∑
k,j,m

ωk,j,m
h′,i (h)Zk,j,m

h′ , (132)
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where for any h ≤ h′ ≤ H − 1

ωk,j,m
h,i (h) := ωk,j,m

h,i ,

ωk,j,m
h′+1,i(h) =

∑
k′,j′,m′

ωk′,j′,m′

h′,i (h)I
[
Nk′

h′ ≥ i0

]Nk′
h′∑

i=1

η̃
Nk′

h′
i I

[
(ki, ji,mi) = (k, j,m)

]
.

The definition of these coefficients is the same as that in Lemma H.4. By Equation (132), at least one
of the following three inequalities holds:

2i−1ϵ∥ω∥(i)1,h ≲ H

√
(Q∗ + β2H)SA∥ω∥(i)1,hι

2i−1ϵ∥ω∥(i)1,h ≲ H2(SAι)
3
4 (∥ω∥(i)1,h)

1
4 ,

2i−1ϵ∥ω∥(i)1,h ≲
H∑

h′=h

∑
k,j,m

ωk,j,m
h′,i (h)Zk,j,m

h′ .

Solving these three inequalities, we know that:

∥ω∥(i)1,h ≲ max

{(
Q⋆ + β2H

)
H2SAι

4i−2ϵ2
,
H3SAι

(2i−1ϵ)
4
3

,

∑H
h′=h

∑
k,j,m ωk,j,m

h′,i (h)Zk,j,m
h′

2i−1ϵ

}

≲

(
Q⋆ + β2H

)
H2SAι

4i−2ϵ2
+

H3SAι

(2i−1ϵ)
4
3

+

∑H
h′=h

∑
k,j,m ωk,j,m

h′,i (h)Zk,j,m
h′

2i−1ϵ
. (133)

We claim that
H∑

h′=1

∑
k,j,m

Zk,j,m
h′ ≲

H6SAι2

β
+MH5SAι2, (134)

which will be proved later. Therefore, by

I
[(
Qk

h −Q∗
h

)
(sk,j,mh , ak,j,mh ) ≥ ϵ

]
=

N∑
i=1

ωk,j,m
h,i ,

we have
H∑

h=1

∑
k,j,m

I
[
Qk

h(s
k,j,m
h , ak,j,mh )−Q∗

h(s
k,j,m
h , ak,j,mh ) ≥ ϵ

]
=

H∑
h=1

N∑
i=1

∥ω∥(i)1,h. (135)

By Equation (133), it holds that

N∑
i=1

∥ω∥(i)1,h ≲
N∑
i=1

(
Q⋆ + β2H

)
H2SAι

4i−2ϵ2
+

N∑
i=1

H3SAι

(2i−1ϵ)
4
3

+

N∑
i=1

∑H
h′=h

∑
k,j,m ωk,j,m

h′,i (h)Zk,j,m
h′

2i−1ϵ

(i)

≲

(
Q⋆ + β2H

)
H2SAι

ϵ2
+

H3SA

ϵ
4
3

+

N∑
i=1

∑H
h′=1

∑
k,j,m Zk,j,m

h′

2iϵ

(ii)

≲

(
Q⋆ + β2H

)
H2SAι

ϵ2
+

H3SAι

ϵ
4
3

+
H6SAι2

βϵ
+

MH5SAι2

ϵ

≲

(
Q⋆ + β2H

)
H2SAι

ϵ2
+

H6SAι2

βϵ
+

MH5SAι2

ϵ
. (136)

Here, (i) is because 0 ≤ ωk,j,m
h′,i (h) < 27 by Equation (67) and Zk,j,m

h′ ≥ 0. (ii) is because of
Equation (134). The last inequality is because

H3SAι

ϵ
4
3

≤ β2H3SAι

ϵ2
+

H3SAι

βϵ
+

H3SAι

βϵ
≲

β2H3SAι

ϵ2
+

H6SAι2

βϵ
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by AM-GM inequality. Combing the results of Equation (135) and Equation (136), we finish the
proof of the first conclusion. Further, we can prove the second conclusion by noting that

H∑
h=1

∑
k,j,m

(
Qk

h −Q∗
h

)
(sk,j,mh , ak,j,mh )I

[(
Qk

h −Q∗
h

)
(sk,j,mh , ak,j,mh ) ≥ ϵ

]
≤

H∑
h=1

N∑
i=1

2iϵ∥ω∥(i)1,h

(i)

≲
H∑

h=1

N∑
i=1

(
Q⋆ + β2H

)
H2SAι

2iϵ
+

H∑
h=1

N∑
i=1

H3SAι

(2i−1ϵ)
1
3

+

H∑
h=1

H∑
h′=h

∑
k,j,m

(
N∑
i=1

ωk,j,m
h′,i (h)

)
Zk,j,m
h′

(ii)

≲

(
Q⋆ + β2H

)
H3SAι

ϵ
+

H4SAι

ϵ
1
3

+

H∑
h=1

H∑
h′=h

∑
k,j,m

Zk,j,m
h′

≲

(
Q⋆ + β2H

)
H3SAι

ϵ
+

H7SAι2

β
+MH6SAι2.

Here, (i) is by Equation (133) and (ii) is by Equation (67). The last inequality is because of
Equation (134) and

H4SAι

ϵ
1
3

≤ β2H4SAι

ϵ
+

H4SAι

β
+

H4SAι

β
≲

β2H4SAι

ϵ
+

H7SAι2

β

by AM-GM inequality. Next, we only need to prove Equation (134).

Proof of Equation (134):

By definition of Zk,m,j
h′ (see Equation (125) in Lemma K.1), we have the following relationship

Zk,j,m
h′ = η

Nk
h′

0 H +
H2ι+

√
HΨk

h′ι

Nk
h′

+HI
[
0 < Nk

h′ < i0
]

+

(√
(Q∗ + β2H)ι

Nk
h′

+
Hι

3
4

(Nk
h′)

3
4

)
I
[
0 < Nk

h′ < M
]

+

Nk
h′∑

n=1

η̃
Nk

h′
n

Nkn+1
h′

Nkn+1

h′∑
i=1

((
V R,ki

h′+1 − V̂ R,ki

h′+1

)
(sk

i,ji,mi

h′+1 ) + Psk,j,m

h′ ,ak,j,m

h′ ,h′

(
V̂ R,ki

h′+1 − V̂ R,kn

h′+1

))
. (137)

For the first term of Equation (137), by Equation (73), we have

H∑
h′=1

∑
k,j,m

η
Nk

h′
0 H ≲ MH2SA. (138)

For the second term of Equation (137), by Lemma F.6 with α = 1, we know

H∑
h′=1

∑
k,j,m,Nk

h′>0

H2ι

Nk
h′(s

k,j,m
h′ , ak,j,mh′ )

≲ MH3SAι+H3SAι2. (139)

By Equation (93), since β ≤ H , it holds that:

H∑
h′=1

∑
k,j,m,Nk

h′>0

√
HΨk

h′(s
k,j,m
h′ , ak,j,mh′ )ι

Nk
h′(s

k,j,m
h′ , ak,j,mh′ )

≲
H5SAι2

β
+MH4SAι2. (140)

Combining the results of Equation (139) and Equation (140), we can bound the second term:

H∑
h′=1

∑
k,j,m,Nk

h′>0

H2ι+
√
HΨk

h′(s
k,j,m
h′ , ak,j,mh′ )ι

Nk
h′(s

k,j,m
h′ , ak,j,mh′ )

≲
H5SAι2

β
+MH4SAι2. (141)
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For the third term of Equation (137), by Equation (122), we know
H∑

h′=1

∑
k,j,m

HI
[
0 < Nk

h′(s
k,j,m
h′ , ak,j,mh′ ) < i0

]
≲ MH4SA. (142)

For the fourth term of Equation (137), by Equation (24) in Lemma F.6 with ωk,j,m
h = 1 and α = 1

2 ,
we have

H∑
h′=1

∑
k,j,m

(√
(Q∗ + β2H)ι

Nk
h′(s

k,j,m
h′ , ak,j,mh′ )

+
Hι

1
4

Nk
h′(s

k,j,m
h′ , ak,j,mh′ )

3
4

)
I
[
0 < Nk

h′(s
k,j,m
h′ , ak,j,mh′ ) < M

]

≲
H∑

h′=1

∑
k,j,m

√
H3ιI

[
0 < Nk

h′(s
k,j,m
h′ , ak,j,mh′ ) < M

]
≲ MH3SAι. (143)

Here the first inequality is because Q∗ ≤ H2 and 0 ≤ β ≤ H .

For the last term of Equation (137), by the triangle inequality, we can bound it with

H∑
h′=1

∑
k,j,m,Nk

h′>0

Nk
h′∑

n=1

η̃
Nk

h′
n

1

Nkn+1
h′

Nkn+1

h′∑
i=1

(V R,ki

h′+1 − V̂ R,ki

h′+1)(s
ki,ji,mi

h′+1 )

+

H∑
h′=1

∑
k,j,m,Nk

h′>0

Nk
h′∑

n=1

η̃
Nk

h′
n

1

Nkn+1
h′

Nkn+1

h′∑
i=1

Psk,j,m

h′ ,ak,j,m

h′ ,h′

∣∣∣V̂ R,ki

h′+1 − V R,K+1
h′+1

∣∣∣
+

H∑
h′=1

∑
k,j,m,Nk

h′>0

Nk
h′∑

n=1

η̃
Nk

h′
n Psk,j,m

h′ ,ak,j,m

h′ ,h′

∣∣∣V R,K+1
h′+1 − V̂ R,kn

h′+1

∣∣∣
≲

H6SAι2

β
+MH5SAι2. (144)

The last inequality is by Equation (119) and Equation (124). Combining the results of Equation (138),
Equation (141), Equation (142), Equation (143) and Equation (144), we completed the proof of
Equation (134).

L Proof of Gap-Dependent Switching/Communication Cost (Theorem 4.7 and
Theorem 4.9)

L.1 Auxiliary Lemmas

Lemma L.1. We have the following conclusions:

(a) Under the event
⋂14

i=1 Ei, the following event holds for some sufficiently large constant c0 > 1:

E15 =

{
H∑

h=1

∑
k,j,m

I
[
(Qk

h −Q⋆
h)(s

k,m,j
h , ak,m,j

h ) ≥ ∆min

]

≤ Cmin
△
= c0

((
Q⋆ + β2H

)
H3SAι

∆2
min

+
H7SAι2

β∆min
+

MH6SAι2

∆min

)
, ∀h ∈ [H]

}
.

(b) For any deterministic optimal policy π∗, with probability at least 1− δ, the following event holds:

E16 =
{ k′∑

k=1

∑
j,m

P
(
ak,j,mh ̸= π∗

h(s
k,j,m
h ) | πk

)

≤ 3

k′∑
k=1

∑
j,m

I
[
ak,j,mh ̸= π∗

h(s
k,j,m
h )

]
+ 2ι, ∀h ∈ [H], k′ ∈ [K]

}
.
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(c) For any k′ ∈ [K], let Rk′ =
∑k′

k=1

∑
j,m 1, which is the total number of episodes in the first k′

rounds. Then with probability at least 1− δ, the following event holds:

E17 =


∣∣∣∣∣∣

k′∑
k=1

∑
j,m

{
I
[
sk,j,mh = s

]
− P

(
sk,j,mh = s|πk

)}∣∣∣∣∣∣
≤

√√√√√24

 k′∑
k=1

∑
j,m

P
(
sk,j,mh = s|πk

) ι+ 9ι, ∀s ∈ S, h ∈ [H], k′ ∈ [K]

 .

(d) With probability at least 1− δ, the following event holds:

E18 =


∣∣∣∣∣∣
Jk∑
j=1

{
I
[
sk,j,mh = s

]
− P

(
sk,j,mh = s|πk

)}∣∣∣∣∣∣
≤

√√√√√32

 Jk∑
j=1

P
(
sk,j,mh = s|πk

) ι+ 11ι, ∀(s, h, k,m)

 .

Here, under the full synchronization assumption, we can assume that in the k−th round, each
agent will generate Jk episodes. Note that given the round k and the policy πk, under random
initialization assumption, the probability P(sk,j,mh = s|πk) is independent of the index m, j. Let
Pk
s,h = P(sk,j,mh = s|πk), then E18 can be written as

E18 =


∣∣∣∣∣∣
Jk∑
j=1

I
[
sk,j,mh = s

]
− JkPk

s,h

∣∣∣∣∣∣ ≤
√
32JkPk

s,hι+ 11ι, ∀(s, h, k,m)

 .

Proof. (a) It is proved by Lemma K.2.

(b) We order all the episodes in the sequence following the rule: first by round index, second by
episode index, and third by agent index. Let n(k, j,m) denote the position of the j−th episode of the
m−th agent in the k−th round of the sequence. The filtration Fn(k,j,m) is the σ−field generated by
all the random variables until the first n(k, j,m)− 1 episodes. When there is no ambiguity, we will
abbreviate n(k, j,m) as n and Fn(k,j,m) as Fn. Then we have:

P
(
ak,j,mh′ ̸= π∗

h′(s
k,j,m
h′ ) | πk

)
= P

(
ak,j,mh′ ̸= π∗

h′(s
k,j,m
h′ ) | Fn

)
.

According to Theorem E.3, with probability at least 1− δ/T 2
1 , the following inequality holds for any

given h = h′ ∈ [H], k′ = k′0 ∈ [T1

H ] and Rk′
0
=
∑k′

0

k=1

∑
j,m 1 ∈ [T1] :

k′
0∑

k=1

∑
j,m

P
(
ak,j,mh′ ̸= π∗

h′(s
k,j,m
h′ ) | πk

)
≤ 3

k′
0∑

k=1

∑
j,m

I
[
ak,j,mh′ ̸= π∗

h′(s
k,j,m
h′ )

]
+ 2ι, ∀k′ ∈ [K].

Considering all the possible values of h = h′ ∈ [H], k′ = k′0 ∈ [T1

H ] and Rk′
0
=
∑k′

0

k=1

∑
j,m 1 ∈

[T1], with probability at least 1 − δ, it holds simultaneously for all h ∈ [H], k′ ∈ [T1

H ] and Rk′ =∑k′

k=1

∑
j,m 1 ∈ [T1] that
k′∑

k=1

∑
j,m

P
(
ak,j,mh ̸= π∗

h(s
k,j,m
h ) | πk

)
≤ 3

k′∑
k=1

∑
j,m

I
[
ak,j,mh ̸= π∗

h(s
k,j,m
h )

]
+ 2ι.

(c) According to Theorem E.2, with probability at least 1− δ/ST 2
1 , the following inequality holds

for any given s′ ∈ S, h = h′ ∈ [H], k′ = k′0 ∈ [T1

H ] and Rk′
0
=
∑k′

0

k=1

∑
j,m 1 ∈ [T1] :∣∣∣∣∣∣

k′
0∑

k=1

∑
j,m

{
I
[
sk,j,mh′ = s′

]
− P

(
sk,j,mh′ = s′|πk

)}∣∣∣∣∣∣ ≤
√√√√√24

 k′
0∑

k=1

∑
j,m

P
(
sk,j,mh′ = s′|πk

) ι+ 9ι.
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Here, we let σ2 = T1, m = ⌈log2(T1)⌉ in Theorem E.2 and

Wn =

k′
0∑

k=1

∑
j,m

P
(
sk,j,mh′ = s′|πk

)(
1− P

(
sk,j,mh′ = s′|πk

))
≤

k′
0∑

k=1

∑
j,m

P
(
sk,j,mh′ = s′|πk

)
.

Considering all the possible values of s = s′ ∈ S, h = h′ ∈ [H], k′ = k′0 ∈ [T1

H ], T̂ = T ′ ∈ [T1],
with probability at least 1− δ, it holds simultaneously for all s ∈ S , h ∈ [H], k′ ∈ [T1

H ] and T̂ ∈ [T1]∣∣∣∣∣∣
k′∑

k=1

∑
j,m

{
I
[
sk,j,mh = s

]
− P

(
sk,j,mh = s|πk

)}∣∣∣∣∣∣ ≤
√√√√√24

 k′∑
k=1

∑
j,m

P
(
sk,j,mh = s|πk

) ι+ 9ι.

(d) The proof is similar to (c), considering all the combinations of (s, h,m, k,Rk) ∈ S × [H] ×
[M ]× [T1

H ]× [T1].

Lemma L.2. Under the event
⋂18

i=1 Ei, for any given deterministic optimal policy π∗, we have

H∑
h=1

∑
k,j,m

I
[
ak,j,mh /∈ A∗

h(s
k,j,m
h )

]
≤ Cmin,

∑
k,j,m

P
(
ak,j,mh ̸= π∗

h(s
k,j,m
h ) | πk

)
≤ 4Cmin.

Here Cmin is the upper bound in the right-hand side of E15 in Lemma L.1 .

Proof. For any h ∈ [H], let set Dh be all triples of (s, a, h) such that a /∈ A⋆
h(s), that is Dh =

{(s, a, h)|a /∈ A⋆
h(s)}. We also let the set D =

⋃H
h=1 Dh and the set Dopt = {(s, a, h)|a ∈ A⋆

h(s)}.
Then we have |D|+ |Dopt| = SAH .

If for given (h, k, j,m), (sk,m,j
h , ak,m,j

h , h) ∈ Dh, we have ∆h(s
k,m,j
h , ak,m,j

h ) ≥ ∆min. By
Lemma H.1, we have

Qk
h(s

k,j,m
h , ak,j,mh ) = max

a
{Qk

h(s
k,j,m
h , a)} ≥ max

a
{Q∗

h(s
k,j,m
h , a)} = V ∗

h (s
k,j,m
h ).

Therefore, it holds that

Qk
h(s

k,m,j
h , ak,m,j

h )−Q⋆
h(s

k,m,j
h , ak,m,j

h ) ≥ ∆h(s
k,m,j
h , ak,m,j

h ) ≥ ∆min.

Then we have

I
[
ak,j,mh /∈ A∗

h(s
k,j,m
h )

]
= I

[
(sk,m,j

h , ak,m,j
h , h) ∈ Dh

]
≤ I

[
Qk

h(s
k,m,j
h , ak,m,j

h )−Q⋆
h(s

k,m,j
h , ak,m,j

h ) ≥ ∆min

]
,

and thus by the event E15 in Lemma L.1, it holds that

H∑
h=1

∑
k,j,m

I
[
ak,j,mh /∈ A∗

h(s
k,j,m
h )

]

≤
H∑

h=1

∑
k,j,m

I
[
Qk

h(s
k,m,j
h , ak,m,j

h )−Q⋆
h(s

k,m,j
h , ak,m,j

h ) ≥ ∆min

]
≤ Cmin. (145)

Next, we prove the second conclusion. Let S0h = {s | P∗
s,h = 0}. For any given deterministic optimal

policy π∗, we have

I
[
ak,j,mh ̸= π∗

h(s
k,j,m
h )

]
= I

[
ak,j,mh ̸= π∗

h(s
k,j,m
h ), sk,j,mh /∈ S0h

]
+ I
[
ak,j,mh ̸= π∗

h(s
k,j,m
h ), sk,j,mh ∈ S0h

]
. (146)
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For sk,j,mh /∈ S0h, we have P∗
sk,j,m
h ,h

> 0 and |A∗
h(s

k,j,m
h )| = 1 by condition (b) of Definition 4.6.

This means π∗
h(s

k,j,m
h ) is the only element in A∗

h(s
k,j,m
h ). Therefore, we have

I
[
ak,j,mh ̸= π∗

h(s
k,j,m
h ), sk,j,mh /∈ S0h

]
≤ I

[
ak,j,mh /∈ A∗

h(s
k,j,m
h )

]
. (147)

For the second term in Equation (146), if h = 1, because of the randomness of the selection of sk,j,m1 ,
we have P(s1 = sk,j,m1 |π∗) = P(s1 = sk,j,m1 ) > 0 and then

I
[
ak,j,m1 ̸= π∗

1(s
k,j,m
1 ), sk,j,m1 ∈ S01

]
= 0. (148)

To bound the second term in Equation (146) for h > 1, we first prove a lemma.

Lemma L.3. For any h ∈ [H] and the trajectory {(sk,j,mh , ak,j,mh , rk,j,mh )}Hh=1 in j−th episode of
agent m in round k, if P∗

sk,j,m
h ,h

> 0 and ak,j,mh is the unique optimal action for state sk,j,mh at step

h, then we have P∗
sk,j,m
h+1 ,h+1

> 0

Proof. For any given optimal policy π∗, it holds that

P∗
sk,j,m
h+1 ,h+1

= P
(
sh+1 = sk,j,mh+1 | π

∗
)

≥ P
(
sh+1 = sk,j,mh+1 | sh = sk,j,mh , ah = ak,j,mh , π∗

)
× P

(
sh = sk,j,mh , ah = ak,j,mh | π∗

)
(I)
= P

(
sh+1 = sk,j,mh+1 | sh = sk,j,mh , ah = ak,j,mh

)
× P∗

sk,j,m
h ,h

> 0

The equation (I) is by Markov property and

P(sh = sk,j,mh , ah = ak,j,mh | π∗) = P(sh = sk,j,mh | π∗) = P∗
sk,j,m
h ,h

.

For every initial state sk,j,m1 , we know P∗
sk,j,m
1 ,1

> 0. Therefore, if for h > 1, P∗
sk,j,m
h ,h

= 0 and

sk,j,mh ∈ S0h, by Lemma L.3, we know there exists h′ < h such that ak,m,j
h′ is not an optimal action

for state sk,m,j
h′ at step h′, otherwise we have P∗

sk,j,m
h ,h

> 0. Therefore, for the second term in
Equation (146), we have

I
[
ak,j,mh ̸= π∗

h(s
k,j,m
h ), sk,j,mh ∈ S0h

]
≤ I

[
sk,j,mh ∈ S0h

]
≤

h−1∑
h′=1

I
[
ak,j,mh′ /∈ A∗

h′(s
k,j,m
h′ )

]
. (149)

By combining the results of Equation (147), Equation (148) and Equation (149), we can bound the
Equation (146) as follows:

I
[
ak,j,mh ̸= π∗

h(s
k,j,m
h )

]
≤

h∑
h′=1

I
[
ak,j,mh′ /∈ A∗

h′(s
k,j,m
h′ )

]
≤

H∑
h′=1

I
[
ak,j,mh′ /∈ A∗

h′(s
k,j,m
h′ )

]
.

Therefore, using Equation (145), we reach

∑
k,j,m

I
[
ak,j,mh ̸= π∗

h(s
k,j,m
h )

]
≤
∑
k,j,m

H∑
h′=1

I
[
ak,j,mh′ /∈ A∗

h′(s
k,j,m
h′ )

]
≤ Cmin.

Combined with the event E16 in Lemma L.1, we can conclude that for any h ∈ [H] and k′ ∈ [K],

k′∑
k=1

∑
j,m

P
(
ak,j,mh ̸= π∗

h(s
k,j,m
h ) | πk

)
≤ 4Cmin.
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Let i1 = 300MH(H + 1)ι, i2 = 6500H3Cmin/Cst, and C̃ = 1/(H(H + 1)). For any (s, h) ∈
S × [H] such that P∗

s,h > 0, we use π⋆
h(s) to denote its unique optimal action. Before proceeding,

we present two lemmas. Lemma L.4 shows agent-wise simultaneous sufficient increase of visits for
the triple (s, a, h) that satisfies the trigger condition in round k when Nk

h (s, a) > i1.

Lemma L.4. Under the event
⋂18

i=1 Ei, for any (s, a, h, k) ∈ S×A×[H]×[K] such that Nk
h (s, a) >

i1 and the triple (s, a, h) satisfies the trigger condition (3) in round k, it holds that

Nk+1
h (s, a) ≥ (1 + C̃/3)Nk

h (s, a).

Proof. If the trigger condition is met by the triple (s, a, h) in round k, then we have a = πk
h(s). For

such (s, a, h), by E18 in Lemma L.1, it holds for any s ∈ S, h ∈ [H], k ∈ [K] and m ∈ [M ] that

Jk∑
j=1

I
[
sk,j,mh = s, ak,j,mh = a

]
=

Jk∑
j=1

I
[
sk,j,mh = s

]
∈
[
JkPk

s,h −
√
32JkPk

s,hι− 11ι, JkPk
s,h +

√
32JkPk

s,hι+ 11ι
]
. (150)

Since (s, a, h) satisfies the trigger condition in round k, there exists an agent m0 such that
nk,m0

h (s, a) = ckh(s, a). Then we reach

JkPk
s,h +

√
32JkPk

s,hι+ 11ι
(i)

≥ Nk
h (s, a)

MH(H + 1)
− 1

△
= CN > 299ι.

The last inequality is because Nk
h (s, a) > i1. Solving the inequality (i), it holds that√

JkPk
s,h ≥

√
CN − 3ι−

√
8ι.

Then by Equation (150), for any other agent m,

Jk∑
j=1

I
[
sk,j,mh = s, ak,j,mh = a

]
≥ JkPk

s,h −
√
32JkPk

s,hι− 11ι =
(√

JkPk
s,h −

√
8ι
)2
− 19ι

≥
(√

CN − 3ι− 2
√
8ι
)2
− 19ι ≥ CN + 1

3
.

The last inequality is because CN > 299ι. Therefore, we have

nk
h(s, a) =

M∑
m=1

nm,k
h (s, a) =

M∑
m=1

Jk∑
j=1

I
[
sk,j,mh = s, ak,j,mh = a

]
≥ M(CN + 1)

3
=

Nk
h (s, a)

3H(H + 1)
,

and thus

Nk+1
h (s, a) = Nk

h (s, a) + nk
h(s, a) ≥

(
1 +

1

3H(H + 1)

)
Nk

h (s, a).

Lemma L.5 shows the state-wise simultaneous sufficient increase of visits for states with unique
optimal action.

Lemma L.5. Under the event
⋂18

i=1 Ei, if there exists (s0, a0, h0) ∈ S×A× [H], such that it satisfies
the trigger condition in round k and Nk

h0
(s0, a0) > i1 + i2, then a0 ∈ A∗

h0
(s0). Moreover, if such

(s0, a0, h0) also satisfies that P∗
s0,h0

> 0, then

Nk+1
h′ (s′, π∗

h′(s′)) ≥ (1 + C̃/6)Nk
h′(s′, π∗

h′(s′))

holds for any (s′, h′) ∈ S × [H] such that P∗
s′,h′ > 0.
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Proof. Because Nk
h (s0, a0) > i1 + i2 > Cmin, by Lemma L.2, we know a0 ∈ A∗

h(s0). Next, we
prove the second conclusion. Using the law of total probability, for any 0 ≤ h ≤ H − 1, s ∈ S, and
any given deterministic optimal policy π∗, we have the following relationship

P
(
sk,j,mh+1 = s | πk

)
=
∑
s′

P
(
sk,j,mh+1 = s|sk,j,mh = s′, ak,j,mh = π∗

h(s
′), πk

)
P
(
sk,j,mh = s′, ak,j,mh = π∗

h(s
′) | πk

)
+ P

(
sk,j,mh+1 = s, ak,j,mh ̸= π∗

h(s
k,j,m
h ) | πk

)
=
∑
s′

Pk,j,m
s,s′,h · P

(
sk,j,mh = s′, ak,j,mh = π∗

h(s
′) | πk

)
+ P

(
sk,j,mh+1 = s, ak,j,mh ̸= π∗

h(s
k,j,m
h ) | πk

)
,

(151)

where

Pk,j,m
s,s′,h = P

(
sk,j,mh+1 = s|sk,j,mh = s′, ak,j,mh = π∗

h(s
′), πk

)
= P

(
sk,j,mh+1 = s|sk,j,mh = s′, ak,j,mh = π∗

h(s
′)
)
.

The last equality is because of the Markov property. We also have

P
(
sk,j,mh+1 = s|π∗

)
=
∑
s′

P
(
sk,j,mh+1 = s|sk,j,mh = s′, π∗

)
P
(
sk,j,mh = s′|π∗

)
=
∑
s′

Pk,j,m
s,s′,h · P

(
sk,j,mh = s′|π∗

)
, (152)

where the last equation is because

P(sk,j,mh+1 = s|sk,j,mh = s′, π∗) = P
(
sk,j,mh+1 = s|sk,j,mh = s′, ak,j,mh = π∗

h(s
′)
)
= Pk,j,m

s,s′,h.

Combining the results of Equation (151) and Equation (152), then it holds

P
(
sk,j,mh+1 = s|πk

)
− P

(
sk,j,mh+1 = s|π∗

)
=
∑
s′

Pk,j,m
s,s′,h

[
P
(
sk,j,mh = s′, ak,j,mh = π∗

h(s
′)|πk

)
− P

(
sk,j,mh = s′|π∗

)]
+ P

(
sk,j,mh+1 = s, ak,j,mh ̸= π∗

h(s
k,j,m
h )|πk

)
=
∑
s′

Pk,j,m
s,s′,h

[
P
(
sk,j,mh = s′ | πk

)
− P

(
sk,j,mh = s′|π∗

)]
−
∑
s′

Pk,j,m
s,s′,hP

(
sk,j,mh = s′, ak,j,mh ̸= π∗

h(s
′) | πk

)
+ P

(
sk,j,mh+1 = s, ak,j,mh ̸= π∗

h(s
k,j,m
h ) | πk

)
.

Therefore for any 0 ≤ h ≤ H − 1 and s ∈ S, by the triangle inequality, it holds that∣∣∣P(sk,j,mh+1 = s | πk
)
− P

(
sk,j,mh+1 = s|π∗

)∣∣∣
≤
∑
s′

Pk,j,m
s,s′,h

∣∣∣P(sk,j,mh = s′ | πk
)
− P

(
sk,j,mh = s′|π∗

)∣∣∣
+
∑
s′

Pk,j,m
s,s′,hP

(
sk,j,mh = s′, ak,j,mh ̸= π∗

h(s
′) | πk

)
+ P

(
sk,j,mh+1 = s, ak,j,mh ̸= π∗

h(s
k,j,m
h ) | πk

)
.

Summing the above inequality for all s ∈ S, since
∑

s Ps,s′,h = 1, then we can derive that:∑
s

∣∣∣P(sk,j,mh+1 = s | πk
)
− P

(
sk,j,mh+1 = s|π∗

)∣∣∣
≤
∑
s′

∣∣∣P(sk,j,mh = s′ | πk
)
− P

(
sk,j,mh = s′|π∗

)∣∣∣+ 2P
(
ak,j,mh ̸= π∗

h(s
k,j,m
h ) | πk

)
.
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Since P(sk,j,m1 = s | πk)− P(sk,j,m1 = s|π∗) = 0, by recursion, for any h′ ∈ [H] we have∑
s

∣∣∣P(sk,j,mh′ = s | πk
)
− P

(
sk,j,mh′ = s|π∗

)∣∣∣ ≤ 2

h′−1∑
h=1

P
(
ak,j,mh ̸= π∗

h(s
k,j,m
h ) | πk

)
≤ 2

H∑
h=1

P
(
ak,j,mh ̸= π∗

h(s
k,j,m
h ) | πk

)
.

Using Lemma L.2, then for any h ∈ [H] and k′ ∈ [K], it holds that:∑
s

k′∑
k=1

∑
j,m

∣∣∣P(sk,j,mh = s | πk
)
− P

(
sk,j,mh = s|π∗

)∣∣∣
≤ 2

H∑
h=1

k′∑
k=1

∑
j,m

P
(
ak,j,mh ̸= π∗

h(s
k,j,m
h ) | πk

)
≤ 8HCmin.

Note that based on the property (b) of Definition 4.6, we have P(sk,j,mh = s|π∗) = P∗
s,h, then for any

s ∈ S, h ∈ [H] and k′ ∈ [K], by the triangle inequality, we also have

k′∑
k=1

∑
j,m

P
(
sk,j,mh = s | πk

)

≤ Rk′P∗
s,h +

k′∑
k=1

∑
j,m

∣∣∣P(sk,j,mh = s | πk
)
− P

(
sk,j,mh = s|π∗

)∣∣∣ ≤ Rk′P∗
s,h + 8HCmin. (153)

Applying Equation (153) to E17 in Lemma L.1, for any s ∈ S, h ∈ [H] and k′ ∈ [K], we have∣∣∣∣∣∣
k′∑

k=1

∑
j,m

{
I
[
sk,j,mh = s

]
− P

(
sk,j,mh = s|πk

)}∣∣∣∣∣∣ ≤
√√√√√24

 k′∑
k=1

∑
j,m

P
(
sk,j,mh = s|πk

) ι+ 9ι

≤
√
24
(
Rk′P∗

s,h + 8HCmin

)
ι+ 9ι

≤ 5
√
Rk′P∗

s,hι+ 23HCmin. (154)

Combining the results of Equation (153) and Equation (154), by triangle inequality, we can derive
the following relationship for any s ∈ S, h ∈ [H], and k′ ∈ [K]∣∣∣∣∣∣

k′∑
k=1

∑
j,m

I
[
sk,j,mh = s

]
−Rk′P∗

s,h

∣∣∣∣∣∣ ≤ 5
√
Rk′P∗

s,hι+ 31HCmin. (155)

Then by triangle inequality, it holds for any s ∈ S, h ∈ [H] and k′ ∈ [K] that∣∣∣∣∣∣
k′∑

k=1

∑
j,m

I
[
sk,j,mh = s, ak,j,mh ∈ A∗

h(s)
]
−Rk′P∗

s,h

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
k′∑

k=1

∑
j,m

I
[
sk,j,mh = s

]
−Rk′P∗

s,h

∣∣∣∣∣∣+
k′∑

k=1

∑
j,m

I
[
sk,j,mh = s, ak,j,mh /∈ A∗

h(s)
]

≤ 5
√
Rk′P∗

s,hι+ 32HCmin. (156)

Here, the last inequality is by Equation (155), together with the fact from Lemma L.2 that
k′∑

k=1

∑
j,m

I
[
sk,j,mh = s, ak,j,mh /∈ A∗

h(s)
]
≤

k′∑
k=1

∑
j,m

I
[
ak,j,mh /∈ A∗

h(s
k,j,m
h )

]
≤ Cmin.
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For P ∗
s,h > 0, the optimal action is unique. Then for any (s, a, h) such that a = π∗

h(s) and P ∗
s,h > 0,

we can simplify the results of Equation (156) as follows:

Rk′P∗
s,h − 5

√
Rk′P∗

s,hι− 32HCmin ≤ Nk′+1
h (s, a) ≤ Rk′P∗

s,h + 5
√

Rk′P∗
s,hι+ 32HCmin.

(157)

By Equation (157), for any s′ ∈ S and h′ ∈ [H] such that P∗
s′,h′ > 0, we have

RkP∗
s′,h′ − 5

√
RkP∗

s′,h′ι− 32HCmin

Rk−1P∗
s′,h′ + 5

√
Rk−1P∗

s′,h′ι+ 32HCmin

≤
Nk+1

h′ (s′, π∗
h′(s′))

Nk
h′(s′, π∗

h′(s′))
.

For the second conclusion, we only need to prove that, for any (s′, h′) ∈ S× [H] such that P∗
s′,h′ > 0,

RkP∗
s′,h′ − 5

√
RkP∗

s′,h′ι− 32HCmin

Rk−1P∗
s′,h′ + 5

√
Rk−1P∗

s′,h′ι+ 32HCmin

≥ 1 +
1

6H(H + 1)
. (158)

Next, we will prove the Equation (158). For the triple (s0, a0, h0), by Equation (157), we know that

6500H3Cmin

Cst
< Nk

h0
(s0, a0) ≤ Rk−1P∗

s0,h0
+ 5
√
Rk−1P∗

s0,h0
ι+ 32HCmin.

Solving the inequality, we have√
RkP∗

s0,h0
>
√
Rk−1P∗

s0,h0
>

√
6500H3Cmin

Cst
− 32HCmin +

25ι

4
− 5
√
ι

2

>

√
6468H3Cmin

Cst
−

√
H3Cmin

Cst
> 79

√
H3Cmin

Cst
. (159)

Therefore, for any s′ ∈ S and h′ ∈ [H] such that P∗
s′,h′ , by Equation (159), we have√

RkP∗
s′,h′ >

√
Rk−1P∗

s′,h′ ≥
√
Rk−1P∗

s0,h0
·
√

Cst > 79
√
H3Cmin. (160)

For X > 6241H3Cmin = 792H3Cmin, note that

5
√
Xι+ 32HCmin ≤

√
CminX

H
+ 32HCmin ≤

X

56H2
. (161)

Here, the first inequality is because 5
√
ι <

√
Cmin
H for H ≥ 2. Therefore, based on Equation (159)

and Equation (160), we can apply Equation (161) to Rk−1P∗
s0,h

, RkP∗
s0,h

, Rk−1P∗
s′,h and RkP∗

s′,h:

5
√

Rk−1P∗
s0,h0

ι+ 32HCmin ≤
Rk−1P∗

s0,h0

56H2
, 5
√

RkP∗
s0,h0

ι+ 32HCmin ≤
RkP∗

s0,h0

56H2
. (162)

and

5
√
Rk−1P∗

s′,h′ι+ 32HCmin ≤
Rk−1P∗

s′,h′

56H2
, 5
√

RkP∗
s′,h′ι+ 32HCmin ≤

RkP∗
s′,h′

56H2
(163)

Since Nk
h (s0, a0) > i1 and the trigger condition is satisfied by (s, a, h) in round k, by Lemma L.4:

Nk+1
h0

(s0, a0)

Nk
h0
(s0, a0)

≥ 1 +
1

3H(H + 1)
.

Together with Equation (157), it holds that

RkP∗
s0,h0

+ 5
√
RkP∗

s0,h0
ι+ 32HCmin

Rk−1P∗
s0,h0

− 5
√
Rk−1P∗

s0,h0
ι− 32HCmin

≥
Nk+1

h0
(s0, a0)

Nk
h0
(s0, a0)

≥ 1 +
1

3H(H + 1)
. (164)
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Applying Equation (162) to Equation (164), we have

1 +
1

3H(H + 1)
≤

RkP∗
s0,h0

+ 5
√

RkP∗
s0,h0

ι+ 32HCmin

Rk−1P∗
s0,h0

− 5
√

Rk−1P∗
s0,h0

ι− 32HCmin

≤
(1 + 1

56H2 )Rk

(1− 1
56H2 )Rk−1

.

Therefore, using Equation (163), we have

RkP∗
s′,h′ − 5

√
RkP∗

s′,h′ι− 32HCmin

Rk−1P∗
s′,h′ + 5

√
Rk−1P∗

s′,h′ι+ 32HCmin

≥
(1− 1

56H2 )Rk

(1 + 1
56H2 )Rk−1

≥
(
1 +

1

3H(H + 1)

)(
1− 1

56H2

1 + 1
56H2

)2

. (165)

Let

c =
1

6H2 + 6H + 2
·

 1

1 +
√

6H2+6H+1
6H2+6H+2

2

>
1

4(6H2 + 6H + 2)
≥ 1

56H2
,

and thus
1 + 1

6H(H+1)

1 + 1
3H(H+1)

=
6H2 + 6H + 1

6H2 + 6H + 2
=

(
1− c

1 + c

)2

≤
(
1− 1

56H2

1 + 1
56H2

)2

.

Applying this inequality to Equation (165) completes the proof of Equation (158), thereby proving
the second conclusion.

L.2 Details of Final Discussion

In this section, we will discuss the number of communication rounds in four different situations:

Situation 1: In round k, the trigger condition is satisfied by (s, a, h) when Nk
h (s, a) ≤ i1. We will

refer to this as a Type-I trigger.

For each time the trigger condition is met for (s, a, h), the number of visits to (s, a, h) increases by at
least 1/(2MH(H + 1)) times by Equation (3). Therefore, the maximum number of Type-I triggers
for each triple (s, a, h), denoted t2(s, a, h), satisfies(

1 +
1

2MH(H + 1)

)t1(s,a,h)−2

≤ i1.

Therefore, we have t1(s, a, h) = O(MH2 log(i1)) and thus the number of rounds with Type-I
triggers is bounded by ∑

s,a,h

t1(s, a, h) ≤ O
(
MH3SA log (i1)

)
.

Situation 2: In round k, the triple (s, a, h) satisfies the trigger condition when i1 < Nk
h (s, a) <

i1 + i2. We will refer to this as a Type-II trigger if a /∈ A∗
h(s) or a ∈ A∗

h(s) and P∗
s,h = 0, and as a

Type-III trigger if a ∈ A∗
h(s) and P∗

s,h > 0.

By Lemma L.4, for each time the trigger condition is satisfied by (s, a, h), the number of visits to
(s, a, h) increases by at least 1/3H(H + 1) times.

For (s, a, h) satisfying the type-II trigger, by Lemma L.2 and Equation (156), we know that the
maximum visit number to (s, a, h) is 32HCmin. Therefore, the maximum number of Type-II triggers
for each triple (s, π∗

h(s), h), denoted t2(s, a, h), satisfies(
1 +

1

3H(H + 1)

)t2(s,a,h)−1

≤ 32HCmin

i1
.
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Therefore, we have t2(s, a, h) ≤ O(H2 log(32HCmin/i1)) and thus the number of rounds with
Type-II triggers is bounded by∑

s,a,h

t2(s, a, h) ≤ O

(
H3SA log

(
32HCmin

i1

))
.

Situation 3: By (b) of Definition 4.6, we know a = π∗
h(s) for a Type-III trigger. Therefore, the

maximum number of Type-III triggers for each triple (s, π∗
h(s), h), denoted t3(s, π

∗
h(s), h), satisfies(

1 +
1

3H(H + 1)

)t3(s,π
∗
h(s),h)−1

≤ i1 + i2
i1

≤ i2.

Therefore, we have t3(s, π
∗
h(s), h) ≤ O(H2 log(i2)). Because we only have HS triples of

(s, π∗
h(s), h) such that P∗

s,h > 0, the number of rounds with Type-III triggers is no more than∑
s,P∗

s,h>0

t3(s, π
∗
h(s), h) ≤ O

(
H3S log (i2)

)
.

Situation 4: The trigger condition is satisfied by (s, a, h) in round k when Nk
h (s, a) > i1 + i2. We

refer to this type of trigger as a Type-IV trigger.

By Lemma L.4, in this case, for each time the trigger condition is satisfied by (s, a, h), we have
a ∈ A∗

h(s). we will first prove P∗
s,h = 0 in this case.

Let S0 = {(s, a, h) | a ∈ A∗
h(s), P∗

s,h = 0}. By Equation (156), we know for (s, a, h) ∈ S0,
NK+1

h (s, a) ≤ 32HCmin < i1 + i2. However, when the trigger condition is satisfied by (s, a, h)

in round k, we have Nk
h (s, a) > i1 + i2, which is contradicts the fact that NK+1

h (s, a) < i1 + i2.
Therefore the triple (s, a, h) satisfies that P∗

s,h > 0. By Lemma L.5, for any s′ ∈ S and h′ ∈ [H]
such that P∗

s′,h′ > 0, it holds that

Nk+1
h′ (s′, π∗

h′(s′)) ≥
(
1 +

1

6H(H + 1)

)
Nk

h′(s′, π∗
h′(s′)),

Therefore, the maximum number of Type-IV triggers, denoted t4, satisfies(
1 +

1

6H(H + 1)

)t4

≤ T̂

i1 + i2
≤ T

HSA
.

Then the number of rounds with Type-III triggers is bounded by

t4 ≤
log( T

HSA )

log
(
1 + 1

6H(H+1)

) = O

(
H2 log

(
T

HSA

))
.

Combining these four cases, the number of rounds is no more than∑
s,a,h

t1(s, a, h) +
∑
s,a,h

t2(s, a, h) +
∑

s,P∗
s,h>0

t3(s, π
∗
h(s), h) + t4

≤ O

(
MH3SA log (i1) +H3SA log

(
32HCmin

i1

)
+H3S log (i2) +H2 log

(
T

HSA

))
≤ O

(
MH3SA log (MHι) +H3SA log

(
H4SA

β∆2
min

)
+H3S log

(
1

Cst

)
+H2 log

(
T

HSA

))
.

When M = 1, the number of communication rounds is an upper bound for switching cost.
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