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Abstract
Neural Architecture Search (NAS) has recently
outperformed hand-designed networks in vari-
ous artificial intelligence areas. However, pre-
vious works only target a pre-defined task. For
a new task in few-shot learning (FSL) scenarios,
the architecture is either searched from scratch,
which is neither efficient nor flexible, or bor-
rowed architecture from the ones obtained on
other tasks, which may lead to sub-optimal. Can
we select the best neural architectures without
involving any training and eliminate a signifi-
cant portion of the search cost for new tasks in
FSL? In this work, we provide an affirmative an-
swer by proposing a novel information bottleneck
(IB) theory-driven Few-shot Neural Architecture
Search (dubbed, IBFS) framework to address this
issue. We first derive that the global convergence
of Model-agnostic meta-learning (MAML) can
be guaranteed by only considering the first-order
loss landscape. Moreover, motivated by the ob-
servation that IB provides a unified view toward
understanding machine learning models, we pro-
pose a novel Zero-Cost method tailored for FSL
to rank and select architectures based on their ex-
pressivity obtained by IB mechanisms. Extensive
experiments show that IBFS achieves state-of-the-
art performance in FSL without training, which
demonstrates the effectiveness of our IBFS.

1. Introduction
Deep Neural Networks (DNNs) have shown remarkable
performance on various challenging real-world tasks, i.e.,
image recognition (He et al., 2016), and few-shot learn-
ing (Finn et al., 2017; Sun & Gao, 2024). However, this
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Figure 1. IBFS vs. Peer competitors in terms of costs, accuracy,
and generalization.

raises an important concern about whether the frameworks
of the DNNs are ideal for those tasks. Naturally, NAS (Liu
et al., 2019b; Zoph et al., 2018) is a straightforward solution
for exploring frameworks for those tasks (i.e., FSL) due
to its automated search manner, which can automatically
search high-performance architectures for the aforemen-
tioned tasks.

Problem statement. Though promising, conventional NAS
has two fundamental limitations. First, conventional NAS
methods only focus on a single task. As shown in Fig. 2a,
vanilla NAS only targets a predefined target, for a new task,
the architecture is either searched from scratch, which is
time-consuming, or borrowed from the ones obtained on
other tasks, which may lead to sub-optimal. Second, as
depicted in Fig. 2b, despite adaption NAS (Kim et al., 2018;
Lian et al., 2020; Elsken et al., 2020) based on meta-learning
can enhance the generalization of searched architecture on
unseen tasks, however, it is extremely time-consuming, re-
quiring over 100 GPU days (Kim et al., 2018) for searching.

Our goal. In this paper, we aim to address the above two
fundamental limitations by revisiting neural networks tai-
lored for FSL from a zero-shot NAS perspective. As shown
in Fig. 1, our IBFS achieves better performance in terms of
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Figure 2. Illustration of our IBFS and related approaches. (a) Vanilla neural architecture search. (b) Adaption neural architecture search.
(c) The proposed IBFS can find the best meta architecture without training for multiple unseen tasks. For the scenario of our IBFS, there
is no need to restart the training of NAS after updating the meta weights for new task learning.
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Figure 3. Zero-cost proxies v.s. Accuracy. To be specific, we sam-
ple models (e.g., densenet40, seresnet20, resnet56, pyramidnet110)
from PytorchCV, as well as retrieve their real test accuracy. Then,
we use various zero-cost proxies (i.e., Entropy, KL, NASWOT) to
measure the expressivity of those models. For the convenience of
showing, we reduced the proxy value and accuracy by 100 and 10
times, respectively. We can clearly observe that existing proxies
(i.e., NWOT) suffer from larger score variance. In addition, we
provide more discussion in Section 1.

costs, accuracy, and generalization than peer competitors.

Challenges. However, to address the limitations of the
aforementioned, we target the following key questions:

• Which properties of MAML impact the global conver-
gence of FSL?

• Can we find a simple proxy that well evaluates the ex-
pressivity of the architecture sampled from the search
space for the FSL?

Motivations. To this end, we analyze which properties of
MAML determine the direction of optimization for FSL. By
carefully analyzing the global convergence of MAML, we
derive Theorem 4.1, which indicates that the global conver-
gence of MAML can be guaranteed by only considering
the first-order loss landscape. Hence, Theorem 4.1 provides
a shortcut to the global convergence of MAML that only
considers the properties of the architecture sampled from
the search space for the FSL at any initialization. Now, the
problem of crafting a specialized architecture for FSL can
be transferred to finding a suitable proxy to accurately mea-
sure the expressivity of architecture without training. Then,
we explore the relationship between existing proxies (i.e.,
NASWOT) and the accuracy of architectures (as shown in
Fig. 3) in a first-order way. To enhance the effectiveness of
the aforementioned empirical validation, we propose two
simple proxies, i.e., Kullback-Leibler (KL), and Entropy.
To be specific, Fig. 3, can yield two key conclusions: ❶ No
matter whether the networks at initialization or well-trained,
we can clearly observe that there is a positive correlation
between zero-cost proxies (Mellor et al., 2021; Chen et al.,
2021b) and the actual test accuracy. In brief, it is possi-
ble to accurately measure the expressivity of architecture
sampled from the search space for FSL without training.
❷ We also observe that existing proxies (i.e., NASWOT)
suffer from larger score variance, which will degrade the
accuracy. This is because that a larger score variance is
unstable. In contrast, our proposed simple proxy, namely,
Entropy, consistently obtains higher accuracy under various
architectures, due to smaller score variances. Consequently,
these observations suggest that designed proxies toward FSL
should obey the principle of smaller score variances.

Motivated by the principle of IB theory (Tishby et al., 2000;
Tishby & Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017b;
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Kawaguchi et al., 2023; Hu et al., 2024), we find that the
information entropy varies on different architectures, how-
ever, Kendall’s Tau between accuracy and information en-
tropy remains unchanged (as shown in Fig. 4) with the
increasing epochs. Notably, the variance of the informa-
tion entropy is very small, which shows that information
entropy based on the IB theory is a promising proxy tailored
for FSL. Grounded in empirical observations, in this paper,
we propose a novel method, called IBFS, measuring the
expressivity of neural architectures sampled from the prede-
fined search space for FSL by exploring their information
entropy properties. The information entropy eliminates the
influence of various gradients of architectures from search
spaces, making the IBFS pay more attention to the learning
of multiple tasks.

Contributions. The key contributions of this paper are:

• To solve the bilevel optimization of MAML, we derive
that the global convergence of MAML can be guaran-
teed by only considering the first-order approximation
of the loss landscape, which transfers the problem of
crafting a specialized architecture for FSL to find a
suitable proxy, accurately measuring the expressivity
of architectures without training.

• We propose a novel IB driven method, called Few-shot
Neural Architecture Search (IBFS), which can learn a
meta-architecture tailored for FSL without training.

• Extensive experiments on NAS-Bench-201 (Dong
& Yang, 2020) and few-shot tasks show that IBFS
achieves comparable performance in FSL with surpris-
ingly smallest search costs, which demonstrates the
effectiveness and superiority of our IBFS compared
with its peer competitors.

2. Related Works
2.1. Neural Architecture Search

Recently, various Neural Architecture Search (NAS) ap-
proaches have emerged to jointly optimize the weights and
the architectures (Wu et al., 2019; Chu et al., 2020b; Chen
et al., 2021c; Ye et al., 2022). This is achieved by various
search algorithms including Reinforcement learning (Zoph
& Le, 2017; Baker et al., 2016), Evolutionary algorithm
(Xie et al., 2018; Real et al., 2019b;a), and Gradient de-
scent (Liu et al., 2019a; Yu et al., 2019; Wang et al., 2020;
Chu et al., 2020b; Ye et al., 2022). To accelerate NAS, a
lot of works focus on a training-free strategy (i.e., without
training in the search stage), which significantly reduces
search costs (Mellor et al., 2021; Xu et al., 2021; Chen et al.,
2021b; Abdelfattah et al., 2021). Recently, there have been
a few works to explore the generalization of architectures
sampled from search spaces by combining NAS with FSL

using meta-learning (Kim et al., 2018; Lian et al., 2020;
Elsken et al., 2020). However, these approaches cost more
than 100 GPU days in the search stage, which is extremely
time-consuming. By contrast, our proposed IBFS can find
FSL-friendly architecture for new tasks without involving
any training, which is very efficient. The superiority of
IBFS can be attributed to the powerful IB theory, measuring
the expressivity of neural architecture.

2.2. Information Bottleneck Theory

The IB theory (Tishby et al., 2000; Tishby & Zaslavsky,
2015; Shwartz-Ziv & Tishby, 2017b; Kawaguchi et al.,
2023; Hu et al., 2024) offers a comprehensive framework for
understanding machine learning models that involve latent
variables (Shamir et al., 2010; Shwartz-Ziv & Tishby, 2017a;
Slonim & Tishby, 1999; Tishby et al., 2000). According to
this theory, in the context of input x, true label y, and latent
representation z, the objective of supervised learning is to
minimize the mutual information I(z;x) while preserving
as much mutual information I(z; y) as possible. By achiev-
ing this, a predictor with such a representation eliminates
unnecessary transformations present in x while retaining
crucial information about y. In the analysis of deep neural
networks, the latent variables z correspond to the hidden
layer activities z(l) at each layer l. The learning process
can be visualized as a trajectory in the (I(z;x), I(z; y))-
coordinate space. This approach, known as information
plane analysis, has received significant attention in recent
years (Yu et al., 2020).

2.3. Meta Learning for FSL

Meta-learning family (e.g., MAML (Finn et al., 2017) and
its variants (Finn et al., 2019; Xu et al., 2020; Bai et al.,
2021; Fallah et al., 2020b; Ji et al., 2020; Rajeswaran et al.,
2019; Zhou et al., 2019; Tack et al., 2022; Sun & Gao, 2024;
Kang et al., 2023)) is the most promising approach for FSL,
which can quickly generalize to a new task from only a
few samples by training a meta learner. Despite promis-
ing, those approaches rely on neural networks/architectures
(i.e., ConvNets, ResNets) tailored for supervised learning
benchmarks (i.e., ImageNet), and little attention is focused
on analyzing the role of architectures for FSL. In this paper,
we provide an affirmative answer by proposing a simple
yet effective method, called IBFS, to design FSL-friendly
architectures from a zero-cost NAS perspective. Notably,
our method does not limit the scope of MAML, it can also
be generalized to its variants.

3. Preliminaries
In this section, we introduce the concept and problem for-
mulation of the NAS and FSL.
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Neural Architecture Search. We consider a NAS searching
process. Typically, the whole searching pipeline is organized
as a Directed Acyclic Graph (DAG), suppose that we have a
task T t, and each task is composed of bt data samples Xt.
Accordingly, the objective function is defined as:

minLvalXt∈Tt (W ∗, α),

s.t. W∗ = argmin lim
W

(W, α) ,
(1)

where W denotes the weight of the architecture from search
spaces, α denotes the mixing weight of the operations, and
W ∗ denotes the weight of the best architecture.

Few Shot Learning. Suppose that we have a set of tasks
T 1, T 2,..., Tm (i.e., multiple datasets, multiple tasks, or
multiple IoT devices, etc.). Then, each task T t is composed
of bt data samples (Xt, Y t), and (X̂t, Ŷ t) represented by
support samples (i.e., training samples of Dtrain

t ) and query
samples (i.e., test samples of Dtest

t ), respectively. The loss
function L can be formulated as follows:

min
A,W t

∑
t

L(Dtest
t , G(Dtrain

t , α;A)), t ∈ (1,m), (2)

where A and W t are the neural architecture and its parame-
ters, respectively. G denotes the computation of parameter
updates using one or more gradient descent steps. For con-
venience, we employ the square loss function ℓ(Ŷ t, Y t) =
1
2 |Ŷ t − Y t|22 in this paper. As the gradient-based meta-
learning algorithm, we utilize Reptile (Nichol et al., 2018),
which has demonstrated comparable performance to MAML
(Finn et al., 2017) in few-shot classification tasks by utilizing
only first-order gradient information. However, traditional
NAS methods that involve gradient-based or evolutionary
computation for updates tend to have lengthy search pro-
cesses. Combining such methods directly with FSL often
leads to sub-optimal results.

4. Design of FSL-Friendly Architectures
The metrics designed for supervised learning may not be
suitable for FSL, due to their optimization objective and
scenario being quite different. In this section, our goal is
to build a framework that yields the meta architecture αA

with corresponding weights WA. Then, given a new task
Ti, both αA and WA should quickly adapt to Ti based on a
few labeled samples. To fulfill this goal, we propose IBFS,
a novel method that naturally combines FSL and Zero-shot
NAS. First, we analyze the convergence of MAML for the
FSL. Then, we propose IBFS to evaluate the expressiveness
of the architecture. In addition, we will describe how the
meta architecture encoded by αA can be quickly specialized
to a new task without requiring re-training of WA.

MAML (Model-Agnostic Meta-Learning) is a classic meta-
learning approach for FSL. However, the Hessian term

10 30 50 80 100 120
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

K
en

da
ll'

s 
Ta

u

Entropy

Figure 4. Correlation v.s. Epochs. The correlation coefficients
(Kendall’s τ ) between zero-cost proxy (namely, entropy) under
varying number of epochs and real test accuracy of models, where
those models (e.g., densenet40, seresnet20, resnet56, pyramid-
net110, wrn16) are trained on CIFAR-10 datasets.

(second-order gradient) in the first-order Jacobian matrix
complicates the optimization problem in MAML. If it is pos-
sible to quantify the impact of the Hessian term on the over-
all optimization within a certain range, it would simplify the
analysis of MAML’s convergence properties. Fortunately,
several lines (Antoniou et al., 2018; Fallah et al., 2020a;
Wang et al., 2022b; Ji et al., 2022) demonstrate that MAML
can reach a global minimum that gradient descent with a
sufficiently small learning rate. In this paper, we provide a
proof for the global convergence of MAML as follows.

Theorem 4.1 (Global Convergence of MAML). To clearly
illustrate the global convergence of MAML, we borrow one
of the conclusions from MetaNTK-NAS (Wang et al., 2022b),
which provides a Neural Tangent Kernel (NTK) perspec-
tive to understand MAML. While MetaNTK-NAS provides
valuable theoretical guarantees, its proof is highly intricate
and relies heavily on NTK theory, which can be computa-
tionally expensive. In contrast, this paper presents a novel
and more accessible proof for the global convergence of
MAML. Moreover, the detailed proof is provided in App.
A. At first, we define Ft sampled from search space A, l
denotes the number of i-th hidden layer. σmin(Φ): The min-
imum singular value of a matrix Φ, likely related to the
Jacobian of the network’s output with respect to its parame-
ters. η0 is a constant related to the learning. rate.ℓinner =
∇θFt(X̂t, Xt, Y t), lr∞ = liml→∞

1
l ℓinnerℓ

T
inner, and

ϕ0 = 2
ξmax(ℓ∞)+ξmin(ℓ∞

). For arbitrarily small δ > 0,
and there exist G > 0, l∗ ∈ N,, and λ0 > 0, hence, for
width l ≥ l∗, perform gradient descent with learning rates
lr < lr∞

l , and λ < λ0

l with random initialization, from the
Eq.2, we give an upper bound on the above loss function:
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ℓ(W t) ≤ (1− τ · η0σmin(Φ))
2t
, τ ∈ (0, 1) (3)

Remark. Theorem 4.1 indicates that there exists a
global minimum with any initialization parameter W t

in a small region, and the Jacobian of ℓinner is stable
during the updating of parameter W t in the episode
meta-train and meta-test. According to the theory of
flatness of local minima (Keskar et al., 2016; Hoffer
et al., 2017; Cha et al., 2020), the flatness of the loss
landscape near the global minimum represents MAML
having strong generalizability. More importantly, we
can drive that the MAML is a first-order ℓinner conver-
gence problem from Theorem 4.1. Then, according to
the principle of IB, we evaluate the expressivity of the
architecture sampled from the search space for the FSL
by calculating the information entropy of the distribu-
tion of its inner loss ℓinner outputs. Fig. 4 illustrates
that Kendall’s Tau values for model accuracy and the
expressivity of the model computed by our method re-
main unchanged across different epochs. Specifically,
we sampled five models (i.e., densenet40, seresnet20,
resnet56, pyramidnet110, wrn16) trained with various
epochs, and calculated Kendall values using our met-
ric in that epoch. In Fig. 4, entropy represents the
score derived from our metric. Each line in the plot
with six points indicates that the value of Kendall’s
Tau between model accuracy and entropy is the same
at different epochs for multiple models. In essence,
model expressivity, an intrinsic characteristic, remains
stable and can be accurately computed without any
training, even at initialization. This experiment vali-
dates that our proposed metric can accurately measure
model expressivity without the need for training.

4.1. Learning Rapid Adaption of Neural Architecture
via the IB Principle

Design Principles. Given multiple neural architectures
F1, F2, ..., Fn sampled from search space A with parameter
wi at initialization, when randomly sampled batch data X
as input, how to correctly rank these neural architectures
without training becomes a key challenge. To this end, we
bring the IB theoretic view and explain how it helps with
ranking neural architectures at initialization. We begin by
defining several terms in our analysis: x ∈ X , the output
y ∈ Y , the features of neural architectures r ∈ R, and some
functions for measuring information of Fi, i.e., entropy
H(X) = Ep(x)[ − log p(x)], and Kullback-Leibler (KL)
divergence KL(p(x)∥q(x)) = Ep(x)[log

p(x)
q(x) ].

We define relevant information in a signal x ∈ X as that
signal providing information about another signal y ∈ Y .

Examples include information implicit in image tasks or
neural architectures. The main inquiry is to explore those
features of x that play a role in the prediction of the neural
architecture’s output y. We define this problem as squeezing
the information about x provided by y through a “bottle-
neck” formed by some metric on the neural architecture.
Given a neural architecture Fi at initialization, Y = Fi(X),
we try to construct a function for measuring the expressivity
of a neural architecture based on the following IB principle.
As follows, the amount of information about Y in R is given
by:

I(R;Y ) =
∑
y

∑
r

p(y, r) log
p(y, r)

p(y)p(r)
≤ I(X;Y ), (4)

According to (Tishby et al., 2000), we give an objective
function that finds the trade-off between the input x and
neural architecture Fi output y, the objective function can
be formulated as follows:

L[p(r|x)] = I(R;X)− βI(R;Y ), (5)

where β ≥ 0 is the Lagrange multiplier attached to the con-
strained meaningful information, while maintaining the nor-
malization of the mapping p(r|x) for every x. Introducing
λ(x) for the normalization of the conditional distributions
p(r|x), the Eq.5, becomes:

L[p(r|x)] = I(X;R)− βI(R;Y )−
∑
x,r

λ(x)p(r|x)

=
∑
x

∑
r

p(r, x) log
p(r, x)

p(x)p(r)

−
∑
y

∑
r

p(y, r) log
p(y, r)

p(y)p(r)
−
∑
x,r

λ(x)p(r|x)

≤
∑
x

∑
r

p(r, x) log
p(r, x)

p(x)p(r)

−βI(X;Y )−
∑
x,r

λ(x)p(r|x),

(6)

Finally, we obtain the final optimal solution by minimizing
Eq.6:

δL
δp(r|x)

=

p(x)

[
log

p(r|x)
p(r)

+ β
∑
y

p(y|x) log p(y|x)
p(y|r)

− λ̃(x)

]
= 0,

(7)
where λ̃(x) = λ(x)

p(x) − β
∑

y p(y|x) log
[
p(y|x)
p(y)

]
. If we

choose entropy H(X) = Ep(x)[ − log p(x)] as the func-
tion to measure distortion of neural architecture Fi, the
p(r|x), becomes:
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Table 1. Comparison results on NAS-Bench-201. Red, blue, and orange indicate the best, second-best, and third-best results, respectively.

Method Year Search (s) CIFAR-10 CIFAR-100 ImageNet-16-120

validation (%) test (%) validation (%) test (%) validation (%) test (%) Search Methods

ResNet(He et al., 2016) CVPR2016 93.97 70.86 43.63 Manual

Non-weight sharing
REA(Zoph et al., 2018) CVPR2018 12000 91.19±0.31 93.92±0.30 71.81±1.12 71.84±0.99 45.15±0.89 45.54±1.03 EA
BOHB(Liu et al., 2018) ECCV2018 12000 90.82±0.53 93.61±0.52 70.74±1.29 70.85±1.28 44.26±1.36 44.42±1.49 HPO
REINFORCE(Real et al., 2019b) AAAI2019 12000 91.09±0.37 93.85±0.37 71.61±1.12 71.71±1.09 45.05±1.02 45.24±1.18 RL

Weight sharing
SNAS (Xie et al., 2020) ICLR2018 - 90.10±1.04 92.77±0.83 69.69±2.39 69.34±1.98 42.84±1.79 43.16±2.64 GD
ENAS(Pham et al., 2018) ICML2018 13315 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00 RL
DARTS-V2(Liu et al., 2019b) ICLR2019 29902 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00 GD
GDAS(Dong & Yang, 2019) CVPR2019 28926 90.00±0.21 93.51±0.13 71.14±0.27 70.61±0.26 41.70±1.26 41.84±0.90 GD
DSNAS (Hu et al., 2020) ICLR2019 - 89.66±0.29 93.08±0.13 30.87±16.40 31.01±16.38 40.61±0.09 41.07±0.09 GD
PC-DARTS (Xu et al., 2019) ICLR2020 - 89.96±0.15 93.41±0.30 67.12±0.39 67.48±0.89 40.83±0.08 41.31±0.22 GD
RSPS(Li & Talwalkar, 2020) UAI2020 7587 84.16±1.69 87.66±1.69 59.00±4.60 58.33±4.34 31.56±3.28 31.14±3.88 RS+WS
iDARTS (Zhang et al., 2021a) ICML2021 - 89.86±0.60 93.58±0.32 70.57±0.24 70.83±0.48 40.38±0.59 40.89±0.68 GD
OLES (Jiang et al., 2023) NeurIPS2023 - 90.88±0.10 93.70±0.15 70.56±0.28 70.40±0.22 44.17±0.49 43.97±0.38 GD
IS-DARTS (He et al., 2024) AAAI2024 7200 91.55±0.00 94.36±0.00 73.49±0.00 73.31±0.00 46.37±0.00 46.34±0.00 GD

Training-free
Random - 83.20 ± 13.28 86.61 ± 13.46 60.70 ± 12.55 60.83 ± 12.58 33.34 ± 9.39 33.13 ± 9.66 Random
NASWOT (Mellor et al., 2021) ICML2021 4.4 88.47 ± 1.33 91.53 ± 1.62 66.49 ± 3.08 66.63 ± 3.14 38.33 ± 4.98 38.33 ± 5.22 Zero-cost
GradSign (Zhang & Jia, 2022) ICLR2022 30.38 - 93.52 ± 0.19 - 70.57 ± 0.31 - 41.89 ± 0.69 Zero-cost
ZiCo (Li et al., 2023) ICLR2023 6.2 - 93.50 ± 0.18 - 70.62 ± 0.26 - 42.04 ± 0.82 zero-cost
AZ-NAS (Lee & Ham, 2024) CVPR2024 0.71 - 93.53 ± 0.15 0.723 - 70.75 ± 0.48 - 45.43 ± 0.29 zero-cost
SWAP (Peng et al., 2024) ICLR2024 4.7 87.31 ± 2.36 90.48 ± 0.94 65.92 ± 4.32 67.13 ± 1.83 33.85 ± 4.98 35.40 ± 3.96 Zero-cost
IBFS(ours) 3.82 91.55 ± 0.76 94.37 ± 0.34 73.31 ± 2.12 73.09 ± 2.08 45.59 ± 0.32 46.33 ± 1.27 Zero-cost

Optimal (NAS-Bench-201) N/A 94.37 73.51 47.31 N/A

p(r|x) = p(r̃)

λ̃(x)
exp(−βH(X))

=
p(r̃)

λ̃(x)
exp(−βEp(x)[− log p(x)])

≤ H ∗ exp(−βEp(x)[− log p(x)]),

(8)

where H is a scalar.

Given a neural architecture Fi at initialization, first, we
measure the expressivity of a neural architecture based on
the above IB principle. Concretely, we define a mapping
from X , through untrained architecture Fi with parameter
wi, construction of kernel Jacobian matrix, input a batch
with B data xj , where xj ∈ X , j ≤ B, Ji =

∂w(xi)
∂xi

. To
evaluate the performance of the architecture Fi on different
inputs data xj , we constructed the following Jacobian matrix
J :

J =

(
∂w (x1)

∂x1
. . . ,

∂w (xB)

∂xB

)T

, (9)

The intuition to our method is that different neural architec-
tures have different Jacobian J values, based on the N eigen-
values ς1, ς2, ..., ςN of the Jacobian matrix, we construct an
entropy-based IB formulation for the neural architecture Fi.
The untrained architecture Fi can be scored as:

NNexpressivity = −
N∑

k=1

p log p

≤ H ∗ exp(−Ep(ςk)[− log p(ςk)]).

(10)

The intuition for entropy-driven IB is that a higher score

at initialization implies the network architecture obtains a
higher accuracy after convergence.

5. Experiments
5.1. Experiment Setup

To validate the effectiveness of the proposed proxy, we
first evaluate our IBFS framework on search space of NAS-
Bench-201(Dong & Yang, 2020) in three supported datasets
(CIFAR-10, CIFAR-100, ImageNet-16-120 (Chrabaszcz
et al., 2017)). Then, to validate the effectiveness of our
IBFS in designing the FSL-friendly architecture, we conduct
comprehensive experiments in two popular few-shot image
classification datasets, mini-ImageNet, and tiered-ImageNet
with the wide of peer competitors, which both are subsets of
ImageNet (Deng et al., 2009). (1) mini-ImageNet (Vinyals
et al., 2016): It contains 60,000 RGB images of 84x84 pixels
extracted from ImageNet1K (Deng et al., 2009). It includes
100 classes (each with 600 images) that are split into 64
training classes, 16 validation classes, and 20 test classes.
(2) tiered-ImageNet (Ren et al., 2018): This dataset contains
779,165 RGB images of 84x84 pixels extracted from Ima-
geNet1K (Deng et al., 2009). It includes 608 classes that are
split into 351 training, 97 validation, and 160 test classes.

Peer Competitors. For FSL, we compare our method
with a wide scope of the state-of-the-art NAS-based base-
lines, as follows: (1) MAML(Finn et al., 2017); (2) ANIL
(Raghu et al., 2020); (3) MetaOptNet(Lee et al., 2019); (4)
RFS(Tian et al., 2020); (5) AutoMeta(Kim et al., 2018); (6)
T-NAS++(Lian et al., 2020); (7) MetaNAS(Elsken et al.,
2020); (8) H-Meta-NAS(Zhao et al., 2022); (9) MetaNTK-
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Table 2. Performance comparison on the DARTS search space with ImageNet1k dataset, where “Img” denotes network models directly
searched in ImageNet1k, and “C10” and “C100” denotes network models searched in CIFAR-10 and CIFAR-100, respectively.

Method Top-1(%) Top-5(%) # Params
(M)

FLOPS
(M)

Search Cost
(GPU-days)

Search
Method

ResNet50 (He et al., 2016) 75.3 92.2 25.6 4100 - Manual
MobileNetV1 (Howard et al., 2017) 70.6 89.5 4.2 575 - Manual
MobileNetV2 (Sandler et al., 2018) 74.7 91.0 3.4 300 - Manual

ShuffleNetV2 (Ma et al., 2018) 72.6 - 3.5 299 - Manual
AmoebaNet-A (Zoph et al., 2018) 74.5 92.4 6.4 555 3150 Evolution

ProxylessNAS-RL (Cai et al., 2018) 74.6 92.3 5.8 465 8.3 RL
EfficientNet-B0 (Tan & Le, 2019) 76.3 93.2 5.3 390 ≈3000 RL

NASNet-A (Real et al., 2019b) 74.0 91.6 5.3 564 2000 RL
DARTS (Liu et al., 2019b) 73.3 91.3 4.7 574 4 Gradient

FBNet (Wu et al., 2019) 74.9 - 5.5 375 216 Gradient
PC-DARTS(Img) (Xu et al., 2019) 75.8 92.7 5.3 597 3.7 Gradient

P-DARTS(C100) (Chen et al., 2019) 75.3 92.5 5.1 577 0.3 Gradient
DARTS+ (Liang et al., 2019) 76.3 92.8 5.1 591 0.2 Gradient

DARTS-(Img) (Chu et al., 2020a) 76.2 93.0 4.9 467 4.5 Gradient
FairDARTS-B(Img) (Chu et al., 2020b) 75.1 92.5 4.8 541 - Gradient

SNAS(C10) (Xie et al., 2020) 72.7 90.8 4.3 522 1.5 Gradient
DARTS+PT(C10) (Wang et al., 2020) 74.5 92.0 4.6 - 0.8 Gradient

DOTS(C10) (Gu et al., 2021) 75.7 92.6 5.2 581 0.3 Gradient
β-DARTS(C100) (Ye et al., 2022) 75.8 92.9 5.4 597 0.4 Gradient
Λ-DARTS (Movahedi et al., 2023) 75.7 - 5.2 - - Gradient

OLES (Jiang et al., 2023) 75.5 92.6 4.7 - 0.4 Gradient
FP-DARTS(C10) (Wang et al., 2023) 75.7 92.7 5.4 - 0.08 Gradient
PDARTS-AERad (Jing et al., 2023) 76.0 92.8 5.1 578 2.0 Gradient

IS-DARTS (He et al., 2024) 75.9 92.9 6.4 - 0.42 Gradient
NAO (Luo et al., 2018) 74.3 91.8 11.4 584 200 Proxy

SemiNAS (Luo et al., 2020) 76.5 93.2 6.3 599 4 Proxy
WeakNAS (Wu et al., 2021) 76.5 93.2 5.5 591 2.5 Proxy
TENAS (Chen et al., 2021c) 75.5 92.5 5.4 - 0.17 Training-free

NASI-ADA(C10) (Shu et al., 2022) 75.0 92.2 4.9 559 0.01 Training-free
SWAP (Shu et al., 2022) (Img) 75.0 92.4 5.8 - 0.006 Training-free

IBFS(C10) 76.7 ↑(0.2) 93.5 ↑(0.3) 5.2 587 0.0042 ↓(0.0022) training-free

NAS(Wang et al., 2022a). In addition, we also compare
our method with a wide scope of the state-of-the-art non-
NAS-based baselines, as follows: (1) MAML(Finn et al.,
2017); (2) ANIL (Raghu et al., 2020); (3) COMLN(Deleu
et al., 2022); (4) Meta-AdaM(Sun & Gao, 2024); (5)
GAP(Kang et al., 2023); (6) MetaDiff(Zhang et al., 2024);
(7) MetaOptNet(Lee et al., 2019); (8) CTM(Li et al., 2019);
(9) RFS(Tian et al., 2020); (10) MAML+ALFA(Baik et al.,
2020); (11) Sparse-MAML(Von Oswald et al., 2021); (12)
MeTAL(Baik et al., 2021); (13) ClassifierBaseline(Chen
et al., 2021d); (14) MetaQDA(Zhang et al., 2021b); (15)
MAML+SiMT(Tack et al., 2022); (16) COMLN(Deleu
et al., 2022).

Implementation Details. In our study, we construct the
neural architecture by stacking either 5 or 8 searched cells
together. Within the architecture, there are specific cells
positioned at 1/3 and 2/3 of the total depth of the network,
referred to as reduction cells. These reduction cells serve the
purpose of decreasing the spatial resolution while doubling
the number of channels. The initial number of channels is
set to 48 as a starting point for the architecture.

Optimization Setup. In line with the approach proposed
in (Tian et al., 2020), we employ the stochastic gradient
descent (SGD) optimizer with a momentum of 0.9 and a
weight decay of 0.0005. The training process for all models
consists of 120 epochs for miniImageNet and 80 epochs for
tieredImagenet. Regarding the specific learning rate sched-
ules, for miniImageNet, we start with an initial learning rate
of 0.1. At epochs 40 and 80, the learning rate is decayed by

a factor of 10x. As for tieredImageNet, the initial learning
rate is set to 0.2. We apply a 10x learning rate decay at
epochs 20, 40, and 60, 80.

Metrics. In line with common practice, we give priority to
the relative ranking of architectures and utilize Kendall’s
Tau (Sen, 1968) and accuracy as the evaluation metrics.
Kendall’s Tau is a widely adopted measure for assessing the
quality of performance predictors. It aims to evaluate the rel-
ative ranking of candidate architectures and provides values
within the range of [-1, 1]. A higher Kendall’s Tau indicates
a stronger alignment between the predicted ranking and the
actual ranking, thereby indicating better performance.

Code. We have implemented our code using the PyTorch
framework (Paszke et al., 2019). Specifically, for the NAS
search stage, we have built upon the codebase provided by
(Chen et al., 2021b). This serves as the foundation for our
implementation. On the other hand, for the training and
evaluation stages, we have utilized the code provided by
(Tian et al., 2020).

Hardware. The majority of our experiments were con-
ducted using NVIDIA RTX 2080Ti GPUs, while the re-
maining experiments were run on NVIDIA RTX A100 80G
GPUs. Each experiment was executed on a single GPU at
a time to ensure consistent and reliable results. The search
cost of IBFS, specifically, was benchmarked using NVIDIA
RTX 2080Ti GPUs.
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Table 3. Comparison results on FSL benchmarks. Red, blue, and orange indicate the best, second-best, and third-best results, respectively.

mini-ImageNet 5-way tiered-ImageNet 5-way

Method Year Arch. #Cells Train #Param. Search Cost 1-shot (%) 5-shot (%) #Param. Search Cost 1-shot (%) 5-shot (%)

MAML(Finn et al., 2017) ICML17 Conv4 - MAML 30k - 48.70±1.84 63.11±0.92 30k - 51.67±1.81 70.30±1.75
ANIL (Raghu et al., 2020) ICLR20 Conv4 - ANIL 30k - 48.0±0.7 62.2±0.5 - - - -
COMLN(Deleu et al., 2022) LCLR22 Conv4 - - - - 53.01±0.62 70.54±0.54 - - 54.30±0.69 71.35±0.57
Meta-AdaM(Sun & Gao, 2024) NeurIPS23 Conv4 - Meta Learning - - 52.00±0.49 70.70±0.49 - - 53.93±0.49 72.66±0.49
GAP(Kang et al., 2023) CVPR23 Conv4 - - - - 54.86±0.85 71.55 ±0.61 - - 57.60±0.93 74.90±0.68
MetaDiff(Zhang et al., 2024) AAAI24 Conv4 - Meta Learning - - 55.06±0.81 73.18 ±0.64 - - 57.77±0.90 75.46±0.69
MetaOptNet(Lee et al., 2019) CVPR19 ResNet-12 - MetaOptNet 12.5M - 62.64±0.61 78.63±0.46 12.7M - 65.99±0.72 81.56±0.53
CTM(Li et al., 2019) CVPR19 ResNet-18 - - - - 64.12±0.82 80.51±0.13 - - 68.41±0.39 84.28±1.73
RFS(Tian et al., 2020) ECCV20 ResNet-12 - RFS 12.5M - 62.02±0.63 79.64±0.44 12.7M - 69.74±0.72 84.41±0.55
MAML+ALFA(Baik et al., 2020) NeurIPS20 ResNet-12 - MAML - - 59.74±0.49 77.96±0.47 - - 64.62±0.49 82.48±0.39
Sparse-MAML(Von Oswald et al., 2021) NeurIPS21 ResNet-12 - MAML - - 56.39±0.38 73.01±0.24 - - 53.47±0.53 68.83±0.65
MeTAL(Baik et al., 2021) ICCV21 ResNet-12 - Meta Learning - - 59.64±0.38 76.20±0.19 - - 63.89±0.48 80.14±0.40
ClassifierBaseline(Chen et al., 2021d) ICCV21 ResNet-12 - Meta Learning - - 61.22±0.84 78.72±0.60 - - 69.71±0.88 83.87 ±0.64
MetaQDA(Zhang et al., 2021b) ICCV21 ResNet-12 - Bayesian - - 65.12 ±0.66 80.98±0.75 - - 69.97 ±0.52 85.51 ±0.58
MAML+SiMT(Tack et al., 2022) NeurIPS22 ResNet-12 - MAML - - 51.49±0.18 68.74±0.12 - - 52.51±0.21 69.58±0.11
COMLN(Deleu et al., 2022) LCLR22 ResNet-12 - - - - 59.26±0.65 77.26±0.49 - - 62.93±0.71 81.13 ±0.53
Meta-AdaM(Sun & Gao, 2024) NeurIPS23 ResNet-12 - Meta Learning - - 59.89±0.49 77.92±0.43 - - 65.31±0.48 85.24±0.35
MetaDiff(Zhang et al., 2024) AAAI24 ResNet-12 - Meta Learning - - 64.99±0.77 81.21 ±0.56 - - 72.33±0.92 86.31±0.62
AutoMeta(Kim et al., 2018) NeurIPS18 Cells - Reptile 100k 2688 hr 57.6±0.2 74.7±0.2 - - - -
T-NAS++(Lian et al., 2020) ICLR20 Cells 2 FOMAML 27k 48 hr 54.11±1.35 69.59±0.85 - - - -
MetaNAS(Elsken et al., 2020) CVPR20 Cells 5 Reptile 1.1M 168 hr 63.1±0.3 79.5±0.2 - - - -

MetaNAS(Elsken et al., 2020)(retrained)† CVPR20 Cells 8 RFS 3.53M 168 hr 63.88±0.23 79.88±0.14 3.70M 168 hr 72.32±0.02 86.48±0.06
H-Meta-NAS(Zhao et al., 2022) NeurIPS22 - - - 70.28K - 57.36±1.11 77.53±0.77 - - - -
MetaNTK-NAS(Wang et al., 2022a) CVPR22 Cells 8 RFS 3.21M 1.92 hr 64.26±0.14 80.35±0.12 4.78M 2.73 hr 72.37±0.79 86.43±0.52
IBFS - Cells 8 RFS 3.50M 0.1 hr 64.55±0.02 81.52±0.08 4.50M 0.10 hr 72.56±0.02 86.73±0.08

5.2. Results on NAS-Bench-201

Table 1 details the comparison between our IBFS and its
peer competitors in terms of NAS benchmark (namely, NAS-
Bench-201 search space) in CIFAR-10, CIFAR-100, and
ImageNet-16-120 datasets. To be specific, as depicted in
Table 1, the non-weight sharing methods suffer from huge
search costs, which search the target architecture with a
budget of 12000 seconds. For training-free and non-weight-
sharing methods, we report the accuracies are averaged over
500 runs. As shown, it is evident that the IBFS consistently
outperforms its peer competitors in all cases. In particular,
IBFS only cost 3.82s, finding competitive architecture at
initialization than other methods. In addition, our IBFS
obtains a higher similarity value in terms of Kendall’s Tau
than the existing zero-cost proxy (i.e., NASWOT) designed
for NAS (0.752 vs. 0.422). Notably, NASWOT is designed
for NAS in classification tasks, not for few-shot learning.
While NASWOT and our method utilize the Jacobian ma-
trix, however, the computation of the Jacobian matrix is
totally different. NASWOT uses the Hamming distance be-
tween two binary codes. By contrast, we directly utilize the
gradient of the eutwork kernel. To sum up, this experiment
provides a piece of critical evidence that proposed IBFS can
design FSL-friendly architectures without training.

6. Results in Larger ImageNet1k
To validate the effectiveness of our method on larger dataset,
we conduct the experiments in ImageNet1k. From Table
2, we can clearly see that our IBFS method consistently
outperforms compared SOTA methods: it achieves highest
76.7 % Top-1 accuracy, with 0.0042 (GPU-days) fewest
search costs. Compared with its peer competitors, our

5 way 5 shot

5 way 1 shot

1680× fewer costs480×
fewer costs

19.2×
few

er costs

0.67 % higher acc

10.44 % higher acc

Figure 5. Comparison to SOTAs in terms of accuracy of FSL and
Search costs in mini-ImageNet dataset (5 way 5 shot).

method achieves the Top-1 accuracy of 1.7% higher than
SWAP, 1.6% higher than NASI-ADA, and 1.2% higher than
TENAS. Notably, our method only searches in small CIFAR-
10 dataset, and then can well generalize to large ImageNet1k,
which largely reduces search costs. Those empirical results
illustrate that our method possesses strong generalization
ability in larger dataset.

6.1. Results for Few Shot Learning

Table 3 presents a comparison of IBFS with a wide scope
of meta-learning approaches under the setting of 5-way
few-shot classification tasks in miniImageNet and tiered-
ImageNet datasets. Notably, to keep a fair comparison, we
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only compare with CNN-based methods. If we use trans-
formers as the backbone in FSL, it will bring unfairness for
comparison. Among these approaches, MetaDiff represents
the current state-of-the-art gradient-based meta-learning ap-
proach for FSL, which obtains 64.99±0.77 (1 shot) and
81.21 ±0.56 (5 shot) in miniImageNet dataset using ResNet-
12 as a feature extractor. Additionally, we present a com-
parison of IBFS with a wide scope of NAS-based methods
(i.e., AutoMeta, MetaNAS, and MetaNTK-NAS) for FSL.
In this case, our FSL consistently surpasses state-of-the-art
methods in terms of accuracy and search costs, showing su-
periority in terms of search speed tailored for FSL. To put it
more intuitively, we present the visualization of comparison
in Fig. 5. The result of Fig. 5 suggests that the architecture
guided by IBFS more effectively learns features for FSL,
facilitating adaption to unseen tasks. Notably, as shown
Fig. 7 and 8, we provide the visualization of the searched
architecture, which intuitively validates the effectiveness of
our method. Overall, these results validate the effectiveness
of IBFS tailored for FSL.

6.2. Results for Transformer Design

To further scrutinize the effectiveness of our method for
transformer designing, we devote lots of effort & explo-
ration in the IBFS day and night, conducting additional
experiments on AutoFormer (Chen et al., 2021a) in a larger
ImageNet dataset. The experimental setting is the same
as TF-TAS-T (Zhou et al., 2022). We can find that IBFS
achieves the highest Top-1 accuracy (76.5%). Those empiri-
cal results show the strong generalizability of our method
for transformer design.

Figure 6. The impact of θ on NAS-Bench-201 search space. (a)
and (b) are Kendall’s τ on various hyper-parameters α.
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Figure 7. Normal cell searched by IBFS.
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Figure 8. Reduce cell searched by IBFS.

Table 4. Results on AutoFormer benchmark in ImageNet.
Method Year Top-1 (%) Search Cost Model Type Search Method
ViT-Ti(Dosovitskiy et al., 2020) ICLR2020 74.5 - Transformer Manual
AutoFormer-T (Chen et al., 2021a) CVPR2021 74.9 24 Transformer Evolution
TF-TAS-T (Zhou et al., 2022) CVPR2022 75.3 0.5 Transformer Training-free
ViTAS-C (Su et al., 2022) ECCV2022 74.7 32 Transformer Evolution
Auto-Prox (Wei et al., 2024) AAAI2024 75.6 0.1 Transformer Training-free
IBFS - 76.5 0.03 CNNs Training-free

7. Conclusion and Future work
This paper proposes a novel IB driven Few-shot Neural
Architecture Search (IBFS) framework to address the chal-
lenge of designing high-performance neural architectures
for new tasks without involving any training. We first
demonstrate that the global convergence of Model-agnostic
meta-learning (MAML) can be guaranteed by considering
only the first-order loss landscape. Additionally, we lever-
age the IB theory to develop a training-free method for FSL,
enabling to effectively design and rank neural architectures
based on IB theory. We conduct extensive experiments
to validate the effectiveness of our IBFS framework. The
experimental results show that our IBFS achieves state-of-
the-art performance in terms of accuracy and search costs
in FSL without the need for training.

In the future, we plan to deploy IBFS on edge devices (i.e.,
IoT, and Raspberry Pi), which will significantly benefit
the NAS community and real-world applications by pro-
viding high-quality services in terms of discovering high-
performing architectures. Because edge devices possess the
characteristics of limited resources, it highlights the need for
more efficient and high-performing architectures by deploy-
ing our IBFS. However, it is challenging to deploy IBFS on
edge devices due to the limited resources of edge devices.
Therefore, we plan to explore ways to reduce the costs of
IBFS in terms of storage and search costs. In addition, to en-
hance the generalization of our method under cross-domain
settings, we will study cross-domain FSL for more com-
plicated and challenging, varying-way, varying-shot tasks
beyond the current scope.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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Overview of the Appendix
The overview of this appendix is as follows:

• App. A: Describes detailed proof of global convergence of MAML.

A. Proof of Global Convergence of MAML
In this section, we will prove the global convergence of MAML. First, we rethink the process of MAML under the FSL
setting, then, we introduce some variables used in the proof. Finally, we will introduce proof of global convergence of
MAML.

Rethink the Process of MAML. From the FSL definition, we have a set of tasks {T t}mt=1, where each task T t consists of
bt data samples. These are split into support (training) samples (X̂t, Ŷ t) ∈ Dtrain

t and query (test) samples (Xt, Y t) ∈ Dtest
t .

The loss function for FSL is defined as:

min
A,W t

m∑
t=1

L(Dtest
t , G(Dtrain

t , α;A)), (11)

where A is the neural architecture, W t are the task-specific parameters, and G represents parameter updates via gradient
descent. From the NAS definition, the search process is a Directed Acyclic Graph (DAG), and the objective is:

minLvalXt∈T t (W ∗, α), s.t. W ∗ = argmin
W

LtrainXt∈T t (W,α), (12)

where W are the weights of the architecture, α are the mixing weights of operations, and W ∗ is the optimal weight. In the
paper, MAML is formulated as a bi-level optimization problem:

θ∗ = argmin
θ∈Θ

F (θ) :=
1

M

M∑
i=1

Fi(θ), Fi(θ) = fi(ϕi(θ)), ϕi(θ) = Alg(f̂i,θ,h), (13)

where f̂i is the training loss, fi is the test loss, and Alg is an optimization algorithm (e.g., gradient descent) that adapts θ to
task-specific parameters ϕi(θ).

Definition of Variable. In this section, we provide the detailed definition of variables in our paper. The details are as
follows:

• Ft: This represents the loss for task T t, sampled from a search space A. Based on the FSL definition, Ft(X̂
t, Xt, Y t)

is the test loss ft(ϕt(θ)), where ϕt(θ) is the adapted parameter for task T t.

• ℓ(W t) = ℓ(Ŷ t, Y t) = 1
2∥Ft(X̂

t, Xt, Y t) − Ŷ t∥22: The loss is the squared error between the predicted output
Ŷ t = Ft(X̂

t, Xt, Y t) (using adapted parameters) and the true output Y t. Here, W t corresponds to the adapted
parameters ϕt(θ).

• ℓinner = ∇θFt(X̂
t, Xt, Y t): This is the gradient of the task-specific loss with respect to the meta-parameters θ,

computed on the support set.

• lr∞ = liml→∞
1
l ℓinnerℓ

T
inner: This appears to define a limiting behavior of the inner gradient’s covariance as the width l

(number of hidden units in layer i) increases. It’s likely intended to capture the spectral properties of the gradient.

• ϕ0 = 2
ξmax(ℓ∞)+ξmin(ℓ∞) : Here, ξmax and ξmin are the maximum and minimum eigenvalues of ℓ∞, suggesting ϕ0 is

related to the learning rate or a stability constant.

• η0: A constant related to the learning rate.

• σmin(Φ): The minimum singular value of a matrix Φ, likely related to the Jacobian of the network’s output with respect
to its parameters.
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• l: The width of the i-th hidden layer in the neural network.

• lr: The learning rate for gradient descent.

• λ: A regularization parameter.

Detailed Proof. To make the proof clear, in this paper, we provide some assumptions as follows. These assumptions can
also be found in previous works (Arora et al., 2019).

Assumption 1 (Smoothness and Strong Convexity.) Assume the task-specific training loss f̂t is L̂1-smooth and the inner
objective f̂t(ϕ) +

λ
2 ∥ϕ− θ∥2 is µ-strongly convex (Assumption 3 in the paper). The test loss ft is L1-smooth.

Assumption 2 (Bounded Gradients.) The meta-gradient ∇F (θ) is bounded (Corollary 3 in the paper).

Assumption 3 (Spectral Properties.) The matrix Φ represents the Jacobian of the network output with respect to θ, and
σmin(Φ) > 0, ensuring the network is expressive enough.

Assumption 4 (Learning Rate and Width.) The learning rate lr < lr∞
l , and the width l ≥ l∗, ensuring the network is

sufficiently wide to approximate the limiting behavior.

Theorem A.1 (Theorem 4.1 restated) For a neural network with width l ≥ l∗, performing gradient descent with learning
rate lr < lr∞

l and regularization λ < λ0

l , the loss ℓ(W t) = 1
2∥Ft(X̂

t, Xt, Y t)− Ŷ t∥22 satisfies:

ℓ(W t) ≤ (1− τ · η0σmin(Φ))
2t
, τ ∈ (0, 1), (14)

where η0 > 0, and σmin(Φ) is the minimum singular value of the Jacobian matrix Φ.

First, we will define the loss and update rule of MAML under FSL settings. The loss for task T t is:

ℓ(W t) =
1

2
∥Ft(X̂

t, Xt, Y t)− Ŷ t∥22, (15)

where Ft(X̂
t, Xt, Y t) is the predicted output using the adapted parameters W t = ϕt(θ

t), and Ŷ t is the predicted output on
the test set. The meta-objective is:

F (θ) =
1

M

M∑
t=1

ft(ϕt(θ)), ϕt(θ) = θ − α∇θ f̂t(θ). (16)

After that, the meta-update at iteration t is:
θt+1 = θt − lr∇F (θt), (17)

where lr is the outer learning rate. For each task T t, the inner loop performs one step of gradient descent:

ϕt(θ
t) = θt − α∇θ f̂t(θ

t). (18)

Since f̂t is L̂1-smooth, the inner gradient ∇θ f̂t(θ) is Lipschitz, and the adaptation step reduces the training loss. Then,
we introduce the meta-gradient and smoothness in our paper. To be specific, the meta-gradient is defined as ∇F (θ) =
1
M

∑M
t=1 ∇ft(ϕt(θ)) · dϕt(θ)

dθ . According to the previous work (Chayti & Jaggi, 2024), we can obtain a generalized
smoothness condition as:

∥∇F (θ)−∇F (θ′)∥ ≤ min(L(θ),L(θ′))∥θ − θ′∥, (19)

where L(θ) = L0 + L1∥∇F (θ)∥. Under strong convexity (Assumption 3), ∇F (θ) is bounded (Corollary 3), so F is
L-smooth in the classical sense:

L = L0 + L1G, G =
λL0

µ
. (20)
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Since F is L-smooth, the descent lemma can be written as:

F (θt+1) ≤ F (θt) +∇F (θt)⊤(θt+1 − θt) +
L
2
∥θt+1 − θt∥2. (21)

Substituting the update θt+1 = θt − lr∇F (θt):

F (θt+1) ≤ F (θt)− lr∥∇F (θt)∥2 + L
2
lr2∥∇F (θt)∥2. (22)

If lr < 1
L , then:

F (θt+1) ≤ F (θt)− lr

(
1− Llr

2

)
∥∇F (θt)∥2. (23)

When lr = 1
L , we can obtain:

F (θt+1) ≤ F (θt)− 1

2L
∥∇F (θt)∥2. (24)

The task loss ℓ(W t) = ft(ϕt(θ
t)) is a component of F (θt). Since ft is L1-smooth, the gradient ∇ft(ϕt(θ)) relates to the

loss via the network’s Jacobian Φ = ∂Ft

∂ϕt
. The minimum singular value σmin(Φ) ensures that:

∥∇ft(ϕt(θ))∥ ≥ σmin(Φ)
√
2ft(ϕt(θ)). (25)

Thus, ft(ϕt(θ
t)) ≤ ∥∇ft(ϕt(θ

t))∥2

2σmin(Φ)2 , and since ∇F averages over tasks, we approximate:

∥∇F (θt)∥2 ≈ 1

M

M∑
t=1

∥∇ft(ϕt(θ
t))∥2 ≥ σmin(Φ)

2 · 2ft(ϕt(θ
t)). (26)

According to the above equation, the decrease in F implies a decrease in the average task loss. For a single task:

∥∇F (θt)∥2 ≈ 1

M

M∑
t=1

∥∇ft(ϕt(θ
t))∥2 ≥ σmin(Φ)

2 · 2ft(ϕt(θ
t)). (27)

When set η0 = 1
L , we can obtain:

ft(ϕt(θ
t+1)) ≤

(
1− η0σmin(Φ)

2

2

)
ft(ϕt(θ

t)). (28)

After t iterations, we can obtain:

ft(ϕt(θ
t)) ≤

(
1− η0σmin(Φ)

2

2

)t

ft(ϕt(θ
0)). (29)

Bounding the Initial Loss ℓ(W 0).

Note that:
ℓ(W 0) = ft(ϕt(θ

0)) =
1

2
∥Ft(X̂

t, Xt, Y t)− Ŷ t∥22,

where ϕt(θ
0) = θ0 − α∇f̂t(θ

0) is the one-step adapted model.

Under Assumption 3 (bounded gradient norm) and assuming Lipschitz continuity of Ft with constant LF , we obtain:

∥Ft(X̂
t, Xt, Y t)− Ŷ t∥2 ≤ LF ∥ϕt(θ

0)− θ∗∥2 + ∥Ft(θ
∗)− Ŷ t∥2,
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where θ∗ is the task-optimal parameter. Then,

ℓ(W 0) ≤ 1

2

(
LF ∥ϕt(θ

0)− θ∗∥2 + ε
)2

,

where ε is the irreducible error from the Bayes optimal predictor.

Because ϕt(θ
0) = θ0 − α∇f̂t(θ

0), and the gradient is bounded by G, we have:

∥ϕt(θ
0)− θ∗∥2 ≤ ∥θ0 − θ∗∥2 + αG.

Therefore, the upper bound becomes:

ℓ(W 0) ≤ 1

2

(
LF (∥θ0 − θ∗∥2 + αG) + ε

)2
.

If needed, a lower bound can also be derived assuming some minimum deviation from optimality due to finite adaptation:

ℓ(W 0) ≥ 1

2
(LF δmin)

2
,

where δmin = inft ∥ϕt(θ
0)− θ∗∥ across tasks.

Final Task Loss Bound. Putting this together, we have:

ℓ(W t) ≤ (1− τ · η0σmin(Φ))
2t
ℓ(W 0),

where ℓ(W 0) is bounded as shown above.

Therefore, Theorem 4.1 is proved.
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